1
|
Yadava RS, Mandal M, Mahadevan MS. Studying the Effect of MBNL1 and MBNL2 Loss in Skeletal Muscle Regeneration. Int J Mol Sci 2024; 25:2687. [PMID: 38473933 PMCID: PMC10931579 DOI: 10.3390/ijms25052687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Loss of function of members of the muscleblind-like (MBNL) family of RNA binding proteins has been shown to play a key role in the spliceopathy of RNA toxicity in myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children. MBNL1 and MBNL2 are the most abundantly expressed members in skeletal muscle. A key aspect of DM1 is poor muscle regeneration and repair, leading to dystrophy. We used a BaCl2-induced damage model of muscle injury to study regeneration and effects on skeletal muscle satellite cells (MuSCs) in Mbnl1∆E3/∆E3 and Mbnl2∆E2/∆E2 knockout mice. Similar experiments have previously shown deleterious effects on these parameters in mouse models of RNA toxicity. Muscle regeneration in Mbnl1 and Mbnl2 knockout mice progressed normally with no obvious deleterious effects on MuSC numbers or increased expression of markers of fibrosis. Skeletal muscles in Mbnl1∆E3/∆E3/ Mbnl2∆E2/+ mice showed increased histopathology but no deleterious reductions in MuSC numbers and only a slight increase in collagen deposition. These results suggest that factors beyond the loss of MBNL1/MBNL2 and the associated spliceopathy are likely to play a key role in the defects in skeletal muscle regeneration and deleterious effects on MuSCs that are seen in mouse models of RNA toxicity due to expanded CUG repeats.
Collapse
Affiliation(s)
| | | | - Mani S. Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA; (R.S.Y.)
| |
Collapse
|
2
|
Leali M, Aimo A, Ricci G, Torri F, Todiere G, Vergaro G, Grigoratos C, Giannoni A, Aquaro GD, Siciliano G, Emdin M, Passino C, Barison A. Cardiac magnetic resonance findings and prognosis in type 1 myotonic dystrophy. J Cardiovasc Med (Hagerstown) 2023; 24:340-347. [PMID: 37129928 DOI: 10.2459/jcm.0000000000001476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cardiac involvement is a major determinant of prognosis in type 1 myotonic dystrophy (DM1), but limited information is available about myocardial remodeling and tissue changes. The aim of the study was to investigate cardiac magnetic resonance (CMR) findings and their prognostic significance in DM1. METHODS We retrospectively identified all DM1 patients referred from a neurology unit to our CMR laboratory from 2009 to 2020. RESULTS Thirty-four patients were included (aged 45 ± 12, 62% male individuals) and compared with 68 age-matched and gender-matched healthy volunteers (43 male individuals, age 48 ± 15 years). At CMR, biventricular and biatrial volumes were significantly smaller (all P < 0.05), as was left ventricular mass (P < 0.001); left ventricular ejection fraction (LVEF) and right ventricular ejection fraction (RVEF) were significantly lower (all P < 0.01). Five (15%) patients had a LVEF less than 50% and four (12%) a RVEF less than 50%. Nine patients (26%) showed mid-wall late gadolinium enhancement (LGE; 5 ± 2% of LVM), and 14 (41%) fatty infiltration. Native T1 in the interventricular septum (1041 ± 53 ms) was higher than for healthy controls (1017 ± 28 ms) and approached the upper reference limit (1089 ms); the extracellular volume was slightly increased (33 ± 2%, reference <30%). Over 3.7 years (2.0-5.0), 6 (18%) patients died of extracardiac causes, 5 (15%) underwent device implantation; 5 of 21 (24%) developed repetitive ventricular ectopic beats (VEBs) on Holter monitoring. LGE mass was associated with the occurrence of repetitive VEBs (P = 0.002). Lower LV stroke volume (P = 0.017), lower RVEF (P = 0.016), a higher LVMi/LVEDVI ratio (P = 0.016), fatty infiltration (P = 0.04), and LGE extent (P < 0.001) were associated with death. CONCLUSION DM1 patients display structural and functional cardiac abnormalities, with variable degrees of cardiac muscle hypotrophy, fibrosis, and fatty infiltration. Such changes, as evaluated by CMR, seem to be associated with the development of ventricular arrhythmias and a worse outcome.
Collapse
Affiliation(s)
- Marco Leali
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
| | - Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Torri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giancarlo Todiere
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
| | - Giuseppe Vergaro
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | | | - Alberto Giannoni
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Emdin
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | - Claudio Passino
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| | - Andrea Barison
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna
- Fondazione Toscana Gabriele Monasterio
| |
Collapse
|
3
|
Ismail MK, Shrestha S. Gastrointestinal Complications of Neuromuscular Disorders. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Cardiac Pathology in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:ijms222111874. [PMID: 34769305 PMCID: PMC8584352 DOI: 10.3390/ijms222111874] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children, is a multi-systemic disorder affecting skeletal, cardiac, and smooth muscles as well as neurologic, endocrine and other systems. This review is on the cardiac pathology associated with DM1. The heart is one of the primary organs affected in DM1. Cardiac conduction defects are seen in up to 75% of adult DM1 cases and sudden death due to cardiac arrhythmias is one of the most common causes of death in DM1. Unfortunately, the pathogenesis of cardiac manifestations in DM1 is ill defined. In this review, we provide an overview of the history of cardiac studies in DM1, clinical manifestations, and pathology of the heart in DM1. This is followed by a discussion of emerging data about the utility of cardiac magnetic resonance imaging (CMR) as a biomarker for cardiac disease in DM1, and ends with a discussion on models of cardiac RNA toxicity in DM1 and recent clinical guidelines for cardiologic management of individuals with DM1.
