1
|
Akman M, Monteleone C, Doronzo G, Godel M, Napoli F, Merlini A, Campani V, Nele V, Balmas E, Chontorotzea T, Fontana S, Digiovanni S, Barbu FA, Astanina E, Jafari N, Salaroglio IC, Kopecka J, De Rosa G, Mohr T, Bertero A, Righi L, Novello S, Scagliotti GV, Bussolino F, Riganti C. TFEB controls sensitivity to chemotherapy and immuno-killing in non-small cell lung cancer. J Exp Clin Cancer Res 2024; 43:219. [PMID: 39107857 PMCID: PMC11304671 DOI: 10.1186/s13046-024-03142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND In non-small cell lung cancer (NSCLC) the efficacy of chemo-immunotherapy is affected by the high expression of drug efflux transporters as ABCC1 and by the low expression of ABCA1, mediating the isopentenyl pyrophosphate (IPP)-dependent anti-tumor activation of Vγ9Vδ2 T-lymphocytes. In endothelial cells ABCA1 is a predicted target of the transcription factor EB (TFEB), but no data exists on the correlation between TFEB and ABC transporters involved in the chemo-immuno-resistance in NSCLC. METHODS The impact of TFEB/ABCC1/ABCA1 expression on NSCLC patients' survival was analyzed in the TCGA-LUAD cohort and in a retrospective cohort of our institution. Human NSCLC cells silenced for TFEB (shTFEB) were analyzed for ABC transporter expression, chemosensitivity and immuno-killing. The chemo-immuno-sensitizing effects of nanoparticles encapsulating zoledronic acid (NZ) on shTFEB tumors and on tumor immune-microenvironment were evaluated in Hu-CD34+ mice by single-cell RNA-sequencing. RESULTS TFEBlowABCA1lowABCC1high and TFEBhighABCA1highABCC1low NSCLC patients had the worst and the best prognosis, respectively, in the TCGA-LUAD cohort and in a retrospective cohort of patients receiving platinum-based chemotherapy or immunotherapy as first-line treatment. By silencing shTFEB in NSCLC cells, we demonstrated that TFEB was a transcriptional inducer of ABCA1 and a repressor of ABCC1. shTFEB cells had also a decreased activity of ERK1/2/SREBP2 axis, implying reduced synthesis and efflux via ABCA1 of cholesterol and its intermediate IPP. Moreover, TFEB silencing reduced cholesterol incorporation in mitochondria: this event increased the efficiency of OXPHOS and the fueling of ABCC1 by mitochondrial ATP. Accordingly, shTFEB cells were less immuno-killed by the Vγ9Vδ2 T-lymphocytes activated by IPP and more resistant to cisplatin. NZ, which increased IPP efflux but not OXPHOS and ATP production, sensitized shTFEB immuno-xenografts, by reducing intratumor proliferation and increasing apoptosis in response to cisplatin, and by increasing the variety of anti-tumor infiltrating cells (Vγ9Vδ2 T-lymphocytes, CD8+T-lymphocytes, NK cells). CONCLUSIONS This work suggests that TFEB is a gatekeeper of the sensitivity to chemotherapy and immuno-killing in NSCLC, and that the TFEBlowABCA1lowABCC1high phenotype can be predictive of poor response to chemotherapy and immunotherapy. By reshaping both cancer metabolism and tumor immune-microenvironment, zoledronic acid can re-sensitize TFEBlow NSCLCs, highly resistant to chemo- and immunotherapy.
Collapse
Affiliation(s)
- Muhlis Akman
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Ciro Monteleone
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Gabriella Doronzo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- IRCCS Candiolo Cancer Institute, Candiolo, Italy
| | - Martina Godel
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Francesca Napoli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Torino, Italy
| | - Alessandra Merlini
- Thoracic Oncology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Torino, Italy
| | - Virginia Campani
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Valeria Nele
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Tatiana Chontorotzea
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Simona Fontana
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Sabrina Digiovanni
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Francesca Alice Barbu
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Torino, Italy
| | | | - Niloufar Jafari
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Iris Chiara Salaroglio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Joanna Kopecka
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Luisella Righi
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Torino, Italy
| | - Silvia Novello
- Thoracic Oncology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Torino, Italy
| | | | - Federico Bussolino
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- IRCCS Candiolo Cancer Institute, Candiolo, Italy
| | - Chiara Riganti
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy.
| |
Collapse
|
2
|
Zhao LP, Wang HJ, Hu D, Hu JH, Guan ZR, Yu LH, Jiang YP, Tang XQ, Zhou ZH, Xie T, Lou JS. β-Elemene induced ferroptosis via TFEB-mediated GPX4 degradation in EGFR wide-type non-small cell lung cancer. J Adv Res 2024; 62:257-272. [PMID: 37689240 PMCID: PMC11331178 DOI: 10.1016/j.jare.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
INTRODUCTION β-Elemene (β-ELE), derived from Curcuma wenyujin, has anticancer effect on non-small cell lung cancer (NSCLC). However, the potential target and detail mechanism were still not clear. TFEB is the master regulator of lysosome biogenesis. Ferroptosis, a promising strategy for cancer therapy could be triggered via suppression on glutathione peroxidase 4 (GPX4). Weather TFEB-mediated lysosome degradation contributes to GPX4 decline and how β-ELE modulates on this process are not clear. OBJECTIVES To observe the action of β-ELE on TFEB, and the role of TFEB-mediated GPX4 degradation in β-ELE induced ferroptosis. METHODS Surface plasmon resonance (SPR) and molecular docking were applied to observe the binding affinity of β-ELE on TFEB. Activation of TFEB and lysosome were observed by immunofluorescence, western blot, flow cytometry and qPCR. Ferroptosis induced by β-ELE was observed via lipid ROS, a labile iron pool (LIP) assay and western blot. A549TFEB KO cells were established via CRISPR/Cas9. The regulation of TFEB on GPX4 and ferroptosis was observed in β-ELE treated A549WT and A549TFEB KO cells, which was further studied in orthotopic NOD/SCID mouse model. RESULTS β-ELE can bind to TFEB, notably activate TFEB, lysosome and transcriptional increase on downstream gene GLA, MCOLN1, SLC26A11 involved in lysosome activity in EGFR wild-type NSCLC cells. β-ELE increased GPX4 ubiquitination and lysosomal localization, with the increase on lysosome degradation of GPX4. Furthermore, β-ELE induced ferroptosis, which could be promoted by TFEB overexpression or compromised by TFEB knockout. Genetic knockout or inactivation of TFEB compromised β-ELE induced lysosome degradation of GPX4, which was further demonstrated in orthotopic NSCLC NOD/SCID mice model. CONCLUSION This study firstly demonstrated that TFEB promoted GPX4 lysosome degradation contributes to β-ELE induced ferroptosis in EGFR wild-type NSCLC, which gives a clue that TFEB mediated GPX4 degradation would be a novel strategy for ferroptosis induction and NSCLC therapy.
Collapse
Affiliation(s)
- Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zheng-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao-Qi Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
3
|
Quero J, Paesa M, Morales C, Mendoza G, Osada J, Teixeira JA, Ferreira-Santos P, Rodríguez-Yoldi MJ. Biological Properties of Boletus edulis Extract on Caco-2 Cells: Antioxidant, Anticancer, and Anti-Inflammatory Effects. Antioxidants (Basel) 2024; 13:908. [PMID: 39199154 PMCID: PMC11352050 DOI: 10.3390/antiox13080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Boletus edulis (BE) is a mushroom well known for its taste, nutritional value, and medicinal properties. The objective of this work was to study the biological effects of BE extracts on human colon carcinoma cells (Caco-2), evaluating parameters related to oxidative stress and inflammation. In this study, a hydroethanolic extract of BE was obtained by ohmic heating green technology. The obtained BE extracts are mainly composed of sugars (mainly trehalose), phenolic compounds (taxifolin, rutin, and ellagic acid), and minerals (K, P, Mg, Na, Ca, Zn, Se, etc.). The results showed that BE extracts were able to reduce cancer cell proliferation by the induction of cell cycle arrest at the G0/G1 stage, as well as cell death by autophagy and apoptosis, the alteration of mitochondrial membrane potential, and caspase-3 activation. The extracts modified the redox balance of the cell by increasing the ROS levels associated with a decrease in the thioredoxin reductase activity. Similarly, BE extracts attenuated Caco-2 inflammation by reducing both iNOS and COX-2 mRNA expression and COX-2 protein expression. In addition, BE extracts protected the intestine from the oxidative stress induced by H2O2. Therefore, this study provides information on the potential use of BE bioactive compounds as anticancer therapeutic agents and as functional ingredients to prevent oxidative stress in the intestinal barrier.
