1
|
Kushibiki H, Mizukami H, Osonoi S, Takeuchi Y, Sasaki T, Ogasawara S, Wada K, Midorikawa S, Ryuzaki M, Wang Z, Yamada T, Yamazaki K, Tarusawa T, Tanba T, Mikami T, Matsubara A, Ishibashi Y, Hakamada K, Nakaji S. Tryptophan metabolism and small fibre neuropathy: a correlation study. Brain Commun 2024; 6:fcae103. [PMID: 38618209 PMCID: PMC11010654 DOI: 10.1093/braincomms/fcae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/10/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Small nerve fibres located in the epidermis sense pain. Dysfunction of these fibres decreases the pain threshold known as small fibre neuropathy. Diabetes mellitus is accompanied by metabolic changes other than glucose, synergistically eliciting small fibre neuropathy. These findings suggest that various metabolic changes may be involved in small fibre neuropathy. Herein, we explored the correlation between pain sensation and changes in plasma metabolites in healthy Japanese subjects. The pain threshold evaluated from the intraepidermal electrical stimulation was used to quantify pain sensation in a total of 1021 individuals in the 2017 Iwaki Health Promotion Project. Participants with a pain threshold evaluated from the intraepidermal electrical stimulation index <0.20 mA were categorized into the pain threshold evaluated from the intraepidermal electrical stimulation index-low group (n = 751); otherwise, they were categorized into the pain threshold evaluated from the intraepidermal electrical stimulation index-high group (n = 270). Metabolome analysis of plasma was conducted using capillary electrophoresis time-of-flight mass spectrometry. The metabolite set enrichment analysis revealed that the metabolism of tryptophan was significantly correlated with the pain threshold evaluated from the intraepidermal electrical stimulation index in all participants (P < 0.05). The normalized level of tryptophan was significantly decreased in participants with a high pain threshold evaluated from the intraepidermal electrical stimulation index. In addition to univariate linear regression analyses, the correlation between tryptophan concentration and the pain threshold evaluated from the intraepidermal electrical stimulation index remained significant after adjustment for multiple factors (β = -0.07615, P < 0.05). These findings indicate that specific metabolic changes are involved in the deterioration of pain thresholds. Here, we show that abnormal tryptophan metabolism is significantly correlated with an elevated pain threshold evaluated from the intraepidermal electrical stimulation index in the Japanese population. This correlation provides insight into the pathology and clinical application of small fibre neuropathy.
Collapse
Affiliation(s)
- Hanae Kushibiki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yuki Takeuchi
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takanori Sasaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kanichiro Wada
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shin Midorikawa
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Masaki Ryuzaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Zhenchao Wang
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takahiro Yamada
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Keisuke Yamazaki
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Takefusa Tarusawa
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Taiyo Tanba
- Department of Pathology and Molecular Medicine, Biomedical Research Center, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Atsushi Matsubara
- Department of Otorhinolaryngology-Head and Neck Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
2
|
Konopelski P, Chabowski D, Aleksandrowicz M, Kozniewska E, Podsadni P, Szczepanska A, Ufnal M. Indole-3-propionic acid, a tryptophan-derived bacterial metabolite, increases blood pressure via cardiac and vascular mechanisms in rats. Am J Physiol Regul Integr Comp Physiol 2021; 321:R969-R981. [PMID: 34755563 DOI: 10.1152/ajpregu.00142.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that gut bacteria-derived metabolites interact with the cardiovascular system and alter blood pressure (BP) in mammals. Here, we evaluated the effect of indole-3-propionic acid (IPA), a gut bacteria-derived metabolite of tryptophan, on the circulatory system. Arterial BP, electrocardiographic, and echocardiographic (ECHO) parameters were recorded in male, anesthetized, 12-wk-old Wistar-Kyoto rats at baseline and after intravenous administration of either IPA or vehicle. In additional experiments, rats were pretreated with prazosin or pentolinium to evaluate the involvement of the autonomic nervous system in cardiovascular responses to IPA. IPA's concentrations were measured using ultra-high performance liquid chromatography tandem mass spectrometry. The reactivity of endothelium-intact and -denuded mesenteric resistance arteries was tested. Cells' viability and lactate dehydrogenase (LDH) cytotoxicity assays were performed on cultured cardiomyocytes. IPA increased BP with a concomitant bradycardic response but no significant change in QTc interval. The pretreatment with prazosin and pentolinium reduced the hypertensive response. ECHO showed increased contractility of the heart after the administration of IPA. Ex vivo, IPA constricted predilated and endothelium-denuded mesenteric resistance arteries and increased metabolic activity of cardiomyocytes. IPA increases BP via cardiac and vascular mechanisms in rats. Furthermore, IPA increases cardiac contractility and metabolic activity of cardiomyocytes. Our study suggests that IPA may act as a mediator between gut microbiota and the circulatory system.
Collapse
Affiliation(s)
- Piotr Konopelski
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Dawid Chabowski
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marta Aleksandrowicz
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Kozniewska
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Podsadni
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Szczepanska
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Marszalek-Grabska M, Walczak K, Gawel K, Wicha-Komsta K, Wnorowska S, Wnorowski A, Turski WA. Kynurenine emerges from the shadows – Current knowledge on its fate and function. Pharmacol Ther 2021; 225:107845. [DOI: 10.1016/j.pharmthera.2021.107845] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
|
4
|
Dinges SS, Hohm A, Vandergrift LA, Nowak J, Habbel P, Kaltashov IA, Cheng LL. Cancer metabolomic markers in urine: evidence, techniques and recommendations. Nat Rev Urol 2020; 16:339-362. [PMID: 31092915 DOI: 10.1038/s41585-019-0185-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Urinary tests have been used as noninvasive, cost-effective tools for screening, diagnosis and monitoring of diseases since ancient times. As we progress through the 21st century, modern analytical platforms have enabled effective measurement of metabolites, with promising results for both a deeper understanding of cancer pathophysiology and, ultimately, clinical translation. The first study to measure metabolomic urinary cancer biomarkers using NMR and mass spectrometry (MS) was published in 2006 and, since then, these techniques have been used to detect cancers of the urological system (kidney, prostate and bladder) and nonurological tumours including those of the breast, ovary, lung, liver, gastrointestinal tract, pancreas, bone and blood. This growing field warrants an assessment of the current status of research developments and recommendations to help systematize future research.