Collapse
|
5
|
Ozimski LL, Sabater-Arcis M, Bargiela A, Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biol Rev Camb Philos Soc 2020; 96:716-730. [PMID: 33269537 DOI: 10.1111/brv.12674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most prevalent form of muscular dystrophy in adults and yet there are currently no treatment options. Although this disease causes multisystemic symptoms, it is mainly characterised by myopathy or diseased muscles, which includes muscle weakness, atrophy, and myotonia, severely affecting the lives of patients worldwide. On a molecular level, DM1 is caused by an expansion of CTG repeats in the 3' untranslated region (3'UTR) of the DM1 Protein Kinase (DMPK) gene which become pathogenic when transcribed into RNA forming ribonuclear foci comprised of auto complementary CUG hairpin structures that can bind proteins. This leads to the sequestration of the muscleblind-like (MBNL) family of proteins, depleting them, and the abnormal stabilisation of CUGBP Elav-like family member 1 (CELF1), enhancing it. Traditionally, DM1 research has focused on this RNA toxicity and how it alters MBNL and CELF1 functions as key splicing regulators. However, other proteins are affected by the toxic DMPK RNA and there is strong evidence that supports various signalling cascades playing an important role in DM1 pathogenesis. Specifically, the impairment of protein kinase B (AKT) signalling in DM1 increases autophagy, apoptosis, and ubiquitin-proteasome activity, which may also be affected in DM1 by AMP-activated protein kinase (AMPK) downregulation. AKT also regulates CELF1 directly, by affecting its subcellular localisation, and indirectly as it inhibits glycogen synthase kinase 3 beta (GSK3β), which stabilises the repressive form of CELF1 in DM1. Another kinase that contributes to CELF1 mis-regulation, in this case by hyperphosphorylation, is protein kinase C (PKC). Additionally, it has been demonstrated that fibroblast growth factor-inducible 14 (Fn14) is induced in DM1 and is associated with downstream signalling through the nuclear factor κB (NFκB) pathways, associating inflammation with this disease. Furthermore, MBNL1 and CELF1 play a role in cytoplasmic processes involved in DM1 myopathy, altering proteostasis and sarcomere structure. Finally, there are many other elements that could contribute to the muscular phenotype in DM1 such as alterations to satellite cells, non-coding RNA metabolism, calcium dysregulation, and repeat-associated non-ATG (RAN) translation. This review aims to organise the currently dispersed knowledge on the different pathways affected in DM1 and discusses the unexplored connections that could potentially help in providing new therapeutic targets in DM1 research.
Collapse
Affiliation(s)
- Lauren L Ozimski
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain.,Arthex Biotech, Catedrático Escardino, 9, Paterna, Valencia, 46980, Spain
| | - Maria Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| | - Ruben Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| |
Collapse
|
6
|
Mazaleyrat K, Badja C, Broucqsault N, Chevalier R, Laberthonnière C, Dion C, Baldasseroni L, El-Yazidi C, Thomas M, Bachelier R, Altié A, Nguyen K, Lévy N, Robin JD, Magdinier F. Multilineage Differentiation for Formation of Innervated Skeletal Muscle Fibers from Healthy and Diseased Human Pluripotent Stem Cells. Cells 2020; 9:cells9061531. [PMID: 32585982 PMCID: PMC7349825 DOI: 10.3390/cells9061531] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) obtained by reprogramming primary somatic cells have revolutionized the fields of cell biology and disease modeling. However, the number protocols for generating mature muscle fibers with sarcolemmal organization using iPSCs remain limited, and partly mimic the complexity of mature skeletal muscle. Methods: We used a novel combination of small molecules added in a precise sequence for the simultaneous codifferentiation of human iPSCs into skeletal muscle cells and motor neurons. Results: We show that the presence of both cell types reduces the production time for millimeter-long multinucleated muscle fibers with sarcolemmal organization. Muscle fiber contractions are visible in 19–21 days, and can be maintained over long period thanks to the production of innervated multinucleated mature skeletal muscle fibers with autonomous cell regeneration of PAX7-positive cells and extracellular matrix synthesis. The sequential addition of specific molecules recapitulates key steps of human peripheral neurogenesis and myogenesis. Furthermore, this organoid-like culture can be used for functional evaluation and drug screening. Conclusion: Our protocol, which is applicable to hiPSCs from healthy individuals, was validated in Duchenne Muscular Dystrophy, Myotonic Dystrophy, Facio-Scapulo-Humeral Dystrophy and type 2A Limb-Girdle Muscular Dystrophy, opening new paths for the exploration of muscle differentiation, disease modeling and drug discovery.
Collapse
Affiliation(s)
- Kilian Mazaleyrat
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Cherif Badja
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Natacha Broucqsault
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Raphaël Chevalier
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Camille Laberthonnière
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Camille Dion
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Lyla Baldasseroni
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Claire El-Yazidi
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Morgane Thomas
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Richard Bachelier
- Aix-Marseille University, INSERM, INRA, C2VN, 13385 Marseille, France; (R.B.); (A.A.)
| | - Alexandre Altié
- Aix-Marseille University, INSERM, INRA, C2VN, 13385 Marseille, France; (R.B.); (A.A.)
| | - Karine Nguyen
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
- APHM, Département de Génétique Médicale, Hôpital de la Timone Enfants, 13385 Marseille, France
| | - Nicolas Lévy
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
- APHM, Département de Génétique Médicale, Hôpital de la Timone Enfants, 13385 Marseille, France
| | - Jérôme D. Robin
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
| | - Frédérique Magdinier
- Aix-Marseille University, INSERM, MMG, Marseille Medical Genetics, 13385 Marseille, France; (K.M.); (C.B.); (N.B.); (R.C.); (C.L.); (C.D.); (L.B.); (C.E.-Y.); (M.T.); (K.N.); (N.L.); (J.D.R.)
- Correspondence:
| |
Collapse
|
7
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
8
|
Abstract
Myotonic dystrophy is an autosomal dominant muscular dystrophy not only associated with muscle weakness, atrophy, and myotonia but also prominent multisystem involvement. There are 2 similar, but distinct, forms of myotonic dystrophy; type 1 is caused by a CTG repeat expansion in the DMPK gene, and type 2 is caused by a CCTG repeat expansion in the CNBP gene. Type 1 is associated with distal limb, neck flexor, and bulbar weakness and results in different phenotypic subtypes with variable onset from congenital to very late-onset as well as variable signs and symptoms. The classically described adult-onset form is the most common. In contrast, myotonic dystrophy type 2 is adult-onset or late-onset, has proximal predominant muscle weakness, and generally has less severe multisystem involvement. In both forms of myotonic dystrophy, the best characterized disease mechanism is a RNA toxic gain-of-function during which RNA repeats form nuclear foci resulting in sequestration of RNA-binding proteins and, therefore, dysregulated splicing of premessenger RNA. There are currently no disease-modifying therapies, but clinical surveillance, preventative measures, and supportive treatments are used to reduce the impact of muscular impairment and other systemic involvement including cataracts, cardiac conduction abnormalities, fatigue, central nervous system dysfunction, respiratory weakness, dysphagia, and endocrine dysfunction. Exciting preclinical progress has been made in identifying a number of potential strategies including genome editing, small molecule therapeutics, and antisense oligonucleotide-based therapies to target the pathogenesis of type 1 and type 2 myotonic dystrophies at the DNA, RNA, or downstream target level.