Collapse
Affiliation(s)
- Javier Quero
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (C.M.); (G.M.)
| | - Mónica Paesa
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain;
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Carmen Morales
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (C.M.); (G.M.)
| | - Gracia Mendoza
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (C.M.); (G.M.)
- Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Jesús Osada
- Department of Biochemistry and Molecular Cell Biology, Veterinary Faculty, University of Zaragoza, 50009 Zaragoza, Spain;
- CIBERobn, ISCIII, IIS Aragón, IA2, 50009 Zaragoza, Spain
| | - José António Teixeira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, 32004 Ourense, Spain
- IAA—Instituto de Agroecoloxía e Alimentación, University of Vigo (Campus Auga), As Lagoas, 32004 Ourense, Spain
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (C.M.); (G.M.)
- CIBERobn, ISCIII, IIS Aragón, IA2, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Radbakhsh S, Kesharwani P, Sahebkar A. Therapeutic potential of curcumin in autophagy modulation: Insights into the role of transcription factor EB. Mutat Res 2024; 829:111879. [PMID: 39178722 DOI: 10.1016/j.mrfmmm.2024.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Transcription factor EB (TFEB) is a basic Helix-Loop-Helix/Leucine Zipper (bHLHZip) class of DNA-binding proteins, which can control the expression of genes included in the autophagy-lysosomal pathway. TFEB regulates the autophagic flux by enhancing lysosome biogenesis, forming autophagosomes, and fusion with lysosomes, thereby facilitating cellular clearance of pathogenic protein structures. Curcumin is a natural polyphenolic molecule with pharmacological properties that make it a potential therapeutic candidate for a wide range of diseases. One of the important curcumin mechanisms of action includes modulation of autophagy through affecting various signaling components such as TFEB. This review discusses in vitro and in vivo evidence on the effects of curcumin on autophagy process via modulating TFEB activity in different disorders.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Hu P, Yan T, Lv S, Ye M, Wu M, Fang H, Xiao B. Exosomal HMGB3 released by glioma cells confers the activation of NLRP3 inflammasome and pyroptosis in tumor-associated macrophages. Tissue Cell 2024; 88:102406. [PMID: 38761792 DOI: 10.1016/j.tice.2024.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Previous evidences has highlighted the pivotal role of NOD-like receptor family pyrin domain-containing 3 (NLRP3)-mediated inflammasomes and pyroptosis activation in driving tumor malignancy and shaping the tumor microenvironment. Herein, we aimed to elucidate the impact of high-mobility group box 3 (HMGB3) released in glioma-derived exosomes on macrophage infiltration in gliomas, NLRP3 inflammasome activation and polarization. METHODS Transcripts and protein levels of HMGB3, and cytokines associated with macrophage phenotypes and pyroptosis were assessed in glioma tissues and cell lines (U251, LN229, T98G, A172) using qRT-PCR and/or Western blot analysis. Exosomes secreted from LN229 and NHA cells were isolated via differential ultracentrifugation and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and analysis of exosome-related markers. PKH67 staining was employed to examine exosomes uptake by THP-1 differentiated macrophages. Flow cytometry was utilized to assess macrophage pyroptotic rates and polarization-related markers. RESULTS HMGB3 expression was elevated in glioma tissues, serum samples and tumor cell lines. Kaplan-Meier curves revealed a positive correlation between higher HMGB3 expression and poor overall survival and recurrence-free survival. Moreover, glioma tissues with increased HMGB3 expression exhibited significant upregulation of M2 macrophages markers (CD68, CD206, Arg1) and NLRP3 inflammasome components (NLRP3, IL-1β, ASC), suggesting that HMGB3 was closely associated with macrophage infiltration and NLRP3 inflammasome activation. Notably, HMGB3 was found to be enriched in glioma cell- secreted exosomes and could be internalized by macrophages. Knockdown of HMGB3 in glioma cell exosomes could restrain M2 macrophage polarization, NLRP3 inflammasome activation and pyroptosis. CONCLUSION These findings suggested that glioma cells secreted exosomal HMGB3 could facilitate macrophage M2 polarization, pyroptosis and inflammatory infiltration, indicating HMGB3 might be a poor prognosis factor for glioma.
Collapse
Affiliation(s)
- Ping Hu
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China
| | - Tengfeng Yan
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China
| | - Shigang Lv
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China
| | - Minhua Ye
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China
| | - Miaojing Wu
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China
| | - Hua Fang
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China
| | - Bing Xiao
- Department of Neurosurgery, the 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, PR China.
| |
Collapse
|
6
|
Zheng B, Wang Y, Zhou B, Qian F, Liu D, Ye D, Zhou X, Fang L. Urolithin A inhibits breast cancer progression via activating TFEB-mediated mitophagy in tumor macrophages. J Adv Res 2024:S2090-1232(24)00153-X. [PMID: 38615740 DOI: 10.1016/j.jare.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Urolithin A (UA) is a naturally occurring compound that is converted from ellagitannin-like precursors in pomegranates and nuts by intestinal flora. Previous studies have found that UA exerts tumor-suppressive effects through antitumor cell proliferation and promotion of memory T-cell expansion, but its role in tumor-associated macrophages remains unknown. OBJECTIVES Our study aims to reveal how UA affects tumor macrophages and tumor cells to inhibit breast cancer progression. METHODS Observe the effect of UA treatment on breast cancer progression though in vivo and in vitro experiments. Western blot and PCR assays were performed to discover that UA affects tumor macrophage autophagy and inflammation. Co-ip and Molecular docking were used to explore specific molecular mechanisms. RESULTS We observed that UA treatment could simultaneously inhibit harmful inflammatory factors, especially for InterleuKin-6 (IL-6) and tumor necrosis factor α (TNF-α), in both breast cancer cells and tumor-associated macrophages, thereby improving the tumor microenvironment and delaying tumor progression. Mechanistically, UA induced the key regulator of autophagy, transcription factor EB (TFEB), into the nucleus in a partially mTOR-dependent manner and inhibited the ubiquitination degradation of TFEB, which facilitated the clearance of damaged mitochondria via the mitophagy-lysosomal pathway in macrophages under tumor supernatant stress, and reduced the deleterious inflammatory factors induced by the release of nucleic acid from damaged mitochondria. Molecular docking and experimental studies suggest that UA block the recognition of TFEB by 1433 and induce TFEB nuclear localization. Notably, UA treatment demonstrated inhibitory effects on tumor progression in multiple breast cancer models. CONCLUSION Our study elucidated the anti-breast cancer effect of UA from the perspective of tumor-associated macrophages. Specifically, TFEB is a crucial downstream target in macrophages.
