1
|
Ryan S, Crowe L, Almeida Cruz SN, Galbraith MD, O'Brien C, Hammer JA, Bergin R, Kellett SK, Markey GE, Benson TM, Fagan O, Espinosa JM, Conlon N, Donohoe CL, McKiernan S, Hogan AE, McNamee EN, Furuta GT, Menard-Katcher C, Masterson JC. Metabolic dysfunction mediated by HIF-1α contributes to epithelial differentiation defects in eosinophilic esophagitis. J Allergy Clin Immunol 2024:S0091-6749(24)00867-4. [PMID: 39209164 DOI: 10.1016/j.jaci.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Investigating the contributory role that epithelial cell metabolism plays in allergic inflammation is a key factor to understanding what influences dysfunction and the pathogenesis of the allergic disease eosinophilic esophagitis (EoE). We previously highlighted that the absence of hypoxia signaling through hypoxia-inducible factor (HIF)-1α in EoE contributes to esophageal epithelial dysfunction. However, metabolic regulation by HIF-1α has not been explored in esophageal allergy. OBJECTIVES We sought to define the role of HIF-1α-mediated metabolic dysfunction in esophageal epithelial differentiation processes and barrier function in EoE. METHODS In RNA sequencing of EoE patient biopsy samples, we observed the expression pattern of key genes involved in mitochondrial metabolism/oxidative phosphorylation (OXPHOS) and glycolysis. Seahorse bioenergetics analysis was performed on EPC2-hTERT cells to decipher the metabolic processes involved in epithelial differentiation processes. In addition, air-liquid interface cultures were used to delineate metabolic dependency mechanisms required for epithelial differentiation. RESULTS Transcriptomic analysis identified an increase in genes associated with OXPHOS in patients with EoE. Epithelial origin of this signature was confirmed by complex V immunofluorescence of patient biopsy samples. Bioenergetic analysis in vitro revealed that differentiated epithelium was less reliant on OXPHOS compared with undifferentiated epithelium. Increased OXPHOS potential and reduced glycolytic capacity was mirrored in HIF1A-knockdown EPC2-hTERT cells that exhibited a significant absence of terminal markers of epithelial differentiation, including involucrin. Pharmacologic glucose transport inhibition phenocopied this, while rescue of the HIF-1α-deficient phenotype using the pan-prolyl hydroxylase inhibitor dimethyloxalylglycine resulted in restored expression of epithelial differentiation markers. CONCLUSIONS An OXPHOS-dominated metabolic pattern in EoE patients, brought about largely by the absence of HIF-1α-mediated glycolysis, is linked with the deficit in esophageal epithelial differentiation.
Collapse
Affiliation(s)
- Sinéad Ryan
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Louise Crowe
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Sofía N Almeida Cruz
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Matthew D Galbraith
- Linda Crinc Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colo; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Carol O'Brien
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Juliet A Hammer
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo
| | - Ronan Bergin
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Shauna K Kellett
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Gary E Markey
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Taylor M Benson
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Olga Fagan
- Department of Gastroenterology, St James's Hospital, Dublin, Ireland
| | - Joaquin M Espinosa
- Linda Crinc Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colo
| | - Niall Conlon
- Department of Allergy and Immunology, St James's Hospital, Dublin, Ireland
| | - Claire L Donohoe
- National Centre for Oesophageal and Gastric Cancer, Trinity St James's Cancer Institute, St James's Hospital, Trinity College, Dublin, Ireland
| | - Susan McKiernan
- Department of Gastroenterology, St James's Hospital, Dublin, Ireland
| | - Andrew E Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland; Department of Biology, Obesity Immunology Research Group, Maynooth University, Maynooth, Ireland
| | - Eóin N McNamee
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland; Department of Biology, Mucosal Immunology Research Laboratory, National University of Ireland, Maynooth, Ireland
| | - Glenn T Furuta
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo
| | - Calies Menard-Katcher
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo
| | - Joanne C Masterson
- Allergy, Inflammation, and Remodeling Research Laboratory, Department of Biology, National University of Ireland, Maynooth, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland; Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo.
| |
Collapse
|
2
|
Clevenger MH, Wei C, Karami AL, Tsikretsis LE, Carlson DA, Pandolfino JE, Gonsalves N, Winter DR, Whelan KA, Tétreault MP. Esophageal epithelial Ikkβ deletion promotes eosinophilic esophagitis in experimental allergy mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602313. [PMID: 39026724 PMCID: PMC11257468 DOI: 10.1101/2024.07.05.602313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Background Eosinophilic esophagitis (EoE) is a chronic T helper type 2 (Th2)-associated inflammatory disorder triggered by food allergens, resulting in esophageal dysfunction through edema, fibrosis, and tissue remodeling. The role of epithelial remodeling in EoE pathogenesis is critical but not fully understood. Objective To investigate the role of epithelial IKKβ/NFκB signaling in EoE pathogenesis using a mouse model with conditional Ikk β knockout in esophageal epithelial cells ( Ikk β EEC-KO ). Methods EoE was induced in Ikkβ EEC-KO mice through skin sensitization with MC903/Ovalbumin (OVA) followed by intraesophageal OVA challenge. Histological and transcriptional analyses were performed to assess EoE features. Single-cell RNA sequencing (scRNA-seq) was used to profile esophageal mucosal cell populations and gene expression changes. Results Ikkβ EEC-KO /EoE mice exhibited hallmark EoE features, including eosinophil infiltration, intraepithelial eosinophils, microabscesses, basal cell hyperplasia, and lamina propria remodeling. RNA-seq revealed significant alterations in IKKβ/NFκB signaling pathways, with decreased expression of RELA and increased expression of IKKβ negative regulators. scRNA- seq analyses identified disrupted epithelial differentiation and barrier integrity, alongside increased type 2 immune responses and peptidase activity. Conclusion Our study demonstrates that loss of epithelial IKKβ signaling exacerbates EoE pathogenesis, highlighting the critical role of this pathway in maintaining epithelial homeostasis and preventing allergic inflammation. The Ikkβ EEC-KO /EoE mouse model closely mirrors human EoE, providing a valuable tool for investigating disease mechanisms and therapeutic targets. This model can facilitate the development of strategies to prevent chronic inflammation and tissue remodeling in EoE. Key Messages Critical Role of Epithelial IKKβ/NFκB Signaling: Loss of this signaling exacerbates EoE, causing eosinophil infiltration, basal cell hyperplasia, and tissue remodeling, highlighting its importance in esophageal health.Molecular Insights and Therapeutic Targets: scRNA-seq identified disrupted epithelial differentiation, barrier integrity, and enhanced type 2 immune responses, suggesting potential therapeutic targets for EoE. Relevance of the Ikkβ EEC-KO /EoE Mouse Model: This model replicates human EoE features, making it a valuable tool for studying EoE mechanisms and testing treatments, which can drive the development of effective therapies. Capsule Summary This study reveals the crucial role of epithelial IKKβ/NFκB signaling in EoE, providing insights into disease mechanisms and potential therapeutic targets, highly relevant for advancing clinical management of EoE.
Collapse
|
3
|
Laky K, Frischmeyer-Guerrerio PA. Development and dysfunction of structural cells in eosinophilic esophagitis. J Allergy Clin Immunol 2024; 153:1485-1499. [PMID: 38849184 DOI: 10.1016/j.jaci.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Eosinophilic esophagitis (EoE) is a disorder characterized by dysfunction and chronic local inflammation of the esophagus. The incidence and prevalence of EoE are increasing worldwide. The mechanisms responsible are poorly understood, and effective treatment options are limited. From the lumen outward, the esophagus comprises stratified squamous epithelium, lamina propria, and muscle. The tissue-specific nature of EoE strongly suggests that structural cells in the esophagus are involved in the EoE diathesis. Epithelial basal cell hyperplasia and dilated intercellular spaces are cardinal features of EoE. Some patients with EoE develop lamina propria fibrosis, strictures, or esophageal muscle dysmotility. Clinical symptoms of EoE are only weakly correlated with peak eosinophil count, implying that other cell types contribute to EoE pathogenesis. Epithelial, endothelial, muscle, and fibroblast cells can each initiate inflammation and repair, regulate tissue resident immune cells, recruit peripheral leukocytes, and tailor adaptive immune cell responses. A better understanding of how structural cells maintain tissue homeostasis, respond to cell-intrinsic and cell-extrinsic stressors, and exacerbate and/or resolve inflammatory responses in the esophagus is needed. This knowledge will facilitate the development of more efficacious treatment strategies for EoE that can restore homeostasis of both hematopoietic and structural elements in the esophagus.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
4
|
Kennedy KV, Muir AB, Ruffner MA. Pathophysiology of Eosinophilic Esophagitis. Immunol Allergy Clin North Am 2024; 44:119-128. [PMID: 38575212 DOI: 10.1016/j.iac.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, progressive immune-mediated disease associated with antigen-driven type 2 inflammation and symptoms of esophageal dysfunction. Research over the last 2 decades has dramatically furthered our understanding of the complex interplay between genetics, environmental exposures, and cellular and molecular interactions involved in EoE. This review provides an overview of our current understanding of EoE pathogenesis.