Collapse
Affiliation(s)
- Samantha LoRusso
- Department of Neurology, The Ohio State University, 395 West 12th Avenue, Columbus, OH, 43210, USA
| | - Benjamin Weiner
- The Ohio State University College of Medicine, The Ohio State University, 370 West 9th Avenue, Columbus, OH, 43210, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University, 395 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Castets P, Frank S, Sinnreich M, Rüegg MA. "Get the Balance Right": Pathological Significance of Autophagy Perturbation in Neuromuscular Disorders. J Neuromuscul Dis 2018; 3:127-155. [PMID: 27854220 PMCID: PMC5271579 DOI: 10.3233/jnd-160153] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent research has revealed that autophagy, a major catabolic process in cells, is dysregulated in several neuromuscular diseases and contributes to the muscle wasting caused by non-muscle disorders (e.g. cancer cachexia) or during aging (i.e. sarcopenia). From there, the idea arose to interfere with autophagy or manipulate its regulatory signalling to help restore muscle homeostasis and attenuate disease progression. The major difficulty for the development of therapeutic strategies is to restore a balanced autophagic flux, due to the dynamic nature of autophagy. Thus, it is essential to better understand the mechanisms and identify the signalling pathways at play in the control of autophagy in skeletal muscle. A comprehensive analysis of the autophagic flux and of the causes of its dysregulation is required to assess the pathogenic role of autophagy in diseased muscle. Furthermore, it is essential that experiments distinguish between primary dysregulation of autophagy (prior to disease onset) and impairments as a consequence of the pathology. Of note, in most muscle disorders, autophagy perturbation is not caused by genetic modification of an autophagy-related protein, but rather through indirect alteration of regulatory signalling or lysosomal function. In this review, we will present the mechanisms involved in autophagy, and those ensuring its tight regulation in skeletal muscle. We will then discuss as to how autophagy dysregulation contributes to the pathogenesis of neuromuscular disorders and possible ways to interfere with this process to limit disease progression.
Collapse
Affiliation(s)
| | - Stephan Frank
- Institute of Pathology, Division of Neuropathology Basel University Hospital, Basel, Switzerland
| | - Michael Sinnreich
- Neuromuscular Research Center, Departments of Neurology and Biomedicine, Pharmazentrum, Basel, Switzerland
| | | |
Collapse
|
10
|
Anesthetic Considerations in a Patient with Myotonic Dystrophy for Hip Labral Repair. Case Rep Anesthesiol 2017; 2017:6408956. [PMID: 28316843 PMCID: PMC5337861 DOI: 10.1155/2017/6408956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/29/2017] [Indexed: 11/30/2022] Open
Abstract
Myotonic Dystrophy (DM) affects multiple organ systems. Disorders such as hyperthyroidism, progressive musculoskeletal weakness, cardiac dysrhythmias, hypoventilation, and cognitive-behavioral disorders may be present in these patients. Thorough preoperative assessment and anesthetic planning are required to minimize the risk of anesthetic complications. Patients with DM can exhibit exquisite sensitivity to sedatives, neuromuscular blocking agents, and volatile anesthetics, resulting in potential postoperative complications. There is limited literature available on successful anesthetic techniques for the DM patient. We present this case report to add to our current fund of knowledge.
Collapse
|
11
|
Brockhoff M, Rion N, Chojnowska K, Wiktorowicz T, Eickhorst C, Erne B, Frank S, Angelini C, Furling D, Rüegg MA, Sinnreich M, Castets P. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I. J Clin Invest 2017; 127:549-563. [PMID: 28067669 DOI: 10.1172/jci89616] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type I (DM1) is a disabling multisystemic disease that predominantly affects skeletal muscle. It is caused by expanded CTG repeats in the 3'-UTR of the dystrophia myotonica protein kinase (DMPK) gene. RNA hairpins formed by elongated DMPK transcripts sequester RNA-binding proteins, leading to mis-splicing of numerous pre-mRNAs. Here, we have investigated whether DM1-associated muscle pathology is related to deregulation of central metabolic pathways, which may identify potential therapeutic targets for the disease. In a well-characterized mouse model for DM1 (HSALR mice), activation of AMPK signaling in muscle was impaired under starved conditions, while mTORC1 signaling remained active. In parallel, autophagic flux was perturbed in HSALR muscle and in cultured human DM1 myotubes. Pharmacological approaches targeting AMPK/mTORC1 signaling greatly ameliorated muscle function in HSALR mice. AICAR, an AMPK activator, led to a strong reduction of myotonia, which was accompanied by partial correction of misregulated alternative splicing. Rapamycin, an mTORC1 inhibitor, improved muscle relaxation and increased muscle force in HSALR mice without affecting splicing. These findings highlight the involvement of AMPK/mTORC1 deregulation in DM1 muscle pathophysiology and may open potential avenues for the treatment of this disease.
Collapse
|
12
|
Llamusi B, Bargiela A, Fernandez-Costa JM, Garcia-Lopez A, Klima R, Feiguin F, Artero R. Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model. Dis Model Mech 2012; 6:184-96. [PMID: 23118342 PMCID: PMC3529350 DOI: 10.1242/dmm.009563] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a genetic disease caused by the pathological expansion of a CTG trinucleotide repeat in the 3′ UTR of the DMPK gene. In the DMPK transcripts, the CUG expansions sequester RNA-binding proteins into nuclear foci, including transcription factors and alternative splicing regulators such as MBNL1. MBNL1 sequestration has been associated with key features of DM1. However, the basis behind a number of molecular and histological alterations in DM1 remain unclear. To help identify new pathogenic components of the disease, we carried out a genetic screen using a Drosophila model of DM1 that expresses 480 interrupted CTG repeats, i(CTG)480, and a collection of 1215 transgenic RNA interference (RNAi) fly lines. Of the 34 modifiers identified, two RNA-binding proteins, TBPH (homolog of human TAR DNA-binding protein 43 or TDP-43) and BSF (Bicoid stability factor; homolog of human LRPPRC), were of particular interest. These factors modified i(CTG)480 phenotypes in the fly eye and wing, and TBPH silencing also suppressed CTG-induced defects in the flight muscles. In Drosophila flight muscle, TBPH, BSF and the fly ortholog of MBNL1, Muscleblind (Mbl), were detected in sarcomeric bands. Expression of i(CTG)480 resulted in changes in the sarcomeric patterns of these proteins, which could be restored by coexpression with human MBNL1. Epistasis studies showed that Mbl silencing was sufficient to induce a subcellular redistribution of TBPH and BSF proteins in the muscle, which mimicked the effect of i(CTG)480 expression. These results provide the first description of TBPH and BSF as targets of Mbl-mediated CTG toxicity, and they suggest an important role of these proteins in DM1 muscle pathology.
Collapse
Affiliation(s)
- Beatriz Llamusi
- Translational Genomics Group, Department of Genetics, University of Valencia, Doctor Moliner 50, 46100 Burjasot, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang LC, Chen KY, Pan H, Wu CC, Chen PH, Liao YT, Li C, Huang ML, Hsiao KM. Muscleblind participates in RNA toxicity of expanded CAG and CUG repeats in Caenorhabditis elegans. Cell Mol Life Sci 2011; 68:1255-67. [PMID: 20848157 PMCID: PMC11114631 DOI: 10.1007/s00018-010-0522-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 08/06/2010] [Accepted: 08/30/2010] [Indexed: 01/22/2023]
Abstract
We have utilized Caenorhabditis elegans as a model to investigate the toxicity and underlying mechanism of untranslated CAG repeats in comparison to CUG repeats. Our results indicate that CAG repeats can be toxic at the RNA level in a length-dependent manner, similar to that of CUG repeats. Both CAG and CUG repeats of toxic length form nuclear foci and co-localize with C. elegans muscleblind (CeMBL), implying that CeMBL may play a role in repeat RNA toxicity. Consistently, the phenotypes of worms expressing toxic CAG and CUG repeats, including shortened life span and reduced motility rate, were partially reversed by CeMbl over-expression. These results provide the first experimental evidence to show that the RNA toxicity induced by expanded CAG and CUG repeats can be mediated, at least in part, through the functional alteration of muscleblind in worms.