Collapse
Affiliation(s)
- Sarah S Dinges
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Haematology and Oncology, CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Hohm
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Diagnostic and Interventional Neuroradiology, University Hospital of Würzburg, Würzburg, Germany
| | - Lindsey A Vandergrift
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Piet Habbel
- Department of Haematology and Oncology, CCM, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| | - Leo L Cheng
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Wei P, Hao L, Ma F, Yu Q, Buchberger AR, Lee S, Bushman W, Li L. Urinary Metabolomic and Proteomic Analyses in a Mouse Model of Prostatic Inflammation. URINE (AMSTERDAM, NETHERLANDS) 2019; 1:17-23. [PMID: 33870183 PMCID: PMC8052098 DOI: 10.1016/j.urine.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lower urinary tract symptoms (LUTS) are common among aging men. Since prostatic inflammation is one of its etiologies, it is plausible that urinary metabolite and protein biomarkers could be identified and used to diagnose inflammation-induced LUTS. We characterized the urine metabolome and proteome in a mouse model of bacterial-induced prostatic inflammation. Mass Spectrometry (MS)-based multi-omics analysis was employed to discover urinary protein and metabolite-based biomarkers. The investigation of isobaric dimethylated leucine (DiLeu) labeling on metabolites allowed metabolomics and proteomics analysis on the same liquid chromatography (LC)-MS platform. In total, 143 amine-containing metabolites and 1058 urinary proteins were identified and quantified (data are available via ProteomeXchange with identifier PXD018023); among them, 14 metabolites and 168 proteins were significantly changed by prostatic inflammation. Five metabolic pathways and four inflammation-related biological processes were potentially disrupted. By comparing our findings with urinary biomarkers identified in a mouse model of genetic-induced prostate inflammation and with those previously found to be associated with LUTS in older men, we identified creatine, haptoglobin, immunoglobulin kappa constant and polymeric Ig receptor as conserved biomarkers for prostatic inflammation associated with LUTS. These data suggest that these putative biomarkers could be used to identify men in which prostate inflammation is present and contributing to LUTS.
Collapse
Affiliation(s)
- Pingli Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ling Hao
- Department of Chemistry, George Washington University, Washington, DC, USA
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Sanghee Lee
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wade Bushman
- Department of Urology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Chatterjee P, Goozee K, Lim CK, James I, Shen K, Jacobs KR, Sohrabi HR, Shah T, Asih PR, Dave P, ManYan C, Taddei K, Lovejoy DB, Chung R, Guillemin GJ, Martins RN. Alterations in serum kynurenine pathway metabolites in individuals with high neocortical amyloid-β load: A pilot study. Sci Rep 2018; 8:8008. [PMID: 29789640 PMCID: PMC5964182 DOI: 10.1038/s41598-018-25968-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
The kynurenine pathway (KP) is dysregulated in neuroinflammatory diseases including Alzheimer’s disease (AD), however has not been investigated in preclinical AD characterized by high neocortical amyloid-β load (NAL), prior to cognitive impairment. Serum KP metabolites were measured in the cognitively normal KARVIAH cohort. Participants, aged 65–90 y, were categorised into NAL+ (n = 35) and NAL− (n = 65) using a standard uptake value ratio cut-off = 1.35. Employing linear models adjusting for age and APOEε4, higher kynurenine and anthranilic acid (AA) in NAL+ versus NAL− participants were observed in females (kynurenine, p = 0.004; AA, p = 0.001) but not males (NALxGender, p = 0.001, 0.038, respectively). To evaluate the predictive potential of kynurenine or/and AA for NAL+ in females, logistic regressions with NAL+/− as outcome were carried out. After age and APOEε4 adjustment, kynurenine and AA were individually and jointly significant predictors (p = 0.007, 0.005, 0.0004, respectively). Areas under the receiver operating characteristic curves were 0.794 using age and APOEε4 as predictors, and 0.844, 0.866 and 0.871 when kynurenine, AA and both were added. Findings from the current study exhibit increased KP activation in NAL+ females and highlight the predictive potential of KP metabolites, AA and kynurenine, for NAL+. Additionally, the current study also provides insight into he influence of gender in AD pathogenesis.
Collapse
Affiliation(s)
- Pratishtha Chatterjee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kathryn Goozee
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,Clinical Research Department, Anglicare, Sydney, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,The Cooperative Research Centre for Mental Health, Carlton South, Vic, Australia
| | - Chai K Lim
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Ian James
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Kaikai Shen
- Australian eHealth Research Centre, CSIRO, Floreat, WA, Australia
| | - Kelly R Jacobs
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Hamid R Sohrabi
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Tejal Shah
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - Prita R Asih
- KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia.,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Preeti Dave
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia.,Clinical Research Department, Anglicare, Sydney, Castle Hill, NSW, Australia
| | - Candice ManYan
- Clinical Research Department, Anglicare, Sydney, Castle Hill, NSW, Australia
| | - Kevin Taddei
- School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia.,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia
| | - David B Lovejoy
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Ralph N Martins
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia. .,School of Medical Health and Sciences, Edith Cowan University, Joondalup, WA, Australia. .,KaRa Institute of Neurological Disease, Sydney, Macquarie Park, NSW, Australia. .,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia. .,Australian Alzheimer's Research Foundation, Nedlands, WA, Australia. .,The Cooperative Research Centre for Mental Health, Carlton South, Vic, Australia.
| |
Collapse
|
7
|
Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol Res 2018; 130:172-179. [DOI: 10.1016/j.phrs.2017.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
|
8
|
Rodriguez Cetina Biefer H, Vasudevan A, Elkhal A. Aspects of Tryptophan and Nicotinamide Adenine Dinucleotide in Immunity: A New Twist in an Old Tale. Int J Tryptophan Res 2017; 10:1178646917713491. [PMID: 28659716 PMCID: PMC5476425 DOI: 10.1177/1178646917713491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/07/2017] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence underscores the interesting ability of tryptophan to regulate immune responses. However, the exact mechanisms of tryptophan's immune regulation remain to be determined. Tryptophan catabolism via the kynurenine pathway is known to play an important role in tryptophan's involvement in immune responses. Interestingly, quinolinic acid, which is a neurotoxic catabolite of the kynurenine pathway, is the major pathway for the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). Recent studies have shown that NAD+, a natural coenzyme found in all living cells, regulates immune responses and creates homeostasis via a novel signaling pathway. More importantly, the immunoregulatory properties of NAD+ are strongly related to the overexpression of tryptophan hydroxylase 1 (Tph1). This review provides recent knowledge of tryptophan and NAD+ and their specific and intriguing roles in the immune system. Furthermore, it focuses on the mechanisms by which tryptophan regulates NAD+ synthesis as well as innate and adaptive immune responses.