Collapse
Affiliation(s)
- Kanak V Kennedy
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Amanda B Muir
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Abramson Research Center 902E, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Melanie A Ruffner
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Abramson Research Center 902E, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Division of Pediatric Allergy and Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia
| |
Collapse
|
5
|
Toivola DM, Polari L, Schwerd T, Schlegel N, Strnad P. The keratin-desmosome scaffold of internal epithelia in health and disease - The plot is thickening. Curr Opin Cell Biol 2024; 86:102282. [PMID: 38000362 DOI: 10.1016/j.ceb.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
Keratin (K) intermediate filaments are attached to desmosomes and constitute the orchestrators of epithelial cell and tissue architecture. While their relevance in the epidermis is well recognized, our review focuses on their emerging importance in internal epithelia. The significance of keratin-desmosome scaffolds (KDSs) in the intestine is highlighted by transgenic mouse models and individuals with inflammatory bowel disease who display profound KDS alterations. In lung, high K8 expression defines a transitional cell subset during regeneration, and K8 variants are associated with idiopathic pulmonary fibrosis. Inherited variants in desmosomal proteins are overrepresented in idiopathic lung fibrosis, and familiar eosinophilic esophagitis. K18 serum fragments are established hepatocellular injury markers that correlate with the extent of histological inflammation. K17 expression is modified in multiple tumors, and K17 levels might be of prognostic relevance. These data should spur further studies on biological roles of these versatile tissue protectors and efforts on their therapeutic targeting.
Collapse
Affiliation(s)
- Diana M Toivola
- Cell Biology, Biosciences and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland.
| | - Lauri Polari
- Cell Biology, Biosciences and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
6
|
Markey GE, Ryan S, Furuta GT, Menard-Katcher C, McNamee EN, Masterson JC. Hypoxia-inducible microRNA-155 negatively regulates epithelial barrier in eosinophilic esophagitis by suppressing tight junction claudin-7. FASEB J 2024; 38:e23358. [PMID: 38050671 PMCID: PMC10699209 DOI: 10.1096/fj.202301934r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
MicroRNA (miRNA)-mediated mRNA regulation directs many homeostatic and pathological processes, but how miRNAs coordinate aberrant esophageal inflammation during eosinophilic esophagitis (EoE) is poorly understood. Here, we report a deregulatory axis where microRNA-155 (miR-155) regulates epithelial barrier dysfunction by selectively constraining tight junction CLDN7 (claudin-7). MiR-155 is elevated in the esophageal epithelium of biopsies from patients with active EoE and in cell culture models. MiR-155 localization using in situ hybridization (ISH) in patient biopsies and intra-epithelial compartmentalization of miR-155 show expression predominantly within the basal epithelia. Epithelial miR-155 activity was evident through diminished target gene expression in 3D organotypic cultures, particularly in relatively undifferentiated basal cell states. Mechanistically, generation of a novel cell line with enhanced epithelial miR-155 stable overexpression induced a functionally deficient epithelial barrier in 3D air-liquid interface epithelial cultures measured by transepithelial electrical resistance (TEER). Histological assessment of 3D esophageal organoid cultures overexpressing miR-155 showed notable dilated intra-epithelial spaces. Unbiased RNA-sequencing analysis and immunofluorescence determined a defect in epithelial barrier tight junctions and revealed a selective reduction in the expression of critical esophageal tight junction molecule, claudin-7. Together, our data reveal a previously unappreciated role for miR-155 in mediating epithelial barrier dysfunction in esophageal inflammation.
Collapse
Affiliation(s)
- Gary E Markey
- Allergy, Inflammation & Remodelling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Sinéad Ryan
- Allergy, Inflammation & Remodelling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Glenn T Furuta
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Calies Menard-Katcher
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Eoin N McNamee
- Mucosal Immunology Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Joanne C Masterson
- Allergy, Inflammation & Remodelling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| |
Collapse
|
7
|
Fuller AD, Karami AL, Kabir MF, Klochkova A, Jackson JL, Mu A, Tan Y, Klein-Szanto AJ, Whelan KA. Eosinophilic esophagitis-associated epithelial remodeling may limit esophageal carcinogenesis. FRONTIERS IN ALLERGY 2023; 4:1086032. [PMID: 37064719 PMCID: PMC10090679 DOI: 10.3389/falgy.2023.1086032] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Under homeostatic conditions, esophageal epithelium displays a proliferation/differentiation gradient that is generated as proliferative basal cells give rise to suprabasal cells then terminally differentiated superficial cells. This proliferation/differentiation gradient is often perturbed in esophageal pathologies. Basal cell hyperplasia may occur in patients with gastroesophageal reflux disease (GERD), a condition in which acid from the stomach enters the esophagus, or eosinophilic esophagitis (EoE), an emerging form of food allergy. While GERD is a primary risk factor for esophageal cancer, epidemiological data suggests that EoE patients do not develop esophageal cancer. Methods In order to investigate the impact of EoE and esophageal cancer specifically on the cellular landscape of esophageal epithelium, we perform single cell RNA-sequencing in murine models of EoE and esophageal cancer, specifically esophageal squamous cell carcinoma (ESCC). We further evaluate modules of co-expressed genes in EoE- and ESCC-enriched epithelial cell clusters. Finally, we pair EoE and ESCC murine models to examine the functional relationship between these pathologies. Results In mice with either EoE or ESCC, we find expansion of cell populations as compared to normal esophageal epithelium. In mice with EoE, we detect distinct expansion of 4 suprabasal populations coupled with depletion of 2 basal populations. By contrast, mice with ESCC display unique expansion of 2 basal populations and 1 suprabasal population, as well as depletion of 2 suprabasal populations. Senescence, glucocorticoid receptor signaling, and granulocyte-macrophage colony-stimulating factor pathways are associated with EoE-enriched clusters while pathways associated with cell proliferation and metabolism are identified in ESCC-enriched clusters. Finally, our in vivo data demonstrate that exposure to EoE inflammation limits tumor burden of esophageal carcinogenesis. Discussion Our findings provide the first functional investigation of the relationship between EoE and esophageal cancer and suggest that esophageal epithelial remodeling events occurring in response to EoE inflammation may limit esophageal carcinogenesis. This investigation may have future implications for leveraging allergic inflammation-associated alterations in epithelial biology to prevent and/or treat esophageal cancer.