Collapse
Affiliation(s)
- Li-Chun Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, 402 Taiwan
| | - Kuan-Yu Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Huichin Pan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, 402 Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402 Taiwan
| | - Chia-Chieh Wu
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, 621 Taiwan
| | - Po-Hsuan Chen
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, 621 Taiwan
| | - Yuan-Ting Liao
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, 621 Taiwan
| | - Chin Li
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, 621 Taiwan
- Department of Life Science, National Chung Cheng University, 168, University Road, Min-Hsiung, Chia-Yi, 62102 Taiwan, ROC
| | - Min-Lang Huang
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, 621 Taiwan
- Department of Life Science, National Chung Cheng University, 168, University Road, Min-Hsiung, Chia-Yi, 62102 Taiwan, ROC
| | - Kuang-Ming Hsiao
- Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, 621 Taiwan
- Department of Life Science, National Chung Cheng University, 168, University Road, Min-Hsiung, Chia-Yi, 62102 Taiwan, ROC
| |
Collapse
|
14
|
Machuca-Tzili LE, Buxton S, Thorpe A, Timson CM, Wigmore P, Luther PK, Brook JD. Zebrafish deficient for Muscleblind-like 2 exhibit features of myotonic dystrophy. Dis Model Mech 2011; 4:381-92. [PMID: 21303839 PMCID: PMC3097459 DOI: 10.1242/dmm.004150] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Myotonic dystrophy (DM; also known as dystrophia myotonica) is an autosomal dominant disorder that affects the heart, eyes, brain and endocrine system, but the predominant symptoms are neuromuscular, with progressive muscle weakness and wasting. DM presents in two forms, DM1 and DM2, both of which are caused by nucleotide repeat expansions: CTG in the DMPK gene for DM1 and CCTG in ZNF9 (CNBP) for DM2. Previous studies have shown that the mutant mRNAs containing the transcribed CUG or CCUG repeats are retained within the nuclei of cells from individuals with DM, where they bind and sequester the muscleblind-like proteins MBNL1, MBNL2 and MBNL3. It has been proposed that the sequestration of these proteins plays a key role in determining the classic features of DM. However, the functions of each of the three MBNL genes are not completely understood. We have generated a zebrafish knockdown model in which we demonstrate that a lack of mbnl2 function causes morphological abnormalities at the eye, heart, brain and muscle levels, supporting an essential role for mbnl2 during embryonic development. Major features of DM are replicated in our model, including muscle defects and splicing abnormalities. We found that the absence of mbnl2 causes disruption to the organization of myofibrils in skeletal and heart muscle of zebrafish embryos, and a reduction in the amount of both slow and fast muscle fibres. Notably, our findings included altered splicing patterns of two transcripts whose expression is also altered in DM patients: clcn1 and tnnt2. The studies described herein provide broader insight into the functions of MBNL2. They also lend support to the hypothesis that the sequestration of this protein is an important determinant in DM pathophysiology, and imply a direct role of MBNL2 in splicing regulation of specific transcripts, which, when altered, contributes to the DM phenotype.
Collapse
Affiliation(s)
- Laura E Machuca-Tzili
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Nazarian S, Bluemke DA, Wagner KR, Zviman MM, Turkbey E, Caffo BS, Shehata M, Edwards D, Butcher B, Calkins H, Berger RD, Halperin HR, Tomaselli GF. QRS prolongation in myotonic muscular dystrophy and diffuse fibrosis on cardiac magnetic resonance. Magn Reson Med 2010; 64:107-14. [PMID: 20572151 DOI: 10.1002/mrm.22417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current noninvasive surrogates of cardiac involvement in myotonic muscular dystrophy have low positive predictive value for sudden death. We hypothesized that the cardiac MR signal-to-noise ratio variance (SNRV) is a surrogate of the spatial heterogeneity of myocardial fibrosis and correlates with electrocardiography changes in myotonic muscular dystrophy. The SNRV for contrast enhanced cardiac MR images was calculated over the entire left ventricle in 43 patients with myotonic muscular dystrophy. All patients underwent standard electrocardiography, and a subset of 23 patients underwent signal averaged electrocardiography. After correcting for body mass index, age, and ejection fraction, SNRV was predictive of QRS duration on standard electrocardiography (1.35-msec increased QRS duration/unit increase in SNRV, P < 0.001). SNRV was also predictive of the low-amplitude late-potential duration (1.49-msec increased low-amplitude late-potential duration/unit increase in SNRV, P < 0.001). Ten-fold cross-validation yielded an area under the receiver operating characteristic curve of 0.87 for the predictive value of SNRV for QRS duration greater than 120 msec. The SNRV of the left ventricle is associated with QRS prolongation, likely due to late depolarization of tissue within islands of patchy fibrosis. The association of SNRV with future clinical events warrants further study.
Collapse
Affiliation(s)
- Saman Nazarian
- Department of Medicine/Cardiology, Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Beffy P, Del Carratore R, Masini M, Furling D, Puymirat J, Masiello P, Simili M. Altered signal transduction pathways and induction of autophagy in human myotonic dystrophy type 1 myoblasts. Int J Biochem Cell Biol 2010; 42:1973-83. [PMID: 20797447 DOI: 10.1016/j.biocel.2010.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/28/2010] [Accepted: 08/12/2010] [Indexed: 11/18/2022]
Abstract
Congenital myotonic dystrophy type 1 (CDM1) affects patients from birth and is associated with mental retardation and impaired muscle development. CDM1 patients carry 1000-3000 CTG repeats in the DMPK gene and display defective skeletal muscles differentiation, resulting in reduced size of myotubes and decreased number of satellite cells. In this study, human myoblasts in culture deriving from control and DM1 embryos (3200 CTG repeats) were analyzed using both a biochemical and electron microscopic approach, in order to provide new insights into the molecular mechanisms underlying such alteration. Interestingly, electron microscopy analysis showed not only ultrastructural features of abnormal differentiation but also revealed the presence of autophagic vacuoles in DM1 myoblasts not undergoing differentiation. In accordance with the electron microscopic findings, the autophagic markers LC3 and ATG5, but not apoptotic markers, were significantly up regulated in DM1 myoblasts after differentiating medium addition. The induction of autophagic processes in DM1 myoblasts was concomitant to p53 over-expression and inhibition of the mTOR-S6K1 pathway, causatively involved in autophagy. Moreover biochemical alterations of the two main signal transduction pathways involved in differentiation were observed in DM1 myoblasts, in particular decreased activation of p38MAPK and persistent activation of the MEK-ERK pathway. This work, while demonstrating that major signaling pathways regulating myoblasts differentiation are profoundly deranged in DM1 myoblasts, for the first time provides evidence of autophagy induction, possibly mediated by p53 activation in response to metabolic stress which might contribute to the dystrophic alterations observed in the muscles of congenital DM1 patients.
