1
|
De All JE, Caminos Eguillor JF, Cohen SM, Freilij H, Dubin A. Sublingual microcirculatory alterations in Chagas disease: an observational study in an endemic rural population. Mem Inst Oswaldo Cruz 2024; 119:e240018. [PMID: 39109708 PMCID: PMC11304841 DOI: 10.1590/0074-02760240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Chagas disease is a systemic illness with widespread microvascular involvement. Experimental and clinical studies suggest that functional and structural microcirculatory abnormalities might be relevant to the disease progression. OBJECTIVES To show the presence of sublingual microcirculatory alterations in patients with chronic Chagas disease. METHODS This was a cross-sectional study including adult patients with serologic diagnosis of Chagas disease (n = 41) and control volunteers with negative serology (n = 38), from an endemic rural population. Study participants underwent clinical, electrocardiographic, echocardiographic, and sublingual videomicroscopic assessment. Videos were acquired by a sidestream-dark-field (SDF) imaging device and evaluated by a software-assisted analysis (AVA 3.2 software). FINDINGS Most of Chagas disease patients were in the indeterminate phase (n = 34) and had lower heart rate and more echocardiographic abnormalities than control group (50 vs. 26%, p = 0.03). They also exhibited higher small microvessels total and perfused vascular density (20.12 ± 2.33 vs. 19.05 ± 2.25 and 20.03 ± 2.28 vs. 19.01 ± 2.25 mm/mm2, p < 0.05 for both). Other microvascular variables did not differ between groups. MAIN CONCLUSIONS Patients with chronic Chagas disease exhibited increases in sublingual total and perfused microvascular density. Angiogenesis might be the underlying mechanism. The videomicroscopic assessment of mucosal sublingual microcirculation might be an additional tool in the monitoring of Chagas disease.
Collapse
Affiliation(s)
- Jorge Emilio De All
- Asociación Cuerpo & Alma, Ciudad Autónoma de Buenos Aires, Argentina
- Sanatorio Otamendi, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Francisco Caminos Eguillor
- Universidad Nacional de La Plata, Facultad de Ciencias Médicas, Cátedras de Farmacología Aplicada y Terapia Intensiva, Provincia de Buenos Aires, Argentina
| | | | - Héctor Freilij
- Hospital de Niños Ricardo Gutiérrez, Servicio de Parasitología y Enfermedad de Chagas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Arnaldo Dubin
- Sanatorio Otamendi, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad Nacional de La Plata, Facultad de Ciencias Médicas, Cátedras de Farmacología Aplicada y Terapia Intensiva, Provincia de Buenos Aires, Argentina
| |
Collapse
|
2
|
Berhe H, Kumar Cinthakunta Sridhar M, Zerihun M, Qvit N. The Potential Use of Peptides in the Fight against Chagas Disease and Leishmaniasis. Pharmaceutics 2024; 16:227. [PMID: 38399281 PMCID: PMC10892537 DOI: 10.3390/pharmaceutics16020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Chagas disease and leishmaniasis are both neglected tropical diseases that affect millions of people around the world. Leishmaniasis is currently the second most widespread vector-borne parasitic disease after malaria. The World Health Organization records approximately 0.7-1 million newly diagnosed leishmaniasis cases each year, resulting in approximately 20,000-30,000 deaths. Also, 25 million people worldwide are at risk of Chagas disease and an estimated 6 million people are infected with Trypanosoma cruzi. Pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine are currently used to treat leishmaniasis. Also, nifurtimox and benznidazole are two drugs currently used to treat Chagas disease. These drugs are associated with toxicity problems such as nephrotoxicity and cardiotoxicity, in addition to resistance problems. As a result, the discovery of novel therapeutic agents has emerged as a top priority and a promising alternative. Overall, there is a need for new and effective treatments for Chagas disease and leishmaniasis, as the current drugs have significant limitations. Peptide-based drugs are attractive due to their high selectiveness, effectiveness, low toxicity, and ease of production. This paper reviews the potential use of peptides in the treatment of Chagas disease and leishmaniasis. Several studies have demonstrated that peptides are effective against Chagas disease and leishmaniasis, suggesting their use in drug therapy for these diseases. Overall, peptides have the potential to be effective therapeutic agents against Chagas disease and leishmaniasis, but more research is needed to fully investigate their potential.
Collapse
Affiliation(s)
| | | | | | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (H.B.); (M.K.C.S.); (M.Z.)
| |
Collapse
|
3
|
Nisimura LM, Ferreira RR, Coelho LL, de Oliveira GM, Gonzaga BM, Meuser-Batista M, Lannes-Vieira J, Araujo-Jorge T, Garzoni LR. Vascular Growth Factor Inhibition with Bevacizumab Improves Cardiac Electrical Alterations and Fibrosis in Experimental Acute Chagas Disease. BIOLOGY 2023; 12:1414. [PMID: 37998013 PMCID: PMC10669550 DOI: 10.3390/biology12111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 11/25/2023]
Abstract
Chagas disease (CD) caused by Trypanosoma cruzi is a neglected illness and a major reason for cardiomyopathy in endemic areas. The existing therapy generally involves trypanocidal agents and therapies that control cardiac alterations. However, there is no treatment for the progressive cardiac remodeling that is characterized by inflammation, microvasculopathy and extensive fibrosis. Thus, the search for new therapeutic strategies aiming to inhibit the progression of cardiac injury and failure is necessary. Vascular Endothelial Growth Factor A (VEGF-A) is the most potent regulator of vasculogenesis and angiogenesis and has been implicated in inducing exacerbated angiogenesis and fibrosis in chronic inflammatory diseases. Since cardiac microvasculopathy in CD is also characterized by exacerbated angiogenesis, we investigated the effect of inhibition of the VEGF signaling pathway using a monoclonal antibody (bevacizumab) on cardiac remodeling and function. Swiss Webster mice were infected with Y strain, and cardiac morphological and molecular analyses were performed. We found that bevacizumab significantly increased survival, reduced inflammation, improved cardiac electrical function, diminished angiogenesis, decreased myofibroblasts in cardiac tissue and restored collagen levels. This work shows that VEGF is involved in cardiac microvasculopathy and fibrosis in CD and the inhibition of this factor could be a potential therapeutic strategy for CD.
Collapse
Affiliation(s)
- Lindice Mitie Nisimura
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
- Laboratory of Applied Genomics and Bioinnovations, Oswaldo Cruz Institute (LAGABI-IOC/Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Laura Lacerda Coelho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Gabriel Melo de Oliveira
- Laboratory of Cell Biology, Oswaldo Cruz Institute (LBC-IOC/Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Beatriz Matheus Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Marcelo Meuser-Batista
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute (LBI-IOC/Fiocruz), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| | - Tania Araujo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Luciana Ribeiro Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| |
Collapse
|
4
|
Marin-Neto JA, Rassi A, Oliveira GMM, Correia LCL, Ramos Júnior AN, Luquetti AO, Hasslocher-Moreno AM, Sousa ASD, Paola AAVD, Sousa ACS, Ribeiro ALP, Correia Filho D, Souza DDSMD, Cunha-Neto E, Ramires FJA, Bacal F, Nunes MDCP, Martinelli Filho M, Scanavacca MI, Saraiva RM, Oliveira Júnior WAD, Lorga-Filho AM, Guimarães ADJBDA, Braga ALL, Oliveira ASD, Sarabanda AVL, Pinto AYDN, Carmo AALD, Schmidt A, Costa ARD, Ianni BM, Markman Filho B, Rochitte CE, Macêdo CT, Mady C, Chevillard C, Virgens CMBD, Castro CND, Britto CFDPDC, Pisani C, Rassi DDC, Sobral Filho DC, Almeida DRD, Bocchi EA, Mesquita ET, Mendes FDSNS, Gondim FTP, Silva GMSD, Peixoto GDL, Lima GGD, Veloso HH, Moreira HT, Lopes HB, Pinto IMF, Ferreira JMBB, Nunes JPS, Barreto-Filho JAS, Saraiva JFK, Lannes-Vieira J, Oliveira JLM, Armaganijan LV, Martins LC, Sangenis LHC, Barbosa MPT, Almeida-Santos MA, Simões MV, Yasuda MAS, Moreira MDCV, Higuchi MDL, Monteiro MRDCC, Mediano MFF, Lima MM, Oliveira MTD, Romano MMD, Araujo NNSLD, Medeiros PDTJ, Alves RV, Teixeira RA, Pedrosa RC, Aras Junior R, Torres RM, Povoa RMDS, Rassi SG, Alves SMM, Tavares SBDN, Palmeira SL, Silva Júnior TLD, Rodrigues TDR, Madrini Junior V, Brant VMDC, Dutra WO, Dias JCP. SBC Guideline on the Diagnosis and Treatment of Patients with Cardiomyopathy of Chagas Disease - 2023. Arq Bras Cardiol 2023; 120:e20230269. [PMID: 37377258 PMCID: PMC10344417 DOI: 10.36660/abc.20230269] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Affiliation(s)
- José Antonio Marin-Neto
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | - Anis Rassi
- Hospital do Coração Anis Rassi , Goiânia , GO - Brasil
| | | | | | | | - Alejandro Ostermayer Luquetti
- Centro de Estudos da Doença de Chagas , Hospital das Clínicas da Universidade Federal de Goiás , Goiânia , GO - Brasil
| | | | - Andréa Silvestre de Sousa
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Antônio Carlos Sobral Sousa
- Universidade Federal de Sergipe , São Cristóvão , SE - Brasil
- Hospital São Lucas , Rede D`Or São Luiz , Aracaju , SE - Brasil
| | | | | | | | - Edecio Cunha-Neto
- Universidade de São Paulo , Faculdade de Medicina da Universidade, São Paulo , SP - Brasil
| | - Felix Jose Alvarez Ramires
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Fernando Bacal
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Martino Martinelli Filho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Maurício Ibrahim Scanavacca
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Roberto Magalhães Saraiva
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Adalberto Menezes Lorga-Filho
- Instituto de Moléstias Cardiovasculares , São José do Rio Preto , SP - Brasil
- Hospital de Base de Rio Preto , São José do Rio Preto , SP - Brasil
| | | | | | - Adriana Sarmento de Oliveira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Ana Yecê das Neves Pinto
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Andre Schmidt
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | - Andréa Rodrigues da Costa
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | - Barbara Maria Ianni
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Carlos Eduardo Rochitte
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
- Hcor , Associação Beneficente Síria , São Paulo , SP - Brasil
| | | | - Charles Mady
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Christophe Chevillard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Marselha - França
| | | | | | | | - Cristiano Pisani
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | | | - Edimar Alcides Bocchi
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Evandro Tinoco Mesquita
- Hospital Universitário Antônio Pedro da Faculdade Federal Fluminense , Niterói , RJ - Brasil
| | | | | | | | | | | | - Henrique Horta Veloso
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | - Henrique Turin Moreira
- Hospital das Clínicas , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , SP - Brasil
| | | | | | | | - João Paulo Silva Nunes
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
- Fundação Zerbini, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | | | | | | | - Luiz Cláudio Martins
- Universidade Estadual de Campinas , Faculdade de Ciências Médicas , Campinas , SP - Brasil
| | | | | | | | - Marcos Vinicius Simões
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | | | | | - Maria de Lourdes Higuchi
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Mauro Felippe Felix Mediano
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
- Instituto Nacional de Cardiologia (INC), Rio de Janeiro, RJ - Brasil
| | - Mayara Maia Lima
- Secretaria de Vigilância em Saúde , Ministério da Saúde , Brasília , DF - Brasil
| | | | | | | | | | - Renato Vieira Alves
- Instituto René Rachou , Fundação Oswaldo Cruz , Belo Horizonte , MG - Brasil
| | - Ricardo Alkmim Teixeira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Roberto Coury Pedrosa
- Hospital Universitário Clementino Fraga Filho , Instituto do Coração Edson Saad - Universidade Federal do Rio de Janeiro , RJ - Brasil
| | | | | | | | | | - Silvia Marinho Martins Alves
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico Universitário da Universidade de Pernambuco (PROCAPE/UPE), Recife , PE - Brasil
| | | | - Swamy Lima Palmeira
- Secretaria de Vigilância em Saúde , Ministério da Saúde , Brasília , DF - Brasil
| | | | | | - Vagner Madrini Junior
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | - João Carlos Pinto Dias
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| |
Collapse
|
5
|
Oliveira AC, Vicentino ARR, Andrade D, Pereira IR, Saboia-Vahia L, Moreira ODC, Carvalho-Pinto CE, Mota JBD, Maciel L, Vilar-Pereira G, Pesquero JB, Lannes-Vieira J, Sirois P, Campos de Carvalho AC, Scharfstein J. Genetic Ablation and Pharmacological Blockade of Bradykinin B1 Receptor Unveiled a Detrimental Role for the Kinin System in Chagas Disease Cardiomyopathy. J Clin Med 2023; 12:jcm12082888. [PMID: 37109224 PMCID: PMC10144326 DOI: 10.3390/jcm12082888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Chagas disease, the parasitic infection caused by Trypanosoma cruzi, afflicts about 6 million people in Latin America. Here, we investigated the hypothesis that T. cruzi may fuel heart parasitism by activating B1R, a G protein-coupled (brady) kinin receptor whose expression is upregulated in inflamed tissues. Studies in WT and B1R-/- mice showed that T. cruzi DNA levels (15 days post infection-dpi) were sharply reduced in the transgenic heart. FACS analysis revealed that frequencies of proinflammatory neutrophils and monocytes were diminished in B1R-/- hearts whereas CK-MB activity (60 dpi) was exclusively detected in B1R+/+ sera. Since chronic myocarditis and heart fibrosis (90 dpi) were markedly attenuated in the transgenic mice, we sought to determine whether a pharmacological blockade of the des-Arg9-bradykinin (DABK)/B1R pathway might alleviate chagasic cardiomyopathy. Using C57BL/6 mice acutely infected by a myotropic T. cruzi strain (Colombian), we found that daily treatment (15-60 dpi) with R-954 (B1R antagonist) reduced heart parasitism and blunted cardiac injury. Extending R-954 treatment to the chronic phase (120-160 dpi), we verified that B1R targeting (i) decreased mortality indexes, (ii) mitigated chronic myocarditis, and (iii) ameliorated heart conduction disturbances. Collectively, our study suggests that a pharmacological blockade of the proinflammatory KKS/DABK/B1R pathway is cardioprotective in acute and chronic Chagas disease.