Collapse
Affiliation(s)
- Annie D. Fuller
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Adam L. Karami
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Mohammad Faujul Kabir
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Alena Klochkova
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jazmyne L. Jackson
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Anbin Mu
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA, United States
| | | | - Kelly A. Whelan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Department of Cancer & Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Laky K, Kinard JL, Li JM, Moore IN, Lack J, Fischer ER, Kabat J, Latanich R, Zachos NC, Limkar AR, Weissler KA, Thompson RW, Wynn TA, Dietz HC, Guerrerio AL, Frischmeyer-Guerrerio PA. Epithelial-intrinsic defects in TGFβR signaling drive local allergic inflammation manifesting as eosinophilic esophagitis. Sci Immunol 2023; 8:eabp9940. [PMID: 36608150 PMCID: PMC10106118 DOI: 10.1126/sciimmunol.abp9940] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Allergic diseases are a global health challenge. Individuals harboring loss-of-function variants in transforming growth factor-β receptor (TGFβR) genes have an increased prevalence of allergic disorders, including eosinophilic esophagitis. Allergic diseases typically localize to mucosal barriers, implicating epithelial dysfunction as a cardinal feature of allergic disease. Here, we describe an essential role for TGFβ in the control of tissue-specific immune homeostasis that provides mechanistic insight into these clinical associations. Mice expressing a TGFβR1 loss-of-function variant identified in atopic patients spontaneously develop disease that clinically, immunologically, histologically, and transcriptionally recapitulates eosinophilic esophagitis. In vivo and in vitro, TGFβR1 variant-expressing epithelial cells are hyperproliferative, fail to differentiate properly, and overexpress innate proinflammatory mediators, which persist in the absence of lymphocytes or external allergens. Together, our results support the concept that TGFβ plays a fundamental, nonredundant, epithelial cell-intrinsic role in controlling tissue-specific allergic inflammation that is independent of its role in adaptive immunity.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Kinard
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny Min Li
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Lack
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Elizabeth R Fischer
- Electron Microscopy Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel Latanich
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ajinkya R Limkar
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine A Weissler
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W Thompson
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony L Guerrerio
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Iwamuro M, Urata H, Tanaka T, Okada H. Application of electron microscopy in gastroenterology. World J Gastrointest Pathophysiol 2022; 13:41-49. [PMID: 35433095 PMCID: PMC8976235 DOI: 10.4291/wjgp.v13.i2.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/26/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Electron microscopy has long been used in research in the fields of life sciences and materials sciences. Transmission and scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX) analyses have also been performed in the field of gastroenterology. Electron microscopy and EDX enable (1) Observation of ultrastructural differences in esophageal epithelial cells in patients with gastroesophageal reflux and eosinophilic esophagitis; (2) Detection of lanthanum deposition in the stomach and duodenum; (3) Ultrastructural and elemental analyses of enteroliths and bezoars; (4) Detection and characterization of microorganisms in the gastrointestinal tract; (5) Diagnosis of gastrointestinal tumors with neuroendocrine differentiation; and (6) Analysis of gold nanoparticles potentially used in endoscopic photodynamic therapy. This review aims to foster a better understanding of electron microscopy applications by reviewing relevant clinical studies, basic research findings, and the state of current research carried out in gastroenterology science.
Collapse
Affiliation(s)
- Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Haruo Urata
- Central Research Laboratory, Okayama University Medical School, Okayama 700-8558, Japan
| | - Takehiro Tanaka
- Department of Pathology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
10
|
Racca F, Pellegatta G, Cataldo G, Vespa E, Carlani E, Pelaia C, Paoletti G, Messina MR, Nappi E, Canonica GW, Repici A, Heffler E. Type 2 Inflammation in Eosinophilic Esophagitis: From Pathophysiology to Therapeutic Targets. Front Physiol 2022; 12:815842. [PMID: 35095572 PMCID: PMC8790151 DOI: 10.3389/fphys.2021.815842] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic immune-mediated disease of the esophagus characterized clinically by symptoms related to esophageal dysfunction and histologically by eosinophil-predominant inflammation, whose incidence is rising. It significantly affects patients’ quality of life and, if left untreated, results in fibrotic complications. Although broad consensus has been achieved on first-line therapy, a subset of patients remains non-responder to standard therapy. The pathogenesis of EoE is multifactorial and results from the complex, still mostly undefined, interaction between genetics and intrinsic factors, environment, and antigenic stimuli. A deep understanding of the pathophysiology of this disease is pivotal for the development of new therapies. This review provides a comprehensive description of the pathophysiology of EoE, starting from major pathogenic mechanisms (genetics, type 2 inflammation, epithelial barrier dysfunction, gastroesophageal reflux, allergens, infections and microbiota) and subsequently focusing on the single protagonists of type 2 inflammation (involved cells, cytokines, soluble effectors, surface proteins and transcription factors) that could represent present and future therapeutic targets, while summarizing previous therapeutic approaches in literature.
Collapse
Affiliation(s)
- Francesca Racca
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- *Correspondence: Francesca Racca,
| | - Gaia Pellegatta
- Digestive Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giuseppe Cataldo
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Edoardo Vespa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Digestive Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Elisa Carlani
- Digestive Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Giovanni Paoletti
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Maria Rita Messina
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Emanuele Nappi
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Digestive Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
11
|
Zhernov YV, Vysochanskaya SO, Sukhov VA, Zaostrovtseva OK, Gorshenin DS, Sidorova EA, Mitrokhin OV. Molecular Mechanisms of Eosinophilic Esophagitis. Int J Mol Sci 2021; 22:ijms222413183. [PMID: 34947981 PMCID: PMC8703627 DOI: 10.3390/ijms222413183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 12/19/2022] Open
Abstract
Food hypersensitivity is a group of diseases arising from a specific immune response that reproduces on exposure to a given food. The current understanding of molecular mechanisms and immunopathology of non-IgE-mediated/mixed food hypersensitivity, e.g., eosinophilic esophagitis, contains many gaps in knowledge. This review aims to provide a modern classification and identify the primary diseases of non-IgE-mediated/mixed food hypersensitivity reactions, delineate the distinctive molecular features, and discuss recent findings in the immunopathology of eosinophilic esophagitis that may become a basis to develop valid biomarkers and novel therapies for this disease. Eosinophilic esophagitis is a recently recognized allergic-mediated disease with eosinophil-predominant esophagus inflammation. Its pathogenesis is a complicated network of interactions and signaling between epithelial, mesenchymal, and immune cells on molecular and intercellular levels. Alterations produced by overactivation of some cytokine signaling pathways, e.g., IL-13 or thymic stromal lymphopoietin (TSLP), were evolved and observed in this review from the viewpoints of molecular, genetic, epigenetic, and transcriptomic changes. Despite substantial experimental data, the reliable and representative mechanism of eosinophilic esophagitis pathogenesis has yet to show itself. So, the place of esophagitis between mixed and non-IgE-mediated allergic disorders and between eosinophilic gastrointestinal disorders currently seems vague and unclear.
Collapse
Affiliation(s)
- Yury V. Zhernov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (S.O.V.); (V.A.S.); (O.K.Z.); (D.S.G.); (E.A.S.); (O.V.M.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(915)-1552000
| | - Sonya O. Vysochanskaya
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (S.O.V.); (V.A.S.); (O.K.Z.); (D.S.G.); (E.A.S.); (O.V.M.)
| | - Vitaly A. Sukhov
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (S.O.V.); (V.A.S.); (O.K.Z.); (D.S.G.); (E.A.S.); (O.V.M.)
| | - Olga K. Zaostrovtseva
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (S.O.V.); (V.A.S.); (O.K.Z.); (D.S.G.); (E.A.S.); (O.V.M.)
| | - Denis S. Gorshenin
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (S.O.V.); (V.A.S.); (O.K.Z.); (D.S.G.); (E.A.S.); (O.V.M.)
| | - Ekaterina A. Sidorova
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (S.O.V.); (V.A.S.); (O.K.Z.); (D.S.G.); (E.A.S.); (O.V.M.)
| | - Oleg V. Mitrokhin
- Department of General Hygiene, F. Erismann Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (S.O.V.); (V.A.S.); (O.K.Z.); (D.S.G.); (E.A.S.); (O.V.M.)
| |
Collapse
|
12
|
Shoda T, Kaufman KM, Wen T, Caldwell JM, Osswald GA, Purnima P, Zimmermann N, Collins MH, Rehn K, Foote H, Eby MD, Zhang W, Ben-Baruch Morgenstern N, Ballaban AY, Habel JE, Kottyan LC, Abonia JP, Mukkada VA, Putnam PE, Martin LJ, Rothenberg ME. Desmoplakin and periplakin genetically and functionally contribute to eosinophilic esophagitis. Nat Commun 2021; 12:6795. [PMID: 34815391 PMCID: PMC8611043 DOI: 10.1038/s41467-021-26939-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic allergic inflammatory disease with a complex underlying genetic etiology. Herein, we conduct whole-exome sequencing of a multigeneration EoE pedigree (discovery set) and 61 additional multiplex families with EoE (replication set). A series of rare, heterozygous, missense variants are identified in the genes encoding the desmosome-associated proteins DSP and PPL in 21% of the multiplex families. Esophageal biopsies from patients with these variants retain dilated intercellular spaces and decrease DSP and PPL expression even during disease remission. These variants affect barrier integrity, cell motility and RhoGTPase activity in esophageal epithelial cells and have increased susceptibility to calpain-14-mediated degradation. An acquired loss of esophageal DSP and PPL is present in non-familial EoE. Taken together, herein, we uncover a pathogenic role for desmosomal dysfunction in EoE, providing a deeper mechanistic understanding of tissue-specific allergic responses.