Collapse
|
17
|
Koshelev M, Sarma S, Price RE, Wehrens XHT, Cooper TA. Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Hum Mol Genet 2010; 19:1066-75. [PMID: 20051426 DOI: 10.1093/hmg/ddp570] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG expansion within the 3'-untranslated region of the DMPK gene. The predominant mechanism of pathogenesis is a toxic gain of function of CUG repeat containing RNA transcribed from the expanded allele. The molecular mechanisms by which the RNA containing expanded repeats produce pathogenic effects include: sequestration of muscleblind-like 1 (MBNL1) protein and up-regulation of CUG binding protein 1 (CUGBP1). MBNL1 and CUGBP1 are RNA binding proteins that regulate alternative splicing transitions during development. Altered functions of these proteins in DM1 lead to misregulated splicing of their target genes, resulting in several features of the disease. The role of MBNL1 depletion in DM1 is well established through a mouse knock-out model that reproduces many disease features. Here we directly test the hypothesis that CUGBP1 up-regulation also contributes to manifestations of DM1. Using tetracycline-inducible CUGBP1 and heart-specific reverse tetracycline trans-activator transgenes, we expressed human CUGBP1 in adult mouse heart. Our results demonstrate that up-regulation of CUGBP1 is sufficient to reproduce molecular, histopathological and functional changes observed in a previously described DM1 mouse model that expresses expanded CUG RNA repeats as well as in individuals with DM1. These results strongly support a role for CUGBP1 up-regulation in DM1 pathogenesis.
Collapse
Affiliation(s)
- Misha Koshelev
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
18
|
Di Cori A, Bongiorni MG, Zucchelli G, Soldati E, Falorni M, Segreti L, Gemignani C, Siciliano A, Bovenzi FM, Di Bello V. Early Left Ventricular Structural Myocardial Alterations and Their Relationship with Functional and Electrical Properties of the Heart in Myotonic Dystrophy Type 1. J Am Soc Echocardiogr 2009; 22:1173-9. [DOI: 10.1016/j.echo.2009.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Indexed: 10/20/2022]
|
19
|
Wang GS, Kearney DL, De Biasi M, Taffet G, Cooper TA. Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy. J Clin Invest 2007; 117:2802-11. [PMID: 17823658 PMCID: PMC1964514 DOI: 10.1172/jci32308] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 06/13/2007] [Indexed: 01/12/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG trinucleotide expansion in the 3' untranslated region (3' UTR) of DM protein kinase (DMPK). The key feature of DM1 pathogenesis is nuclear accumulation of RNA, which causes aberrant alternative splicing of specific pre-mRNAs by altering the functions of CUG-binding proteins (CUGBPs). Cardiac involvement occurs in more than 80% of individuals with DM1 and is responsible for up to 30% of disease-related deaths. We have generated an inducible and heart-specific DM1 mouse model expressing expanded CUG RNA in the context of DMPK 3' UTR that recapitulated pathological and molecular features of DM1 including dilated cardiomyopathy, arrhythmias, systolic and diastolic dysfunction, and mis-regulated alternative splicing. Combined in situ hybridization and immunofluorescent staining for CUGBP1 and CUGBP2, the 2 CUGBP1 and ETR-3 like factor (CELF) proteins expressed in heart, demonstrated elevated protein levels specifically in nuclei containing foci of CUG repeat RNA. A time-course study demonstrated that colocalization of MBNL1 with RNA foci and increased CUGBP1 occurred within hours of induced expression of CUG repeat RNA and coincided with reversion to embryonic splicing patterns. These results indicate that CUGBP1 upregulation is an early and primary response to expression of CUG repeat RNA.
Collapse
Affiliation(s)
- Guey-Shin Wang
- Department of Pathology,
Department of Molecular and Cellular Biology,
Department of Neuroscience, and
Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Debra L. Kearney
- Department of Pathology,
Department of Molecular and Cellular Biology,
Department of Neuroscience, and
Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Mariella De Biasi
- Department of Pathology,
Department of Molecular and Cellular Biology,
Department of Neuroscience, and
Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - George Taffet
- Department of Pathology,
Department of Molecular and Cellular Biology,
Department of Neuroscience, and
Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas A. Cooper
- Department of Pathology,
Department of Molecular and Cellular Biology,
Department of Neuroscience, and
Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
20
|
Vicente M, Monferrer L, Poulos MG, Houseley J, Monckton DG, O'dell KMC, Swanson MS, Artero RD. Muscleblind isoforms are functionally distinct and regulate alpha-actinin splicing. Differentiation 2007; 75:427-40. [PMID: 17309604 DOI: 10.1111/j.1432-0436.2006.00156.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drosophila Muscleblind (Mbl) proteins control terminal muscle and neural differentiation, but their molecular function has not been experimentally addressed. Such an analysis is relevant as the human Muscleblind-like homologs (MBNL1-3) are implicated in the pathogenesis of the inherited muscular developmental and degenerative disease myotonic dystrophy. The Drosophila muscleblind gene expresses four protein coding splice forms (mblA to mblD) that are differentially expressed during the Drosophila life cycle, and which vary markedly in their ability to rescue the embryonic lethal phenotype of muscleblind mutant flies. Analysis of muscleblind mutant embryos reveals misregulated alternative splicing of the transcripts encoding Z-band component alpha-Actinin, which can be replicated in human cells expressing a Drosophilaalpha-actinin minigene and epitope-tagged Muscleblind isoforms. MblC appreciably altered alpha-actinin splicing in this assay, whereas other isoforms had only a marginal or no effect, demonstrating functional specialization among Muscleblind proteins. To further analyze the molecular basis of these differences, we studied the subcellular localization of Muscleblind isoforms. Consistent with the splicing assay results, MblB and MblC were enriched in the nucleus while MblA was predominantly cytoplasmic. In myotonic dystrophy, transcripts bearing expanded non-coding CUG or CCUG repeats interfere with the function of human MBNL proteins. Co-expression of CUG repeat RNA with the alpha-actinin minigene altered splicing compared with that seen in muscleblind mutant embryos, indicating that CUG repeat expansion RNA also interferes with Drosophila muscleblind function. Moreover MblA, B, and C co-localize with CUG repeat RNA in nuclear foci in cell culture. Our observations indicate that Muscleblind isoforms perform different functions in vivo, that MblC controls muscleblind-dependent alternative splicing events, and establish the functional conservation between Muscleblind and MBNL proteins both over a physiological target (alpha-actinin) and a pathogenic one (CUG repeats).