Collapse
Affiliation(s)
- Bowen Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fengyuan Qian
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
7
|
Zhang X, Zhang K, Zhang J, Chang W, Zhao Y, Suo X. DNMTs-mediated SOCS3 methylation promotes the occurrence and development of AML. Eur J Haematol 2024; 112:439-449. [PMID: 37950514 DOI: 10.1111/ejh.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVES As a tumor suppressor gene, SOCS3 inhibits the growth of tumor cells by regulating JAK/STAT signaling pathway through negative feedback. This study aimed to investigate the biological function and mechanism of SOCS3 methylation mediated by DNMTs in the development of AML. METHODS Bone marrow samples were collected from 70 AML patients and 20 healthy volunteers. The expression and methylation status of each gene were detected by RT-qPCR, western blot and MS-PCR, and the growth and apoptosis rate of leukemia cell lines were detected by CCK-8 and flow cytometry. The effects of changes in SOCS3 gene expression and methylation status of AML cell lines were observed by gene transfection and gene knockdown. RESULTS The methylation rate of SOCS3 in AML initial treatment group was significantly higher than that in the remission group and the normal control group (60% vs. 0%, 0%). The expression of SOCS3 in the SOCS3 methylation group was significantly lower than that in the non-methylated group and control group, while the expression of DNMT1, DNMT3a, p-JAK2, p-STAT3 and p-STAT5 were significantly higher than those in the non-methylated group and control group. Demethylation treatment, SOCS3 transfection and DNMT3a knockdown could up-regulate the expression of SOCS3, which decreased the proliferation and increased the apoptosis of leukemia cell lines. CONCLUSION SOCS3 methylation mediated by DNMTs promotes the occurrence and development of AML and can be used as a potential biomarker for the diagnosis and efficacy evaluation of AML.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Hematology, Handan Central Hospital, Handan, Hebei, China
| | - Kai Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Zhang
- Department of Hematology, Handan Central Hospital, Handan, Hebei, China
| | - Wei Chang
- Department of Hematology, Handan Central Hospital, Handan, Hebei, China
| | - Yunguo Zhao
- Department of Medicine, Handan Central Hospital, Handan, Hebei, China
| | - Xiaohui Suo
- Department of Hematology, Handan Central Hospital, Handan, Hebei, China
| |
Collapse
|
8
|
Hu M, Fan JX, He ZY, Zeng J. The regulatory role of autophagy between TAMs and tumor cells. Cell Biochem Funct 2024; 42:e3984. [PMID: 38494666 DOI: 10.1002/cbf.3984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Cancer has become a global public health problem and its harmful effects have received widespread attention. Conventional treatments such as surgical resection, radiotherapy and other techniques are applicable to clinical practice, but new drugs are constantly being developed and other therapeutic approaches, such as immunotherapy are being applied. In addition to studying the effects on individual tumor cells, it is important to explore the role of tumor microenvironment on tumor cell development since tumor cells do not exist alone but in the tumor microenvironment. In the tumor microenvironment, tumor cells are interconnected with other stromal cells and influence each other, among which tumor-associated macrophages (TAMs) are the most numerous immune cells. At the same time, it was found that cancer cells have different levels of autophagy from normal cells. In cancer therapy, the occurrence of autophagy plays an important role in promoting tumor cell death or inhibiting tumor cell death, and is closely related to the environment. Therefore, elucidating the regulatory role of autophagy between TAMs and tumor cells may be an important breakthrough, providing new perspectives for further research on antitumor immune mechanisms and improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Min Hu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jiao-Xiu Fan
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zi-Yue He
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jun Zeng
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
- Animal Biology Key Laboratory of Chongqing Education Commission of China
| |
Collapse
|
9
|
Xu Y, Shao B, Zhang Y. The significance of targeting lysosomes in cancer immunotherapy. Front Immunol 2024; 15:1308070. [PMID: 38370407 PMCID: PMC10869645 DOI: 10.3389/fimmu.2024.1308070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Lysosomes are intracellular digestive organelles that participate in various physiological and pathological processes, including the regulation of immune checkpoint molecules, immune cell function in the tumor microenvironment, antigen presentation, metabolism, and autophagy. Abnormalities or dysfunction of lysosomes are associated with the occurrence, development, and drug resistance of tumors. Lysosomes play a crucial role and have potential applications in tumor immunotherapy. Targeting lysosomes or harnessing their properties is an effective strategy for tumor immunotherapy. However, the mechanisms and approaches related to lysosomes in tumor immunotherapy are not fully understood at present, and further basic and clinical research is needed to provide better treatment options for cancer patients. This review focuses on the research progress related to lysosomes and tumor immunotherapy in these.
Collapse
Affiliation(s)
- Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Yafeng Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
- Institute for Hospital Management of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Noorbakhsh Varnosfaderani SM, Ebrahimzadeh F, Akbari Oryani M, Khalili S, Almasi F, Mosaddeghi Heris R, Payandeh Z, Li C, Nabi Afjadi M, Alagheband Bahrami A. Potential promising anticancer applications of β-glucans: a review. Biosci Rep 2024; 44:BSR20231686. [PMID: 38088444 PMCID: PMC10776902 DOI: 10.1042/bsr20231686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
β-Glucans are valuable functional polysaccharides distributed in nature, especially in the cell walls of fungi, yeasts, bacteria, and cereals. The unique features of β-glucans, such as water solubility, viscosity, molecular weight, and so on, have rendered them to be broadly applied in various food systems as well as in medicine to improve human health. Moreover, inhibition of cancer development could be achieved by an increase in immune system activity via β-glucans. β-glucans, which are part of a class of naturally occurring substances known as biological response modifiers (BRMs), have also shown evidence of being anti-tumorogenic, anti-cytotoxic, and anti-mutagenic. These properties make them attractive candidates for use as pharmaceutical health promoters. Along these lines, they could activate particular proteins or receptors, like lactosylceramide (LacCer), Dickin-1, complement receptor 3 (CR3), scavenge receptors (SR), and the toll-like receptor (TLR). This would cause the release of cytokines, which would then activate other antitumor immune cells, like macrophages stimulating neutrophils and monocytes. These cells are biased toward pro-inflammatory cytokine synthesis and phagocytosis enhancing the elicited immunological responses. So, to consider the importance of β-glucans, the present review introduces the structure characteristics, biological activity, and antitumor functions of fungal β-glucans, as well as their application.
Collapse
Affiliation(s)
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | | | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran
| |
Collapse
|
11
|
Shen HY, Xu JL, Zhang W, Chen QN, Zhu Z, Mao Y. Exosomal circRHCG promotes breast cancer metastasis via facilitating M2 polarization through TFEB ubiquitination and degradation. NPJ Precis Oncol 2024; 8:22. [PMID: 38287113 PMCID: PMC10825185 DOI: 10.1038/s41698-024-00507-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/06/2023] [Indexed: 01/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive cancer with distant metastasis. Accumulated evidence has demonstrated that exosomes are involved in TNBC metastasis. Elucidating the mechanism underlying TNBC metastasis has important clinical significance. In the present study, exosomes were isolated from clinical specimens and TNBC cell lines. Colony formation, EdU incorporation, wound healing, and transwell assays were performed to examine TNBC cell proliferation, migration, and metastasis. Macrophage polarization was evaluated by flow cytometry and RT-qPCR analysis of polarization markers. A mouse model of subcutaneous tumor was established for assessment of tumor growth and metastasis. RNA pull-down, RIP and Co-IP assays were used for analyzing molecular interactions. Here, we proved that high abundance of circRHCG was observed in exosomes derived from TNBC patients, and increased exosomal circRHCG indicated poor prognosis. Silencing of circRHCG suppressed TNBC cell proliferation, migration, and metastasis. TNBC cell-derived exosomes promoted M2 polarization via delivering circRHCG. Exosomal circRHCG stabilized BTRC mRNA via binding FUS and naturally enhanced BTRC expression, thus promoting the ubiquitination and degradation of TFEB in THP-1 cells. In addition, knockdown of BTRC or overexpression of TFEB counteracted exosomal circRHCG-mediated facilitation of M2 polarization. Furthermore, exosomal circRHCG promoted TNBC cell proliferation and metastasis by facilitating M2 polarization. Knockdown of circRHCG reduced tumor growth, metastasis, and M2 polarization through the BTRC/TFEB axis in vivo. In summary, exosomal circRHCG promotes M2 polarization by stabilizing BTRC and promoting TFEB degradation, thereby accelerating TNBC metastasis and growth. Our study provides promising therapeutic strategies against TNBC.
Collapse
Affiliation(s)
- Hong-Yu Shen
- Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, Suzhou, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Lin Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Division of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Qin-Nan Chen
- Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing, China.
| | - Zhen Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuan Mao
- Department of Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Yue M, Yang Z, Sun J, Liu Z. A candidate prognostic biomarker: TFEB inhibits tumor progression via elevating CDKN1A in bladder cancer. Int Immunopharmacol 2023; 125:111016. [PMID: 37890378 DOI: 10.1016/j.intimp.2023.111016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Bladder cancer(BC) is among the most prevalent malignancies in the world, with 549,393 new cases documented in 2018, and most BC patients have a poor prognosis. Transcription factor EB (TFEB) is considered a crucial controller of lysosomal-associated diseases, but a growing number of research in recent years have reported that TFEB plays other functions in tumors independent of lysosomal autophagy. In this study, we aimed to assess whether TFEB is a biomarker for BC and a molecular target for BC therapy. TFEB was lowly expressed in BC tissues relative to paracancerous tissues, and its elevated expression was strongly associated to a better prognosis for BC patients. TFEB overexpression markedly suppressed cell proliferation, limited cell migration, and accelerated apoptosis. Tumor growth in vivo was also suppressed. Mechanistically, we found that TFEB promoted CDKN1A expression by binding to the upstream progenitor of the CDKN1A promoter, which was also dependent on p53. Finally, Immune cell infiltration in BC tissues, PDL-1 expression, and Single-cell RNA sequencing data revealed immunotherapy may have a positive correlation with TFEB expression. Our study identifies that TFEB regulates CDKN1A in BC and has a positive prognostic value, while its expression is also positively correlated with immune cell infiltration. Therefore, TFEB may represent a recent therapeutic target for BC.