Collapse
Affiliation(s)
- Tetsuo Shoda
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Research, Cincinnati Veterans Affairs Medical Center, 3200 Vine St, Cincinnati, OH, 45220, USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Garrett A Osswald
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Pathre Purnima
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Nives Zimmermann
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Pathology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Margaret H Collins
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Pathology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Kira Rehn
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Heather Foote
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Michael D Eby
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Wenying Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Netali Ben-Baruch Morgenstern
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Adina Y Ballaban
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Jeff E Habel
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Leah C Kottyan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - J Pablo Abonia
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Vincent A Mukkada
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Philip E Putnam
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Lisa J Martin
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3200 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
13
|
Sciumè GD, Visaggi P, Sostilio A, Tarducci L, Pugno C, Frazzoni M, Ricchiuti A, Bellini M, Giannini EG, Marchi S, Savarino V, de Bortoli N. Eosinophilic esophagitis: novel concepts regarding pathogenesis and clinical manifestations. Minerva Gastroenterol (Torino) 2021; 68:23-39. [PMID: 33435660 DOI: 10.23736/s2724-5985.20.02807-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eosinophilic esophagitis is a chronic disease whose incidence and prevalence are increasing, based on a genetic-driven interaction between environment and immune system. Several gene loci involved in the development of the disease have been identified. A two-step mechanism has been hypothesized: a thymic stromal lymphopoietin-induced allergic sensitization followed by upregulation of CAPN14-related esophageal-specific pathways. Environment seems to have a larger effect than genetic variants. Factors that could play a role are allergens, drugs, colonizing bacteria and possibly Helicobacter Pylori infection. Acting on these modifiable risk factors may be a tool to prevent the disease. EoE is characterized by a typical eosinophilic infiltrate limited to the esophageal epithelium, supported by a Th2-mediated immune response, found in other atopic conditions. The key of the pathogenesis is the disfunction of the epithelial barrier which allow the interaction between allergens and inflammatory cells. Eosinophilic-predominant inflammation leads to the typical wall remodeling, histologically characterized by epithelial and smooth muscle hyperplasia, lamina propria fibrosis and neo-angiogenesis. These alterations find their clinical expression in the pattern of symptoms: dysphagia, food impaction, chest pain, heartburn.
Collapse
Affiliation(s)
- Giusi D Sciumè
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pierfrancesco Visaggi
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Andrea Sostilio
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Tarducci
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Camilla Pugno
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marzio Frazzoni
- Digestive Pathophysiology Unit, Baggiovara Hospital, Modena, Italy
| | - Angelo Ricchiuti
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Massimo Bellini
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Edoardo G Giannini
- Gastrointestinal Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Santino Marchi
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Vincenzo Savarino
- Gastrointestinal Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Nicola de Bortoli
- Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy -
| |
Collapse
|
14
|
Whelan KA, Godwin BC, Wilkins B, Elci OU, Benitez A, DeMarshall M, Sharma M, Gross J, Klein-Szanto AJ, Liacouras CA, Dellon ES, Spergel JM, Falk GW, Muir AB, Nakagawa H. Persistent Basal Cell Hyperplasia Is Associated With Clinical and Endoscopic Findings in Patients With Histologically Inactive Eosinophilic Esophagitis. Clin Gastroenterol Hepatol 2020; 18:1475-1482.e1. [PMID: 31499251 PMCID: PMC7058491 DOI: 10.1016/j.cgh.2019.08.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/24/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Although eosinophil count is the standard used to monitor disease activity in patients with eosinophilic esophagitis (EoE), there are often disparities between patient-reported symptoms and eosinophil counts. We examined the prevalence of epithelial alterations, namely basal cell hyperplasia (BCH) and spongiosis, among patients with inactive EoE (eosinophil counts below 15 following therapy) and aimed to determine whether maintenance of these changes in epithelial morphology are associated with persistent clinical findings. METHODS Esophageal biopsies of 243 patients (mean age, 16.9 years) undergoing routine endoscopy at the University of Pennsylvania were evaluated for epithelial BCH and spongiosis. Univariable analysis was used to calculate the association between epithelial changes and symptoms as well as endoscopic findings and peak eosinophil count. We validated our findings using data from a cohort of patients at the University of North Carolina. RESULTS The discovery and validation cohorts each included patients with inactive EoE, based on histologic factors, but ongoing BCH and spongiosis. Ongoing BCH, but not spongiosis, in patients with inactive EoE was associated with symptoms (odds ratio, 2.14; 95% CI, 1.03-4.42; P = .041) and endoscopic findings (odds ratio, 7.10; 95% CI, 3.12-16.18; P < .001). CONCLUSIONS In patients with EoE, the presence of BCH might indicate ongoing disease activity, independent of eosinophil count. This might account for the persistent symptoms in patients who are considered to be in remission based on histologic factors.
Collapse
Affiliation(s)
- Kelly A. Whelan
- Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140,Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140
| | - Bridget C. Godwin
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin Wilkins
- Division of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Okan U. Elci
- Westat-Biostatistics and Data Management Core, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alain Benitez
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maureen DeMarshall
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Medha Sharma
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan Gross
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andres J. Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Chris A. Liacouras
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Evan S. Dellon
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC 27514, USA
| | - Jonathan M. Spergel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gary W. Falk
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hiroshi Nakagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
15
|
Oliva S, Azouz NP, Stronati L, Rothenberg ME. Recent advances in potential targets for eosinophilic esophagitis treatments. Expert Rev Clin Immunol 2020; 16:421-428. [PMID: 32163308 DOI: 10.1080/1744666x.2020.1742110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Diagnostic and therapeutic strategies in eosinophilic esophagitis (EoE) are constantly evolving. Recently, the improved understanding of EoE pathogenesis has led to identification of a variety of other potential targets that have never been considered before.Areas covered: In September 2019, we performed structured literature searches in Medline and PubMed, Cochrane meta-analyses, and abstracts of international congresses to review new potential therapeutic approaches for EoE.Expert opinion: The advent of omics disciplines has been helping in finding new molecular targets in EoE pathogenesis and may provide future guidance for deep phenotyping of the disease and therefore facilitate the possibility of personalized medicine. Interestingly, these new treatments should be focused on the restoration of epithelial barrier dysfunction, downregulation of specific molecular pathways of eosinophilic inflammation, and finally, prevention of esophageal remodeling. In this review, we highlight the most recent insights in EoE pathogenesis, which open new pathways for developing new therapeutic targets for clinical practice.
Collapse
Affiliation(s)
- Salvatore Oliva
- Pediatric Gastroenterology and Liver Unit, Maternal and Child Health Department, Sapienza - University of Rome, Rome, Italy.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza-University of Rome, Rome, Italy
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Azouz NP, Ynga-Durand MA, Caldwell JM, Jain A, Rochman M, Fischesser DM, Ray LM, Bedard MC, Mingler MK, Forney C, Eilerman M, Kuhl JT, He H, Biagini Myers JM, Mukkada VA, Putnam PE, Khurana Hershey GK, Kottyan LC, Wen T, Martin LJ, Rothenberg ME. The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal epithelial inflammatory responses. Sci Transl Med 2019; 10:10/444/eaap9736. [PMID: 29875205 DOI: 10.1126/scitranslmed.aap9736] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/12/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022]
Abstract
Loss of barrier integrity has an important role in eliciting type 2 immune responses, yet the molecular events that initiate and connect this with allergic inflammation remain unclear. We reveal an endogenous, homeostatic mechanism that controls barrier function and inflammatory responses in esophageal allergic inflammation. We show that a serine protease inhibitor, SPINK7 (serine peptidase inhibitor, kazal type 7), is part of the differentiation program of human esophageal epithelium and that SPINK7 depletion occurs in a human allergic, esophageal condition termed eosinophilic esophagitis. Experimental manipulation strategies reducing SPINK7 in an esophageal epithelial progenitor cell line and primary esophageal epithelial cells were sufficient to induce barrier dysfunction and transcriptional changes characterized by loss of cellular differentiation and altered gene expression known to stimulate allergic responses (for example, FLG and SPINK5). Epithelial silencing of SPINK7 promoted production of proinflammatory cytokines including thymic stromal lymphopoietin (TSLP). Loss of SPINK7 increased the activity of urokinase plasminogen-type activator (uPA), which in turn had the capacity to promote uPA receptor-dependent eosinophil activation. Treatment of epithelial cells with the broad-spectrum antiserine protease, α1 antitrypsin, reversed the pathologic features associated with SPINK7 silencing. The relevance of this pathway in vivo was supported by finding genetic epistasis between variants in TSLP and the uPA-encoding gene, PLAU We propose that the endogenous balance between SPINK7 and its target proteases is a key checkpoint in regulating mucosal differentiation, barrier function, and inflammatory responses and that protein replacement with antiproteases may be therapeutic for select allergic diseases.