Collapse
Affiliation(s)
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | - Abdallah Elkhal
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
de Bie J, Lim CK, Guillemin GJ. Kynurenines, Gender and Neuroinflammation; Showcase Schizophrenia. Neurotox Res 2016; 30:285-94. [DOI: 10.1007/s12640-016-9641-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022]
|
10
|
Obol JH, Arony DA, Wanyama R, Moi KL, Bodo B, Odong PO, Odida M. Reduced plasma concentrations of vitamin B6 and increased plasma concentrations of the neurotoxin 3-hydroxykynurenine are associated with nodding syndrome: a case control study in Gulu and Amuru districts, Northern Uganda. Pan Afr Med J 2016; 24:123. [PMID: 27642461 PMCID: PMC5012759 DOI: 10.11604/pamj.2016.24.123.8409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/05/2016] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Nodding syndrome was first reported in Uganda in 2003 among internally displaced populations. Risk factors for the syndrome remain unknown. We therefore explored vitamin B6 deficiency and resulting high 3-hydroxykynurenine (3-HK) levels as risk factor for nodding syndrome in Northern Uganda. METHODS Case-control study conducted in Gulu and Amuru districts. Cases were children/young adults with nodding syndrome. Healthy children/young adults were recruited as controls from same community as cases. Data on socio-demographic and other risk factors was collected using questionnaires. Whole blood was collected in EDTA tubes for assay of 3-HK and vitamin B6 using sandwich ELISA. Conditional logistic regression model was used to assess associations. RESULTS 66 cases and 73 controls were studied. Factors associated with nodding syndrome were being positive for 3-HK (AOR=4.50, p=0.013), vitamin B6 concentration below mean (AOR=7.22, P=0.001), child being taken care of by mother only (AOR=5.43, p=0.011), child being taken care of by guardian (AOR=5.90, p=0.019) and child consuming relief food at weaning (AOR=4.05, p=0.021). CONCLUSION Having low vitamin B6 concentration which leads to a build up of 3-hydroxykynurenine concentration in cases as a main risk factor. Therefore, cases should be treated with vitamin B6 and community members should be sensitise to ensure adequate dietary intake of vitamin B6 so that the risk of nodding syndrome among children is averted. We encourage future prospective intervention study to be conducted to assess the effect of low vitamin B6 on the development of nodding syndrome via raised 3-HK concentration.
Collapse
Affiliation(s)
- James Henry Obol
- Department of Public Health, Faculty of Medicine, Gulu University, P.O Box 166, Gulu
| | - Denis Anywar Arony
- Department of Medical Biochemistry, Faculty of Medicine, Gulu University, P.O Box 166, Gulu
| | - Ronald Wanyama
- Department of Medical Biochemistry, Faculty of Medicine, Gulu University, P.O Box 166, Gulu
| | - Kenneth Luryama Moi
- Department of Microbiology and Immunology, Faculty of Medicine, Gulu University, P.O Box 166, Gulu
| | - Bongomin Bodo
- Department of Paediatrics and Child Health, Faculty of Medicine, Gulu University, P.O Box 166, Gulu
| | | | - Michael Odida
- Department of Pathology, Makerere University College of Health Sciences, P.O Box 7072 Kampala
| |
Collapse
|
11
|
Das A, Chadha R, Maiti N, Kapoor S. Synthesis of pH sensitive gold nanoparticles for potential application in radiosensitization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:34-41. [DOI: 10.1016/j.msec.2015.05.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/16/2015] [Accepted: 05/15/2015] [Indexed: 01/16/2023]
|
12
|
The role of branched chain amino acid and tryptophan metabolism in rat's behavioral diversity: Intertwined peripheral and brain effects. Eur Neuropsychopharmacol 2015; 25:1695-705. [PMID: 26271721 DOI: 10.1016/j.euroneuro.2015.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/08/2015] [Accepted: 07/14/2015] [Indexed: 01/12/2023]
Abstract
Previously, we showed that a transient early-in-life interference with the expression of multiple genes by mithramycin (MTR) followed by later-in-life exposure to chronic stress, leads to a "daring" and novelty seeking behavior in rats. In this study we searched for molecular changes that contribute to this behavioral alteration. We applied a non-hypothesis driven strategy using whole genome cDNA array analysis (WGA) followed by Genome Scale Metabolic modeling analysis (GSMM). Gene expression validation was performed by qRT-PCR and immunoblotting. Brain and serum amino acids levels were measured by HPLC. WGA data directed us towards metabolic pathways and GSMM pointed at branched chain amino acids (BCAA) pathway. Out of 21 amino acids analyzed in the prefrontal cortex of MTR+Stress rats only tryptophan, whose brain levels depend on serum BCAA levels, showed a significant decrease. No change was observed in serotonin or kynurenine levels. However, a significant reduction in mRNA and protein levels of the large neutral amino acid transporter (LAT1), which transports BCAA and tryptophan into the brain, as well as in serum levels of tryptophan/BCAA ratio were observed. The latter may be attributed to the failure to increase serum insulin, following stress, in rats pre-exposed to mithramycin. Finally, significant correlations were observed between the anxiety index and tryptophan and between T-maze errors and LAT1. This study shows a specific behavioral pattern, which is linked to modulations in fluxes of amino acids both peripheral and central, which converge and reciprocally interact, and may thus be equally important targets for therapeutic intervention.