Collapse
Affiliation(s)
- Ana Carolina Oliveira
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Amanda Roberta Revoredo Vicentino
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Daniele Andrade
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Isabela Resende Pereira
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Leonardo Saboia-Vahia
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Otacílio da Cruz Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Carla Eponina Carvalho-Pinto
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Julia Barbalho da Mota
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Maciel
- Programa de Medicina Regenerativa, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Duque de Caxias Campus, Rio de Janeiro 21941-902, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - João B Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 05508-090, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Pierre Sirois
- Department of Microbiology and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Antônio Carlos Campos de Carvalho
- Programa de Medicina Regenerativa, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Centro Nacional de Biologia Estrutural e Bio-Imagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro 21941-902, Brazil
| | - Julio Scharfstein
- Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
6
|
De Alba-Alvarado MC, Torres-Gutiérrez E, Reynoso-Ducoing OA, Zenteno-Galindo E, Cabrera-Bravo M, Guevara-Gómez Y, Salazar-Schettino PM, Rivera-Fernández N, Bucio-Torres MI. Immunopathological Mechanisms Underlying Cardiac Damage in Chagas Disease. Pathogens 2023; 12:pathogens12020335. [PMID: 36839607 PMCID: PMC9959418 DOI: 10.3390/pathogens12020335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
In Chagas disease, the mechanisms involved in cardiac damage are an active field of study. The factors underlying the evolution of lesions following infection by Trypanosoma cruzi and, in some cases, the persistence of its antigens and the host response, with the ensuing development of clinically observable cardiac damage, are analyzed in this review.
Collapse
Affiliation(s)
- Mariana Citlalli De Alba-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Elia Torres-Gutiérrez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Olivia Alicia Reynoso-Ducoing
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Edgar Zenteno-Galindo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Margarita Cabrera-Bravo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Yolanda Guevara-Gómez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Paz María Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
- Correspondence: (N.R.-F.); (M.I.B-T.)
| | - Martha Irene Bucio-Torres
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
- Correspondence: (N.R.-F.); (M.I.B-T.)
| |
Collapse
|
7
|
Nisimura LM, Ferreira RR, Coelho LL, de Souza EM, Gonzaga BM, Ferrão PM, Waghabi MC, de Mesquita LB, Pereira MCDS, Moreira ODC, Lannes-Vieira J, Garzoni LR. Increased angiogenesis parallels cardiac tissue remodelling in experimental acute Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2022; 117:e220005. [PMID: 36417626 PMCID: PMC9677593 DOI: 10.1590/0074-02760220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Angiogenesis has been implicated in tissue injury in several noninfectious diseases, but its role in Chagas disease (CD) physiopathology is unclear. OBJECTIVES The present study aimed to investigate the effect of Trypanosoma cruzi infection on cardiac angiogenesis during the acute phase of experimental CD. METHODS The signalling pathway involved in blood vessel formation and cardiac remodelling was evaluated in Swiss Webster mice infected with the Y strain of T. cruzi. The levels of molecules involved in the regulation of angiogenesis, such as vascular endothelial growth factor-A (VEGF-A), Flk-1, phosphorylated extracellular-signal-regulated protein kinase (pERK), hypoxia-inducible factor-1α (HIF-1α), CD31, α-smooth muscle actin (α-SMA) and also the blood vessel growth were analysed during T. cruzi infection. Hearts were analysed using conventional histopathology, immunohistochemistry and western blotting. FINDINGS In this study, our data demonstrate that T. cruzi acute infection in mice induces exacerbated angiogenesis in the heart and parallels cardiac remodelling. In comparison with noninfected controls, the cardiac tissue of T. cruzi-infected mice presented higher levels of (i) HIF-1α, VEGF-A, Flk-1 and pERK; (ii) angiogenesis; (iii) α-SMA+ cells in the tissue; and (iv) collagen -1 deposition around blood vessels and infiltrating throughout the myocardium. MAIN CONCLUSIONS We observed cardiac angiogenesis during acute experimental T. cruzi infection parallels cardiac inflammation and remodelling.
Collapse
Affiliation(s)
- Lindice Mitie Nisimura
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil
| | - Roberto Rodrigues Ferreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Laura Lacerda Coelho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil
| | - Elen Mello de Souza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Beatriz Matheus Gonzaga
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil
| | - Patrícia Mello Ferrão
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Mariana Caldas Waghabi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Liliane Batista de Mesquita
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, RJ, Brasil
| | | | - Otacilio da Cruz Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Joseli Lannes-Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia das Interações, Rio de Janeiro, RJ, Brasil
| | - Luciana Ribeiro Garzoni
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| |
Collapse
|
8
|
Neves EGA, Koh CC, Souza-Silva TG, Passos LSA, Silva ACC, Velikkakam T, Villani F, Coelho JS, Brodskyn CI, Teixeira A, Gollob KJ, Nunes MDCP, Dutra WO. T-Cell Subpopulations Exhibit Distinct Recruitment Potential, Immunoregulatory Profile and Functional Characteristics in Chagas versus Idiopathic Dilated Cardiomyopathies. Front Cardiovasc Med 2022; 9:787423. [PMID: 35187122 PMCID: PMC8847602 DOI: 10.3389/fcvm.2022.787423] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic Chagas cardiomyopathy (CCC) is one of the deadliest cardiomyopathies known and the most severe manifestation of Chagas disease, which is caused by infection with the parasite Trypanosoma cruzi. Idiopathic dilated cardiomyopathies (IDC) are a diverse group of inflammatory heart diseases that affect the myocardium and are clinically similar to CCC, often causing heart failure and death. While T-cells are critical for mediating cardiac pathology in CCC and IDC, the mechanisms underlying T-cell function in these cardiomyopathies are not well-defined. In this study, we sought to investigate the phenotypic and functional characteristics of T-cell subpopulations in CCC and IDC, aiming to clarify whether the inflammatory response is similar or distinct in these cardiomyopathies. We evaluated the expression of systemic cytokines, determined the sources of the different cytokines, the expression of their receptors, of cytotoxic molecules, and of molecules associated with recruitment to the heart by circulating CD4+, CD8+, and CD4-CD8- T-cells from CCC and IDC patients, using multiparameter flow cytometry combined with conventional and unsupervised machine-learning strategies. We also used an in silico approach to identify the expression of genes that code for key molecules related to T-cell function in hearts of patient with CCC and IDC. Our data demonstrated that CCC patients displayed a more robust systemic inflammatory cytokine production as compared to IDC. While CD8+ T-cells were highly activated in CCC as compared to IDC, CD4+ T-cells were more activated in IDC. In addition to differential expression of functional molecules, these cells also displayed distinct expression of molecules associated with recruitment to the heart. In silico analysis of gene transcripts in the cardiac tissue demonstrated a significant correlation between CD8 and inflammatory, cytotoxic and cardiotropic molecules in CCC transcripts, while no correlation with CD4 was observed. A positive correlation was observed between CD4 and perforin transcripts in hearts from IDC but not CCC, as compared to normal tissue. These data show a clearly distinct systemic and local cellular response in CCC and IDC, despite their similar cardiac impairment, which may contribute to identifying specific immunotherapeutic targets in these diseases.
Collapse
Affiliation(s)
- Eula G. A. Neves
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carolina C. Koh
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thaiany G. Souza-Silva
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lívia Silva Araújo Passos
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Brigham and Womens Hospital, Harvard University, Boston, MA, United States
| | - Ana Carolina C. Silva
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Teresiama Velikkakam
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Villani
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Minas Gerais State University, Divinópolis, Brazil
| | - Janete Soares Coelho
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | - Claudia Ida Brodskyn
- Gonçalo Moniz Research Center, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Andrea Teixeira
- Rene Rachou Institute, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Kenneth J. Gollob
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, Brazil
| | - Maria do Carmo P. Nunes
- Graduate Program in Infectology and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Walderez O. Dutra
- Department of Morphology, Cell-Cell Interactions Laboratory, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, Brazil
- Graduate Program in Infectology and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Longitudinal Speckle Tracking Strain Abnormalities in Chagas Disease: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11030769. [PMID: 35160221 PMCID: PMC8846382 DOI: 10.3390/jcm11030769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Chronic Chagas cardiomyopathy (CCM) is ranked among heart failure etiologies with the highest mortality rates. CCM is characterized by alterations in left ventricular function with a typical and unique pattern of myocardial involvement. Left ventricle longitudinal speckle tracking strain is emerging as an important additive method for evaluating left ventricular function and risk of future cardiovascular events. This systematic review aimed to characterize the left ventricle (LV) longitudinal strain by speckle tracking patterns in the different stages of Chagas disease, compared to healthy controls. Methods: Searches in Medline, EMBASE, and LILACS databases (from inception to 20 May 2021) were performed. Articles written in any language that assessed patients with Chagas disease and reported any measures derived from the left ventricular strain by speckle tracking were included. Two reviewers independently selected the studies, extracted the data, and assessed the quality of evidence. Standardized mean differences (SMD) were pooled using random-effects meta-analyses. Results: Of 1044 references, ten studies, including a total of 1222 participants (CCM: 477; indeterminate form: 444; healthy controls: 301), fulfilled the selection criteria and were included in the final analysis. Patients with CCM had a significantly higher mean global longitudinal strain (GLS) value than indeterminate form (IF) patients (SMD 1.253; 95% CI 0.53, 1.98. I2 = 94%), while no significant difference was observed between IF patients and healthy controls (SMD 0.197; 95% CI −0.19, 0.59. I2 = 80%). Segmental strain analyses revealed that patients with the IF form of CD had significantly worse strain values in the basal-inferoseptal (SMD 0.49; 95% CI 0.24, 0.74. I2: 24%), and mid-inferoseptal (SMD 0.28; 95% CI 0.05, 0.50. I2: 10%) segments compared to healthy controls. Conclusions: Our results suggest different levels of functional derangements in myocardial function across different stages of Chagas disease. Further research is needed to assess the prognostic role of LV longitudinal strain and other measures derived from speckle tracking in CD patients regarding progression to cardiomyopathy and clinical outcomes prediction.
Collapse
|
10
|
Vellasco L, Svensjö E, Bulant CA, Blanco PJ, Nogueira F, Domont G, de Almeida NP, Nascimento CR, Silva-dos-Santos D, Carvalho-Pinto CE, Medei EH, Almeida IC, Scharfstein J. Sheltered in Stromal Tissue Cells, Trypanosoma cruzi Orchestrates Inflammatory Neovascularization via Activation of the Mast Cell Chymase Pathway. Pathogens 2022; 11:pathogens11020187. [PMID: 35215131 PMCID: PMC8878313 DOI: 10.3390/pathogens11020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/04/2022] Open
Abstract
Microangiopathy may worsen the clinical outcome of Chagas disease. Given the obstacles to investigating the dynamics of inflammation and angiogenesis in heart tissues parasitized by Trypanosoma cruzi, here we used intravital microscopy (IVM) to investigate microcirculatory alterations in the hamster cheek pouch (HCP) infected by green fluorescent protein-expressing T. cruzi (GFP-T. cruzi). IVM performed 3 days post-infection (3 dpi) consistently showed increased baseline levels of plasma extravasation. Illustrating the reciprocal benefits that microvascular leakage brings to the host-parasite relationship, these findings suggest that intracellular amastigotes, acting from inside out, stimulate angiogenesis while enhancing the delivery of plasma-borne nutrients and prosurvival factors to the infection foci. Using a computer-based analysis of images (3 dpi), we found that proangiogenic indexes were positively correlated with transcriptional levels of proinflammatory cytokines (pro-IL1β and IFN-γ). Intracellular GFP-parasites were targeted by delaying for 24 h the oral administration of the trypanocidal drug benznidazole. A classification algorithm showed that benznidazole (>24 h) blunted angiogenesis (7 dpi) in the HCP. Unbiased proteomics (3 dpi) combined to pharmacological targeting of chymase with two inhibitors (chymostatin and TY-51469) linked T. cruzi-induced neovascularization (7 dpi) to the proangiogenic activity of chymase, a serine protease stored in secretory granules from mast cells.
Collapse
Affiliation(s)
- Lucas Vellasco
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | - Erik Svensjö
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | - Carlos Alberto Bulant
- Department of Mathematical and Computational Methods, National Laboratory for Scientific Computing, Petrópolis 25651-075, Brazil; (C.A.B.); (P.J.B.)
| | - Pablo Javier Blanco
- Department of Mathematical and Computational Methods, National Laboratory for Scientific Computing, Petrópolis 25651-075, Brazil; (C.A.B.); (P.J.B.)
| | - Fábio Nogueira
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (F.N.); (G.D.); (N.P.d.A.)
| | - Gilberto Domont
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (F.N.); (G.D.); (N.P.d.A.)
| | - Natália Pinto de Almeida
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (F.N.); (G.D.); (N.P.d.A.)
| | - Clarissa Rodrigues Nascimento
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | - Danielle Silva-dos-Santos
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | | | - Emiliano Horácio Medei
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Julio Scharfstein
- Department of Immunobiology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (E.S.); (C.R.N.); (D.S.-d.-S.); (E.H.M.)
- Correspondence:
| |
Collapse
|
11
|
de Oliveira Dietrich C, de Oliveira Hollanda L, Cirenza C, de Paola AAV. Epicardial and Endocardial Ablation Based on Channel Mapping in Patients With Ventricular Tachycardia and Chronic Chagasic Cardiomyopathy: Importance of Late Potential Mapping During Sinus Rhythm to Recognize the Critical Substrate. J Am Heart Assoc 2021; 11:e021889. [PMID: 34927451 PMCID: PMC9075208 DOI: 10.1161/jaha.121.021889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Ventricular tachycardia (VT) in patients with chronic chagasic cardiomyopathy (CCC) is associated with considerable morbidity and mortality. Catheter ablation of VT in patients with CCC is very complex and challenging. The main goal of this work was to assess the efficacy of VT catheter ablation guided by late potentials (LPs) in patients with CCC. Methods and Results Seventeen consecutive patients with refractory VT and CCC were prospectively included in the study. Combined endo‐epicardial voltage and late activation mapping were obtained during baseline rhythm to define scarred and LP areas, respectively. The end point of the ablation procedure was the elimination of all identified LPs. Epicardial and endocardial dense scars (<0.5 mV) were detected in 17/17 and 15/17 patients, respectively. LPs were detected in the epicardial scars of 16/17 patients and in the endocardial scars of 14/15 patients. A total of 63 VTs were induced in 17 patients; 22/63 (33%) were stable and entrained, presenting LPs recorded in the isthmus sites. The end point of ablation was achieved in 15 of 17 patients. Ablation was not completed in 2 patients because of cardiac tamponade or vicinity of the phrenic nerve and circumflex artery. Three patients (2 with unsuccessful ablation) had VT recurrence during follow‐up (39 months). Conclusions Endo‐epicardial LP mapping allows us to identify the putative isthmuses of different VTs and effectively perform catheter ablation in patients with CCC and drug‐refractory VTs.