Collapse
Affiliation(s)
- Marta Vicente
- Department of Genetics, University of Valencia, Doctor Moliner 50, Burjasot E-46100, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Machuca-Tzili L, Thorpe H, Robinson TE, Sewry C, Brook JD. Flies deficient in Muscleblind protein model features of myotonic dystrophy with altered splice forms of Z-band associated transcripts. Hum Genet 2006; 120:487-99. [PMID: 16927100 DOI: 10.1007/s00439-006-0228-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 07/03/2006] [Indexed: 11/24/2022]
Abstract
Myotonic dystrophy (DM) is a dominantly inherited neuromuscular disorder characterised by muscle weakness and wasting. There are two forms of DM; both of which are caused by the expansion of repeated DNA sequences. DM1 is associated with a CTG repeat located in the 3' untranslated region of a gene, DMPK and DM2 with a tetranucleotide repeat expansion, CCTG, located in the first intron of a different gene, ZNF9. Recent data suggest a dominant RNA gain-of-function mechanism underlying DM, as transcripts containing either CUG or CCUG repeat expansions accumulate as foci in the nuclei of DM1 and DM2 cells respectively, where they exert a toxic effect, sequestering specific RNA binding proteins such as Muscleblind, which leads to splicing defects and the disruption of normal cellular functions. Z-band disruption is a well-known histological feature of DM1 muscle, which has also been reported in Muscleblind deficient flies. In order to determine whether there is a common molecular basis for this abnormality we have examined the alternative splicing pattern of transcripts that encode proteins associated with the Z-band in both organisms. Our results demonstrate that the missplicing of ZASP/LDB3 leads to the expression of an isoform in DM1 patient muscle, which is not present in normal controls, nor in other myopathies. Furthermore the Drosophila homologue, CG30084, is also misspliced, in Muscleblind deficient flies. Another Z-band transcript, alpha actinin, is misspliced in mbl mutant flies, but not in DM1 patient samples. These results point to similarities but subtle differences in the molecular breakdown of Z-band structures in flies and DM patients and emphasise the relevance of Muscleblind proteins in DM pathophysiology.
Collapse
Affiliation(s)
- Laura Machuca-Tzili
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | | | | | |
Collapse
|
22
|
Pascual M, Vicente M, Monferrer L, Artero R. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 2006; 74:65-80. [PMID: 16533306 DOI: 10.1111/j.1432-0436.2006.00060.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alternative splicing is widely used to generate protein diversity and to control gene expression in many biological processes, including cell fate determination and apoptosis. In this review, we focus on the Muscleblind family of tissue-specific alternative splicing regulators. Muscleblind proteins bind pre-mRNA through an evolutionarily conserved tandem CCCH zinc finger domain. Human Muscleblind homologs MBNL1, MBNL2 and MBNL3 promote inclusion or exclusion of specific exons on different pre-mRNAs by antagonizing the activity of CUG-BP and ETR-3-like factors (CELF proteins) bound to distinct intronic sites. The relative activities of Muscleblind and CELF proteins control a key developmental switch. Defined transcripts follow an embryonic splice pattern when CELF activity predominates, whereas they follow an adult pattern when Muscleblind activity prevails. Human MBNL proteins show functional specializations. While MBNL1 seems to promote muscle differentiation, MBNL3 appears to function in an opposing manner inhibiting expression of muscle differentiation markers. MBNL2, on the other hand, participates in a new RNA-dependent protein localization mechanism involving recruitment of integrin alpha3 protein to focal adhesions. Both muscleblind mutant Drosophila embryos and Mbnl1 knockout mice show muscle abnormalities and altered splicing of specific transcripts. In addition to regulating terminal muscle differentiation through alternative splicing control, results by several groups suggest that Muscleblind participates in the differentiation of photoreceptors, neurons, adipocytes and blood cell types. Misregulation of MBNL activity can lead to human pathologies. Through mechanisms not completely identified yet, expression of transcripts containing large non-coding CUG or CCUG repeat expansions mimics muscleblind loss-of-function phenotypes. Archetypical within this class of disorders are myotonic dystrophies. Our understanding of the biology of Muscleblind proteins has increased dramatically over the last few years, but several key issues remain unsolved. Defining the mechanism of the activity of Muscleblind proteins, their splicing partners, and the functional relevance of its several protein isoforms are just a few examples.
Collapse
Affiliation(s)
- Maya Pascual
- Department of Genetics, University of Valencia, Doctor Moliner, 50, 46100 Burjasot, Valencia, Spain
| | | | | | | |
Collapse
|
23
|
Bellini M, Biagi S, Stasi C, Costa F, Mumolo MG, Ricchiuti A, Marchi S. Gastrointestinal manifestations in myotonic muscular dystrophy. World J Gastroenterol 2006; 12:1821-8. [PMID: 16609987 PMCID: PMC4087506 DOI: 10.3748/wjg.v12.i12.1821] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/02/2005] [Accepted: 09/12/2005] [Indexed: 02/06/2023] Open
Abstract
Myotonic dystrophy (MD) is characterized by myotonic phenomena and progressive muscular weakness. Involvement of the gastrointestinal tract is frequent and may occur at any level. The clinical manifestations have previously been attributed to motility disorders caused by smooth muscle damage, but histologic evidence of alterations has been scarce and conflicting. A neural factor has also been hypothesized. In the upper digestive tract, dysphagia, heartburn, regurgitation and dyspepsia are the most common complaints, while in the lower tract, abdominal pain, bloating and changes in bowel habits are often reported. Digestive symptoms may be the first sign of dystrophic disease and may precede the musculo-skeletal features. The impairment of gastrointestinal function may be sometimes so gradual that the patients adapt to it with little awareness of symptoms. In such cases routine endoscopic and ultrasonographic evaluations are not sufficient and targeted techniques (electrogastrography, manometry, electromyography, functional ultrasonography, scintigraphy, etc.) are needed. There is a low correlation between the degree of skeletal muscle involvement and the presence and severity of gastrointestinal disturbances whereas a positive correlation with the duration of the skeletal muscle disease has been reported. The drugs recommended for treating the gastrointestinal complaints such as prokinetic, anti-dyspeptic drugs and laxatives, are mainly aimed at correcting the motility disorders. Gastrointestinal involvement in MD remains a complex and intriguing condition since many important problems are still unsolved. Further studies concentrating on genetic aspects, early diagnostic techniques and the development of new therapeutic strategies are needed to improve our management of the gastrointestinal manifestations of MD.