Collapse
Affiliation(s)
- Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Mario A Ynga-Durand
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA.,Laboratorio de Inmunidad de Mucosas, Sección de Investigación y Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Ayushi Jain
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Demetria M Fischesser
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Leanne M Ray
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Mary C Bedard
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Melissa K Mingler
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Matthew Eilerman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Jonathan T Kuhl
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Hua He
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Jocelyn M Biagini Myers
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Vincent A Mukkada
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Philip E Putnam
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA.
| |
Collapse
|
17
|
Lianto P, Zhang Y, Che H. Signals from the various immune cells in promoting food allergy-induced eosinophilic esophagitis like disease. Asia Pac Allergy 2019; 9:e28. [PMID: 31384583 PMCID: PMC6676061 DOI: 10.5415/apallergy.2019.9.e28] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a recently recognized esophageal inflammatory disease with clinical manifestations arising from esophageal dysfunction. The etiology of EoE is currently being clarified and food allergy is evolving as the central cornerstone of EoE disease pathogenesis. Given the large number of eosinophils in the esophagus of people with EoE verified by data from murine models EoE is widely considered as the hallmark T-helper type 2 (Th2) disease of the esophagus. It is also known that some eosinophilic inflammation is controlled by other subsets of T cells such as Th9 or Th17 and control is also exerted by type 2 innate lymphoid cells acting together with basophils. In this paper we review results from molecular studies of mouse models in light of the results from the first clinical trials targeting key cytokines in humans and present in-depth molecular understanding of EoE.
Collapse
Affiliation(s)
- Priscilia Lianto
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yani Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huilian Che
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Masterson JC, Biette KA, Hammer JA, Nguyen N, Capocelli KE, Saeedi BJ, Harris RF, Fernando SD, Hosford LB, Kelly CJ, Campbell EL, Ehrentraut SF, Ahmed FN, Nakagawa H, Lee JJ, McNamee EN, Glover LE, Colgan SP, Furuta GT. Epithelial HIF-1α/claudin-1 axis regulates barrier dysfunction in eosinophilic esophagitis. J Clin Invest 2019; 129:3224-3235. [PMID: 31264974 PMCID: PMC6668670 DOI: 10.1172/jci126744] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
Epithelial barrier dysfunction is a significant factor in many allergic diseases, including eosinophilic esophagitis (EoE). Infiltrating leukocytes and tissue adaptations increase metabolic demands and decrease oxygen availability at barrier surfaces. Understanding of how these processes impact barrier is limited, particularly in allergy. Here, we identified a regulatory axis whereby the oxygen-sensing transcription factor HIF-1α orchestrated epithelial barrier integrity, selectively controlling tight junction CLDN1 (claudin-1). Prolonged experimental hypoxia or HIF1A knockdown suppressed HIF-1α-dependent claudin-1 expression and epithelial barrier function, as documented in 3D organotypic epithelial cultures. L2-IL5OXA mice with EoE-relevant allergic inflammation displayed localized eosinophil oxygen metabolism, tissue hypoxia, and impaired claudin-1 barrier via repression of HIF-1α/claudin-1 signaling, which was restored by transgenic expression of esophageal epithelial-targeted stabilized HIF-1α. EoE patient biopsy analysis identified a repressed HIF-1α/claudin-1 axis, which was restored via pharmacologic HIF-1α stabilization ex vivo. Collectively, these studies reveal HIF-1α's critical role in maintaining barrier and highlight the HIF-1α/claudin-1 axis as a potential therapeutic target for EoE.
Collapse
Affiliation(s)
- Joanne C. Masterson
- Allergy, Inflammation and Remodeling Research Laboratory, Human Health Research Institute, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine; Digestive Health Institute, Children’s Hospital Colorado; Aurora, Colorado, USA
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Kathryn A. Biette
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine; Digestive Health Institute, Children’s Hospital Colorado; Aurora, Colorado, USA
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Juliet A. Hammer
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine; Digestive Health Institute, Children’s Hospital Colorado; Aurora, Colorado, USA
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Nathalie Nguyen
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine; Digestive Health Institute, Children’s Hospital Colorado; Aurora, Colorado, USA
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Kelley E. Capocelli
- Department of Pathology, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Bejan J. Saeedi
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Rachel F. Harris
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine; Digestive Health Institute, Children’s Hospital Colorado; Aurora, Colorado, USA
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Shahan D. Fernando
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine; Digestive Health Institute, Children’s Hospital Colorado; Aurora, Colorado, USA
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Lindsay B. Hosford
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine; Digestive Health Institute, Children’s Hospital Colorado; Aurora, Colorado, USA
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Caleb J. Kelly
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Eric L. Campbell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Stefan F. Ehrentraut
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Faria N. Ahmed
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine; Digestive Health Institute, Children’s Hospital Colorado; Aurora, Colorado, USA
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Eóin N. McNamee
- Allergy, Inflammation and Remodeling Research Laboratory, Human Health Research Institute, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Louise E. Glover
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Sean P. Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Glenn T. Furuta
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, University of Colorado School of Medicine; Digestive Health Institute, Children’s Hospital Colorado; Aurora, Colorado, USA
- Mucosal Inflammation Program, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
19
|
Li T, Liu Z, Zhang X, Chen X, Wang S. Local Probiotic Lactobacillus crispatus and Lactobacillus delbrueckii Exhibit Strong Antifungal Effects Against Vulvovaginal Candidiasis in a Rat Model. Front Microbiol 2019; 10:1033. [PMID: 31139166 PMCID: PMC6519388 DOI: 10.3389/fmicb.2019.01033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
A comprehensive knowledge of the vaginal ecosystem is critical for the development of successful approaches to the treatment of infections. The role of Lactobacilli in preventing vulvovaginal candidiasis (VVC) is controversial. In this study, we investigated the therapeutic effects and mechanism of Lactobacillus crispatus or delbrueckii on vaginitis caused by Candida albicans in a Sprague–Dawley rat model. A microbiological evaluation was performed by Gram staining and fungal colonies were enumerated. The antifungal efficacy of the two Lactobacillus strains was assessed by hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), immunohistochemical detection of interferon-γ (IFN-γ), interleukin (IL)-4, IL-17, and epithelial-derived IgG (RP125). Our in vitro results showed that the inhibitory activity against Candida colony-forming unit (CFU) counts was demonstrated by the two Lactobacillus strains (P < 0.001). Our results indicated that Lactobacillus administration played an indispensable role in maintaining the immune homeostasis, and decreasing the Th1/Th2 ratio (IFN-γ/IL-4) by regulating the epithelial secretion of cytokines that inhibit epithelial proinflammatory cytokine release, while increasing epithelial-derived IgG expression (P < 0.05), suggesting antibody-mediated protection. Our results implicate L. crispatus and L. delbrueckii as a potential adjunct biotherapeutic agent in women with VVC, especially for those with drug resistance, adverse effects or contraindications when using antifungal agents. Further large, long-term, well-planned clinical studies should be performed in clinical practice to determine their clinical potential of L. crispatus and L. delbrueckii as an adjunct treatment for VVC.