Collapse
Affiliation(s)
- Minghao Yue
- Department of Urology, Tianjin First Central Hospital, Tianjin, China.
| | - Zhe Yang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Jiabin Sun
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, China.
| | - Zan Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
13
|
Zhu QM, Li HX, Ma PQ, Wu LX, Wang TH, Li WB, Zhang L, Yang X, Kong X, Sun YL, Yan T. A potential immunotherapy target for breast cancer: parenchymal and immune-stromal expression of the NLRP3 inflammasome pathway. BMC Cancer 2023; 23:1163. [PMID: 38031068 PMCID: PMC10685553 DOI: 10.1186/s12885-023-11609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The NOD-, LRR- and pyrin domain‑containing 3 (NLRP3) inflammasome is a critical component of the innate immune system. It has been known to play an important role in the carcinogenesis and prognosis of breast cancer patients. While the clinical evidence of the relationship between NLRP3 inflammasome activation and long-term survival is still limited, the possible roles of parenchymal or immune-stromal cells of breast cancer tissues in contributing to such carcinogenesis and progression still need to be clarified. This study is an analysis of patients receiving breast cancer surgery in a previous clinical trial. METHODS Immunohistochemistry (IHC) was used to detect the expression levels of NLRP3 inflammasome pathway-related proteins, including NLRP3, caspase-1, apoptosis-associated speck-like protein (ASC), IL-1β, and IL-18, in parenchymal and immune-stromal cells of breast cancer tissues compared to those of adjacent normal tissues, respectively. The relationship between NLRP3 inflammasome expression and clinicopathological characteristics, as well as 5-year survivals were analyzed using the Chi-square test, Kaplan-Meier survival curves, and Cox regression analysis. RESULTS In the parenchymal cells, ASC and IL-18 protein levels were significantly up-regulated in breast cancer tissues compared with adjacent normal tissues (P<0.05). In the immune-stromal cells, all the five NLRP3 inflammasome pathway-related proteins were significantly elevated in breast cancer tissues compared with adjacent normal tissues (P < 0.05). Carcinoma cell embolus was found to significantly correlate with high NLRP3 expression in parenchymal cells of the tumor (x2=4.592, P=0.032), while the expression of caspase-1 was negatively correlated with tumor progression. Histological grades were found to have a positive correlation with IL-18 expression in immune-stromal cells of the tumor (x2=14.808, P=0.001). Kaplan-Meier survival analysis revealed that high IL-18 expression in the immune-stromal cells and the positive carcinoma cell embolus were both associated with poor survival (P < 0.05). The multivariable Cox proportional hazards regression model implied that the high IL-18 expression and positive carcinoma cell embolus were both independent risk factors for unfavorable prognosis. CONCLUSIONS The activation of NLRP3 inflammasome pathways in immune-stromal and tumor parenchymal cells in the innate immune system was not isotropic and the main functions are somewhat different in breast cancer patients. Caspase-1 in parenchymal cells of the tumor was negatively correlated with tumor progression, and upregulation of IL-18 in immune-stromal cells of breast cancer tissues is a promising prognostic biomarker and a potential immunotherapy target. TRIAL REGISTRATION This clinical trial has been registered at the Chictr.org.cn registry system on 21/08/2018 (ChiCTR1800017910).
Collapse
Affiliation(s)
- Qian-Mei Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui-Xian Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Pei-Qing Ma
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin-Xin Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tai-Hang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen-Bin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Zhang
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
- The School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Xue Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu-Lin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tao Yan
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
14
|
Augustin RC, Newman S, Li A, Joy M, Lyons M, Pham MP, Lucas P, Smith K, Sander C, Isett B, Davar D, Najjar YG, Zarour HM, Kirkwood JM, Luke JJ, Bao R. Identification of tumor-intrinsic drivers of immune exclusion in acral melanoma. J Immunother Cancer 2023; 11:e007567. [PMID: 37857525 PMCID: PMC10603348 DOI: 10.1136/jitc-2023-007567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Acral melanoma (AM) has distinct characteristics as compared with cutaneous melanoma and exhibits poor response to immune checkpoint inhibitors (ICIs). Tumor-intrinsic mechanisms of immune exclusion have been identified in many cancers but less studied in AM. We characterized clinically annotated tumors from patients diagnosed with AM at our institution in correlation with ICI response using whole transcriptome RNAseq, whole exome sequencing, CD8 immunohistochemistry, and multispectral immunofluorescence imaging. A defined interferon-γ-associated T cell-inflamed gene signature was used to categorize tumors into non-T cell-inflamed and T cell-inflamed phenotypes. In combination with AM tumors from two published studies, we systematically assessed the immune landscape of AM and detected differential gene expression and pathway activation in a non-T cell-inflamed tumor microenvironment (TME). Two single-cell(sc) RNAseq AM cohorts and 11 bulk RNAseq cohorts of various tumor types were used for independent validation on pathways associated with lack of ICI response. In total, 892 specimens were included in this study. 72.5% of AM tumors showed low expression of the T cell-inflamed gene signature, with 23.9% of total tumors categorized as the non-T cell-inflamed phenotype. Patients of low CD3+CD8+PD1+ intratumoral T cell density showed poor prognosis. We identified 11 oncogenic pathways significantly upregulated in non-T cell-inflamed relative to T cell-inflamed TME shared across all three acral cohorts (MYC, HGF, MITF, VEGF, EGFR, SP1, ERBB2, TFEB, SREBF1, SOX2, and CCND1). scRNAseq analysis revealed that tumor cell-expressing pathway scores were significantly higher in low versus high T cell-infiltrated AM tumors. We further demonstrated that the 11 pathways were enriched in ICI non-responders compared with responders across cancers, including AM, cutaneous melanoma, triple-negative breast cancer, and non-small cell lung cancer. Pathway activation was associated with low expression of interferon stimulated genes, suggesting suppression of antigen presentation. Across the 11 pathways, fatty acid synthase and CXCL8 were unifying downstream target molecules suggesting potential nodes for therapeutic intervention. A unique set of pathways is associated with immune exclusion and ICI resistance in AM. These data may inform immunotherapy combinations for immediate clinical translation.
Collapse
Affiliation(s)
- Ryan C Augustin
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah Newman
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Aofei Li
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marion Joy
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Maureen Lyons
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Mary P Pham
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Peter Lucas
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katelyn Smith
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Cindy Sander
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Brian Isett
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Diwakar Davar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hassane M Zarour
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John M Kirkwood
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jason John Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Li K, Zeng X, Liu P, Zeng X, Lv J, Qiu S, Zhang P. The Role of Inflammation-Associated Factors in Head and Neck Squamous Cell Carcinoma. J Inflamm Res 2023; 16:4301-4315. [PMID: 37791117 PMCID: PMC10544098 DOI: 10.2147/jir.s428358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), which originates in the head or neck tissues, is characterized by high rates of recurrence and metastasis. Inflammation is important in HNSCC prognosis. Inflammatory cells and their secreted factors contribute to the various stages of HNSCC development through multiple mechanisms. In this review, the mechanisms through which inflammatory factors, signaling pathways, and cells contribute to the initiation and progression of HNSCC have been discussed in detail. Furthermore, the diagnostic and therapeutic potential of targeting inflammation in HNSCC has been discussed to gain new insights into improving patient prognosis.