Collapse
|
13
|
He K, Lv W, Zheng D, Cheng F, Zhou T, Ye S, Ban Q, Ying Q, Huang B, Chen L, Wu G, Liu D. The stromal genome heterogeneity between breast and prostate tumors revealed by a comparative transcriptomic analysis. Oncotarget 2015; 6:8687-97. [PMID: 25826086 PMCID: PMC4496176 DOI: 10.18632/oncotarget.3478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/12/2015] [Indexed: 11/25/2022] Open
Abstract
Stromal microenvironment increases tumor cell survival, proliferation and migration, and promotes angiogenesis. In order to provide comprehensive information on the stromal heterogeneity of diverse tumors, here we employed the microarray datasets of human invasive breast and prostate cancer-associated stromals and applied Gene Set Enrichment Analysis (GSEA) to compare the gene expression profiles between them. As a result, 8 up-regulated pathways and 73 down-regulated pathways were identified in the breast tumor stroma, while 32 up-regulated pathways and 18 down-regulated pathways were identified in the prostate tumor stroma. Only 9 pathways such as tryptophan metabolism were commonly up or down regulated, but most of them (including ABC transporters) were specific for these two tumors. Several essential tumors stromal marker genes were also significantly identified. For example, CDH3 was significantly up-regulated in the stromals of both breast and prostate tumors, however EGFR was only significantly down-regulated in the stromal of breast tumor. Our study would be helpful for future therapeutic and predictive applications in breast and prostate cancers.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Wenwen Lv
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Dongni Zheng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Fei Cheng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Tao Zhou
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Shoudong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Molecular Genetics, Shanghai Medical School, Fudan University, Shanghai, China
| | - Qian Ban
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Qilong Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Bei Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Lei Chen
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| | - Guohua Wu
- Laboratory of Quality & Safety Risk Assessment for Sericultural Products and Edible Insects, Ministry of Agriculture, College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Dahai Liu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei City, Anhui, China
| |
Collapse
|
14
|
Gostner JM, Becker K, Überall F, Fuchs D. The potential of targeting indoleamine 2,3-dioxygenase for cancer treatment. Expert Opin Ther Targets 2015; 19:605-15. [PMID: 25684107 DOI: 10.1517/14728222.2014.995092] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Degradation of the essential amino acid tryptophan via indoleamine 2,3-dioxygenase (IDO1) represents an important antiproliferative strategy of the cellular immune response. Tryptophan shortage and accumulation of kynurenine downstream products also affect T-cell responses, providing a negative feedback control of immune activation. IDO1 activity can promote a regulatory phenotype in both T cells and dendritic cells. These phenomena can support tumor immune escape. AREAS COVERED IDO1 activity reflects the course of several malignancies, and determination of kynurenine to tryptophan ratio in serum/plasma can be used to assess immune activation. Moreover, the accelerated breakdown of tryptophan has been correlated with the development of cancer-associated disturbances such as anemia, weight loss and depression. Tumoral IDO1 expression was correlated with a poor prognosis in several types of tumors, which makes it to an interesting target for immunotherapy. In addition, according to recent data, a role of trytptophan 2,3-dioxygenase (TDO) in tumorigenesis cannot be excluded. EXPERT OPINION Tryptophan metabolism is critical for cell proliferation, inflammation and immunoregulation. Accelerated tryptophan breakdown favors tumor immune escape. Accordingly, targeting IDO1 by immunotherapy may represent a favorable approach; however, blocking crucial immunoregulatory pathways could also introduce the risk of immune system overactivation, finally leading to unresponsiveness.
Collapse
Affiliation(s)
- Johanna M Gostner
- Medical University of Innsbruck, Biocenter, Division of Medical Biochemistry , Innsbruck 6020 , Austria
| | | | | | | |
Collapse
|
15
|
Lee SJ, Woo SI, Ahn SH, Lim DK, Hong JY, Park JH, Lim J, Kim MK, Kwon SW. Functional interpretation of metabolomics data as a new method for predicting long-term side effects: treatment of atopic dermatitis in infants. Sci Rep 2014; 4:7408. [PMID: 25491116 PMCID: PMC5376984 DOI: 10.1038/srep07408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/20/2014] [Indexed: 12/18/2022] Open
Abstract
Topical steroids are used for the treatment of primary atopic dermatitis (AD); however, their associated risk of serious complications is great due to the presence of vulnerable lesions in young children with AD. Topical calcineurin inhibitors (TCIs) are steroid-free, anti-inflammatory agents used for topical AD therapy. However, their use is prohibited in infants <2 years of age because of their carcinogenic potential. We conducted a randomized, double-blind trial to evaluate the efficacy of TCIs as a secondary AD treatment for children <2 years of age by comparing 1% pimecrolimus cream with 0.05% desonide cream. We performed urinary metabolomics to predict long-term side effects. The 1% pimecrolimus cream displayed similar efficacy and exceptional safety compared with the 0.05% desonide cream. Metabolomics-based long-term toxicity tests effectively predicted long-term side effects using short-term clinical models. This applicable method for the functional interpretation of metabolomics data sets the foundation for future studies involving the prediction of the toxicity and systemic reactions caused by long-term medication administration.