Collapse
Affiliation(s)
- Ting Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xu Zhang
- Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China
| | - Xi Chen
- Laboratory of Electron Microscopy, Department of Gynecology, Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Suxia Wang
- Laboratory of Electron Microscopy, Department of Gynecology, Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Abstract
Gastrointestinal (GI) allergic disease is an umbrella term used to describe a variety of adverse, food antigen-driven, immune-mediated diseases. Although these diseases vary mechanistically, common elements include a breakdown of immunologic tolerance, a biased type 2 immune response, and an impaired mucosal barrier. These pathways are influenced by diverse factors such as diet, infections, exposure to antibiotics and chemicals, GI microbiome composition, and genetic and epigenetic elements. Early childhood has emerged as a critical period when these factors have a dramatic impact on shaping the immune system and therefore triggering or protecting against the onset of GI allergic diseases. In this Review, we will discuss the latest findings on the molecular and cellular mechanisms that govern GI allergic diseases and how these findings have set the stage for emerging preventative and treatment strategies.
Collapse
|
21
|
Inage E, Furuta GT, Menard-Katcher C, Masterson JC. Eosinophilic esophagitis: pathophysiology and its clinical implications. Am J Physiol Gastrointest Liver Physiol 2018; 315:G879-G886. [PMID: 30212252 PMCID: PMC6293259 DOI: 10.1152/ajpgi.00174.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Classically, eosinophilic esophagitis is an antigen-mediated chronic disease distinct from gastroesophageal reflux disease. Eosinophilic esophagitis is an emerging clinical problem that is growing in recognition. It is characterized clinically by feeding dysfunction, dysphagia, and reflux-like symptoms. Histologically, eosinophilic esophagitis is identifiable by a dense epithelial eosinophilic infiltrate. Experimental modeling and clinical studies over the last decade have greatly improved mechanistic insights and led to improvements in clinical understanding and the assessment of therapeutic options for patients and their clinicians who manage this disease. Here, we review the clinicopathologic diagnostic criteria and our understanding of eosinophilic esophagitis as an allergic disease with genetic and immunological components. We present studies defining the importance of the epithelial barrier and the concept of barrier dysfunction as an initiating or perpetuating factor for this disease. We discuss the relationship between the symptoms of dysphagia and feeding dysfunction, our current knowledge of the underlying pathophysiologic mechanisms, and advances in clinical assessment of esophageal distensibility and narrowing in eosinophilic esophagitis patients. Finally, therapeutic implications relating to the advances that have led to our current understanding of the pathophysiology of eosinophilic esophagitis are explored.
Collapse
Affiliation(s)
- Eisuke Inage
- 1Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan,2Digestive Health Institute, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children’s Hospital Colorado, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Glenn T. Furuta
- 2Digestive Health Institute, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children’s Hospital Colorado, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Calies Menard-Katcher
- 2Digestive Health Institute, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children’s Hospital Colorado, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Joanne C. Masterson
- 2Digestive Health Institute, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children’s Hospital Colorado, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado,3Department of Biology, Maynooth University, Kildare, Ireland
| |
Collapse
|
22
|
TGF-β1 alters esophageal epithelial barrier function by attenuation of claudin-7 in eosinophilic esophagitis. Mucosal Immunol 2018; 11:415-426. [PMID: 28832026 PMCID: PMC5825237 DOI: 10.1038/mi.2017.72] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/12/2017] [Indexed: 02/04/2023]
Abstract
Barrier dysfunction has been implicated in the pathophysiology of eosinophilic esophagitis (EoE). Transforming growth factor-β1 (TGF-β1), a potent pleiotropic molecule, is increased in EoE; however, no study has evaluated its influence on esophageal epithelial barrier. We hypothesized that TGF-β1 regulates barrier dysfunction in EoE. We aimed to determine the role of TGF-β1 in the epithelial barrier in models of EoE. To examine the impact of TGF-β1 on esophageal barrier, immortalized human esophageal epithelial (EPC2-hTERT) cells were exposed to TGF-β1 during the three-dimensional air-liquid interface (3D-ALI) model in vitro. TGF-β1 exposure diminished EPC2-hTERT barrier function as measured by transepithelial electrical resistance (TEER) and 3 kDa Fluorescein isothiocyanate dextran paracellular flux (FITC Flux), and hematoxylin and eosin (H&E) assessment revealed prominent cellular separation. In analysis of epithelial barrier molecules, TGF-β1 led to the specific reduction in expression of the tight-junction molecule, claudin-7 (CLDN7), and this was prevented by TGF-β-receptor I inhibitor. Short hairpin ribonucleic acid (shRNA)-mediated CLDN7 knockdown diminished epithelial barrier function, whereas CLDN7 overexpression resulted in protection from TGF-β1-mediated barrier dysfunction. In pediatric EoE biopsies CLDN7 expression was decreased and altered localization was observed with immunofluorescence analysis, and the TGF-β1 downstream transcription factor, phosphorylated SMAD2/3 (pSMAD2/3), was increased. Our data suggest that TGF-β1 participates in esophageal epithelial barrier dysfunction through CLDN7 dysregulation.
Collapse
|
23
|
Simon D, Page B, Vogel M, Bussmann C, Blanchard C, Straumann A, Simon H. Evidence of an abnormal epithelial barrier in active, untreated and corticosteroid-treated eosinophilic esophagitis. Allergy 2018; 73:239-247. [PMID: 28712126 DOI: 10.1111/all.13244] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a chronic, immune/antigen-mediated disease characterized by symptoms related to esophageal dysfunction and an eosinophil-predominant inflammation. This study has aimed to investigate whether the recently observed sensitization to Candida albicans in patients with EoE is owing to pre-existing disease and its underlying abnormal epithelial barrier or, alternatively, is linked to corticosteroid (CS) therapy. METHODS Medical histories, as well as serum and tissue samples of 60 patients with EoE (15 CS naive, 45 with current or previous CS therapy) and 20 controls, stored in the Swiss Eosinophilic Esophagitis Database (SEED) and Biobank, were analyzed. We applied ImmunoCAP to measure IgE levels and immunofluorescence techniques to examine epithelial barrier components. RESULTS Patients with EoE had higher total IgE levels and were more frequently sensitized to C. albicans than controls. In EoE tissue specimens, increased numbers of eosinophils and mast cells, a higher expression levels of thymic stromal lymphopoietin (TSLP), cathelicidin, proteases, that is, the kallikreins (KLK)-5 and KLK-7, were observed as compared with controls, while reduced expression of lympho-epithelial Kazal-type-related inhibitor (LEKTI), filaggrin, E-cadherin, claudin, occludin, desmoglein-1 was found, independent of CS therapy. In CS-treated EoE, significantly lower numbers of CD1a+ cells and cathelicidin expression were noted as compared to CS-naive EoE. CONCLUSION This study provides further evidence that EoE is associated with an abnormal epithelial barrier and postulates that CS therapy, by reducing innate immune mechanisms, may promote C. albicans colonization and likely subsequent sensitization.
Collapse
Affiliation(s)
- D. Simon
- Department of Dermatology Inselspital, Bern University Hospital University of Bern Bern Switzerland
| | - B. Page
- Department of Dermatology Inselspital, Bern University Hospital University of Bern Bern Switzerland
| | - M. Vogel
- Institute of Immunology Inselspital, Bern University Hospital University of Bern Bern Switzerland
| | | | - C. Blanchard
- Institute of Nutritional Science Nestlé Research Center Lausanne Switzerland
| | | | - H.‐U. Simon
- Institute of Pharmacology University of Bern Bern Switzerland
| |
Collapse
|
24
|
Whelan KA, Merves JF, Giroux V, Tanaka K, Guo A, Chandramouleeswaran PM, Benitez AJ, Dods K, Que J, Masterson JC, Fernando SD, Godwin BC, Klein-Szanto AJ, Chikwava K, Ruchelli ED, Hamilton KE, Muir AB, Wang ML, Furuta GT, Falk GW, Spergel JM, Nakagawa H. Autophagy mediates epithelial cytoprotection in eosinophilic oesophagitis. Gut 2017; 66:1197-1207. [PMID: 26884425 PMCID: PMC4987278 DOI: 10.1136/gutjnl-2015-310341] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/05/2016] [Accepted: 01/27/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The influence of eosinophilic oesophagitis (EoE)-associated inflammation upon oesophageal epithelial biology remains poorly understood. We investigated the functional role of autophagy in oesophageal epithelial cells (keratinocytes) exposed to the inflammatory EoE milieu. DESIGN Functional consequences of genetic or pharmacological autophagy inhibition were assessed in endoscopic oesophageal biopsies, human oesophageal keratinocytes, single cell-derived ex vivo murine oesophageal organoids as well as a murine model recapitulating EoE-like inflammation and basal cell hyperplasia. Gene expression, morphological and functional characterisation of autophagy and oxidative stress were performed by transmission electron microscopy, immunostaining, immunoblotting, live cell imaging and flow cytometry. RESULTS EoE-relevant inflammatory conditions promoted autophagy and basal cell hyperplasia in three independent murine EoE models and oesophageal organoids. Inhibition of autophagic flux via chloroquine treatment augmented basal cell hyperplasia in these model systems. Oesophageal keratinocytes stimulated with EoE-relevant cytokines, including tumour necrosis factor-α and interleukin-13 exhibited activation of autophagic flux in a reactive oxygen species-dependent manner. Autophagy inhibition via chloroquine treatment or depletion of Beclin-1 or ATG-7, augmented oxidative stress induced by EoE-relevant stimuli in murine EoE, oesophageal organoids and human oesophageal keratinocytes. Oesophageal epithelia of paediatric EoE patients with active inflammation displayed increased autophagic vesicle content compared with normal and EoE remission subjects. Functional flow cytometric analysis revealed autophagic flux in human oesophageal biopsies. CONCLUSIONS Our findings reveal for the first time that autophagy may function as a cytoprotective mechanism to maintain epithelial redox balance and homeostasis under EoE inflammation-associated stress, providing mechanistic insights into the role of autophagy in EoE pathogenesis.