Collapse
Affiliation(s)
- Kang Li
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Xiaoxia Zeng
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Jie Lv
- School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi, People’s Republic of China
| | - Shuqi Qiu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| | - Peng Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong, People’s Republic of China
- Department of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital & Shenzhen Key Laboratory of Otorhinolaryngology, Shenzhen Institute of Otorhinolaryngology, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
16
|
Zhang L, Li Z, Zhang L, Qin Y, Yu D. Dissecting the multifaced function of transcription factor EB (TFEB) in human diseases: From molecular mechanism to pharmacological modulation. Biochem Pharmacol 2023; 215:115698. [PMID: 37482200 DOI: 10.1016/j.bcp.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The transcription factor EB (TFEB) is a transcription factor of the MiT/TFE family that translocations from the cytoplasm to the nucleus in response to various stimuli, including lysosomal stress and nutrient starvation. By activating genes involved in lysosomal function, autophagy, and lipid metabolism, TFEB plays a crucial role in maintaining cellular homeostasis. Dysregulation of TFEB has been implicated in various diseases, including cancer, neurodegenerative diseases, metabolic diseases, cardiovascular diseases, infectious diseases, and inflammatory diseases. Therefore, modulating TFEB activity with agonists or inhibitors may have therapeutic potential. In this review, we reviewed the recently discovered regulatory mechanisms of TFEB and their impact on human diseases. Additionally, we also summarize the existing TFEB inhibitors and agonists (targeted and non-targeted) and discuss unresolved issues and future research directions in the field. In summary, this review sheds light on the crucial role of TFEB, which may pave the way for its translation from basic research to practical applications, bringing us closer to realizing the full potential of TFEB in various fields.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuan Qin
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
17
|
Augustin RC, Newman S, Li A, Joy M, Lyons M, Pham M, Lucas PC, Smith K, Sander C, Isett B, Davar D, Najjar YG, Zarour HM, Kirkwood JM, Luke JJ, Bao R. Identification of tumor-intrinsic drivers of immune exclusion in acral melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554717. [PMID: 37662409 PMCID: PMC10473736 DOI: 10.1101/2023.08.24.554717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Acral melanoma (AM) has distinct characteristics as compared to cutaneous melanoma and exhibits poor response to immune checkpoint inhibitors (ICI). Tumor-intrinsic mechanisms of immune exclusion have been identified in many cancers but less studied in AM. Methods We characterized clinically annotated tumors from patients diagnosed with AM at our institution in correlation with ICI response using whole transcriptome RNAseq, whole exome sequencing, CD8 immunohistochemistry, and multispectral immunofluorescence imaging. A defined interferon-γ-associated T cell-inflamed gene signature was used to categorize tumors into non-T cell-inflamed and T cell-inflamed phenotypes. In combination with AM tumors from two published studies, we systematically assessed the immune landscape of AM and detected differential gene expression and pathway activation in a non-T cell-inflamed tumor microenvironment (TME). Two single-cell(sc) RNAseq AM cohorts and 11 bulk RNAseq cohorts of various tumor types were used for independent validation on pathways associated with lack of ICI response. In total, 892 specimens were included in this study. Results 72.5% of AM tumors showed low expression of the T cell-inflamed gene signature, with 23.9% of total tumors categorized as the non-T cell-inflamed phenotype. Patients of low CD3 + CD8 + PD1 + intratumoral T cell density showed poor prognosis. We identified 11 oncogenic pathways significantly upregulated in non-T cell-inflamed relative to T cell-inflamed TME shared across all three acral cohorts (MYC, HGF, MITF, VEGF, EGFR, SP1, ERBB2, TFEB, SREBF1, SOX2, and CCND1). scRNAseq analysis revealed that tumor cell-expressing pathway scores were significantly higher in low vs high T cell-infiltrated AM tumors. We further demonstrated that the 11 pathways were enriched in ICI non-responders compared to responders across cancers, including acral melanoma, cutaneous melanoma, triple-negative breast cancer, and non-small cell lung cancer. Pathway activation was associated with low expression of interferon stimulated genes, suggesting suppression of antigen presentation. Across the 11 pathways, fatty acid synthase and CXCL8 were unifying downstream target molecules suggesting potential nodes for therapeutic intervention. Conclusions A unique set of pathways is associated with immune exclusion and ICI resistance in AM. These data may inform immunotherapy combinations for immediate clinical translation.
Collapse
|
18
|
Liu Y, Sun Q, Zhang C, Ding M, Wang C, Zheng Q, Ma Z, Xu H, Zhou G, Wang X, Cheng Z, Xia H. STING-IRG1 inhibits liver metastasis of colorectal cancer by regulating the polarization of tumor-associated macrophages. iScience 2023; 26:107376. [PMID: 37554436 PMCID: PMC10405073 DOI: 10.1016/j.isci.2023.107376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/17/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
The liver is the main site of colorectal cancer (CRC) metastasis. Tumor-associated macrophages (TAMs) play a key role in tumor metastasis. Therefore, modulating the function of tumor-associated macrophages is a potential therapeutic strategy to control tumor metastasis. We found in vivo experiments that the activation of STING inhibited CRC liver metastasis in model mice and affected the macrophage phenotype in the tumor microenvironment. Mechanistically, STING affects TAM polarization and regulates macrophage function through IRG1. And STING activates IRG1 to promote the nuclear translocation of TFEB, affecting the ability of macrophages to suppress tumor metastasis.Therefore, this study highlights the critical role of the STING-IRG1 axis on TAM reprogramming and its role in the process of tumor liver metastasis, which may provide a promising therapeutic strategy for CRC liver metastasis.
Collapse
Affiliation(s)
- Yixuan Liu
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing 210009, China
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing 210009, China
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Chengfei Zhang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Min Ding
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an 710072, China
| | - Cheng Wang
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Qian Zheng
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Zhijie Ma
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Haojun Xu
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Xiaoming Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Zhangjun Cheng
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing 210009, China
| | - Hongping Xia
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine & Advanced Institute for Life and Health, Southeast University, Nanjing 210009, China
- School of Basic Medical Sciences & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
19
|
Hu JH, Li SY, Yu LH, Guan ZR, Jiang YP, Hu D, Wang HJ, Zhao LP, Zhou ZH, Yan YX, Xie T, Huang ZH, Lou JS. TFEB: a double-edged sword for tumor metastasis. J Mol Med (Berl) 2023; 101:917-929. [PMID: 37328669 DOI: 10.1007/s00109-023-02337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Transcription factor EB, a member of the microphthalmia-associated transcription factor (MiTF/TFE) family, is a master regulator of autophagy, lysosome biogenesis, and TAMs. Metastasis is one of the main reasons for the failure of tumor therapy. Studies on the relationship between TFEB and tumor metastasis are contradictory. On the positive side, TFEB mainly affects tumor cell metastasis via five aspects, including autophagy, epithelial-mesenchymal transition (EMT), lysosomal biogenesis, lipid metabolism, and oncogenic signaling pathways; on the negative side, TFEB mainly affects tumor cell metastasis in two aspects, including tumor-associated macrophages (TAMs) and EMT. In this review, we described the detailed mechanism of TFEB-mediated regulation of metastasis. In addition, we also described the activation and inactivation of TFEB in several aspects, including the mTORC1 and Rag GTPase systems, ERK2, and AKT. However, the exact process by which TFEB regulates tumor metastasis remains unclear in some pathways, which requires further studies.
Collapse
Affiliation(s)
- Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shou-Ye Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang, 311258, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhen-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Xin Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Zhi-Hui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
20
|
Chen LC, Mokgautsi N, Kuo YC, Wu ATH, Huang HS. In Silico Evaluation of HN-N07 Small Molecule as an Inhibitor of Angiogenesis and Lymphangiogenesis Oncogenic Signatures in Non-Small Cell Lung Cancer. Biomedicines 2023; 11:2011. [PMID: 37509650 PMCID: PMC10376976 DOI: 10.3390/biomedicines11072011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor angiogenesis and lymphangiogenesis pathways have been identified as important therapeutic targets in non-small cell lung cancer (NSCLC). Bevacizumab, which is a monoclonal antibody, was the initial inhibitor of angiogenesis and lymphangiogenesis that received approval for use in the treatment of advanced non-small cell lung cancer (NSCLC) in combination with chemotherapy. Despite its usage, patients may still develop resistance to the treatment, which can be attributed to various histological subtypes and the initiation of treatment at advanced stages of cancer. Due to their better specificity, selectivity, and safety compared to chemotherapy, small molecules have been approved for treating advanced NSCLC. Based on the development of multiple small-molecule antiangiogenic drugs either in house and abroad or in other laboratories to treat NSCLC, we used a quinoline-derived small molecule-HN-N07-as a potential target drug for NSCLC. Accordingly, we used computational simulation tools and evaluated the drug-likeness properties of HN-N07. Moreover, we identified target genes, resulting in the discovery of the target BIRC5/HIF1A/FLT4 pro-angiogenic genes. Furthermore, we used in silico molecular docking analysis to determine whether HN-N07 could potentially inhibit BIRC5/HIF1A/FLT4. Interestingly, the results of docking HN-N07 with the BIRC5, FLT4, and HIF1A oncogenes revealed unique binding affinities, which were significantly higher than those of standard inhibitors. In summary, these results indicate that HN-N07 shows promise as a potential inhibitor of oncogenic signaling pathways in NSCLC. Ongoing studies that involve in vitro experiments and in vivo investigations using tumor-bearing mice are in progress, aiming to evaluate the therapeutic effectiveness of the HN-N07 small molecule.
Collapse
Affiliation(s)
- Lung-Ching Chen
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
21
|
Ying-Rui M, Bu-Fan B, Deng L, Rong S, Qian-Mei Z. Targeting the stimulator of interferon genes (STING) in breast cancer. Front Pharmacol 2023; 14:1199152. [PMID: 37448962 PMCID: PMC10338072 DOI: 10.3389/fphar.2023.1199152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Breast cancer has a high occurrence rate globally and its treatment has demonstrated clinical efficacy with the use of systemic chemotherapy and immune checkpoint blockade. Insufficient cytotoxic T lymphocyte infiltration and the accumulation of immunosuppressive cells within tumours are the primary factors responsible for the inadequate clinical effectiveness of breast cancer treatment. The stimulator of interferon genes (STING) represents a pivotal protein in the innate immune response. Upon activation, STING triggers the activation and enhancement of innate and adaptive immune functions, resulting in therapeutic benefits for malignant tumours. The STING signalling pathway in breast cancer is influenced by various factors such as deoxyribonucleic acid damage response, tumour immune microenvironment, and mitochondrial function. The use of STING agonists is gaining momentum in breast cancer research. This review provides a comprehensive overview of the cyclic guanosine monophosphate-adenosine monophosphate synthase-STING pathway, its agonists, and the latest findings related to their application in breast cancer.