Collapse
Affiliation(s)
- Seul Ji Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Sung-il Woo
- Department of Pediatrics, College of Medicine, Chungbuk National University, 52 Naesudong-ro, Heungdeok-gu, Cheongju 361-763, Korea
| | - Soo Hyun Ahn
- Department of Statistics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Dong Kyu Lim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Ji Yeon Hong
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Jeong Hill Park
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Johan Lim
- Department of Statistics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Mi-kyeong Kim
- Department of Internal Medicine, College of Medicine, Chungbuk National University, 52 Naesudong-ro, Heungdeok-gu, Cheongju 361-763, Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| |
Collapse
|
16
|
Calvani R, Brasili E, Praticò G, Capuani G, Tomassini A, Marini F, Sciubba F, Finamore A, Roselli M, Marzetti E, Miccheli A. Fecal and urinary NMR-based metabolomics unveil an aging signature in mice. Exp Gerontol 2014; 49:5-11. [DOI: 10.1016/j.exger.2013.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/08/2013] [Accepted: 10/23/2013] [Indexed: 02/07/2023]
|
17
|
Rouge P, Cornu A, Biesse-Martin AS, Lyan B, Rochut N, Graulet B. Identification of quinoline, carboline and glycinamide compounds in cow milk using HRMS and NMR. Food Chem 2013; 141:1888-94. [DOI: 10.1016/j.foodchem.2013.04.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/08/2013] [Accepted: 04/23/2013] [Indexed: 11/29/2022]
|
18
|
Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography–mass spectrometry and capillary electrophoresis–mass spectrometry metabolomics approach. J Chromatogr A 2013; 1318:163-70. [DOI: 10.1016/j.chroma.2013.10.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/05/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022]
|
19
|
Kanda N, Abe F. Structural and functional implications of the yeast high-affinity tryptophan permease Tat2. Biochemistry 2013; 52:4296-307. [PMID: 23768406 DOI: 10.1021/bi4004638] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tryptophan is hydrophobic, bulky, and the rarest amino acid found in nutrients. Accordingly, the import machinery can be specialized evolutionarily. Our previous study in Saccharomyces cerevisiae demonstrated that tryptophan import by the high-affinity tryptophan permease Tat2 is accompanied by a large volume increase during substrate import. Nevertheless, the mechanisms by which the permease mediates tryptophan recognition and permeation remain to be elucidated. Here we determined amino acid residues essential for Tat2-mediated tryptophan import. By means of random mutagenesis in combination with site-directed mutagenesis based on crystallographic studies of the Escherichia coli arginine/agmatine antiporter AdiC, we identified 15 amino acid residues in the Tat2 transmembrane domains (TMDs) 1, -3, -5, -8, and -10, which are responsible for tryptophan uptake. T98, Y167, and E286 were assumed to form the central cavity in Tat2. G97/T98 and E286 were located within the putative α-helix break in TMD1 and TMD6, respectively, which are highly conserved among yeast amino acid permeases and bacterial solute transporters. Given the conformational change in AdiC upon substrate binding, G97/T98 and E286 of Tat2 were assumed to mediate a structural shift from an outward-open to a tryptophan-bound-occluded structure upon tryptophan binding, and T320, V322, and F324 became stabilized in TMD7. Such dynamic structural changes may account for the large volume increase associated with tryptophan import occurring concomitantly with a movement of water molecules from the tryptophan binding site. We also propose the working hypothesis that E286 mediates the proton influx that is coupled to tryptophan import.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | | |
Collapse
|
20
|
Blankfield A. A Brief Historic Overview of Clinical Disorders Associated with Tryptophan: The Relevance to Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM). Int J Tryptophan Res 2012; 5:27-32. [PMID: 23032646 PMCID: PMC3460668 DOI: 10.4137/ijtr.s10085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Last century there was a short burst of interest in the tryptophan related disorders of pellagra and related abnormalities that are usually presented in infancy.1,2 Nutritional physiologists recognized that a severe human dietary deficiency of either tryptophan or the B group vitamins could result in central nervous system (CNS) sequelae such as ataxia, cognitive dysfunction and dysphoria, accompanied by skin hyperpigmentation.3,4 The current paper will focus on the emerging role of tryptophan in chronic fatigue syndrome (CFS) and fibromyalgia (FM).
Collapse
|
21
|
Gadupudi GS, Chung KT. Comparative genotoxicity of 3-hydroxyanthranilic acid and anthranilic acid in the presence of a metal cofactor Cu (II) in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 726:200-8. [DOI: 10.1016/j.mrgentox.2011.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/17/2011] [Accepted: 09/19/2011] [Indexed: 01/28/2023]
|
22
|
Chung KT, Gadupudi GS. Possible roles of excess tryptophan metabolites in cancer. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:81-104. [PMID: 20839220 DOI: 10.1002/em.20588] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Tryptophan is metabolized through serotonin, indole, and kynurenine (KN) pathways. Uptake of an excess amount of tryptophan accompanied with vitamin B6 deficiency may result in the accumulation of higher concentrations of metabolites mainly from the KN pathways in the bladder. These metabolites could interact with nitrite to become mutagenic nitrosamines. They could be a promoter in the initiator-promoter model of carcinogenesis. They produced bladder cancer when implanted in the bladder. They also interact with transition metals copper or iron to form reactive radicals or reactive oxygen species (ROS). Some metabolites, 3-hydroxy-anthranilic acid, were autooxidized to mutagenic cinnabarinic and anthranilyl radical intermediates. These radical intermediates could also be ligands that interact with aryl hydrocarbon receptor (AhR) and induce xenobiotic metabolizing enzymes (XMEs) to metabolize contaminated carcinogens. When tryptophan is exposed to either visible or UV light, a photoproduct of 6-formylindolo[3,2b]-carbazole is formed, which has a very high affinity for the AhR that plays a role in carcinogenesis. This review gives an insight into various mechanisms through which tryptophan metabolites cause carcinogenesis. It could be concluded that tryptophan metabolites play a complementary role in promoting carcinogenesis along with carcinogens like aflatoxin, CCl(4) , 2-acetylaminofluorene, 4-aminobiphenyl, 2-naphthylamine, or N-[4-(5-nitro-2-furyl)-2-thiazolyl] formamide. The underlying mechanisms could be their autoxidation, exposure to either visible or UV light, interaction with nitrite or transition metals to form reactive intermediates, serving as ligands to interact with an AhR that is known to play a role in carcinogenesis through induction of XMEs. Further research is warranted.Environ.
Collapse
Affiliation(s)
- King-Thom Chung
- Department of Biology, The University of Memphis, Memphis, Tennessee, USA.
| | | |
Collapse
|
23
|
Ritchie JWA, Taylor PM. Tryptophan and iodothyronine transport interactions in HepG2 human hepatoma cells. Amino Acids 2009; 38:1361-7. [PMID: 19756942 DOI: 10.1007/s00726-009-0344-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 08/27/2009] [Indexed: 11/30/2022]
Abstract
This study identifies interactions between transport of the aromatic amino acid L: -tryptophan (Trp) and thyroid hormones (TH) in HepG2 human hepatoma cells. The major portion of Trp uptake in HepG2 cells occurs via the NEM-sensitive amino acid transport System L2 (consistent with hepatic LAT3 expression), with a smaller aromatic-AA selective System T (MCT10) component. LAT3 and MCT10 mRNA were both detected in HepG2 cells. Uptake of TH does not involve System L2, but a significant portion of T(3) uptake is mediated by System T, alongside a taurocholate-sensitive organic anion transporter. T(4) uptake into HepG2 cells appears to be mediated principally by organic anion/monocarboxylate transporters, with smaller contributions by System T and receptor-mediated endocytosis. TH-Trp transport interactions in liver cells centre on System T which, due to a perivenous localisation alongside deiodinase 1, may impact on hepatic T(3) generation and release.