Collapse
Affiliation(s)
- Cristiano de Oliveira Dietrich
- Clinical Cardiac Electrophysiology Cardiology Division Department of Medicine Hospital São Paulo Escola Paulista de Medicina - Universidade Federal of São Paulo São Paulo Brazil
| | - Lucas de Oliveira Hollanda
- Clinical Cardiac Electrophysiology Cardiology Division Department of Medicine Hospital São Paulo Escola Paulista de Medicina - Universidade Federal of São Paulo São Paulo Brazil
| | - Claudio Cirenza
- Clinical Cardiac Electrophysiology Cardiology Division Department of Medicine Hospital São Paulo Escola Paulista de Medicina - Universidade Federal of São Paulo São Paulo Brazil
| | - Angelo Amato Vincenzo de Paola
- Clinical Cardiac Electrophysiology Cardiology Division Department of Medicine Hospital São Paulo Escola Paulista de Medicina - Universidade Federal of São Paulo São Paulo Brazil
| |
Collapse
|
12
|
Santacruz D, Rosas F, Hardy CA, Ospina D, Rosas AN, Camargo JM, Bermúdez JJ, Betancourt JF, Velasco VM, González MD. Advanced management of ventricular arrhythmias in chronic Chagas cardiomyopathy. Heart Rhythm O2 2021; 2:807-818. [PMID: 34988532 PMCID: PMC8710627 DOI: 10.1016/j.hroo.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Chagas cardiomyopathy is a parasitic infection caused by Trypanosoma cruzi. Structural and functional abnormalities are the result of direct myocardial damage by the parasite, immunological reactions, dysautonomia, and microvascular alterations. Chronic Chagas cardiomyopathy (CCC) is the most serious and important manifestation of the disease, affecting up to 30% of patients in the chronic phase. It results in heart failure, arrhythmias, thromboembolism, and sudden cardiac death. As in other cardiomyopathies, scar-related reentry frequently results in ventricular tachycardia (VT). The scars typically are located in the inferior and lateral aspects of the left ventricle close to the mitral annulus extending from endocardium to epicardium. The scars may be more prominent in the epicardium than in the endocardium, so epicardial mapping and ablation frequently are required. Identification of late potentials during sinus rhythm and mid-diastolic potentials during hemodynamically tolerated VT are the main targets for ablation. High-density mapping during sinus rhythm can identify late isochronal regions that are then targeted for ablation. Preablation cardiac magnetic resonance imaging with late enhancement can identify potentials areas of arrhythmogenesis. Therapeutic alternatives for VT management include antiarrhythmic drugs and modulation of the cardiac autonomic nervous system.
Collapse
Affiliation(s)
- David Santacruz
- Department of Cardiac Electrophysiology, Fundación Clínica Shaio, Bogotá, Colombia
- Training Program in Cardiac Electrophysiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fernando Rosas
- Department of Cardiac Electrophysiology, Fundación Clínica Shaio, Bogotá, Colombia
- Training Program in Cardiac Electrophysiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carina Abigail Hardy
- Arrhythmia Unit, Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Diego Ospina
- Training Program in Cardiac Electrophysiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Juan Manuel Camargo
- Department of Cardiac Electrophysiology, Fundación Clínica Shaio, Bogotá, Colombia
- Training Program in Cardiac Electrophysiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan José Bermúdez
- Training Program in Cardiac Electrophysiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan Felipe Betancourt
- Department of Cardiac Electrophysiology, Fundación Clínica Shaio, Bogotá, Colombia
- Training Program in Cardiac Electrophysiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Víctor Manuel Velasco
- Department of Cardiac Electrophysiology, Fundación Clínica Shaio, Bogotá, Colombia
- Training Program in Cardiac Electrophysiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mario D. González
- Clinical Electrophysiology, Hershey Medical Center, Penn State University, Hershey, Pennsylvania
| |
Collapse
|
13
|
Pedra-Rezende Y, Barbosa JMC, Bombaça ACS, Dantas-Pereira L, Gibaldi D, Vilar-Pereira G, Dos Santos HAM, Ramos IP, Silva-Gomes NL, Moreira OC, Lannes-Vieira J, Menna-Barreto RFS. Physical Exercise Promotes a Reduction in Cardiac Fibrosis in the Chronic Indeterminate Form of Experimental Chagas Disease. Front Immunol 2021; 12:712034. [PMID: 34804007 PMCID: PMC8599157 DOI: 10.3389/fimmu.2021.712034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/15/2021] [Indexed: 01/14/2023] Open
Abstract
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a neglected tropical disease and a health problem in Latin America. Etiological treatment has limited effectiveness in chronic CD; thus, new therapeutic strategies are required. The practice of physical exercises has been widely advocated to improve the quality of life of CD patients. The most frequent clinical CD manifestation is the chronic indeterminate form (CIF), and the effect of physical exercises on disease progression remains unknown. Here, in a CIF model, we aimed to evaluate the effect of physical exercises on cardiac histological, parasitological, mitochondrial, and oxidative metabolism, electro and echocardiographic profiles, and immunological features. To establish a CIF model, BALB/c and C57BL/6 mice were infected with 100 and 500 trypomastigotes of the Y T. cruzi strain. At 120 days postinfection (dpi), all mouse groups showed normal PR and corrected QT intervals and QRS complexes. Compared to BALB/c mice, C57BL/6 mice showed a lower parasitemia peak, mortality rate, and less intense myocarditis. Thus, C57BL/6 mice infected with 500 parasites were used for subsequent analyses. At 120 dpi, a decrease in cardiac mitochondrial oxygen consumption and an increase in reactive oxygen species (ROS) were detected. When we increased the number of analyzed mice, a reduced heart rate and slightly prolonged corrected QT intervals were detected, at 120 and 150 dpi, which were then normalized at 180 dpi, thus characterizing the CIF. Y-infected mice were subjected to an exercise program on a treadmill for 4 weeks (from 150 to 180 dpi), five times per week in a 30–60-min daily training session. At 180 dpi, no alterations were detected in cardiac mitochondrial and oxidative metabolism, which were not affected by physical exercises, although ROS production increased. At 120 and 180 dpi, comparing infected and non-infected mice, no differences were observed in the levels of plasma cytokines, indicating that a crucial biomarker of the systemic inflammatory profile was absent and not affected by exercise. Compared with sedentary mice, trained Y-infected mice showed similar parasite loads and inflammatory cells but reduced cardiac fibrosis. Therefore, our data show that physical exercises promote beneficial changes that may prevent CD progression.
Collapse
Affiliation(s)
- Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil
| | - Juliana M C Barbosa
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Cristina S Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luiza Dantas-Pereira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil.,Instituto Brasileiro de Medicina de Reabilitação, Rio de Janeiro, Brazil
| | - Hílton Antônio Mata Dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Análise e Desenvolvimento de Inibidores Enzimáticos e Laboratório Multiusuário de Análises por RMN, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isalira Peroba Ramos
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Lins Silva-Gomes
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Biologia Molecular de Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Otacilio C Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Biologia Molecular de Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz Oswaldo Cruz, Fundação, Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
do Nascimento Couceiro K, Ortiz JV, do Nascimento Correia M, da Silva E Silva MRH, Brandão AR, da Silva PRL, Doria SS, Bestetti RB, de Sousa DRT, da Silva Junior RCA, das Graças Vale Barbosa Guerra M, Ferreira JMBB, de Oliveira Guerra JA. The Selvester QRS score as an estimative of myocardial injury in acute chagasic patients from the Brazilian Amazon. BMC Infect Dis 2021; 21:396. [PMID: 33926389 PMCID: PMC8082885 DOI: 10.1186/s12879-021-06083-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the Brazilian Amazon, a new epidemiological profile of Chagas disease transmission, the oral route, has been detected and cited as being responsible for the increase in acute cases in Brazil. The clinical evaluation of acute Chagas disease (ACD) has been a challenge since it can progress to a chronic phase with cardiac alterations, and the follow-up by modern diagnostic methods is very difficult due to the socio-geographical characteristics of the Brazilian Amazon. Thus, alternatives should be sought to alleviate this problem. We conducted a study to evaluate subjects with ACD using the 12-lead ECG QRS score (Selvester score) as an estimative of myocardial injury progression before and after ACD treatment. METHODS The study included indigenous subjects from the Amazon region with ACD in clinical follow-up at the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD) Chagas Disease outpatient clinic in the state of Amazonas, Brazil. The control group consisted of 31 healthy volunteers with no history of heart disease and no reactive serology for Chagas disease. Baseline ECG was performed in all subjects. The Selvester scoring method was performed according to the standardized guide (< 3 points: no myocardial injury,> 3: points × 3% = % of the predicted LV infarction). RESULTS A total of 62 subjects were included, 31 as cases and 31 as controls. The mean follow-up of the case group was 17 months. The control group presented normal ECG. The case group presented 13 alterations before treatment and 11 after. Nineteen individuals presented scores > 3 points, 6 before and 13 after. In 19.36% of subjects, myocardial injury was found before treatment and in 41.94% after treatment. CONCLUSION This is the first study that uses the Selvester score (SS) to predict myocardial injury in subjects with ACD. The results of this study suggest the significant presence of myocardial injury from the beginning of treatment to the period post treatment of ACD, which demonstrates that the SS can be applied for stratification and follow-up of Chagas disease in the Amazon region.
Collapse
Affiliation(s)
- Katia do Nascimento Couceiro
- Programa de Pós Graduação em Medicina Tropical, Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil.
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.
| | - Jessica Vanina Ortiz
- Departamento de Ciências Fisiológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | | | - Mônica Regina Hosannah da Silva E Silva
- Programa de Pós Graduação em Medicina Tropical, Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Fundação de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
| | | | - Paula Rita Leite da Silva
- Programa de Pós Graduação em Medicina Tropical, Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Susan Smith Doria
- Programa de Pós Graduação em Medicina Tropical, Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | | | - Débora Raysa Teixeira de Sousa
- Programa de Pós Graduação em Medicina Tropical, Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Rubens Celso Andrade da Silva Junior
- Programa de Pós Graduação em Medicina Tropical, Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Maria das Graças Vale Barbosa Guerra
- Programa de Pós Graduação em Medicina Tropical, Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - João Marcos Bemfica Barbosa Ferreira
- Programa de Pós Graduação em Medicina Tropical, Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Jorge Augusto de Oliveira Guerra
- Programa de Pós Graduação em Medicina Tropical, Escola de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| |
Collapse
|
15
|
Romero J, Velasco A, Pisani CF, Alviz I, Briceno D, Díaz JC, Della Rocca DG, Natale A, de Lourdes Higuchi M, Scanavacca M, Di Biase L. Advanced Therapies for Ventricular Arrhythmias in Patients With Chagasic Cardiomyopathy: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:1225-1242. [PMID: 33663741 DOI: 10.1016/j.jacc.2020.12.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022]
Abstract
Chagas disease is caused by infection from the protozoan parasite Trypanosoma cruzi. Although it is endemic to Latin America, global migration has led to an increased incidence of Chagas in Europe, Asia, Australia, and North America. Following acute infection, up to 30% of patients will develop chronic Chagas disease, with most patients developing Chagasic cardiomyopathy. Chronic Chagas cardiomyopathy is highly arrhythmogenic, with estimated annual rates of appropriate implantable cardioverter-defibrillator therapies and electrical storm of 25% and 9.1%, respectively. Managing arrhythmias in patients with Chagasic cardiomyopathy is a major challenge for the clinical electrophysiologist, requiring intimate knowledge of cardiac anatomy, advanced training, and expertise. Endocardial-epicardial mapping and ablation strategy is needed to treat arrhythmias in this patient population, owing to the suboptimal long-term success rate of endocardial mapping and ablation alone. We also describe innovative approaches to improve acute and long-term clinical outcomes in patients with refractory ventricular arrhythmias following catheter ablation, such as bilateral cervicothoracic sympathectomy and bilateral renal denervation, among others.
Collapse
Affiliation(s)
- Jorge Romero
- Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Alejandro Velasco
- Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Cristiano F Pisani
- Arrhythmia Unit, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Isabella Alviz
- Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - David Briceno
- Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Juan Carlos Díaz
- Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Andrea Natale
- Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA; Texas Cardiac Arrhythmia Institute at St David's Medical Center, Austin, Texas, USA
| | - Maria de Lourdes Higuchi
- Arrhythmia Unit, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Mauricio Scanavacca
- Arrhythmia Unit, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Luigi Di Biase
- Cardiac Arrhythmia Center, Montefiore-Einstein Center for Heart and Vascular Care, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA; Texas Cardiac Arrhythmia Institute at St David's Medical Center, Austin, Texas, USA.
| |
Collapse
|
16
|
Campos FA, Magalhães ML, Moreira HT, Pavão RB, Lima Filho MO, Lago IM, Badran AV, Chierice JRA, Schmidt A, Marin Neto JA. Chagas Cardiomyopathy as the Etiology of Suspected Coronary Microvascular Disease. A Comparison Study with Suspected Coronary Microvascular Disease of Other Etiologies. Arq Bras Cardiol 2021; 115:1094-1101. [PMID: 33470307 PMCID: PMC8133735 DOI: 10.36660/abc.20200381] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/30/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chagas disease (CD) as neglected secondary form of suspected coronary microvascular dysfunction (CMD). OBJECTIVES Comparison of patients with CMD related to CD (CMD-CE) versus patients with CMD caused by other etiologies (CMD-OE). METHODS Of 1292 stable patients referred for invasive coronary angiography to elucidate the hemodynamic pattern and the cause of angina as a cardinal symptom in their medical history, 247 presented normal epicardial coronary arteries and 101 were included after strict exclusion criteria. Of those, 15 had suspected CMD-CE, and their clinical, hemodynamic, angiographic and scintigraphic characteristics were compared to those of the other 86 patients with suspected CDM-OE. Level of significance for all comparisons was p < 0.05. RESULTS Patients with suspected CMD-CE showed most anthropometric, clinical, angiographic hemodynamic and myocardial perfusion abnormalities that were statistically similar to those detected in the remaining 86 patients with suspected CMD-OE. LV diastolic dysfunction, expressed by elevated LV end-diastolic pressure was equally found in both groups. However, as compared to the group of CMD-OE the group with CMD-CE exhibited lower left ventricular ejection fraction (54.8 ± 15.9 vs 61.1 ± 11.9, p= 0.049) and a more severely impaired index of regional wall motion abnormalities (1.77 ± 0.35 vs 1.18 ± 0.26, p= 0.02) respectively for the CMD-OE and CMD-CE groups. CONCLUSION Chronic Chagas cardiomyopathy was a secondary cause of suspected coronary microvascular disease in 15% of 101 stable patients whose cardinal symptom was anginal pain warranting coronary angiography. Although sharing several clinical, hemodynamic, and myocardial perfusion characteristics with patients whose suspected CMD was due to other etiologies, impairment of LV segmental and global systolic function was significantly more severe in the patients with suspected CMD related to Chagas cardiomyopathy. (Arq Bras Cardiol. 2020; 115(6):1094-1101).