Collapse
Affiliation(s)
- Kelly A. Whelan
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Jamie F. Merves
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Veronique Giroux
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Koji Tanaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Andy Guo
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Prasanna M. Chandramouleeswaran
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Alain J. Benitez
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kara Dods
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jianwen Que
- Center for Human Development and Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Joanne C. Masterson
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, University of Colorado Denver School of Medicine Aurora, Colorado, USA
| | - Shahan D. Fernando
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, University of Colorado Denver School of Medicine Aurora, Colorado, USA
| | - Bridget C. Godwin
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andres J. Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kudakwashe Chikwava
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Perelman School of Medicine at the University of Pennsylvania, PA 19104, USA
| | - Eduardo D. Ruchelli
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Perelman School of Medicine at the University of Pennsylvania, PA 19104, USA
| | - Kathryn E. Hamilton
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mei-Lun Wang
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Glenn T. Furuta
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, University of Colorado Denver School of Medicine Aurora, Colorado, USA
| | - Gary W. Falk
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan M. Spergel
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hiroshi Nakagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Rochman M, Travers J, Miracle CE, Bedard MC, Wen T, Azouz NP, Caldwell JM, Kc K, Sherrill JD, Davis BP, Rymer JK, Kaufman KM, Aronow BJ, Rothenberg ME. Profound loss of esophageal tissue differentiation in patients with eosinophilic esophagitis. J Allergy Clin Immunol 2017; 140:738-749.e3. [PMID: 28104354 DOI: 10.1016/j.jaci.2016.11.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/16/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND A key question in the allergy field is to understand how tissue-specific disease is manifested. Eosinophilic esophagitis (EoE) is an emerging tissue-specific allergic disease with an unclear pathogenesis. OBJECTIVE Herein we tested the hypothesis that a defect in tissue-specific esophageal genes is an integral part of EoE pathogenesis. METHODS We interrogated the pattern of expression of esophagus-specific signature genes derived from the Human Protein Atlas in the EoE transcriptome and in EPC2 esophageal epithelial cells. Western blotting and immunofluorescence were used for evaluating expression of esophageal proteins in biopsy specimens from control subjects and patients with active EoE. Whole-exome sequencing was performed to identify mutations in esophagus-specific genes. RESULTS We found that approximately 39% of the esophagus-specific transcripts were altered in patients with EoE, with approximately 90% being downregulated. The majority of transcriptional changes observed in esophagus-specific genes were reproduced in vitro in esophageal epithelial cells differentiated in the presence of IL-13. Functional enrichment analysis revealed keratinization and differentiation as the most affected biological processes and identified IL-1 cytokines and serine peptidase inhibitors as the most dysregulated esophagus-specific protein families in patients with EoE. Accordingly, biopsy specimens from patients with EoE evidenced a profound loss of tissue differentiation, decreased expression of keratin 4 (KRT4) and cornulin (CRNN), and increased expression of KRT5 and KRT14. Whole-exome sequencing of 33 unrelated patients with EoE revealed 39 rare mutations in 18 esophagus-specific differentially expressed genes. CONCLUSIONS A tissue-centered analysis has revealed a profound loss of esophageal tissue differentiation (identity) as an integral and specific part of the pathophysiology of EoE and implicated protease- and IL-1-related activities as putative central pathways in disease pathogenesis.
Collapse
Affiliation(s)
- Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jared Travers
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Cora E Miracle
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mary C Bedard
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kiran Kc
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joseph D Sherrill
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Benjamin P Davis
- Department of Internal Medicine, Division of Immunology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Jeffrey K Rymer
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Division of Rheumatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, and the Cincinnati VA Medical Center, Research Department, Cincinnati, Ohio
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
26
|
Rusin S, Covey S, Perjar I, Hollyfield J, Speck O, Woodward K, Woosley JT, Dellon ES. Determination of esophageal eosinophil counts and other histologic features of eosinophilic esophagitis by pathology trainees is highly accurate. Hum Pathol 2016; 62:50-55. [PMID: 28041975 DOI: 10.1016/j.humpath.2016.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
Many studies of eosinophilic esophagitis (EoE) use expert pathology review, but it is unknown whether less experienced pathologists can reliably assess EoE histology. We aimed to determine whether trainee pathologists can accurately quantify esophageal eosinophil counts and identify associated histologic features of EoE, as compared with expert pathologists. We used a set of 40 digitized slides from patients with varying degrees of esophageal eosinophilia. Each of 6 trainee pathologists underwent a teaching session and used our validated protocol to determine eosinophil counts and associated EoE findings. The same slides had previously been evaluated by expert pathologists, and these results comprised the criterion standard. Eosinophil counts were correlated, and agreement was calculated for the diagnostic threshold of 15 eosinophils per high-power field as well as for associated EoE findings. Peak eosinophil counts were highly correlated between the trainees and the criterion standard (ρ ranged from 0.87 to 0.92; P<.001 for all). Peak counts were also highly correlated between trainees (0.75-0.91; P<.001), and results were similar for mean counts. Agreement was excellent for determining if a count exceeded the diagnostic threshold (κ ranged from 0.83 to 0.89; P<.001). Agreement was very good for eosinophil degranulation (κ = 0.54-0.83; P<.01) and spongiosis (κ = 0.44-0.87; P<.01) but was lower for eosinophil microabscesses (κ = 0.37-0.64; P<.01). In conclusion, using a teaching session, digitized slide set, and validated protocol, the agreement between pathology trainees and expert pathologists for determining eosinophil counts was excellent. Agreement was very good for eosinophil degranulation and spongiosis but less so for microabscesses.
Collapse
Affiliation(s)
- Spencer Rusin
- Division of Laboratory Medicine and Pathology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Shannon Covey
- Division of Laboratory Medicine and Pathology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Irina Perjar
- Division of Laboratory Medicine and Pathology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Johnny Hollyfield
- Division of Laboratory Medicine and Pathology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Olga Speck
- Division of Laboratory Medicine and Pathology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kimberly Woodward
- Division of Laboratory Medicine and Pathology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John T Woosley
- Division of Laboratory Medicine and Pathology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Evan S Dellon
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599 USA.
| |
Collapse
|
27
|
Simon D, Cianferoni A, Spergel JM, Aceves S, Holbreich M, Venter C, Rothenberg ME, Terreehorst I, Muraro A, Lucendo AJ, Schoepfer A, Straumann A, Simon HU. Eosinophilic esophagitis is characterized by a non-IgE-mediated food hypersensitivity. Allergy 2016; 71:611-20. [PMID: 26799684 DOI: 10.1111/all.12846] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2016] [Indexed: 12/19/2022]
Abstract
Eosinophilic esophagitis (EoE) is a chronic disease characterized clinically by symptoms of esophageal dysfunction and histologically by eosinophil-predominant inflammation. EoE is frequently associated with concomitant atopic diseases and immunoglobulin E (IgE) sensitization to food allergens in children as well as to aeroallergens and cross-reactive plant allergen components in adults. Patients with EoE respond well to elemental and empirical food elimination diets. Recent research has, however, indicated that the pathogenesis of EoE is distinct from IgE-mediated food allergy. In this review, we discuss the individual roles of epithelial barrier defects, dysregulated innate and adaptive immune responses, and of microbiota in the pathogenesis of EoE. Although food has been recognized as a trigger factor of EoE, the mechanism by which it initiates or facilitates eosinophilic inflammation appears to be largely independent of IgE and needs to be further investigated. Understanding the pathogenic role of food in EoE is a prerequisite for the development of specific diagnostic tools and targeted therapeutic procedures.