Collapse
Affiliation(s)
- James W A Ritchie
- Division of Molecular Physiology, College of Life Sciences, James Black Centre, University of Dundee, Dundee, DD1 5EH, UK
| | | |
Collapse
|
24
|
Chen Y, Zhang R, Song Y, He J, Sun J, Bai J, An Z, Dong L, Zhan Q, Abliz Z. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst 2009; 134:2003-11. [PMID: 19768207 DOI: 10.1039/b907243h] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A metabonomics strategy based on rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS), multivariate statistics and metabolic correlation networks has been implemented to find biologically significant metabolite biomarkers in breast cancer. RRLC-MS/MS analysis by electrospray ionization (ESI) in both positive and negative ion modes was employed to investigate human urine samples. The resulting data matrices were analyzed using multivariate analysis. Application of orthogonal projections to latent structures discriminate analysis (OPLS-DA) allowed us to extract several discriminated metabolites reflecting metabolic characteristics between healthy volunteers and breast cancer patients. Correlation network analysis between these metabolites has been further applied to select more reliable biomarkers. Finally, high resolution MS and MS/MS analyses were performed for the identification of the metabolites of interest. We identified 12 metabolites as potential biomarkers including amino acids, organic acids, and nucleosides. They revealed elevated tryptophan and nucleoside metabolism as well as protein degradation in breast cancer patients. These studies demonstrate the advantages of integrating metabolic correlation networks with metabonomics for finding significant potential biomarkers: this strategy not only helps identify potential biomarkers, it also further confirms these biomarkers and can even provide biochemical insights into changes in breast cancer.
Collapse
Affiliation(s)
- Yanhua Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Godsland IF, Winkler U, Lidegaard O, Crook D. Occlusive vascular diseases in oral contraceptive users. Epidemiology, pathology and mechanisms. Drugs 2000; 60:721-869. [PMID: 11085198 DOI: 10.2165/00003495-200060040-00003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite being an unprecedented departure from normal physiology, the combined oral contraceptive is not only highly effective, but it also has a remarkably good safety record. Concerns over safety persist, though, particularly with regard to venous thromboembolism (VTE), stroke and myocardial infarction (MI). Epidemiological studies consistently show an increase in risk of VTE, but the results are more contentious with regard to arterial diseases. Despite 40 years of research, the mechanisms behind these adverse effects are not understood. In this review, we integrate information from published studies of the epidemiology and pathology of the occlusive vascular diseases and their risk factors to identify likely explanations for pathogenesis in oral contraceptive users. Oral contraceptives induce both prothrombotic and fibrinolytic changes in haemostatic factors and an imbalance in haemostasis is likely to be important in oral contraceptive-induced VTE. The complexity of the changes involved and the difficulty of ascribing clinical significance has meant that uncertainty persists. A seriously under-researched area concerns vascular changes in oral contraceptive users. Histologically, endothelial and intimal proliferation have been identified in women exposed to high plasma estrogen concentrations and these lesions are associated with thrombotic occlusion. Other structural changes may result in increased vascular permeability, loss of vascular tone and venous stasis. With regard to arterial disease risk, epidemiological information relating to dose effects and joint effects with other risk factors, and studies of pathology and changes in risk factors, suggests that oral contraceptive use per se does not cause arterial disease. It can, nevertheless, synergise very powerfully with subclinical endothelial damage to promote arterial occlusion. Accordingly, the prothrombotic effects of the oral contraceptive estrogen intervene in a cycle of endothelial damage and repair which would otherwise remain clinically silent or would ultimately progress - in, for example, the presence of cigarette smoking or hypertension - to atherosclerosis. Future work in this area should focus on modification of the effects of established risk factors by oral contraceptive use rather than modification of the supposed risk of oral contraceptive use by established risk factors. Attempts to understand vascular occlusion in oral contraceptive users in terms of the general features of VTE or with reference to atherosclerosis may be limiting, and future work needs to acknowledge that such occlusions may have unique features. Unequivocal identification of the mechanisms involved would contribute considerably to the alleviation of fears over vascular disease and to the development of even safer formulations.
Collapse
Affiliation(s)
- I F Godsland
- Wynn Department of Metabolic Medicine, Imperial College School of Medicine, London, England
| | | | | | | |
Collapse
|
26
|
Salter M, Pogson CI. The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes. Biochem J 1985; 229:499-504. [PMID: 3899109 PMCID: PMC1145083 DOI: 10.1042/bj2290499] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The metabolism of L-tryptophan by isolated liver cells prepared from control, adrenalectomized, glucocorticoid-treated, acute-diabetic, chronic-diabetic and insulin-treated chronic-diabetic rats was studied. Liver cells from adrenalectomized rats metabolized tryptophan at rates comparable with the minimum diurnal rates of controls, but different from rates determined for cells from control rats 4h later. Administration of dexamethasone phosphate increased the activity of tryptophan 2,3-dioxygenase (EC 1.13.11.11) 7-8-fold, and the flux through the kynurenine pathway 3-4-fold, in cells from both control and adrenalectomized rats. Increases in flux through kynureninase (EC 3.7.1.3) and to acetyl-CoA can be explained in terms of increased substrate supply from tryptophan 2,3-dioxygenase. The metabolism of tryptophan was increased 3-fold in liver cells isolated from acutely (3 days) diabetic rats, with a 7-8-fold increase in the maximal activity of tryptophan 2,3-dioxygenase. The oxidation of tryptophan to CO2 and metabolites of the glutarate pathway increased 4-5-fold, consistent with an increase in picolinate carboxylase (EC 4.1.1.45) activity. Liver cells isolated from chronic (10 days) diabetic rats metabolized tryptophan at rates comparable with those of cells from acutely diabetic rats, but with a 50% decrease in the activity of tryptophan 2,3-dioxygenase. The proportion of flux from tryptophan 2,3-dioxygenase to acetyl-CoA, however, was increased by 50%; this was indicative of further increases in the activity of picolinate carboxylase. Administration of insulin partially reversed the effects of chronic diabetes on the activity of tryptophan 2,3-dioxygenase and flux through the kynurenine pathway, but had no effect on the increased activity of picolinate carboxylase. The role of tryptophan 2,3-dioxygenase in regulating the blood tryptophan concentration is discussed with reference to its sensitivity to the above conditions.