Collapse
Affiliation(s)
- Massimo Bellini
- Gastroenterology Unit, Department of Internal Medicine, University of Pisa, Via Roma 67, 56100 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Mammarella A, Ferroni P, Paradiso M, Martini F, Paoletti V, Morino S, Antonini G, Gazzaniga PP, Musca A, Basili S. Tumor necrosis factor-alpha and myocardial function in patients with myotonic dystrophy type 1. J Neurol Sci 2002; 201:59-64. [PMID: 12163195 DOI: 10.1016/s0022-510x(02)00193-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An imbalance of TNF system activity has been reported in patients with myotonic dystrophy type 1 (DM1). Nevertheless, the question whether TNF-alpha action is directly implicated in the pathogenesis of DM1 or is a simple marker of disease activity is still open. Therefore, the present study was aimed to investigate serum tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 levels in association with the disease stage, cytosine-thymine-guanine (CTG) expansion and cardiac function of 56 patients with DM1 (40+/-14 years) and 28 healthy controls (42+/-12 years). All subjects were submitted to resting electrocardiogram (EKG), Signal-averaged EKG (SA-EKG), and M-mode/2-D echocardiography. TNF-alpha levels were higher in patients compared to controls (p<0.0003) and were associated to disease stage (p<0.02). Significant correlation were observed between TNF and CTG expansion (p<0.005) or PQ intervals (p<0.0005). Ventricular late potentials (VLPs) occurred in 54% of cases. In these patients, TNF-alpha levels were higher compared to those without VLPs (p<0.05). We may conclude that TNF-alpha levels might represent and adjunctive criterion for disease staging in patients with myotonic dystrophy type 1, and that elevated TNF levels in DM1 may lead to cardiac fibrosis affecting diastolic function, conduction, and automaticity.
Collapse
Affiliation(s)
- Antonio Mammarella
- Department of Medical Therapy, University of Rome "La Sapienza", Viale Del Policlinico, 155, 00184, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mammarella A, Paradiso M, Antonini G, Paoletti V, De Matteis A, Basili S, Donnarumma L, Labbadia G, Di Franco M, Musca A. Natural history of cardiac involvement in myotonic dystrophy (Steinert's disease): a 13-year follow-up study. Adv Ther 2000; 17:238-51. [PMID: 11186144 DOI: 10.1007/bf02853163] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myotonic dystrophy (MD) is associated with a wide spectrum of cardiac abnormalities, but only a few longitudinal studies have investigated the natural course of heart disease in MD. To assess whether neuromuscular involvement significantly predicts cardiac disorders in MD, 83 patients with various grades of disease severity were enrolled in a 13-year follow-up study (mean, 60.6 +/- 37.8 months) that included periodic physical and instrumental cardiac examinations (standard and Holter electrocardiography, echocardiography). During follow-up, muscular disease worsened clinically in 9 patients (11%) whose baseline severity grade changed accordingly; only 3 of them demonstrated parallel worsening of cardiac disturbance, however, compared with a large number of patients who showed additional cardiac abnormalities. These included further worsening of pre-existing pathologic features (19/83) and the appearance de novo of serious arrhythmias and/or conduction defects (23/83). Pacemaker implantation was necessary in 11 of 83 patients (13.2%) who had symptomatic bradyarrhythmias, bifascicular block, and P-R prolongation with a His-to-ventricle interval exceeding 55 ms, as documented by electrophysiologic study. Eight (9.6%) patients died: 2 from noncardiac and 1 from unknown causes, 1 from heart failure, and 4 from sudden death closely related to documented ventricular tachycardia. The incidence and seriousness of arrhythmic and conduction disturbances correlated with the severity of the muscular involvement. Nevertheless, cardiac and muscular disease did not show a linear progression. Cardiac involvement generally worsened more rapidly than did skeletal muscle disease.
Collapse
Affiliation(s)
- A Mammarella
- Department of Medical Therapy, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Costantini M, Zaninotto G, Anselmino M, Marcon M, Iurilli V, Boccù C, Feltrin GP, Angelini C, Ancona E. Esophageal motor function in patients with myotonic dystrophy. Dig Dis Sci 1996; 41:2032-8. [PMID: 8888718 DOI: 10.1007/bf02093607] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To investigate pharyngeal and esophageal motor function in myotonic dystrophy (MD), and its relationship to esophageal symptoms, we used low-compliance, high-fidelity esophageal manometry and videofluorography to evaluate 14 consecutive MD patients. Patients exhibited a consistent, typical motor pattern, involving a marked reduction in resting tone of both the upper and lower esophageal sphincters, and a reduction in contraction pressure in the pharynx and throughout the esophagus. Radiology showed hypotonic pharynx with stasis and a hypo- or amotile, often dilated, esophagus. These findings were nonspecific, however, being present in patients both with and without dysphagia, which suggests that MD patients have valid compensatory mechanisms. Dysphagia only correlated to the pharyngeal impairment at manometry. Furthermore, the results of our study suggest that not only the proximal, striated part of the gullet, but also the distal part (in which smooth muscle dominates) is involved in the disease. The latter leads to the impairment of the LES resting tone and competence, highlighting the risk of gastroesophageal reflux disease in these patients.
Collapse
Affiliation(s)
- M Costantini
- Department of Surgery, University of Padua, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cohen MB, Snow JS, Merkatz KA, Kholwadwala D, Jadonath RL, Goldner BG, Cohen TJ. Suppression of ventricular tachycardia by sotalol in myotonic dystrophy. Am Heart J 1996; 132:446-9. [PMID: 8701909 DOI: 10.1016/s0002-8703(96)90444-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M B Cohen
- Department of Medicine and Pediatrics, North Shore University Hospital-Cornell University Medical College, Manhasset, N.Y., USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Zimmermann A, Wyss P, Stocker F. Primary lipid cardiomyopathy. VIRCHOWS ARCHIV. A, PATHOLOGICAL ANATOMY AND HISTOPATHOLOGY 1990; 416:453-9. [PMID: 2107634 DOI: 10.1007/bf01605153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this communication, we describe an isolated, apparently congenital cardiomyopathy (CMP) characterized by the accumulation of stainable lipid in mitochondria of cardiomyocytes. This lesion, which we term primary lipid cardiomyopathy, has not been reported so far. The structural alteration was associated with progressive heart failure, leading to death at the age of 3 years, and with massive hypertrophy of myocardium. Lipid storage in heart muscle cells resulted in an impressive yellow to orange color of the myocardium. We suggest that this type of primary CMP may represent a new member within the group of mitochondrial CMPs. Possible pathogenic mechanisms are discussed.