Collapse
Affiliation(s)
- Ma Ying-Rui
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bai Bu-Fan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Deng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Rong
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhou Qian-Mei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
22
|
Wang T, Qin Y, Ye Z, Jing DS, Fan GX, Liu MQ, Zhuo QF, Ji SR, Chen XM, Yu XJ, Xu XW, Li Z. A new glance at autophagolysosomal-dependent or -independent function of transcriptional factor EB in human cancer. Acta Pharmacol Sin 2023:10.1038/s41401-023-01078-7. [PMID: 37012494 PMCID: PMC10374590 DOI: 10.1038/s41401-023-01078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Autophagy-lysosome system plays a variety of roles in human cancers. In addition to being implicated in metabolism, it is also involved in tumor immunity, remodeling the tumor microenvironment, vascular proliferation, and promoting tumor progression and metastasis. Transcriptional factor EB (TFEB) is a major regulator of the autophagy-lysosomal system. With the in-depth studies on TFEB, researchers have found that it promotes various cancer phenotypes by regulating the autophagolysosomal system, and even in an autophagy-independent way. In this review, we summarize the recent findings about TFEB in various types of cancer (melanoma, pancreatic ductal adenocarcinoma, renal cell carcinoma, colorectal cancer, breast cancer, prostate cancer, ovarian cancer and lung cancer), and shed some light on the mechanisms by which it may serve as a potential target for cancer treatment.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - De-Sheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Gui-Xiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Meng-Qi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qi-Feng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shun-Rong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xue-Min Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiao-Wu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Martina JA, Jeong E, Puertollano R. p38 MAPK-dependent phosphorylation of TFEB promotes monocyte-to-macrophage differentiation. EMBO Rep 2023; 24:e55472. [PMID: 36507874 PMCID: PMC9900348 DOI: 10.15252/embr.202255472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
The transcription factor EB (TFEB) regulates energy homeostasis and cellular response to a wide variety of stress conditions, including nutrient deprivation, oxidative stress, organelle damage, and pathogens. Here we identify S401 as a novel phosphorylation site within the TFEB proline-rich domain. Phosphorylation of S401 increases significantly in response to oxidative stress, UVC light, growth factors, and LPS, whereas this increase is prevented by p38 MAPK inhibition or depletion, revealing a new role for p38 MAPK in TFEB regulation. Mutation of S401 in THP1 cells demonstrates that the p38 MAPK/TFEB pathway plays a particularly relevant role during monocyte differentiation into macrophages. TFEB-S401A monocytes fail to upregulate the expression of multiple immune genes in response to PMA-induced differentiation, including critical cytokines, chemokines, and growth factors. Polarization of M0 macrophages into M1 inflammatory macrophages is also aberrant in TFEB-S401A cells. These results indicate that TFEB-S401 phosphorylation links differentiation signals to the transcriptional control of monocyte differentiation.
Collapse
Affiliation(s)
- José A Martina
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Eutteum Jeong
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Rosa Puertollano
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
24
|
Huang Z, Zhu S, Han Z, Li C, Liang J, Wang Y, Zhang S, Zhang J. Proteome-Wide Analysis Reveals TFEB Targets for Establishment of a Prognostic Signature to Predict Clinical Outcomes of Colorectal Cancer. Cancers (Basel) 2023; 15:744. [PMID: 36765702 PMCID: PMC9913156 DOI: 10.3390/cancers15030744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Dephosphorylation of transcription factor EB (TFEB) at Ser142 and Ser138 determines its nuclear localization and transcriptional activity. The link between TFEB-associated genes and colorectal cancer (CRC) progression and prognosis remains unclear. To systematically identify the targets of TFEB, we performed data-independent acquisition (DIA)-based quantitative proteomics to compare global protein changes in wild-type (WT) DLD1 cells and TFEBWT- or TFEBS142A/S138A (activated status)-expressing DLD1 cells. A total of 6048 proteins were identified and quantified in three independent experiments. The differentially expressed proteins in TFEBS142A/S138A versus TFEBWT and TFEBWT versus control groups were compared, and 60 proteins were identified as products of TFEB transcriptional regulation. These proteins were significantly associated with vesicular endocytic trafficking, the HIF-1 signaling pathway, and metabolic processes. Furthermore, we generated a TFEB-associated gene signature using a univariate and LASSO Cox regression model to screen robust prognostic markers. An eight-gene signature (PLSCR3, SERPINA1, ATP6V1C2, TIMP1, SORT1, MAP2, KDM4B, and DDAH2) was identified. According to the signature, patients were assigned to high-risk and low-risk groups. Higher risk scores meant worse overall survival and higher epithelial-mesenchymal transition (EMT) scores. Additionally, as per the clinicopathological parameters and gene signature, a nomogram was constructed that was utilized to enhance the quantification capacity in risk assessment for individual patients. This research shows that TFEB directly mediates network effects in CRC, and the identified TFEB gene signature-based model may provide important information for the clinical judgment of prognosis.
Collapse
Affiliation(s)
- Zijia Huang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510613, China
- MOE Key Laboratory of Tumor Molecular Biology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Sheng Zhu
- Department of Nuclear Medicine, Affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou 423000, China
| | - Ziqin Han
- Department of Radiology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510613, China
| | - Chen Li
- Department of Radiology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510613, China
| | - Junze Liang
- MOE Key Laboratory of Tumor Molecular Biology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510613, China
| | - Jing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510613, China
| |
Collapse
|
25
|
Luo S, Jiang Y, Anfu Zheng, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Chen M, Li W, Li X, Gu L, Sun Y, Xiao Z, Shen J. Targeting hypoxia-inducible factors for breast cancer therapy: A narrative review. Front Pharmacol 2022; 13:1064661. [PMID: 36532768 PMCID: PMC9751339 DOI: 10.3389/fphar.2022.1064661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 09/15/2023] Open
Abstract
Hypoxia-inducible factors (HIFs), central regulators for cells to adapt to low cellular oxygen levels, are often overexpressed and activated in breast cancer. HIFs modulate the primary transcriptional response of downstream pathways and target genes in response to hypoxia, including glycolysis, angiogenesis and metastasis. They can promote the development of breast cancer and are associated with poor prognosis of breast cancer patients by regulating cancer processes closely related to tumor invasion, metastasis and drug resistance. Thus, specific targeting of HIFs may improve the efficiency of cancer therapy. In this review, we summarize the advances in HIF-related molecular mechanisms and clinical and preclinical studies of drugs targeting HIFs in breast cancer. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for HIF targeting are increasingly being developed. Therefore, we highlight the HIF related DDS, including liposomes, polymers, metal-based or carbon-based nanoparticles.
Collapse
Affiliation(s)
- Shuang Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Pharmacy, The Second People’s Hospital of Jiangyou, Mianyang, China
| | - Yu Jiang
- Department of Pharmacy, The People’s Hospital of Wusheng, Guang’an, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
26
|
Xiong K, Qi M, Stoeger T, Zhang J, Chen S. The role of tumor-associated macrophages and soluble mediators in pulmonary metastatic melanoma. Front Immunol 2022; 13:1000927. [PMID: 36131942 PMCID: PMC9483911 DOI: 10.3389/fimmu.2022.1000927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Skin malignant melanoma is a highly aggressive skin tumor, which is also a major cause of skin cancer-related mortality. It can spread from a relatively small primary tumor and metastasize to multiple locations, including lymph nodes, lungs, liver, bone, and brain. What’s more metastatic melanoma is the main cause of its high mortality. Among all organs, the lung is one of the most common distant metastatic sites of melanoma, and the mortality rate of melanoma lung metastasis is also very high. Elucidating the mechanisms involved in the pulmonary metastasis of cutaneous melanoma will not only help to provide possible explanations for its etiology and progression but may also help to provide potential new therapeutic targets for its treatment. Increasing evidence suggests that tumor-associated macrophages (TAMs) play an important regulatory role in the migration and metastasis of various malignant tumors. Tumor-targeted therapy, targeting tumor-associated macrophages is thus attracting attention, particularly for advanced tumors and metastatic tumors. However, the relevant role of tumor-associated macrophages in cutaneous melanoma lung metastasis is still unclear. This review will present an overview of the origin, classification, polarization, recruitment, regulation and targeting treatment of tumor-associated macrophages, as well as the soluble mediators involved in these processes and a summary of their possible role in lung metastasis from cutaneous malignant melanoma. This review particularly aims to provide insight into mechanisms and potential therapeutic targets to readers, interested in pulmonary metastasis melanoma.