Collapse
Affiliation(s)
- Felipe Araujo Campos
- Universidade de São Paulo Faculdade de Medicina de Ribeirao Preto, Ribeirão Preto, SP - Brasil
| | - Mariana L Magalhães
- Universidade de São Paulo Faculdade de Medicina de Ribeirao Preto, Ribeirão Preto, SP - Brasil
| | - Henrique Turin Moreira
- Universidade de São Paulo Faculdade de Medicina de Ribeirao Preto, Ribeirão Preto, SP - Brasil
| | - Rafael B Pavão
- Universidade de São Paulo Faculdade de Medicina de Ribeirao Preto, Ribeirão Preto, SP - Brasil
| | - Moyses O Lima Filho
- Universidade de São Paulo Faculdade de Medicina de Ribeirao Preto, Ribeirão Preto, SP - Brasil
| | - Igor M Lago
- Universidade de São Paulo Faculdade de Medicina de Ribeirao Preto, Ribeirão Preto, SP - Brasil
| | - André V Badran
- Universidade de São Paulo Faculdade de Medicina de Ribeirao Preto, Ribeirão Preto, SP - Brasil
| | - João R A Chierice
- Universidade de São Paulo Faculdade de Medicina de Ribeirao Preto, Ribeirão Preto, SP - Brasil
| | - André Schmidt
- Universidade de São Paulo Faculdade de Medicina de Ribeirao Preto, Ribeirão Preto, SP - Brasil
| | | |
Collapse
|
17
|
Higuchi MDL. Absence of Atherosclerosis in Chagas' Disease: The Role of Trypanosoma Cruzi Transialidase. Arq Bras Cardiol 2020; 115:1061-1062. [PMID: 33470301 PMCID: PMC8133730 DOI: 10.36660/abc.20201229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Maria de Lourdes Higuchi
- Universidade de São PauloInstituto do CoraçãoSão PauloSPBrasilUniversidade de São Paulo Instituto do Coração, São Paulo, SP - Brasil
| |
Collapse
|
18
|
Nisimura LM, Ferrão PM, Nogueira ADR, Waghabi MC, Meuser-Batista M, Moreira OC, Urbina JA, Garzoni LR. Effect of Posaconazole in an in vitro model of cardiac fibrosis induced by Trypanosoma cruzi. Mol Biochem Parasitol 2020; 238:111283. [PMID: 32564978 DOI: 10.1016/j.molbiopara.2020.111283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022]
Abstract
Posaconazole (POS) is an inhibitor of ergosterol biosynthesis in clinical use for treating invasive fungal infections. POS has potent and selective anti-Trypanosoma cruzi activity and has been evaluated as a possible treatment for Chagas disease. Microtissues are a 3D culture system that has been shown to reproduce better tissue architecture and functionality than cell cultures in monolayer (2D). It has been used to evaluate chemotropic response as in vitro disease models. We previously developed an in vitro model that reproduces aspects of cardiac fibrosis observed in Chagas cardiomyopathy, using microtissues formed by primary cardiac cells infected by the T. cruzi, here called T. cruzi fibrotic cardiac microtissue (TCFCM). We also showed that the treatment of TCFCM with a TGF-β pathway inhibitor reduces fibrosis. Here, we aimed to evaluate the effect of POS in TCFCM, observing parasite load and molecules involved in fibrosis. To choose the concentration of POS to be used in TCFCM we first performed experiments in a monolayer of primary cardiac cell cultures and, based on the results, TCFCM was treated with 5 nM of POS for 96 h, starting at 144 h post-infection. Our previous studies showed that at this time the TCFCM had established fibrosis, resulting from T. cruzi infection. Treatment with POS of TCFCM reduced 50 % of parasite load as observed by real-time PCR and reduced markedly the fibrosis as observed by western blot and immunofluorescence, associated with a strong reduction in the expression of fibronectin and laminin (45 % and 54 %, respectively). POS treatment also changed the expression of proteins involved in the regulation of extracellular matrix proteins (TGF-β and TIMP-4, increased by 50 % and decreased by 58 %, respectively) in TCFCM. In conclusion, POS presented a potent trypanocidal effect both in 2D and in TCFCM, and the reduction of the parasite load was associated with a reduction of fibrosis in the absence of external immunological effectors.
Collapse
Affiliation(s)
- Lindice Mitie Nisimura
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Patrícia Mello Ferrão
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Alanderson da Rocha Nogueira
- Laboratório de Ultra-estrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Marcelo Meuser-Batista
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Otacílio C Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Julio A Urbina
- Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela
| | - Luciana Ribeiro Garzoni
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
19
|
Subverting bradykinin-evoked inflammation by co-opting the contact system: lessons from survival strategies of Trypanosoma cruzi. Curr Opin Hematol 2019; 25:347-357. [PMID: 30028741 DOI: 10.1097/moh.0000000000000444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW During Chagas disease, Trypanosoma cruzi alternates between intracellular and extracellular developmental forms. After presenting an overview about the roles of the contact system in immunity, I will review experimental studies showing that activation of the kallikrein-kinin system (KKS) translates into mutual benefits to the host/parasite relationship. RECENT FINDINGS T. cruzi trypomastigotes initiate inflammation by activating tissue-resident innate sentinel cells via the TLR2/CXCR2 pathway. Following neutrophil-evoked microvascular leakage, the parasite's major cysteine protease (cruzipain) cleaves plasma-borne kininogens and complement C5. Tightly regulated by angiotensin-converting enzyme (ACE), kinins and C5a in turn further propagate inflammation via iterative cycles of mast cell degranulation, contact system activation, bradykinin release and activation of endothelial bradykinin B2 receptors (B2R). Recently, studies in the intracardiac model of infection revealed a dichotomic role for bradykinin and endothelin-1: generated upon contact activation (mast cell/KKS pathway), these pro-oedematogenic peptides reciprocally stimulate trypomastigote invasion of heart cells that naturally overexpress B2R and endothelin receptors (ETaR/ETbR). SUMMARY Studies focusing on the immunopathogenesis of Chagas disease revealed that the contact system plays a dual role in host/parasite balance: T. cruzi co-opts bradykinin-induced plasma leakage as a strategy to increment heart parasitism and increase immune resistance by upregulating type-1 effector T-cell production in secondary lymphoid tissues.
Collapse
|
20
|
Abstract
Infectious myocarditis is the result of an immune response to a microbial infection of the heart. The blood vessels of the heart, both the intramyocardial microvasculature and the large epicardial coronary arteries, play an important role in the pathogenesis of infectious myocarditis. First of all, in addition to cardiomyocytes, endothelial cells of the cardiac (micro)vasculature are direct targets for infection. Moreover, through the expression of adhesion molecules and antigen presenting Major Histocompatibility Complex molecules, the blood vessels assist in shaping the cellular immune response in infectious myocarditis. In addition, damage and dysfunction of the cardiac (micro)vasculature are associated with thrombus formation as well as aberrant regulation of vascular tone including coronary vasospasm. These in turn can cause cardiac perfusion abnormalities and even myocardial infarction. In this review, we will discuss the role of the cardiac (micro)vasculature in the pathogenesis of infectious myocarditis.
Collapse
|
21
|
Novaes RD, Mouro VGS, Gonçalves RV, Mendonça AAS, Santos EC, Fialho MCQ, Machado-Neves M. Aluminum: A potentially toxic metal with dose-dependent effects on cardiac bioaccumulation, mineral distribution, DNA oxidation and microstructural remodeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:814-826. [PMID: 30032078 DOI: 10.1016/j.envpol.2018.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Large amounts of aluminum (Al) are found in wastewater from industrial bauxite mining, which is often responsible for the contamination of drinking water sources in urban and rural communities. Although this metal exhibits broad environmental distribution, its cardiac repercussions are poorly understood, making it difficult to establish diagnostic criteria in cases of Al intoxication. In the absence of clinical data, we used a preclinical model to investigate the impact of Al exposure on heart bioaccumulation, molecular oxidation, micromineral distribution, structural and ultrastructural remodeling of the cardiac tissue. Male Wistar rats were equally randomized into five groups: G1 = distilled water; and G2 to G5 = 0.02, 0.1, 50, and 200 mg/kg aluminum solution, respectively. After 120 days, the hearts were collected and subjected to mineral microanalysis, immunoenzymatic detection of 8-OHdG, as well as bright field, polarizing, scanning and transmission electron microscopy to estimate the extent of the cardiac remodeling and cardiomyocytes ultrastructure. Long-term Al exposure induced dose-dependent bioaccumulation, micromineral imbalance, genomic DNA oxidation, structural and ultrastructural abnormalities of the cardiac tissue, resulting in extensive parenchymal loss, stromal expansion, diffuse inflammatory infiltrate, increased glycoconjugate and collagen deposition, subversion and collapse of the collagen network, reduced myocardial vascularization index, mitochondrial swelling, sarcomere disorganization, myofilament dissociation, and fragmentation in cardiomyocytes. Our findings indicated that the heart was sensitive to Al-mediated toxicity, especially in animals treated with the three highest doses of Al. In response to Al-induced loss of the parenchyma, heart stroma exhibited a reactive and compensatory expansion, which, in combination with the increased distribution of thick myofibrils and degenerated mitochondria in cardiomyocytes, provides morphological evidence that cardiac tissue adaptations are not enough to adjust the relationships between the parenchyma and stroma until a steady state is reached, resulting in continuous pathological remodeling potentially associated with Al-induced proinflammatory and pro-oxidant events.
Collapse
Affiliation(s)
- Rômulo D Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, MG, Brazil.
| | - Viviane G S Mouro
- Department of General Biology, Federal University of Viçosa, MG, Brazil
| | | | - Andrea A S Mendonça
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, MG, Brazil
| | - Eliziária C Santos
- Medicine School, Federal University of Jequitinhonha and Mucuri Valleys, MG, Brazil
| | - Maria C Q Fialho
- Department of Morphology, Federal University of Amazonas, AM, Brazil
| | | |
Collapse
|
22
|
Nunes MCP, Badano LP, Marin-Neto JA, Edvardsen T, Fernández-Golfín C, Bucciarelli-Ducci C, Popescu BA, Underwood R, Habib G, Zamorano JL, Saraiva RM, Sabino EC, Botoni FA, Barbosa MM, Barros MVL, Falqueto E, Simões MV, Schmidt A, Rochitte CE, Rocha MOC, Ribeiro ALP, Lancellotti P. Multimodality imaging evaluation of Chagas disease: an expert consensus of Brazilian Cardiovascular Imaging Department (DIC) and the European Association of Cardiovascular Imaging (EACVI). Eur Heart J Cardiovasc Imaging 2017; 19:459-460n. [PMID: 29029074 DOI: 10.1093/ehjci/jex154] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 11/14/2022] Open
Abstract
Aims To develop a document by Brazilian Cardiovascular Imaging Department (DIC) and the European Association of Cardiovascular Imaging (EACVI) to review and summarize the most recent evidences about the non-invasive assessment of patients with Chagas disease, with the intent to set up a framework for standardized cardiovascular imaging to assess cardiovascular morphologic and functional disturbances, as well as to guide the subsequent process of clinical decision-making. Methods and results Chagas disease remains one of the most prevalent infectious diseases in Latin America, and has become a health problem in non-endemic countries. Dilated cardiomyopathy is the most severe manifestation of Chagas disease, which causes substantial disability and early mortality in the socially most productive population leading to a significant economical burden. Prompt and correct diagnosis of Chagas disease requires specialized clinical expertise to recognize the unique features of this disease. The appropriate and efficient use of cardiac imaging is pivotal for diagnosing the cardiac involvement in Chagas disease, to stage the disease, assess patients' prognosis and address management. Echocardiography is the most common imaging modality used to assess, and follow-up patients with Chagas disease. The presence of echocardiographic abnormalities is of utmost importance, since it allows to stage patients according to disease progression. In early stages of cardiac involvement, echocardiography may demonstrate segmental left ventricuar wall motion abnormalities, mainly in the basal segments of inferior, inferolateral walls, and the apex, which cannot be attributed to obstructive coronary artery arteries. The prevalence of segmental wall motion abnormalities varies according to the stage of the disease, reaching about 50% in patients with left ventricular dilatation and dysfunction. Speckle tracking echocardiography allows a more precise and quantitative measurement of the regional myocardial function. Since segmental wall motion abnormalities are frequent in Chagas disease, speckle tracking echocardiography may have an important clinical application in these patients, particularly in the indeterminate forms when abnormalities are more subtle. Speckle tracking echocardiography can also quantify the heterogeneity of systolic contraction, which is associated with the risk of arrhythmic events. Three-dimensional (3D) echocardiography is superior to conventional two-dimensional (2D) echocardiography for assessing more accurately the left ventricular apex and thus to detect apical aneurysms and thrombus in patients in whom ventricular foreshortening is suspected by 2D echocardiography. In addition, 3D echocardiography is more accurate than 2D Simpson s biplane rule for assessing left ventricular volumes and function in patients with significant wall motion abnormalities, including aneurysms with distorted ventricular geometry. Contrast echocardiography has the advantage to enhancement of left ventricular endocardial border, allowing for more accurate detection of ventricular aneurysms and thrombus in Chagas disease. Diastolic dysfunction is an important hallmark of Chagas disease even in its early phases. In general, left ventricular diastolic and systolic dysfunction coexist and isolated diastolic dysfunction is uncommon but may be present in patients with the indeterminate form. Right ventricular dysfunction may be detected early in the disease course, but in general, the clinical manifestations occur late at advanced stages of Chagas cardiomyopathy. Several echocardiographic parameters have been used to assess right ventricular function in Chagas disease, including qualitative evaluation, myocardial performance index, tissue Doppler imaging, tricuspid annular plane systolic excursion, and speckle tracking strain. Cardiac magnetic resonance (CMR) is useful to assess global and regional left ventricular function in patients with Chagas diseases. Myocardial fibrosis is a striking feature of Chagas cardiomyopathy and late gadolinium enhancement (LGE) is used to detect and quantify the extension of myocardial fibrosis. Myocardial fibrosis might have a role in risk stratification of patients with Chagas disease. Limited data are available regarding right ventricular function assessed by CMR in Chagas disease. Radionuclide ventriculography is used for global biventricular function assessment in patients with suspected or definite cardiac involvement in Chagas disease with suboptimal acoustic window and contraindication to CMR. Myocardial perfusion scintigraphy may improve risk stratification to define cardiac involvement in Chagas disease, especially in the patients with devices who cannot be submitted to CMR and in the clinical setting of Chagas patients whose main complaint is atypical chest pain. Detection of reversible ischemic defects predicts further deterioration of left ventricular systolic function and helps to avoid unnecessary cardiac catheterization and coronary angiography. Conclusion Cardiac imaging is crucial to detect the cardiac involvement in patients with Chagas disease, stage the disease and stratify patient risk and address management. Unfortunately, most patients live in regions with limited access to imaging methods and point-of-care, simplified protocols, could improve the access of these remote populations to important information that could impact in the clinical management of the disease. Therefore, there are many fields for further research in cardiac imaging in Chagas disease. How to better provide an earlier diagnosis of cardiac involvement and improve patients risk stratification remains to be addressed using different images modalities.