Collapse
Affiliation(s)
- A Zimmermann
- Institute of Pathology, University of Bern, Switzerland
| | | | | |
Collapse
|
29
|
Yoshida MM, Krishnamurthy S, Wattchow DA, Furness JB, Schuffler MD. Megacolon in myotonic dystrophy caused by a degenerative neuropathy of the myenteric plexus. Gastroenterology 1988; 95:820-7. [PMID: 2456246 DOI: 10.1016/s0016-5085(88)80034-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A 32-yr-old man with myotonic dystrophy had a left hemicolectomy performed because of a megacolon. The colonic mucosa, smooth muscle, and connective tissue appeared normal by hematoxylin and eosin and trichrome stains and transmission electron microscopy. In contrast, the myenteric plexus had markedly fewer neurons than normal on the hematoxylin and eosin stains. Silver staining of the plexus revealed degeneration and decreased numbers of argyrophilic neurons, which were smaller and had fewer processes and a more uneven staining quality than controls. Many axons were fragmented, and increased numbers of glial cell nuclei were present in the plexus. Degenerative changes in the neurons were present in a patchy distribution on transmission electron microscopy. Immunohistochemistry revealed a decrease of the substance P- and enkephalin-immunoreactive fibers in the muscularis externa. This suggests that colonic motor dysfunction associated with myotonic dystrophy may be caused by a visceral neuropathy that involves the substance P- and enkephalin-immunoreactive fibers of the smooth muscle.
Collapse
Affiliation(s)
- M M Yoshida
- Department of Medicine, University of Washington, Seattle
| | | | | | | | | |
Collapse
|
30
|
Nguyen HH, Wolfe JT, Holmes DR, Edwards WD. Pathology of the cardiac conduction system in myotonic dystrophy: a study of 12 cases. J Am Coll Cardiol 1988; 11:662-71. [PMID: 3278037 DOI: 10.1016/0735-1097(88)91547-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In 12 autopsy cases of myotonic dystrophy, the most frequently observed histopathologic lesions of the cardiac conduction system were fibrosis, fatty infiltration and atrophy. Fibrosis involved the sinus node in 6 cases, atrioventricular (AV) node in 7, AV bundle in 8, bundle branches in 10 and ventricular myocardium in 11. Fatty infiltration was observed in the sinus node in two cases, AV node in two, AV bundle in six, bundle branches in one and ventricular myocardium in nine. Atrophy was prominent in the AV bundle in five and bundle branches in eight. Lymphocytes infiltrated the conduction system in three cases and were associated with myotonic dystrophy in two and varicella myocarditis in one. Ventricular myocytes were hypertrophied in seven cases, vacuolated in three and exhibited disarray in two. The distribution and extent of conduction system lesions tended to correspond to antemortem electrocardiographic abnormalities, including prolonged PR interval in six cases, intraventricular conduction delay in six and bundle branch block in four. Cardiac involvement by myotonic dystrophy may have contributed to sudden death in four cases.
Collapse
Affiliation(s)
- H H Nguyen
- Department of Pathology, Mayo Clinic, Rochester, Minnesota 55905
| | | | | | | |
Collapse
|
31
|
Mielke U, Haass A, Sen S, Schmidt W. Antimyotonic therapy with tocainide under ECG control in the myotonic dystrophy of Curschmann-Steinert. J Neurol 1985; 232:271-4. [PMID: 3932602 DOI: 10.1007/bf00313863] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ten patients suffering from advanced myotonic dystrophy with severe myotonic symptoms were treated with 800-1200 mg/day of the anti-arrhythmic drug tocainide (Xylotocan). All patients reported a marked subjective improvement of myotonia, which was confirmed by objective tests. Except for a slight QT-prolongation in one patient, the ECG was not significantly altered by the treatment. Twenty-four-hour ECG after treatment disclosed that pre-existing ventricular arrhythmia disappeared in three cases. The occurrence of complex ventricular arrhythmia in two patients under treatment was not necessarily due to specific effects of the drug but might be explained by the high spontaneous variability of rhythm disorders. In these patients suffering from myotonic dystrophy with typical cardiomyopathy no deleterious effects of the drug were observed, especially no cardiac arrhythmias which would have necessitated interruption of treatment. Therefore, the authors recommend symptomatic therapy with tocainide for myotonia and paramyotonia congenita, as well as in myotonic dystrophy patients suffering from marked myotonic stiffness. ECG and 24-h ECG should be carefully recorded as necessary in any treatment with anti-arrhythmic drugs.
Collapse
|
32
|
Perloff JK, Stevenson WG, Roberts NK, Cabeen W, Weiss J. Cardiac involvement in myotonic muscular dystrophy (Steinert's disease): a prospective study of 25 patients. Am J Cardiol 1984; 54:1074-81. [PMID: 6496328 DOI: 10.1016/s0002-9149(84)80147-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The presence, degree and frequency of disorders of cardiac conduction and rhythm and of regional or global myocardial dystrophy or myotonia have not previously been studied prospectively and systematically in the same population of patients with myotonic dystrophy. Accordingly, 25 adults with classic Steinert's disease underwent electrocardiography, 24-hour ambulatory electrocardiography, vectorcardiography, chest x-rays, echocardiography, electrophysiologic studies, and technetium-99m angiography. Clinically important cardiac manifestations of myotonic dystrophy reside in specialized tissues rather than in myocardium. Involvement is relatively specific, primarily assigned to the His-Purkinje system. The cardiac muscle disorder takes the form of dystrophy rather than myotonia, and is not selective, appearing with approximately equal distribution in all 4 chambers. Myocardial dystrophy seldom results in clinically overt ventricular failure, but may be responsible for atrial and ventricular arrhythmias. Since myotonic dystrophy is genetically transmitted, a primary biochemical defect has been proposed with complete expression of the gene toward striated muscle tissue, whether skeletal or cardiac. Specialized cardiac tissue and myocardium have close, if not identical, embryologic origins, so it is not surprising that the genetic marker affects both. Cardiac involvement is therefore an integral part of myotonic dystrophy, targeting particularly the infranodal conduction system, to a lesser extent the sinus node, and still less specifically, the myocardium.
Collapse
|
33
|
Hartwig GB, Miller SE, Frost AP, Roses AD. Myotonic muscular dystrophy: morphology, histochemistry, and growth characteristics of cultured skin fibroblasts. Muscle Nerve 1982; 5:125-30. [PMID: 7070393 DOI: 10.1002/mus.880050208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Swick HM, Werlin SL, Dodds WJ, Hogan WJ. Pharyngoesophageal motor function in patients with myotonic dystrophy. Ann Neurol 1981; 10:454-7. [PMID: 7305298 DOI: 10.1002/ana.410100508] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Six adults with myotonic dystrophy underwent detailed radiological and manometric studies of pharyngoesophageal function. Four of the patients had no history of swallowing dysfunction, while two had very mild symptoms. All patients showed abnormalities of pharyngoesophageal function. Pharyngeal peristalsis was present but of low amplitude. Resting upper esophageal sphincter pressure was diminished, but the sphincter relaxed normally. Peristalsis in the esophageal body was invariably absent in the striated muscle segment of the esophagus and was either absent of decreased in amplitude in the smooth muscle segment. The lower esophageal sphincter was normal. Myotonia did not occur in the sphincters or the esophageal body. These findings suggest that pharyngoesophageal dysfunction is common in patients with myotonic dystrophy, even when clinical symptoms are absent. The abnormalities are probably related to muscle weakness rather than to myotonia in the pharyngeal and esophageal musculature.
Collapse
|