Collapse
Affiliation(s)
- Kaifen Xiong
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College), Jinan University, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Xiangya Hospital of Central South University, Changsha, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jianglin Zhang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Guangdong, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shenzhen, China
- *Correspondence: Jianglin Zhang, ; Shanze Chen,
| | - Shanze Chen
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People’s Hospital (The Second Clinical Medical College), Jinan University, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Jianglin Zhang, ; Shanze Chen,
| |
Collapse
|
27
|
Yang M, Tang B, Wang S, Tang L, Wen D, Vlodavsky I, Yang SM. Non-enzymatic heparanase enhances gastric tumor proliferation via TFEB-dependent autophagy. Oncogenesis 2022; 11:49. [PMID: 35970822 PMCID: PMC9378687 DOI: 10.1038/s41389-022-00424-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Heparanase (HPA) is the predominant enzyme that cleaves heparan sulfate and plays a critical role in a variety of pathophysiological processes. HPA activity has been traditionally correlated with tumor metastasis due to participation in the cleavage and remodeling of the extracellular matrix (ECM). Apart from its well-characterized catalytic properties, HPA was noticed to exert biological functions not rely on its enzymatic activity. This feature is supported by studies showing induction of signaling events, such as Src and AKT, by nonenzymatic HPA mutant. We provide evidence here that active HPA and inactive HPA mutant proteins enhance gastric cancer cell growth, possibly attributed to TFEB-mediated autophagy. Similarly, HPA gene silencing resulted in decreased gastric cancer cell proliferation and autophagy. Besides, TFEB inhibition reduced cell growth and autophagy induced by nonenzymatic HPA. Notably, HPA and TFEB were significantly elevated in gastric carcinomas compared with the adjacent gastric tissue. Moreover, the elevation of HPA gene expression and upregulation of TFEB levels have been associated with advanced clinical stage and poor prognosis of gastric cancer, providing strong clinical support for a connection between TFEB and HPA. Thus, neutralizing the nonenzymatic function of HPA and the related TFEB-driven autophagy may profoundly impact gastric cancer progression.
Collapse
Affiliation(s)
- Min Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Dalin Wen
- Wound Trauma Medical Center, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, the Bruce Rappaport Faculty of Medicine, Technion, Haifa, 31096, Israel.
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China.
| |
Collapse
|
28
|
Ding J, Xie Y, Sun X, Shao F, Pan J, Chen J, Zhu Z, Qi C. Inhibition of TFEB promotes tumor-educated dendritic cells activation to enhance antitumor immune responses. Mol Immunol 2022; 147:30-39. [DOI: 10.1016/j.molimm.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
|
29
|
Zhang Y, Zhang X, Meng Y, Xu X, Zuo D. The role of glycolysis and lactate in the induction of tumor-associated macrophages immunosuppressive phenotype. Int Immunopharmacol 2022; 110:108994. [PMID: 35777265 DOI: 10.1016/j.intimp.2022.108994] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Growing evidence highlights that glycolysis and tumor-derived lactate could skew tumor-associated macrophages (TAMs) toward an immunosuppressive phenotype. However, the updated research has not been systematically summarized yet. TAMs are educated by the tumor microenvironment (TME) and exert immunosuppressive functions and tumorigenic effects via multiple biological processes. It is well known that lactate generated by aerobic glycolysis is significantly accumulated in TME and promotes tumor progression in solid tumors. Moreover, some recent research demonstrated that glycolysis is activated in TAMs to support M2-like polarization, which is absolutely in contrast with the metabolic profile of M2 macrophages in inflammation. Notably, lactate produced by high levels of glycolysis is not only a metabolic by-product but also an oncometabolite. TAMs could access the biological information delivered by lactate and further enhance protumor functions such as immunosuppression and angiogenesis. Here, we outline the connection between glycolysis and TAM phenotype to elucidate the metabolic characteristics of TAMs. Further, insights into the specific molecular mechanisms of lactate-induced TAM polarization and potential therapeutic targets are summarized. We sought to discuss the reciprocal interaction between tumor cells and TAMs mediated by lactate, which will lay a foundation for the research aiming to elucidate the complex functions of TAMs.
Collapse
Affiliation(s)
- Yijia Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xue Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yuting Meng
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiaobo Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
30
|
Zhang C, Xu C, Ma C, Zhang Q, Bu S, Zhang DL, Yu L, Wang H. TRPs in Ovarian Serous Cystadenocarcinoma: The Expression Patterns, Prognostic Roles, and Potential Therapeutic Targets. Front Mol Biosci 2022; 9:915409. [PMID: 35813831 PMCID: PMC9263218 DOI: 10.3389/fmolb.2022.915409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/05/2022] [Indexed: 02/02/2023] Open
Abstract
Ovarian cancer (usually ovarian serous cystadenocarcinoma, or OV) is the fifth leading cause of cancer-related deaths in women, with more than 184,000 deaths reported worldwide annually, and is a highly malignant carcinoma. However, the mechanism of etiology remains unclear. The lack of prognostic and diagnostic biomarkers is a main limitation for clinical diagnosis and treatment. The transient receptor potential (TRP) channels play essential roles in the occurrence and development of cancers which may have the potential as a therapeutic target for OV. In our study, we used bioinformatic methods to study the potential effect and function of the TRP family in patients with OV. Differential expression analysis showed that the expression of TRPC7, TRPV4, and other TRP family members was significantly different between tumor and normal tissues. Through survival analysis, we screened out that the high expression of TRPC7, TRPV4, and TRPM (2,4,8) was negatively correlated with the prognosis of patients. In contrast, the low expression of TRPM3 was negatively associated with the prognosis. Cox regression analysis further indicated that TRPV4 was OV’s most likely therapeutic target. Finally, we conducted mRNA expression analysis, functional enrichment analysis, and immune infiltration analysis to confirm that TRPV4 was the most convincing therapeutic target of OV.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Cong Xu
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chuanshun Ma
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Qinghua Zhang
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Siyuan Bu
- Department of Pharmacology, School of Medicine, Southeast University, Dingjiaqiao 87, Nanjing, China
| | - Dao-Lai Zhang
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Liting Yu
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Liting Yu, ; Hongmei Wang,
| | - Hongmei Wang
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
- Department of Pharmacology, School of Medicine, Southeast University, Dingjiaqiao 87, Nanjing, China
- *Correspondence: Liting Yu, ; Hongmei Wang,
| |
Collapse
|
31
|
Guerrero-Navarro L, Jansen-Dürr P, Cavinato M. Age-Related Lysosomal Dysfunctions. Cells 2022; 11:cells11121977. [PMID: 35741106 PMCID: PMC9221958 DOI: 10.3390/cells11121977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
Organismal aging is normally accompanied by an increase in the number of senescent cells, growth-arrested metabolic active cells that affect normal tissue function. These cells present a series of characteristics that have been studied over the last few decades. The damage in cellular organelles disbalances the cellular homeostatic processes, altering the behavior of these cells. Lysosomal dysfunction is emerging as an important factor that could regulate the production of inflammatory molecules, metabolic cellular state, or mitochondrial function.
Collapse
Affiliation(s)
- Lena Guerrero-Navarro
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria; (L.G.-N.); (P.J.-D.)
- Center for Molecular Biosciences Innsbruck, Innrain 58, 6020 Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria; (L.G.-N.); (P.J.-D.)
- Center for Molecular Biosciences Innsbruck, Innrain 58, 6020 Innsbruck, Austria
| | - Maria Cavinato
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria; (L.G.-N.); (P.J.-D.)
- Center for Molecular Biosciences Innsbruck, Innrain 58, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
32
|
Zhou R, Lin X, Liu D, Li Z, Zeng J, Lin X, Liang X. Research Hotspots and Trends Analysis of TFEB: A Bibliometric and Scientometric Analysis. Front Mol Neurosci 2022; 15:854954. [PMID: 35531069 PMCID: PMC9069162 DOI: 10.3389/fnmol.2022.854954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 01/31/2023] Open
Abstract
Objective To explore the development context, research hotspots and frontiers of Transcription factor EB (TFEB) from 1991 to 2021 by bibliometric analysis. Methods Publications about TFEB research from 1991 to 2021 were retrieved from the Web of Science Core Collection (WoSCC). Excel 2007 was used to collect basic information, including publications, research areas. VOSviewer 1.6.17 was used to analyze co-authorship of countries, institutes and authors. Co-citation of cited authors, cited references were analyzed by CiteSpace V.5.8.R3. In addition, CiteSpace was used to analyze keywords cluster and forecast research frontiers. Results A total of 1,059 literatures were retrieved, including 1,340 research institutes and 393 academic journals. The main area of research related to TFEB is biology (340), the most published country and institutes were the United States (487) and Baylor College of Medicine (70). Settembre C owned the highest co-citations (663). Trending keywords may indicate frontier topics, including “Alzheimer’s disease,” “Parkinson’s disease,” “(p21; q12),” “melanoma,” “pancreatic cancer,” “breast cancer,” “calcineurin,” “TFE3,” “trehalose,” and “curcumin.” Conclusion This research provides valuable information for the study of TFEB. Disease research focuses more on neurodegenerative diseases (NDs) and tumors. Trehalose and curcumin are novel agents acting on TFEB. Rap-TRPML1-Calcineurin-TFEB and TFE3 are increasing signal pathway researches, similarly, the molecular biological mechanism of TFEB needs further exploration.