Collapse
Affiliation(s)
- Maria Carmo P Nunes
- Department of Internal Medicine, School of Medicine and Hospital das Clínicas of the Federal University of Minas Gerais, Av. Professor Alfredo Balena, 190, Santa Efigênia, 30130?100 Belo Horizonte, MG, Brazil
| | - Luigi Paolo Badano
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - J Antonio Marin-Neto
- Department of Internal Medicine, School of Medicine of Ribeirão Preto of the University de Sao Paulo (USP), Av. Bandeirantes, 3900, Monte Alegre, Ribeiräo Preto, Säo Paulo 14049-900, Brazil
| | - Thor Edvardsen
- Department of Cardiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - Chiara Bucciarelli-Ducci
- Cardiovascular Biomedical Research Unit, Bristol Heart Institute, Bristol NIHR Biomedical Research Unit, University of Bristol, Bristol, UK
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila'-Euroecolab, Institute of Cardiovascular Diseases 'Prof. Dr. C. C. Iliescu', Bucharest, Romania
| | - Richard Underwood
- Department of non-invasive cardiac imaging, Royal Brompton Hospital and Harefield Hospital, London, UK
| | - Gilbert Habib
- Department of Cardiology, La Timone Hospital, Marseille, France
| | - Jose Luis Zamorano
- Department of Cardiology, University Alcala Hospital Ramon y Cajal, Madrid, Spain
| | - Roberto Magalhães Saraiva
- Department of Cardiology; Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Ester Cerdeira Sabino
- Department of Infectious Disease, School of Medicine of the University de Sao Paulo (USP), Av. Dr. Arnaldo, 455 Cerqueira César 01246903, Sao Paulo, Brazil
| | - Fernando A Botoni
- Department of Internal Medicine, School of Medicine and Hospital das Clínicas of the Federal University of Minas Gerais, Av. Professor Alfredo Balena, 190, Santa Efigênia, 30130?100 Belo Horizonte, MG, Brazil
| | - Márcia Melo Barbosa
- Department of Internal Medicine, School of Medicine and Hospital das Clínicas of the Federal University of Minas Gerais, Av. Professor Alfredo Balena, 190, Santa Efigênia, 30130?100 Belo Horizonte, MG, Brazil
| | - Marcio Vinicius L Barros
- Department of Internal Medicine, School of Medicine and Hospital das Clínicas of the Federal University of Minas Gerais, Av. Professor Alfredo Balena, 190, Santa Efigênia, 30130?100 Belo Horizonte, MG, Brazil
| | - Eduardo Falqueto
- Department of Cardiology, Hospital Felicio Rocho, Belo Horizonte, MG, Av. do Contorno, 9530 Prado, Belo Horizonte 21040-360, Brasil
| | - Marcus Vinicius Simões
- Department of Internal Medicine, School of Medicine of Ribeirão Preto of the University de Sao Paulo (USP), Av. Bandeirantes, 3900, Monte Alegre, Ribeiräo Preto, Säo Paulo 14049-900, Brazil
| | - André Schmidt
- Department of Internal Medicine, School of Medicine of Ribeirão Preto of the University de Sao Paulo (USP), Av. Bandeirantes, 3900, Monte Alegre, Ribeiräo Preto, Säo Paulo 14049-900, Brazil
| | - Carlos Eduardo Rochitte
- Department of Radiology, Instituto do Coração (InCor), School of Medicine of USP & Hospital do Coração, HCor, Heart Hospital, Associação do Sanatório Sírio, Av. Dr. Enéas de Carvalho Aguiar, 44 - Pinheiros, São Paulo 05403-900, Brazil
| | - Manoel Otávio Costa Rocha
- Department of Internal Medicine, School of Medicine and Hospital das Clínicas of the Federal University of Minas Gerais, Av. Professor Alfredo Balena, 190, Santa Efigênia, 30130?100 Belo Horizonte, MG, Brazil
| | - Antonio Luiz Pinho Ribeiro
- Department of Internal Medicine, School of Medicine and Hospital das Clínicas of the Federal University of Minas Gerais, Av. Professor Alfredo Balena, 190, Santa Efigênia, 30130?100 Belo Horizonte, MG, Brazil
| | - Patrizio Lancellotti
- Department of Cardiology, Heart Valve Clinic, CHU Sart Tilman, University of Liège Hospital, GIGA Cardiovascular Sciences, Liège, Belgium.,Department of Cardiology, Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| |
Collapse
|
23
|
Nascimento CR, Andrade D, Carvalho-Pinto CE, Serra RR, Vellasco L, Brasil G, Ramos-Junior ES, da Mota JB, Almeida LN, Andrade MV, Correia Soeiro MDN, Juliano L, Alvarenga PH, Oliveira AC, Sicuro FL, de Carvalho ACC, Svensjö E, Scharfstein J. Mast Cell Coupling to the Kallikrein-Kinin System Fuels Intracardiac Parasitism and Worsens Heart Pathology in Experimental Chagas Disease. Front Immunol 2017; 8:840. [PMID: 28824610 PMCID: PMC5539176 DOI: 10.3389/fimmu.2017.00840] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/04/2017] [Indexed: 02/05/2023] Open
Abstract
During the course of Chagas disease, infectious forms of Trypanosoma cruzi are occasionally liberated from parasitized heart cells. Studies performed with tissue culture trypomastigotes (TCTs, Dm28c strain) demonstrated that these parasites evoke neutrophil/CXCR2-dependent microvascular leakage by activating innate sentinel cells via toll-like receptor 2 (TLR2). Upon plasma extravasation, proteolytically derived kinins and C5a stimulate immunoprotective Th1 responses via cross-talk between bradykinin B2 receptors (B2Rs) and C5aR. Awareness that TCTs invade cardiovascular cells in vitro via interdependent activation of B2R and endothelin receptors [endothelin A receptor (ETAR)/endothelin B receptor (ETBR)] led us to hypothesize that T. cruzi might reciprocally benefit from the formation of infection-associated edema via activation of kallikrein-kinin system (KKS). Using intravital microscopy, here we first examined the functional interplay between mast cells (MCs) and the KKS by topically exposing the hamster cheek pouch (HCP) tissues to dextran sulfate (DXS), a potent "contact" activator of the KKS. Surprisingly, although DXS was inert for at least 30 min, a subtle MC-driven leakage resulted in factor XII (FXII)-dependent activation of the KKS, which then amplified inflammation via generation of bradykinin (BK). Guided by this mechanistic insight, we next exposed TCTs to "leaky" HCP-forged by low dose histamine application-and found that the proinflammatory phenotype of TCTs was boosted by BK generated via the MC/KKS pathway. Measurements of footpad edema in MC-deficient mice linked TCT-evoked inflammation to MC degranulation (upstream) and FXII-mediated generation of BK (downstream). We then inoculated TCTs intracardiacally in mice and found a striking decrease of parasite DNA (quantitative polymerase chain reaction; 3 d.p.i.) in the heart of MC-deficient mutant mice. Moreover, the intracardiac parasite load was significantly reduced in WT mice pretreated with (i) cromoglycate (MC stabilizer) (ii) infestin-4, a specific inhibitor of FXIIa (iii) HOE-140 (specific antagonist of B2R), and (iv) bosentan, a non-selective antagonist of ETAR/ETBR. Notably, histopathology of heart tissues from mice pretreated with these G protein-coupled receptors blockers revealed that myocarditis and heart fibrosis (30 d.p.i.) was markedly and redundantly attenuated. Collectively, our study suggests that inflammatory edema propagated via activation of the MC/KKS pathway fuels intracardiac parasitism by generating infection-stimulatory peptides (BK and endothelins) in the edematous heart tissues.
Collapse
Affiliation(s)
- Clarissa R. Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniele Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Rafaela Rangel Serra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lucas Vellasco
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Guilherme Brasil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Erivan Schnaider Ramos-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- University of the Pacific, San Francisco, CA, United States
| | - Julia Barbalho da Mota
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Larissa Nogueira Almeida
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcus V. Andrade
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Departamento de Clinica Medica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Luiz Juliano
- Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Patrícia Hessab Alvarenga
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fernando Lencastre Sicuro
- Universidade do Estado do Rio de Janeiro (UERJ), Centro Biomédico Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Erik Svensjö
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Julio Scharfstein,
| |
Collapse
|
24
|
Value of cardiac MRI for evaluation of chronic Chagas disease cardiomyopathy. Clin Radiol 2016; 71:618.e1-7. [DOI: 10.1016/j.crad.2016.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/01/2016] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
|
25
|
Pereira IR, Vilar-Pereira G, Silva AAD, Lannes-Vieira J. Severity of chronic experimental Chagas' heart disease parallels tumour necrosis factor and nitric oxide levels in the serum: models of mild and severe disease. Mem Inst Oswaldo Cruz 2016; 109:289-98. [PMID: 24937048 PMCID: PMC4131780 DOI: 10.1590/0074-0276140033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/01/2014] [Indexed: 01/03/2023] Open
Abstract
Heart tissue inflammation, progressive fibrosis and electrocardiographic alterations
occur in approximately 30% of patients infected by Trypanosoma
cruzi, 10-30 years after infection. Further, plasma levels of tumour
necrosis factor (TNF) and nitric oxide (NO) are associated with the degree of heart
dysfunction in chronic chagasic cardiomyopathy (CCC). Thus, our aim was to establish
experimental models that mimic a range of parasitological, pathological and cardiac
alterations described in patients with chronic Chagas’ heart disease and evaluate
whether heart disease severity was associated with increased TNF and NO levels in the
serum. Our results show that C3H/He mice chronically infected with the Colombian
T. cruzi strain have more severe cardiac parasitism and
inflammation than C57BL/6 mice. In addition, connexin 43 disorganisation and
fibronectin deposition in the heart tissue, increased levels of creatine kinase
cardiac MB isoenzyme activity in the serum and more severe electrical abnormalities
were observed in T. cruzi-infected C3H/He mice compared to C57BL/6
mice. Therefore, T. cruzi-infected C3H/He and C57BL/6 mice represent
severe and mild models of CCC, respectively. Moreover, the CCC severity paralleled
the TNF and NO levels in the serum. Therefore, these models are appropriate for
studying the pathophysiology and biomarkers of CCC progression, as well as for
testing therapeutic agents for patients with Chagas’ heart disease.
Collapse
Affiliation(s)
- Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
26
|
Pinazo MJ, Posada EDJ, Izquierdo L, Tassies D, Marques AF, de Lazzari E, Aldasoro E, Muñoz J, Abras A, Tebar S, Gallego M, de Almeida IC, Reverter JC, Gascon J. Altered Hypercoagulability Factors in Patients with Chronic Chagas Disease: Potential Biomarkers of Therapeutic Response. PLoS Negl Trop Dis 2016; 10:e0004269. [PMID: 26727000 PMCID: PMC4700971 DOI: 10.1371/journal.pntd.0004269] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022] Open
Abstract
Thromboembolic events were described in patients with Chagas disease without cardiomyopathy. We aim to confirm if there is a hypercoagulable state in these patients and to determine if there is an early normalization of hemostasis factors after antiparasitic treatment. Ninety-nine individuals from Chagas disease-endemic areas were classified in two groups: G1, with T.cruzi infection (n = 56); G2, healthy individuals (n = 43). Twenty-four hemostasis factors were measured at baseline. G1 patients treated with benznidazole were followed for 36 months, recording clinical parameters and performance of conventional serology, chemiluminescent enzyme-linked immunosorbent assay (trypomastigote-derived glycosylphosphatidylinositol-anchored mucins), quantitative polymerase chain reaction, and hemostasis tests every 6-month visits. Prothrombin fragment 1+2 (F1+2) and endogenous thrombin potential (ETP) were abnormally expressed in 77% and 50% of infected patients at baseline but returned to and remained at normal levels shortly after treatment in 76% and 96% of cases, respectively. Plasmin-antiplasmin complexes (PAP) were altered before treatment in 32% of G1 patients but normalized in 94% of cases several months after treatment. None of the patients with normal F1+2 values during follow-up had a positive qRT-PCR result, but 3/24 patients (13%) with normal ETP values did. In a percentage of chronic T. cruzi infected patients treated with benznidazole, altered coagulation markers returned into normal levels. F1+2, ETP and PAP could be useful markers for assessing sustained response to benznidazole.