Collapse
Affiliation(s)
- D. Simon
- Department of Dermatology, Inselspital; Bern University Hospital; University of Bern; Bern Switzerland
| | - A. Cianferoni
- Division of Allergy and Immunology; Children's Hospital Philadelphia; University of Pennsylvania; Philadelphia PA USA
- Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - J. M. Spergel
- Division of Allergy and Immunology; Children's Hospital Philadelphia; University of Pennsylvania; Philadelphia PA USA
- Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - S. Aceves
- Division of Allergy and Immunology; Department of Pediatrics and Medicine; Center for Infection, Inflammation, and Immunology; La Jolla CA USA
| | - M. Holbreich
- Allergy and Asthma Consultants; Indianapolis IN USA
| | - C. Venter
- Division of Allergy and Immunology; Cincinnati Children's Hospital Medical Center; Cincinnati OH USA
- School of Health Sciences and Social Work; University of Portsmouth; Portsmouth UK
| | - M. E. Rothenberg
- Division of Allergy and Immunology; Cincinnati Children's Hospital Medical Center; Cincinnati OH USA
| | - I. Terreehorst
- Department of ENT and Pediatrics; AMC; Amsterdam The Netherlands
| | - A. Muraro
- Food Allergy Referral Centre Veneto Region; Padua General University Hospital; Padua Italy
| | - A. J. Lucendo
- Department of Gastroenterology; Hospital General de Tomelloso; Tomelloso Spain
| | - A. Schoepfer
- Division of Gastroenterology and Hepatology; Centre Hospitalier Universitaire Vaudois/CHUV; Lausanne Switzerland
| | | | - H.-U. Simon
- Institute of Pharmacology; University of Bern; Bern Switzerland
| |
Collapse
|
28
|
Mattingly R, Mukkada V, Smith A, Pitts T. Optimizing an Aversion Feeding Therapy Protocol for a Child with Food Protein-Induced Enterocolitis Syndrome (FPIES). JOURNAL OF PULMONARY & RESPIRATORY MEDICINE 2016; 5. [PMID: 26779390 DOI: 10.4172/2161-105x.1000287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This case study examines the difficulties of treating food aversion in a 9-month old child with a diagnosis of Food Protein-Induced Enterocolitis Syndrome (FPIES). Given the need to first identify a set of "safe foods" with which to work, the twin goals of doing food challenges and minimizing aversion are initially not complimentary, and require an approach outside the standard of care. The chosen plan encouraged flexibility and a positive relationship with feeding-related items, while only introducing one food item at a time. Mom and child accomplished goals surrounding food play easily. She has successfully introduced a wide variety of new foods in small quantities and is currently working on reducing dependence on breast milk. Therapists must be prepared to modify currently accepted interventions to accommodate and support the required medical intervention.
Collapse
Affiliation(s)
- Rhonda Mattingly
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders School of Medicine, University of Louisville, USA
| | - Vincent Mukkada
- Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, USA
| | - Alan Smith
- Department of Otolaryngology-Head and Neck Surgery and Communicative Disorders School of Medicine, University of Louisville, USA
| | - Teresa Pitts
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, USA
| |
Collapse
|
29
|
Eosinophils and IL-33 Perpetuate Chronic Inflammation and Fibrosis in a Pediatric Population with Stricturing Crohn's Ileitis. Inflamm Bowel Dis 2015; 21. [PMID: 26218140 PMCID: PMC4567482 DOI: 10.1097/mib.0000000000000512] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fibrostenosis and stricture are well-recognized endpoints in Crohn's disease (CD). We hypothesized that stricturing CD is characterized by eosinophilia and epithelial IL-33. We proposed that eosinophil exposure to IL-33 would perpetuate inflammatory chronicity and subsequent fibrostenosis. METHODS We performed a retrospective study of 74 children with inflammatory and stricturing ileal CD comparing clinicopathological features to immunohistochemical measures of eosinophilia and IL-33. To scrutinize eosinophil patterns, we developed a novel eosinophil peroxidase score encompassing number, distribution, and degranulation. Human eosinophils and intestinal fibroblasts were cultured with IL-33 and IL-13, and inflammatory and remodeling parameters were assessed. Antieosinophil therapy was also administered to the Crohn's-like ileitis model (SAMP1/SkuSlc). RESULTS Our novel eosinophil peroxidase score was more sensitive than H&E staining, revealing significant differences in eosinophil patterns, comparing inflammatory and stricturing pediatric CD. A significant relationship between ileal eosinophilia and complicated clinical/histopathological phenotype including fibrosis was determined. IL-33 induced significant eosinophil peroxidase secretion and IL-13 production. Exposure to eosinophils in the presence of IL-33, "primed" fibroblasts to increase proinflammatory cytokines (TNF-α, IL-1β, and IL-6), eosinophil-associated chemokines (CCL24 and CCL26), and IL-13Rα2 production. Production of fibrogenic molecules (collagen 1A2, fibronectin, and periostin) increased after exposure of "primed" fibroblasts to IL-13. Epithelial-IL-33 was increased in pediatric Crohn's ileitis and strongly associated with clinical and histopathological activity, ileal eosinophilia, and complicated fibrostenotic disease. SAMP1/SkuSlc eosinophil-targeted treatment resulted in significant improvements in inflammation and remodeling. CONCLUSIONS Our study of specimens from pediatric patients with ileal CD linked eosinophil patterns and IL-33 to fibrosis and suggested that these may contribute to the perpetuation of inflammation and subsequent stricture in pediatric CD.
Collapse
|
30
|
Cianferoni A, Spergel JM, Muir A. Recent advances in the pathological understanding of eosinophilic esophagitis. Expert Rev Gastroenterol Hepatol 2015; 9:1501-10. [PMID: 26470602 PMCID: PMC4943572 DOI: 10.1586/17474124.2015.1094372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eosinophilic esophagitis (EoE) is a chronic allergen-mediated inflammatory disease of the esophagus. This inflammation leads to feeding difficulties, failure to thrive and vomiting in young children, and causes food impaction and esophageal stricture in adolescents and adults. In the 20 years since EoE was first described, we have gained a great deal of knowledge regarding the genetic predisposition of disease, the inflammatory milieu associated with EoE and the long-term complications of chronic inflammation. Herein, we summarize the important breakthroughs in the field including both in vitro and in vivo analysis. We discuss insights that we have gained from large-scale unbiased genetic analysis, a multitude of genetically and chemically altered mouse models of EoE and most importantly, the results of clinical trials of various pharmacologic agents. Understanding these successes and failures may be the key to developing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Antonella Cianferoni
- Division of Allergy and Immunology, University of Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania.,Corresponding Authors: Antonella Cianferoni, MD, Assistant Professor of Pediatrics, The Children's Hospital of Philadelphia, Division of Allergy and Immunology, 3550 Market Street, Philadelphia, PA 19104, , Amanda Muir, MD, Assistant Professor of Pediatrics, The Children's Hospital of Philadelphia, Division of Gastroenterology, 34 and Civic Center Boulevard, Philadelphia, PA 19104,
| | - Jonathan M. Spergel
- Division of Allergy and Immunology, University of Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania
| | - Amanda Muir
- Division of Gastroenterology and Nutrition, The Children's Hospital of Philadelphia, University of Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania.,Corresponding Authors: Antonella Cianferoni, MD, Assistant Professor of Pediatrics, The Children's Hospital of Philadelphia, Division of Allergy and Immunology, 3550 Market Street, Philadelphia, PA 19104, , Amanda Muir, MD, Assistant Professor of Pediatrics, The Children's Hospital of Philadelphia, Division of Gastroenterology, 34 and Civic Center Boulevard, Philadelphia, PA 19104,
| |
Collapse
|