Collapse
|
27
|
Stowell L, Mørland J. The influence of some methodological factors on measurement of tryptophan oxygenase activities in crude homogenates of rat liver. Biochem J 1983; 209:831-6. [PMID: 6870793 PMCID: PMC1154163 DOI: 10.1042/bj2090831] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. With two different methods for assaying the tryptophan oxygenase activity in rat liver homogenates, the effects of some methodological factors on the activity of the enzyme were studied. 2. In fed, but not in starved, rats a compound(s) absorbing at 365 nm, interfering with the reading of kynurenine absorbance, disappeared gradually during incubation. 3. A correction for this tryptophan-independent reaction was necessary in order to determine correct tryptophan oxygenase activity. 4. Blood remaining in liver tissue post mortem can serve as a source of cofactor haem for tryptophan oxygenase, causing spuriously high values for the activity of the holoenzyme form of tryptophan oxygenase. 5. A rapid and progressive activation of tryptophan oxygenase post mortem occurs in undisrupted liver tissue, and this activation is temperature-dependent.
Collapse
|
28
|
|
29
|
Smith SA, Pogson CI. The metabolism of L-tryptophan by liver cells prepared from adrenalectomized and streptozotocin-diabetic rats. Biochem J 1981; 200:605-9. [PMID: 7342971 PMCID: PMC1163583 DOI: 10.1042/bj2000605] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
1. The metabolism of L-tryptophan by liver cells prepared from fed normal, adrenalectomized and streptozotocin-diabetic rats was studied. 2. At physiological concentrations (0.1 mM), the rate of oxidation of tryptophan by tryptophan 2,3-dioxygenase was 3-fold greater in liver cells from diabetic rats than in those from fed rats. In liver cells from diabetic rats, oxidation of tryptophan to CO2 and metabolites of the glutarate pathway was increased 7-fold. Quinolinate synthesis was decreased by 50%. These findings are consistent with an increase in picolinate carboxylase activity. 3. Rates of metabolism of 0.1 mM-tryptophan by hepatocytes from fed and adrenalectomized rats were similar. 4. In all three types of cell preparation, fluxes through tryptophan 2,3-dioxygenase with 2.5 mM-tryptophan were 7-fold greater than those obtained with 0.1 mM-tryptophan. Tryptophan 2,3-dioxygenase and kynureninase fluxes in hepatocytes from fed and adrenalectomized rats were comparable, whereas those in liver cells from diabetic rats were increased 2.5-fold and 3.3-fold respectively. Picolinate carboxylase activities of liver cells from diabetic rats were 15-fold greater than those of cells from fed rats, but rates of quinolinate synthesis were unchanged. 5. It is concluded that: (i) adrenal corticosteroids are not required for the maintenance of basal activities of the kynurenine pathway, whereas (ii) chronic insulin deficiency produces changes in both the rate of oxidation and metabolic fate of tryptophan carbon.
Collapse
|
30
|
Dollar JR, Boots LR, Santolucito KA, Bagwell JN. Morphological and histochemical study of the endometrical effects of ovral in the baboon. Cell Tissue Res 1981; 217:611-24. [PMID: 6265093 DOI: 10.1007/bf00219368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In an effort to better understand changes induced by hormonal contraceptives, a group of female baboons were administered Ovral for a period of 9 months. During this time the endometrium was sampled by transcervical uterine biopsy from both the treated animals and from a control group. The biopsies were all obtained between 10 and 14 days of the treatment cycle or the normal menstrual cycle. The endometrial glandular cells from the treated animals exhibited an accelerated maturation compared with the controls. Ultrastructurally this was reflected by increased cell size, numerous long, slender microvilli on the apical membranes, and increased development of the Golgi complex. Differences were also observed in the predominant type of granule seen in the apical cytoplasm. After 3 and 6 months of treatment with Ovral, no significant differences were noted between groups or between animals within a group. However, after 9 months of treatment, the endometrium displayed differences from the earlier experimental groups as well as individual variations. The functional correlates of these observations are discussed and compared to human endometrium.
Collapse
|
31
|
|
32
|
McCann VJ, Davis RE. Serum pyridoxal concentrations in patients with diabetic neuropathy. AUSTRALIAN AND NEW ZEALAND JOURNAL OF MEDICINE 1978; 8:259-61. [PMID: 211998 DOI: 10.1111/j.1445-5994.1978.tb04520.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Serum pyridoxal (vitamin B6) concentrations were measured in 50 patients with significant diabetic neuropathy. There were 24 males and 26 females with a mean age of 58.2 years and a mean duration of diabetes of 9.8 years. The level of pyridoxal was significantly lower in these patients when compared with randomly selected diabetic patients matched for age and sex without clinical evidence of neuropathy. There was no significant difference in the duration of the diabetes between the two groups. The results indicate an association between pyridoxal deficiency and neuropathy in diabetic patients.
Collapse
|
33
|
Green AR, Bloomfield MR, Woods HF, Seed M. Metabolism of an oral tryptophan load by women and evidence against the induction of tryptophan pyrrolase by oral contraceptives. Br J Clin Pharmacol 1978; 5:233-41. [PMID: 656268 PMCID: PMC1429269 DOI: 10.1111/j.1365-2125.1978.tb01630.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
34
|
Miller CT, Neutel CI, Nair RC, Marrett LD, Last JM, Collins WE. Relative importance of risk factors in bladder carcinogenesis. JOURNAL OF CHRONIC DISEASES 1978; 31:51-6. [PMID: 641136 DOI: 10.1016/0021-9681(78)90080-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
|
36
|
|
37
|
Adams PW, Wynn V, Folkard J, Seed M. Influence of oral contraceptives, pyridoxine (vitamin B6), and tryptophan on carbohydrate metabolism. Lancet 1976; 1:759-64. [PMID: 56585 DOI: 10.1016/s0140-6736(76)91607-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbohydrate metabolism and vitamin-B6 status were assessed before and after pyridoxine administration in 46 women taking combined oestrogen-progestagen oral contraceptives (O.C.). 18 women had evidence of tissue depletion of vitamin B6, although all the women had abnormal tryptophan metabolism, including increased urinary xanthurenic acid (X.A.) excretion. In the women with vitamin B6 deficiency, administration of this vitamin caused elevation of fasting blood-pyruvate levels, and reduction in plasma glucose, insulin, and blood-pyruvate responses after an oral glucose load. These changes in carbohydrate metabolism were not found in the 28 non-vitamin-B6-deficient women. These results indicate that carbohydrate intolerance in women on O.C. is unlikely to be mediated by the formation of a complex of X.A. with insulin, as has formerly been proposed. Since the synthesis of the tryptophan metabolite quinolinic acid, an inhibitor of the heptaic enzyme phosphoenolpyruvate carboxykinase, may be enhanced by the administration of pyridoxine, it is suggested that this metabolite might be the important factor in the improvement of glucose tolerance in the vitamin-B6-deficient women. This conclusion is supported by the improvement in glucose tolerance observed in 6 women on O.C. and in 4 patients with glucocorticoid excess who were not vitamin-B6 deficient, when they were given tryptophan to augment the synthesis of quinolinic acid.