Collapse
Affiliation(s)
- Maria-Jesus Pinazo
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| | - Elizabeth de Jesus Posada
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| | - Luis Izquierdo
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| | - Dolors Tassies
- Hemotherapy and Hemostasis Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alexandre-Ferreira Marques
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, Minas Gerais, Brazil
| | - Elisa de Lazzari
- Health Biostatistics, ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| | - Edelweiss Aldasoro
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| | - Jose Muñoz
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| | - Alba Abras
- Laboratori de Parasitologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Silvia Tebar
- Laboratori de Parasitologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Gallego
- Laboratori de Parasitologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Igor Correia de Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Joan-Carles Reverter
- Hemotherapy and Hemostasis Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Joaquim Gascon
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Torreão JA, Ianni BM, Mady C, Naia E, Rassi CH, Nomura C, Parga JR, Avila LF, Ramires JAF, Kalil-Filho R, Rochitte CE. Myocardial tissue characterization in Chagas' heart disease by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2015; 17:97. [PMID: 26581396 PMCID: PMC4652401 DOI: 10.1186/s12968-015-0200-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chagas' heart disease is an important public health problem in South America. Several aspects of the pathogenesis are not fully understood, especially in its subclinical phases. On pathology Chagas' heart disease is characterized by chronic myocardial inflammation and extensive myocardial fibrosis. The latter has also been demonstrated by late gadolinium enhancement (LGE) by cardiovascular magnetic resonance (CMR). In three clinical phases of this disease, we sought to investigate the presence of LGE, myocardial increase in signal intensity in T2-weighted images (T2W) and in T1-weighted myocardial early gadolinium enhancement (MEGE), previously described CMR surrogates for myocardial fibrosis, myocardial edema and hyperemia, respectively. METHODS Fifty-four patients were analyzed. Sixteen patients with the indeterminate phase (IND), seventeen patients with the cardiac phase with no left ventricular systolic dysfunction (CPND), and twenty-one patients with the cardiac phase with left ventricular systolic dysfunction (CPD). All patients underwent 1.5 T CMR scan including LGE, T2W and MEGE image sequences to evaluate myocardial abnormalities. RESULTS Late gadolinium enhancement was present in 72.2 % of all patients, in 12.5 % of IND, 94.1 % of the CPND and 100 % of the CPD patients (p < 0.0001). Myocardial increase in signal intensity in T2-weighted images (T2W) was present in 77.8 % of all patients, in 31.3 % of the IND, 94.1 % of the CPND and 100 % of the CPD patients (p < 0.0001). T1-weighted myocardial early gadolinium enhancement (MEGE) was present in 73.8 % of all patients, in 25.0 % of the IND, 92.3 % of the CPND and 94.1 % of the CPD (p < 0.0001). A good correlation between LGE and T2W was observed (r = 0.72, and p < 0.001). CONCLUSIONS Increase in T2-weighted (T2W) myocardial signal intensity and T1-weighted myocardial early gadolinium enhancement (MEGE) can be detected by CMR in patients throughout all phases of Chagas' heart disease, including its subclinical presentation (IND). Moreover, those findings were parallel to myocardial fibrosis (LGE) in extent and location and also correlated with the degree of Chagas' heart disease clinical severity. These findings contribute to further the knowledge on pathophysiology of Chagas' heart disease, and might have therapeutic and prognostic usefulness in the future.
Collapse
Affiliation(s)
- Jorge A Torreão
- Heart Institute, InCor, University of Sao Paulo Medical School,Cardiovascular Magnetic Resonance andComputed Tomography Sector, Av. Dr. Enéas de Carvalho Aguiar, 44, Andar AB, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
- Santa Izabel Hospital, Santa Casa de Misericórdia da Bahia, Bahia, Brazil.
| | - Barbara M Ianni
- Heart Institute, InCor, University of Sao Paulo Medical School,Cardiovascular Magnetic Resonance andComputed Tomography Sector, Av. Dr. Enéas de Carvalho Aguiar, 44, Andar AB, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| | - Charles Mady
- Heart Institute, InCor, University of Sao Paulo Medical School,Cardiovascular Magnetic Resonance andComputed Tomography Sector, Av. Dr. Enéas de Carvalho Aguiar, 44, Andar AB, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| | - Evandro Naia
- Heart Institute, InCor, University of Sao Paulo Medical School,Cardiovascular Magnetic Resonance andComputed Tomography Sector, Av. Dr. Enéas de Carvalho Aguiar, 44, Andar AB, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| | - Carlos H Rassi
- Heart Institute, InCor, University of Sao Paulo Medical School,Cardiovascular Magnetic Resonance andComputed Tomography Sector, Av. Dr. Enéas de Carvalho Aguiar, 44, Andar AB, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| | - Cesar Nomura
- Heart Institute, InCor, University of Sao Paulo Medical School,Cardiovascular Magnetic Resonance andComputed Tomography Sector, Av. Dr. Enéas de Carvalho Aguiar, 44, Andar AB, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| | - José R Parga
- Heart Institute, InCor, University of Sao Paulo Medical School,Cardiovascular Magnetic Resonance andComputed Tomography Sector, Av. Dr. Enéas de Carvalho Aguiar, 44, Andar AB, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| | - Luis F Avila
- Heart Institute, InCor, University of Sao Paulo Medical School,Cardiovascular Magnetic Resonance andComputed Tomography Sector, Av. Dr. Enéas de Carvalho Aguiar, 44, Andar AB, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| | - José A F Ramires
- Heart Institute, InCor, University of Sao Paulo Medical School,Cardiovascular Magnetic Resonance andComputed Tomography Sector, Av. Dr. Enéas de Carvalho Aguiar, 44, Andar AB, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| | - Roberto Kalil-Filho
- Heart Institute, InCor, University of Sao Paulo Medical School,Cardiovascular Magnetic Resonance andComputed Tomography Sector, Av. Dr. Enéas de Carvalho Aguiar, 44, Andar AB, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| | - Carlos E Rochitte
- Heart Institute, InCor, University of Sao Paulo Medical School,Cardiovascular Magnetic Resonance andComputed Tomography Sector, Av. Dr. Enéas de Carvalho Aguiar, 44, Andar AB, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
28
|
Healy C, Viles-Gonzalez JF, Sáenz LC, Soto M, Ramírez JD, d'Avila A. Arrhythmias in chagasic cardiomyopathy. Card Electrophysiol Clin 2015; 7:251-268. [PMID: 26002390 DOI: 10.1016/j.ccep.2015.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chagas disease, a chronic parasitosis caused by the protozoa Trypanosoma cruzi, is an increasing worldwide problem because of the number of cases in endemic areas and the migration of infected individuals to more developed regions. Chagas disease affects the heart through cardiac parasympathetic neuronal depopulation, immune-mediated myocardial injury, parasite persistence in cardiac tissue with secondary antigenic stimulation, and coronary microvascular abnormalities causing myocardial ischemia. A lack of knowledge exists for risk stratification, management, and prevention of ventricular arrhythmias in patients with chagasic cardiomyopathy. Catheter ablation can be effective for the management of recurrent ventricular tachycardia.
Collapse
Affiliation(s)
- Chris Healy
- Department of Cardiac Electrophysiology, University of Miami Miller School of Medicine, 1295 NW 14th Street, South Building, Suite A, Miami, FL 33125, USA
| | - Juan F Viles-Gonzalez
- Department of Cardiac Electrophysiology, University of Miami Miller School of Medicine, 1295 NW 14th Street, South Building, Suite A, Miami, FL 33125, USA
| | - Luis C Sáenz
- Cardiólogo-Electrofisiólogo, Fundación Cardio Infantil-Instituto de Cardiología, Calle 163A No 13B-60, Bogotá, Colombia
| | - Mariana Soto
- Cardiólogo-Electrofisiólogo, Fundación Cardio Infantil-Instituto de Cardiología, Calle 163A No 13B-60, Bogotá, Colombia
| | - Juan D Ramírez
- Cardiólogo-Electrofisiólogo, Fundación Cardio Infantil-Instituto de Cardiología, Calle 163A No 13B-60, Bogotá, Colombia
| | - Andre d'Avila
- Hospital Cardiologico, Rodovia SC 401, 121, Itacorubi, Florianopolis, Santa Catarina, Brazil, CEP: 88030-000.
| |
Collapse
|
29
|
Barbosa MM, Costa Rocha MO, Vidigal DF, Bicalho Carneiro RDC, Araújo RD, Palma MC, Lins de Barros MV, Nunes MCP. Early detection of left ventricular contractility abnormalities by two-dimensional speckle tracking strain in Chagas’ disease. Echocardiography 2015; 31:623-30. [PMID: 25232573 DOI: 10.1111/echo.12426] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chagas' disease is an important cause of heart failure, and early identification of cardiac involvement may help to identify patients at risk for disease progression. Two-dimensional (2D) speckle tracking (ST) strain seems to be a useful tool to detect incipient ventricular dysfunction. This study aims to analyze if 2D strain can detect contractility abnormalities in asymptomatic patients with Chagas' disease. METHODS Seventy-eight asymptomatic Chagas' disease patients (46% male; age 44.7 ± 8.6 years) with normal cardiovascular exams and a control group of 38 healthy subjects (58% male; age 44.1 ± 9.2 years) were included in the study. Using 2D strain software, left ventricular (LV) end-systolic longitudinal, radial, and circumferential strain were measured. Global right ventricular (RV) longitudinal strain was also assessed. RESULTS Echocardiographic parameters of LV systolic and diastolic function were similar between patients and controls. 2D longitudinal strain in the basal inferior, and inferoseptal walls, as well as apical segment of the inferolateral wall were lower in patients compared with controls. 2D radial strain was reduced in several segments of the LV walls as well as the global radial strain. 2D circumferential strain at the basal segment of the anterior wall showed a lower value in patients compared with controls, whereas global circumferential strain was similar between patients and controls. 2D RV strain did not differ between groups. CONCLUSION In a subgroup of asymptomatic patients with Chagas' disease without evident cardiac involvement, 2D strain was reduced compared with healthy individuals, suggesting incipient LV dysfunction in these patients. 2D ST strain has the potential for detecting early myocardial impairment in the setting of Chagas' disease.
Collapse
|
30
|
Pentoxifylline reverses chronic experimental Chagasic cardiomyopathy in association with repositioning of abnormal CD8+ T-cell response. PLoS Negl Trop Dis 2015; 9:e0003659. [PMID: 25789471 PMCID: PMC4366205 DOI: 10.1371/journal.pntd.0003659] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background Chronic chagasic cardiomyopathy (CCC), the main clinical sign of Chagas disease, is associated with systemic CD8+ T-cell abnormalities and CD8-enriched myocarditis occurring in an inflammatory milieu. Pentoxifylline (PTX), a phosphodiesterase inhibitor, has immunoregulatory and cardioprotective properties. Here, we tested PTX effects on CD8+ T-cell abnormalities and cardiac alterations using a model of experimental Chagas’ heart disease. Methodology/Principal Findings C57BL/6 mice chronically infected by the Colombian Trypanosoma cruzi strain and presenting signs of CCC were treated with PTX. The downmodulation of T-cell receptors on CD8+ cells induced by T. cruzi infection was rescued by PTX therapy. Also, PTX reduced the frequency of CD8+ T-cells expressing activation and migration markers in the spleen and the activation of blood vessel endothelial cells and the intensity of inflammation in the heart tissue. Although preserved interferon-gamma production systemically and in the cardiac tissue, PTX therapy reduced the number of perforin+ cells invading this tissue. PTX did not alter parasite load, but hampered the progression of heart injury, improving connexin 43 expression and decreasing fibronectin overdeposition. Further, PTX reversed electrical abnormalities as bradycardia and prolonged PR, QTc and QRS intervals in chronically infected mice. Moreover, PTX therapy improved heart remodeling since reduced left ventricular (LV) hypertrophy and restored the decreased LV ejection fraction. Conclusions/Significance PTX therapy ameliorates critical aspects of CCC and repositioned CD8+ T-cell response towards homeostasis, reinforcing that immunological abnormalities are crucially linked, as cause or effect, to CCC. Therefore, PTX emerges as a candidate to treat the non-beneficial immune deregulation associated with chronic Chagas' heart disease and to improve prognosis. Chronic chagasic cardiomyopathy (CCC) is the main clinical manifestation of Chagas disease (CD), a neglected illness caused by the protozoan parasite Trypanosoma cruzi. More than hundred years after its discovery, CD continues to be a public health problem and millions of chronically infected people wait for an effective treatment. Chagasic cardiomyopathy is associated with CD8+ T-cell-enriched myocarditis, fibrosis and cardiac electrical and structural abnormalities, frequently progressing to heart failure. Presently, the available therapies only mitigate symptoms of CCC. Abnormalities in CD8+ T-cell compartment are present in CCC patients. Recently, we described the importance of CD8+ T-cells in the pathogenesis of CCC. Therefore, our proposal was to interfere with abnormalities of CD8+ T-cells glimpsing a better prognosis for CCC. Using PTX, an affordable drug with immunomodulatory properties on T-cells and cardioprotective effects in non-infections disease, we bring a therapeutic candidate for treating CCC. PTX therapy downmodulated detrimental CD8+ T-cells and promoted T. cruzi-specific interferon-gamma-producing T-cells. Importantly, chronic chagasic electrical and echocardiographic alterations were reversed by PTX therapy. Future studies may test the use of PTX combined with trypanocidal drug or as a vaccine adjuvant to improve the quality of life of chronic CD patients.
Collapse
|
31
|
Bestetti RB, Restini CBA. Precordial chest pain in patients with chronic Chagas disease. Int J Cardiol 2014; 176:309-14. [PMID: 25127335 DOI: 10.1016/j.ijcard.2014.07.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/21/2014] [Accepted: 07/26/2014] [Indexed: 10/24/2022]
Abstract
Precordial chest pain affects about 15% to 33% of patients with chronic Chagas disease. In the absence of megaesophagus, it should be ascribed to chronic Chagas heart disease. Precordial chest pain is atypical because it can usually neither be associated to physical exercise nor be alleviated by nitroglycerin. However, in certain circumstances, precordial chest pain can masquerade as acute coronary syndrome. Although obstructive coronary artery disease can occasionally be found, microvascular angina seems to be the mechanism behind such phenomenon. Precordial chest pain not always has a benign clinical course; sometimes, it can herald a dismal prognosis. On the basis of cases previously reported, it seems that nitrates, betablockers and/or calcium channel blockers can be of value in the treatment of this condition.
Collapse
Affiliation(s)
- Reinaldo B Bestetti
- Medical Course, University of Ribeirão Preto, Brazil. Avenida Costábile Romano, 2201, Ribeirão Preto City 14096-900, Brazil.
| | - Carolina Baraldi A Restini
- Medical Course, University of Ribeirão Preto, Brazil. Avenida Costábile Romano, 2201, Ribeirão Preto City 14096-900, Brazil.
| |
Collapse
|
32
|
Tumor necrosis factor is a therapeutic target for immunological unbalance and cardiac abnormalities in chronic experimental Chagas' heart disease. Mediators Inflamm 2014; 2014:798078. [PMID: 25140115 PMCID: PMC4130030 DOI: 10.1155/2014/798078] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 01/25/2023] Open
Abstract
Background. Chagas disease (CD) is characterized by parasite persistence and immunological unbalance favoring systemic inflammatory profile. Chronic chagasic cardiomyopathy, the main manifestation of CD, occurs in a TNF-enriched milieu and frequently progresses to heart failure. Aim of the Study. To challenge the hypothesis that TNF plays a key role in Trypanosoma cruzi-induced immune deregulation and cardiac abnormalities, we tested the effect of the anti-TNF antibody Infliximab in chronically T. cruzi-infected C57BL/6 mice, a model with immunological, electrical, and histopathological abnormalities resembling Chagas' heart disease. Results. Infliximab therapy did not reactivate parasite but reshaped the immune response as reduced TNF mRNA expression in the cardiac tissue and plasma TNF and IFNγ levels; diminished the frequency of IL-17A+ but increased IL-10+ CD4+ T-cells; reduced TNF+ but augmented IL-10+ Ly6C+ and F4/80+ cells. Further, anti-TNF therapy decreased cytotoxic activity but preserved IFNγ-producing VNHRFTLV-specific CD8+ T-cells in spleen and reduced the number of perforin+ cells infiltrating the myocardium. Importantly, Infliximab reduced the frequency of mice afflicted by arrhythmias and second degree atrioventricular blocks and decreased fibronectin deposition in the cardiac tissue. Conclusions. Our data support that TNF is a crucial player in the pathogenesis of Chagas' heart disease fueling immunological unbalance which contributes to cardiac abnormalities.
Collapse
|
33
|
Tassi EM, Continentino MA, Nascimento EMD, Pereira BDB, Pedrosa RC. Relationship between fibrosis and ventricular arrhythmias in Chagas heart disease without ventricular dysfunction. Arq Bras Cardiol 2014; 102:456-64. [PMID: 24918912 PMCID: PMC4051448 DOI: 10.5935/abc.20140052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/07/2014] [Indexed: 01/24/2023] Open
Abstract
Background Patients with Chagas disease and segmental wall motion abnormality (SWMA) have
worse prognosis independent of left ventricular ejection fraction (LVEF). Cardiac
magnetic resonance (CMR) is currently the best method to detect SWMA and to assess
fibrosis. Objective To quantify fibrosis by using late gadolinium enhancement CMR in patients with
Chagas disease and preserved or minimally impaired ventricular function (>
45%), and to detect patterns of dependence between fibrosis, SWMA and LVEF in the
presence of ventricular arrhythmia. Methods Electrocardiogram, treadmill exercise test, Holter and CMR were carried out in 61
patients, who were divided into three groups as follows: (1) normal
electrocardiogram and CMR without SWMA; (2) abnormal electrocardiogram and CMR
without SWMA; (3) CMR with SWMA independently of electrocardiogram. Results The number of patients with ventricular arrhythmia in relation to the total of
patients, the percentage of fibrosis, and the LVEF were, respectively: Group 1,
4/26, 0.74% and 74.34%; Group 2, 4/16, 3.96% and 68.5%; and Group 3, 11/19, 14.07%
and 55.59%. Ventricular arrhythmia was found in 31.1% of the patients. Those with
and without ventricular arrhythmia had mean LVEF of 59.87% and 70.18%,
respectively, and fibrosis percentage of 11.03% and 3.01%, respectively. Of the
variables SWMA, groups, age, LVEF and fibrosis, only the latter was significant
for the presence of ventricular arrhythmia, with a cutoff point of 11.78% for
fibrosis mass (p < 0.001). Conclusion Even in patients with Chagas disease and preserved or minimally impaired
ventricular function, electrical instability can be present. Regarding the
presence of ventricular arrhythmia, fibrosis is the most important variable, its
amount being proportional to the complexity of the groups.
Collapse
Affiliation(s)
- Eduardo Marinho Tassi
- Instituto de Cardiologia Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | | | | | - Roberto Coury Pedrosa
- Instituto de Cardiologia Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
34
|
Marin-Neto JA, Simoes MV, Rassi Junior A. Pathogenesis of chronic Chagas cardiomyopathy: the role of coronary microvascular derangements. Rev Soc Bras Med Trop 2013; 46:536-41. [DOI: 10.1590/0037-8682-0028-2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/26/2013] [Indexed: 11/22/2022] Open
|
35
|
Nunes MCP, Dones W, Morillo CA, Encina JJ, Ribeiro AL. Chagas disease: an overview of clinical and epidemiological aspects. J Am Coll Cardiol 2013; 62:767-76. [PMID: 23770163 DOI: 10.1016/j.jacc.2013.05.046] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/06/2013] [Accepted: 05/21/2013] [Indexed: 11/29/2022]
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is a serious health problem in Latin America and is an emerging disease in non-endemic countries. In recent decades, the epidemiological profile of the disease has changed due to new patterns of immigration and successful control in its transmission, leading to the urbanization and globalization of the disease. Dilated cardiomyopathy is the most important and severe manifestation of human chronic Chagas disease and is characterized by heart failure, ventricular arrhythmias, heart blocks, thromboembolic phenomena, and sudden death. This article will present an overview of the clinical and epidemiological aspects of Chagas disease. It will focus on several clinical aspects of the disease, such as chronic Chagas disease without detectable cardiac pathology, as well as dysautonomia, some specific features, and the principles of treatment of chronic cardiomyopathy.
Collapse
Affiliation(s)
- Maria Carmo Pereira Nunes
- Hospital das Clínicas e Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Novaes RD, Penitente AR, Gonçalves RV, Talvani A, Peluzio MCG, Neves CA, Natali AJ, Maldonado IRSC. Trypanosoma cruzi infection induces morphological reorganization of the myocardium parenchyma and stroma, and modifies the mechanical properties of atrial and ventricular cardiomyocytes in rats. Cardiovasc Pathol 2013; 22:270-9. [PMID: 23541389 DOI: 10.1016/j.carpath.2012.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/01/2012] [Accepted: 12/05/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND This study investigates morphofunctional adaptations of the heart stroma and parenchyma in rats that are chronically infected with Trypanosoma cruzi. METHODS Four-month-old male Wistar rats were randomized into control (n=14) and infected (n=14) groups. Infected animals were inoculated with T. cruzi Y strain. After 9 weeks, the animals were euthanized, and the right atrium (RA) and left ventricle (LV) were removed for biochemical, stereological, and cardiomyocyte mechanical analyses. RESULTS Infected animals presented cardiomyocyte atrophy and myocardial fibrosis. For these animals, the total volume, length, surface area, and cross-sectional area of cardiomyocytes were significantly reduced, and the total interstitial and collagen volumes were significantly increased in the RA and LV compared to the controls. The total volume and length of blood vessels were significantly increased in the LV, and the total blood vessel surface area was significantly higher in the RA of infected animals. RA and LV cardiomyocytes from infected animals exhibited a significant reduction in cell shortening (43.02% and 24.98%, respectively), prolongation of the time to the peak of contraction (17.09%) and the time to half relaxation (23.68%) compared to non-infected animals. Lipid hydroperoxides, but not mineral concentrations, were significantly increased in the RA and LV from infected animals, showing an inverse correlation with cell shortening. CONCLUSIONS T. cruzi infection induces global structural remodeling of the RA and LV in rats. This remodeling coexists with cardiomyocyte contractility dysfunction, which is possibly related to the abnormal organization of the myocardial stroma and increased cellular lipid peroxidation.
Collapse
Affiliation(s)
- Rômulo D Novaes
- Department of General Biology, Federal University of Viçosa, MG, 36570-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Scharfstein J, Andrade D, Svensjö E, Oliveira AC, Nascimento CR. The kallikrein-kinin system in experimental Chagas disease: a paradigm to investigate the impact of inflammatory edema on GPCR-mediated pathways of host cell invasion by Trypanosoma cruzi. Front Immunol 2013; 3:396. [PMID: 23355836 PMCID: PMC3555122 DOI: 10.3389/fimmu.2012.00396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/07/2012] [Indexed: 12/12/2022] Open
Abstract
Chronic chagasic myocarditis (CCM) depends on Trypanosoma cruzi persistence in the myocardium. Studies of the proteolytic mechanisms governing host/parasite balance in peripheral sites of T. cruzi infection revealed that tissue culture trypomastigotes (TCTs) elicit inflammatory edema and stimulate protective type-1 effector T cells through the activation of the kallikrein-kinin system. Molecular studies linked the proinflammatory phenotype of Dm28c TCTs to the synergistic activities of tGPI, a lipid anchor that functions as a Toll-like receptor 2 (TLR2) ligand, and cruzipain, a kinin-releasing cysteine protease. Analysis of the dynamics of inflammation revealed that TCTs activate innate sentinel cells via TLR2, releasing CXC chemokines, which in turn evoke neutrophil/CXCR2-dependent extravasation of plasma proteins, including high molecular weight kininogen (HK), in parasite-laden tissues. Further downstream, TCTs process surface bound HK, liberating lysyl-BK (LBK), which then propagates inflammatory edema via signaling of endothelial G-protein-coupled bradykinin B2 receptors (BK2R). Dm28 TCTs take advantage of the transient availability of infection-promoting peptides (e.g., bradykinin and endothelins) in inflamed tissues to invade cardiovascular cells via interdependent signaling of BKRs and endothelin receptors (ETRs). Herein we present a space-filling model whereby ceramide-enriched endocytic vesicles generated by the sphingomyelinase pathway might incorporate BK2R and ETRs, which then trigger Ca2+-driven responses that optimize the housekeeping mechanism of plasma membrane repair from cell wounding. The hypothesis predicts that the NF-κB-inducible BKR (BK1R) may integrate the multimolecular signaling platforms forged by ceramide rafts, as the chronic myocarditis progresses. Exploited as gateways for parasite invasion, BK2R, BK1R, ETAR, ETBR, and other G protein-coupled receptor partners may enable persistent myocardial parasitism in the edematous tissues at expense of adverse cardiac remodeling.
Collapse
Affiliation(s)
- Julio Scharfstein
- Laboratório de Imunologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
38
|
Andrade D, Serra R, Svensjö E, Lima APC, Ramos ES, Fortes FS, Morandini ACF, Morandi V, Soeiro MDN, Tanowitz HB, Scharfstein J. Trypanosoma cruzi invades host cells through the activation of endothelin and bradykinin receptors: a converging pathway leading to chagasic vasculopathy. Br J Pharmacol 2012; 165:1333-47. [PMID: 21797847 DOI: 10.1111/j.1476-5381.2011.01609.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ET(A)R and ET(B)R) and bradykinin B(2) receptors (B(2)R). EXPERIMENTAL APPROACH Intravital microscopy was used to determine whether ETR/B(2)R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B(2)R (HOE-140), ET(A)R (BQ-123) and ET(B)R (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ET(A)R or ET(B)R genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ET(A)R and ET(B)R antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B(2)R, whereas RNA interference of ET(A)R and ET(B)R genes conversely reduced parasite internalization. ETRs/B(2)R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-β-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin- or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells.
Collapse
Affiliation(s)
- Daniele Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Machado FS, Jelicks LA, Kirchhoff LV, Shirani J, Nagajyothi F, Mukherjee S, Nelson R, Coyle CM, Spray DC, Campos de Carvalho AC, Guan F, Prado CM, Lisanti MP, Weiss LM, Montgomery SP, Tanowitz HB. Chagas heart disease: report on recent developments. Cardiol Rev 2012; 20:53-65. [PMID: 22293860 PMCID: PMC3275684 DOI: 10.1097/crd.0b013e31823efde2] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is an important cause of cardiac disease in endemic areas of Latin America. It is now being diagnosed in nonendemic areas because of immigration. Typical cardiac manifestations of Chagas disease include dilated cardiomyopathy, congestive heart failure, arrhythmias, cardioembolism, and stroke. Clinical and laboratory-based research to define the pathology resulting from T. cruzi infection has shed light on many of the cellular and molecular mechanisms leading to these manifestations. Antiparasitic treatment may not be appropriate for patients with advanced cardiac disease. Clinical management of Chagas heart disease is similar to that used for cardiomyopathies caused by other processes. Cardiac transplantation has been successfully performed in a small number of patients with Chagas heart disease.