Collapse
|
38
|
Romas NA, Ionascu L, Ionescu G, Wechsler M, Tannenbaum M, Veenema RJ. Anergy and tryptophan metabolism in bladder cancer. J Urol 1976; 115:387-9. [PMID: 1263311 DOI: 10.1016/s0022-5347(17)59212-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tryptophan loading test and cutaneous antigen test were done on 55 patients with various stages of bladder cancer. Patients with an abnormality of tryptophan metabolism showed a greater degree of unreactivity to cutaneous delayed hypersensitivity testing. Of the 23 patients with normal tryptophan metabolism 47 per cent were unreactive to 2 or 3 skin antigens. Of 13 patients with 1 abnormal tryptophan metabolite 62 per cent were unreactive to 2 or 3 skin antigens. Of 19 patients with 2 or more abnormal tryptophan metabolites 68 per cent were unreactive to 2 or 3 antigens.
Collapse
|
39
|
Howell MA. The association between colorectal cancer and breast cancer. JOURNAL OF CHRONIC DISEASES 1976; 29:243-61. [PMID: 1270572 DOI: 10.1016/0021-9681(76)90078-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Pogson CI, Smith SA. The activity of phosphoenolpyruvate carboxykinase in rat tissues. Assay techniques and effects of dietary and hormonal changes. Biochem J 1975; 152:401-8. [PMID: 1220693 PMCID: PMC1172484 DOI: 10.1042/bj1520401] [Citation(s) in RCA: 46] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. Phosphoenolpyruvate carboxykinase was assayed by three methods: (i) incorporation of H(14)CO(3) (-) into oxaloacetate: (ii) conversion of oxaloacetate into phosphoenolpyruvate, subsequently assayed enzymically; and (iii) transfer of (32)P from [gamma-(32)P]GTP to oxaloacetate. 2. Enzyme activity is increased in liver and epididymal adipose tissue in alloxan-diabetes and starvation, and in kidney in starved, acidotic and steroid-treated animals. 3. The ratios of the ;back' to the ;forward' reactions in liver, kidney and epididymal adipose tissue are different and characteristic of each tissue; they differ markedly from values reported for the purified mitochondrial enzyme. 4. The ratio of the ;back' to ;forward' reaction in any one tissue is constant in adrenalectomized, diabetic, acidotic and steroid-treated animals. 5. In starved animals, the ratio is increased in liver and kidney, but decreased in epididymal adipose tissue. 6. Administration of l-tryptophan results in an acute (1h) increase in activity measured in the ;forward' direction alone in liver and epididymal adipose tissue, but not in kidney.
Collapse
|
41
|
Savage N, Levy✠ P. The purification and some properties of 3-hydroxyanthranilate oxygenase from baboon liver. ACTA ACUST UNITED AC 1975. [DOI: 10.1016/0020-711x(75)90023-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Weigert WM, Offermanns H, Scherberich P. D-Penicillamine--production and properties. Angew Chem Int Ed Engl 1975; 14:330-6. [PMID: 808979 DOI: 10.1002/anie.197503301] [Citation(s) in RCA: 45] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Weigert WM, Offermanns H, Scherberich P. D-Penicillamin - Herstellung und Eigenschaften. Angew Chem Int Ed Engl 1975. [DOI: 10.1002/ange.19750871003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Stibbs HH, Seed JR. Further studies on the metabolism of tryptophan in Trypanosoma brucei gambiense: cofactors, inhibitors, and end-products. EXPERIENTIA 1975; 31:274-8. [PMID: 163748 DOI: 10.1007/bf01922536] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Abstract
Reports concerning the interaction between steroidal contraceptives (the combined pill) and vitamins indicate that in users the mean serum-vitamin-A level is raised and the mean serum-vitamin-B2 (riboflavine), vitamin-B6 (pyridoxine), vitamine-C, folic-acid, and vitamin-B12 levels are reduced. Other vitamins have been insufficiently studied for comment. Biochemical evidence of co-enzyme deficiency has been reported for vitamin B2, vitamin B6, and folic acid. Clinical effects due to vitamin deficiency have been described for vitamin B6--namely, depression and impaired glucose tolerance. Folic-acid deficiency with megaloblastic anaemia has been reported in only 21 cases.
Collapse
|
46
|
Thurnham DI. The Range and Variability of Biochemical Indices: What is ‘normal’? Int J Food Sci Nutr 1975. [DOI: 10.3109/09637487509144266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Abstract
The literature concerning the influence of estrogen-containing oral contraceptives on vitamins is reviewed. The appearance of an elevated plasma concentration of vitamin A is probably without clinical importance, while there seems to be a clear connection between disturbances of vitamin B6 metabolism and mental symptoms. Low levels of folic acid and vitamin B12 have also been noted. Despite this, it is very rare that hematologic abnormalities develop during hormonal contraception. A reduced concentration of vitamin C in plasma and blood corpuscles has been reported. The clinical significance of these alterations is unknown.
Collapse
|
48
|
Bennink HJ, Schreurs WH. Disturbance of tryptophan metabolism and its correction during hormonal contraception. Contraception 1974; 9:347-56. [PMID: 4442280 DOI: 10.1016/0010-7824(74)90078-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
|
50
|
|