Collapse
Affiliation(s)
- Fabiana S. Machado
- Departments of Biochemistry and Immunology, Institute of Biological Sciences, and Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Linda A. Jelicks
- Gruss Magnetic Resonance Research Center and Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY
| | - Louis V. Kirchhoff
- Departments of Internal Medicine and Epidemiology, University of Iowa, Iowa City, IA
- Department of Veterans Affairs Medical Center, Iowa City, IA
| | - Jamshid Shirani
- Department of Cardiology St Luke’s Hospital and Health Network, Bethlehem, PA
| | - Fnu Nagajyothi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Shankar Mukherjee
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Randin Nelson
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Christina M. Coyle
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
- Department of Parasitology, Jacobi Medical Center, Bronx, NY
| | - David C. Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| | - Antonio C. Campos de Carvalho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY
- National Cardiology Institute, Rio de Janeiro, Brazil
- Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Fangxia Guan
- Bioengineering Department of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Cibele M. Prado
- Department of Pathology, University of São Paulo, Ribeirão Preto, Brazil
| | - Michael P. Lisanti
- Kimmel Cancer Center, Departments of Cancer Biology and Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
- Department of Parasitology, Jacobi Medical Center, Bronx, NY
- Global Health Center, Albert Einstein College of Medicine, Bronx, NY
| | - Susan P. Montgomery
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
- Department of Parasitology, Jacobi Medical Center, Bronx, NY
- Global Health Center, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
40
|
Scharfstein J, Andrade D. Infection-associated vasculopathy in experimental chagas disease pathogenic roles of endothelin and kinin pathways. ADVANCES IN PARASITOLOGY 2011; 76:101-27. [PMID: 21884889 DOI: 10.1016/b978-0-12-385895-5.00005-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acting at the interface between microcirculation and immunity, Trypanosoma cruzi induces modifications in peripheral tissues which translate into mutual benefits to host/parasite balance. In this chapter, we will review evidence linking infection-associated vasculopathy to the proinflammatory activity of a small subset of T. cruzi molecules, namely GPI-linked mucins, cysteine proteases (cruzipain), surface glycoproteins of the trans-sialidase family and/or parasite-derived eicosanoids (thromboxane A(2)). Initial insight into pathogenesis came from research in animal models showing that myocardial fibrosis is worsened as result of endothelin upregulation by infected cardiovascular cells. Paralleling these studies, the kinin system emerged as a proteolytic mechanism that links oedematogenic inflammation to immunity. Analyses of the dynamics of inflammation revealed that tissue culture trypomastigotes elicit interstitial oedema in peripheral sites of infection through synergistic activation of toll-like 2 receptors (TLR2) and G-protein-coupled bradykinin receptors, respectively, engaged by tGPI (TLR2 ligand) and kinin peptides (bradykinin B2 receptors (BK(2)R) ligands) proteolytically generated by cruzipain. Further downstream, kinins stimulate lymph node dendritic cells via G-protein-coupled BK(2)R, thus converting these specialized antigen-presenting cells into T(H)1 inducers. Tightly regulated by angiotensin-converting enzyme, the intact kinins (BK(2)R agonists) may be processed by carboxypeptidase M/N, generating [des-Arg]-kinins, which activates BK(1)R, a subtype of GPCR that is upregulated by cardiovascular cells during inflammation. Ongoing studies may clarify if discrepancies between proinflammatory phenotypes of T. cruzi strains may be ascribed, at least in part, to variable expression of TLR2 ligands and cruzipain isoforms.
Collapse
Affiliation(s)
- Julio Scharfstein
- Instituto de Biofı´sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Laborato´ rio deImunologia Molecular, Cidade Universita´ ria Rio de Janeiro, Brazil
| | | |
Collapse
|
41
|
Prado CM, Jelicks LA, Weiss LM, Factor SM, Tanowitz HB, Rossi MA. The vasculature in chagas disease. ADVANCES IN PARASITOLOGY 2011; 76:83-99. [PMID: 21884888 DOI: 10.1016/b978-0-12-385895-5.00004-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The cardiovascular manifestations of Chagas disease are well known. However, the contribution of the vasculature and specifically the microvasculature has received little attention. This chapter reviews the evidence supporting the notion that alterations in the microvasculature especially in the heart contribute to the pathogenesis of chagasic cardiomyopathy. These data may also be important in understanding the contributions of the microvasculature in the aetiologies of other cardiomyopathies. The role of endothelin-1 and of thromboxane A(2) vascular spasm and platelet aggregation is also discussed. Further, these observations may provide target(s) for intervention.
Collapse
Affiliation(s)
- Cibele M Prado
- Department of Pathology, Laboratory of Cellular and Molecular Cardiology, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
García-Álvarez A, Sitges M, Regueiro A, Poyatos S, Jesus Pinazo M, Posada E, Bijnens B, Heras M, Gascon J, Sanz G. Myocardial deformation analysis in Chagas heart disease with the use of speckle tracking echocardiography. J Card Fail 2011; 17:1028-34. [PMID: 22123367 DOI: 10.1016/j.cardfail.2011.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/02/2011] [Accepted: 08/05/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Assessment of myocardial deformation in Chagas disease may help us to better understand the disease pathophysiology and to detect early myocardial involvement. We aimed to characterize myocardial deformation in patients in different forms of Chagas disease and, specifically, assess differences between patients in the indeterminate form and controls. METHODS AND RESULTS Speckle tracking echocardiography was performed in 98 subjects (22 with Chagas cardiomyopathy, 32 in the indeterminate form, and 44 control subjects) to quantify global and segmental left ventricular (LV) radial strain (RS), circumferential strain (CS), and longitudinal strain (LS). In a subset of patients from the indeterminate and control groups (n = 25), LV peak systolic twist and untwisting velocities were additionally assessed. Global RS, CS, and LS showed a significant decreasing trend across groups. Patients in the indeterminate form had significantly lower global RS and RS in the midinferior segment (median 39.8% vs 49.3% [P = .046] and 44.0% vs 56.0% [P = .038], respectively) and lower twist and untwisting velocity (P < .05 for both) compared with control subjects. CONCLUSION Evaluation of myocardial deformation, particularly of RS, appears to be a sensitive technique for detection of myocardial involvement in patients in the indeterminate form and provides insights into the still unrevealed pathophysiology of Chagas heart involvement.
Collapse
Affiliation(s)
- Ana García-Álvarez
- Cardiology Department, Thorax Clinic Institute, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Novaes RD, Penitente AR, Gonçalves RV, Talvani A, Neves CA, Maldonado IRSC, Natali AJ. Effects of Trypanosoma cruzi infection on myocardial morphology, single cardiomyocyte contractile function and exercise tolerance in rats. Int J Exp Pathol 2011; 92:299-307. [PMID: 21736646 DOI: 10.1111/j.1365-2613.2011.00781.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to investigate the effects of Trypanosoma cruzi (T. cruzi) infection on myocardial morphology, single cardiomyocyte contractile function and exercise tolerance in rats. Adult Wistar rats were randomized into control (n = 14) and infected (n = 14) groups. Infected animals were inoculated with T. cruzi Y strain (300,000 trypomastigotes/50 g body weight). After 9 weeks, the animals were subjected to a treadmill running protocol. Then, the right atrium (RA) and left ventricle (LV) were removed for morphological and cell contractile evaluation. The infected animals exhibited a significant reduction in distance travelled, total time to fatigue and workload. In addition, these animals had hypertrophy, increased myocardial cellularity, and an increase in the proportion of collagen and blood vessels. RA and LV myocytes from infected animals showed marked contractile dysfunction under basal conditions and a reduced contractile response to β-adrenergic stimulation. The workload of infected animals was correlated closely with the amplitude of cell shortening of RA and LV myocytes. T. cruzi infection influenced the myocardial morphology and the mechanical properties of RA and LV single myocytes negatively and reduced exercise tolerance. Single cardiomyocyte contractile dysfunction could constitute an additional mechanism of cardiac impairment and reduced exercise tolerance in this infection.
Collapse
Affiliation(s)
- Rômulo D Novaes
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
44
|
Rossi MA, Tanowitz HB, Malvestio LM, Celes MR, Campos EC, Blefari V, Prado CM. Coronary microvascular disease in chronic Chagas cardiomyopathy including an overview on history, pathology, and other proposed pathogenic mechanisms. PLoS Negl Trop Dis 2010; 4:e674. [PMID: 20824217 PMCID: PMC2930857 DOI: 10.1371/journal.pntd.0000674] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This review focuses on the short and bewildered history of Brazilian scientist Carlos Chagas's discovery and subsequent developments, the anatomopathological features of chronic Chagas cardiomyopathy (CCC), an overview on the controversies surrounding theories concerning its pathogenesis, and studies that support the microvascular hypothesis to further explain the pathological features and clinical course of CCC. It is our belief that knowledge of this particular and remarkable cardiomyopathy will shed light not only on the microvascular involvement of its pathogenesis, but also on the pathogenetic processes of other cardiomyopathies, which will hopefully provide a better understanding of the various changes that may lead to an end-stage heart disease with similar features. This review is written to celebrate the 100th anniversary of the discovery of Chagas disease.
Collapse
Affiliation(s)
- Marcos A Rossi
- Department of Pathology, Laboratory of Cellular and Molecular Cardiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
45
|
Waghabi MC, Coutinho-Silva R, Feige JJ, Higuchi MDL, Becker D, Burnstock G, Araújo-Jorge TCD. Gap junction reduction in cardiomyocytes following transforming growth factor-β treatment and Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2009; 104:1083-90. [DOI: 10.1590/s0074-02762009000800004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 10/19/2009] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mariana C Waghabi
- Instituto Oswaldo Cruz-Fiocruz, Brasil; University College Medical School, UK
| | - Robson Coutinho-Silva
- University College Medical School, UK; Universidade Federal do Rio de Janeiro, Brasil
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale; Institut de Recherches en Technologies et Sciences pour le Vivant, France
| | | | | | | | | |
Collapse
|
46
|
Pharmacological inhibition of transforming growth factor beta signaling decreases infection and prevents heart damage in acute Chagas' disease. Antimicrob Agents Chemother 2009; 53:4694-701. [PMID: 19738024 DOI: 10.1128/aac.00580-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chagas' disease induced by Trypanosoma cruzi infection is an important cause of mortality and morbidity affecting the cardiovascular system for which presently available therapies are largely inadequate. We previously reported that transforming growth factor beta (TGF-beta) is implicated in several regulatory aspects of T. cruzi invasion and growth and in host tissue fibrosis. This prompted us to evaluate the therapeutic action of an inhibitor of TGF-beta signaling (SB-431542) administered during the acute phase of experimental Chagas' disease. Male Swiss mice were infected intraperitoneally with 10(4) trypomastigotes of T. cruzi (Y strain) and evaluated clinically for the following 30 days. SB-431542 treatment significantly reduced mortality and decreased parasitemia. Electrocardiography showed that SB-431542 treatment was effective in protecting the cardiac conduction system. By 14 day postinfection, enzymatic biomarkers of tissue damage indicated that muscle injury was decreased by SB-431542 treatment, with significantly lower blood levels of aspartate aminotransferase and creatine kinase. In conclusion, inhibition of TGF-beta signaling in vivo appears to potently decrease T. cruzi infection and to prevent heart damage in a preclinical mouse model. This suggests that this class of molecules may represent a new therapeutic agent for acute and chronic Chagas' disease that warrants further clinical exploration.
Collapse
|
47
|
Scharfstein J, Gomes JDAS, Correa-Oliveira R. Back to the future in Chagas disease: from animal models to patient cohort studies, progress in immunopathogenesis research. Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:187-98. [DOI: 10.1590/s0074-02762009000900025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 06/17/2009] [Indexed: 11/22/2022] Open
|
48
|
Tanowitz HB, Machado FS, Jelicks LA, Shirani J, de Carvalho ACC, Spray DC, Factor SM, Kirchhoff LV, Weiss LM. Perspectives on Trypanosoma cruzi-induced heart disease (Chagas disease). Prog Cardiovasc Dis 2009; 51:524-39. [PMID: 19410685 PMCID: PMC2677559 DOI: 10.1016/j.pcad.2009.02.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi. It is a common cause of heart disease in endemic areas of Latin America. The year 2009 marks the 100th anniversary of the discovery of T cruzi infection and Chagas disease by the Brazilian physician Carlos Chagas. Chagasic cardiomyopathy develops in from 10% to 30% of persons who are chronically infected with this parasite. Echocardiography and magnetic resonance imaging (MRI) are important modalities in the evaluation and prognostication of individuals with chagasic heart disease. The etiology of chagasic heart disease likely is multifactorial. Parasite persistence, autoimmunity, and microvascular abnormalities have been studied extensively as possible pathogenic mechanisms. Experimental studies suggest that alterations in cardiac gap junctions may be etiologic in the pathogenesis of conduction abnormalities. The diagnosis of chronic Chagas disease is made by serology. The treatment of this infection has shortcomings that need to be addressed. Cardiac transplantation and bone marrow stem cell therapy for persons with Chagas disease have received increasing research attention in recent years.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schmitz V, Svensjö E, Serra RR, Teixeira MM, Scharfstein J. Proteolytic generation of kinins in tissues infected by Trypanosoma cruzi depends on CXC chemokine secretion by macrophages activated via Toll-like 2 receptors. J Leukoc Biol 2009; 85:1005-14. [PMID: 19293401 DOI: 10.1189/jlb.1108693] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous analysis of the endogenous innate signals that steer T cell-dependent immunity in mice acutely infected by the protozoan Trypanosoma cruzi revealed that bradykinin (BK) or lysyl-BK, i.e., the short-lived peptides excised from plasma-borne kininogens through the activity of cruzipain, induces dendritic cell maturation via BK B(2) receptors (B(2)R). Here, we used the s.c. model of T. cruzi infection to study the functional interplay of TLR2, CXCR2, and B(2)R in edema development. Using intravital microscopy, we found that repertaxin (CXCR2 antagonist) blocked tissue-culture trypomastigotes (TCT)-induced plasma leakage and leukocyte accumulation in the hamster cheek pouch topically exposed to TCT. Furthermore, we found that TCT-evoked paw edema in BALB/c mice was blocked by repertaxin or HOE-140 (B(2)R antagonist), suggesting that CXCR2 propels the extravascular activation of the kinin/B(2)R pathway. We then asked if TLR2-mediated sensing of TCT by innate sentinel cells could induce secretion of CXC chemokines, which would then evoke neutrophil-dependent plasma leakage via the CXCR2/B(2)R pathway. Consistent with this notion, in vitro studies revealed that TCT induce robust secretion of CXC chemokines by resident macrophages in a TLR2-dependent manner. In contrast, TLR2(+/+) macrophages stimulated with insect-derived metacyclic trypomastigotes or epimastigotes, which lack the developmentally regulated TLR2 agonist displayed by TCT, failed to secrete keratinocyte-derived chemokine/MIP-2. Collectively, these results suggest that secretion of CXC chemokines by innate sentinel cells links TLR2-dependent recognition of TCT to the kinin system, a proteolytic web that potently amplifies vascular inflammation and innate immunity through the extravascular release of BK.
Collapse
Affiliation(s)
- Veronica Schmitz
- 373 Cidade Universitária, Edifício do Centro de Ciências da Saúde (CCS)-Bloco D-sala 7, Rio de Janeiro, RJ, Brazil, CEP 21941-902
| | | | | | | | | |
Collapse
|
50
|
Hiss FC, Lascala TF, Maciel BC, Marin-Neto JA, Simões MV. Changes in Myocardial Perfusion Correlate With Deterioration of Left Ventricular Systolic Function in Chronic Chagas' Cardiomyopathy. JACC Cardiovasc Imaging 2009; 2:164-72. [DOI: 10.1016/j.jcmg.2008.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 08/29/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
|