Collapse
Affiliation(s)
- Runjin Zhou
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Lin
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongmin Liu
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingchun Zeng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingdong Lin
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaodi Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Chen CC, Krogsaeter E, Kuo CY, Huang MC, Chang SY, Biel M. Endolysosomal cation channels point the way towards precision medicine of cancer and infectious diseases. Biomed Pharmacother 2022; 148:112751. [PMID: 35240524 DOI: 10.1016/j.biopha.2022.112751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/02/2022] Open
Abstract
Infectious diseases and cancer are among the key medical challenges that humankind is facing today. A growing amount of evidence suggests that ion channels in the endolysosomal system play a crucial role in the pathology of both groups of diseases. The development of advanced patch-clamp technologies has allowed us to directly characterize ion fluxes through endolysosomal ion channels in their native environments. Endolysosomes are essential organelles for intracellular transport, digestion and metabolism, and maintenance of homeostasis. The endolysosomal ion channels regulate the function of the endolysosomal system through four basic mechanisms: calcium release, control of membrane potential, pH change, and osmolarity regulation. In this review, we put particular emphasis on the endolysosomal cation channels, including TPC2 and TRPML2, which are particularly important in monocyte function. We discuss existing endogenous and synthetic ligands of these channels and summarize current knowledge of their impact on channel activity and function in different cell types. Moreover, we summarize recent findings on the importance of TPC2 and TRPML2 channels as potential drug targets for the prevention and treatment of the emerging infectious diseases and cancer.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | | | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
34
|
Feng L, Weng J, Yao C, Wang R, Wang N, Zhang Y, Tanaka Y, Su L. Extracellular Vesicles Derived from SIPA1high Breast Cancer Cells Enhance Macrophage Infiltration and Cancer Metastasis through Myosin-9. BIOLOGY 2022; 11:biology11040543. [PMID: 35453742 PMCID: PMC9032110 DOI: 10.3390/biology11040543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary The high expression of signal-induced proliferation-associated 1 (SIPA1) in breast cancer could aggravate cancer cell metastasis, but how the tumour microenvironment is involved in this incident is unknown. In this study, we investigated whether breast cancer cells with high SIPA1 expression recruited macrophages into the tumour microenvironment. We also found that extracellular vesicles (EVs) derived from MDA-MB-231 cells significantly enhanced macrophage migration, compared with that from SIPA1-knockdown MDA-MB-231 cells both in vitro and in vivo. In terms of the mechanism, SIPA1 in cancer cells modulated the key protein myosin-9 in EVs and promoted macrophage infiltration via EVs. We confirmed that either down-regulating SIPA1 expression or blocking myosin-9 by its inhibitor, blebbistatin, led to the suppression of macrophage infiltration. These findings contribute to a deep understanding of how SIPA1 regulates the tumour microenvironment in breast cancer to facilitate tumour metastasis and provide a basis for the development of therapeutics against breast cancer metastasis. Abstract Tumour cell metastasis can be genetically regulated by proteins contained in cancer cell-derived extracellular vesicles (EVs) released to the tumour microenvironment. Here, we found that the number of infiltrated macrophages was positively correlated with the expression of signal-induced proliferation-associated 1 (SIPA1) in invasive breast ductal carcinoma tissues and MDA-MB-231 xenograft tumours. EVs derived from MDA-MB-231 cells (231-EVs) significantly enhanced macrophage migration, compared with that from SIPA1-knockdown MDA-MB-231 cells (231/si-EVs) both in vitro and in vivo. We revealed that SIPA1 promoted the transcription of MYH9, which encodes myosin-9, and up-regulated the expression level of myosin-9 in breast cancer cells and their EVs. We also found that blocking myosin-9 by either down-regulating SIPA1 expression or blebbistatin treatment led to the suppression of macrophage infiltration. Survival analysis showed that breast cancer patients with high expression of SIPA1 and MYH9 molecules had worse relapse-free survival (p = 0.028). In summary, SIPA1high breast cancer can enhance macrophage infiltration through EVs enriched with myosin-9, which might aggravate the malignancy of breast cancer.
Collapse
Affiliation(s)
- Lingyun Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.F.); (J.W.); (C.Y.); (R.W.); (N.W.)
| | - Jun Weng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.F.); (J.W.); (C.Y.); (R.W.); (N.W.)
| | - Chenguang Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.F.); (J.W.); (C.Y.); (R.W.); (N.W.)
| | - Ruyuan Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.F.); (J.W.); (C.Y.); (R.W.); (N.W.)
| | - Ning Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.F.); (J.W.); (C.Y.); (R.W.); (N.W.)
| | - Yilei Zhang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
- Correspondence: (Y.T.); (L.S.); Tel.: +81-95-819-7063 (Y.T.); +86-27-8779-2024 (L.S.); Fax: +81-95-819-2189 (Y.T.); +86-27-8779-2072 (L.S.)
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.F.); (J.W.); (C.Y.); (R.W.); (N.W.)
- Correspondence: (Y.T.); (L.S.); Tel.: +81-95-819-7063 (Y.T.); +86-27-8779-2024 (L.S.); Fax: +81-95-819-2189 (Y.T.); +86-27-8779-2072 (L.S.)
| |
Collapse
|
35
|
Tang X, Hao N, Zhou Y, Liu Y. Ultrasound targeted microbubble destruction-mediated SOCS3 attenuates biological characteristics and epithelial-mesenchymal transition (EMT) of breast cancer stem cells. Bioengineered 2022; 13:3896-3910. [PMID: 35109743 PMCID: PMC8973955 DOI: 10.1080/21655979.2022.2031384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SOCS3 is low-expressed in breast cancer and may be a potential target. Ultrasound targeted microbubble destruction (UTMD) improved the efficiency of gene transfection. We explored the effects of UTMD-mediated transfection of SOCS3 on the biological characteristics and epithelial-mesenchymal transition (EMT) of breast cancer stem cells (BCSCs). The expression of SOCS3 in breast cancer (BC) and its association with prognosis were evaluated by GEPIA and The Cancer Genome Atlas (TCGA) websites. BCSCs were sorted by flow cytometry and immunomagnetic bead method, followed by sphere formation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and xenograft assays to test their effects in vitro and in vivo. The levels of SOCS3, EMT- and STAT3 pathway-related genes were determined by RT-qPCR and Western blot, respectively. The effects of liposome and UTMD on BCSCs and mice were compared by the gain-of-function experiments. Low expression of SOCS3 was associated with poor prognosis of BC patients, and found in BC and BCSCs. BCSCs were successfully sorted, with high viability and tumorigenicity. UTMD increased the transfection rate of SOCS3. Moreover, UTMD- and liposome-mediated SOCS3 reduced cell viability, proliferation, migration and invasion, blocked cell cycle, inhibited sphere formation in BCSCs, and retarded tumor growth in mice. Mechanistically, overexpressed SOCS3 inhibited the expressions of EMT-related genes and the activation of STAT3 pathway in BCSCs and mice. The regulatory effects of UTMD-mediated SOCS3 on the above-mentioned biological characteristics were better than liposome-mediated SOCS3. UTMD-mediated SOCS3 has a better therapeutic effect in BC, providing new experimental evidence for the treatment of BC.
Collapse
Affiliation(s)
- Xiaojiang Tang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Hao
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuhui Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
36
|
Tang PC, Chung JY, Xue VW, Xiao J, Meng X, Huang X, Zhou S, Chan AS, Tsang AC, Cheng AS, Lee T, Leung K, Lam EW, To K, Tang PM, Lan H. Smad3 Promotes Cancer-Associated Fibroblasts Generation via Macrophage-Myofibroblast Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101235. [PMID: 34791825 PMCID: PMC8728853 DOI: 10.1002/advs.202101235] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/24/2021] [Indexed: 05/11/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are important in tumor microenvironment (TME) driven cancer progression. However, CAFs are heterogeneous and still largely underdefined, better understanding their origins will identify new therapeutic strategies for cancer. Here, the authors discovered a new role of macrophage-myofibroblast transition (MMT) in cancer for de novo generating protumoral CAFs by resolving the transcriptome dynamics of tumor-associated macrophages (TAM) with single-cell resolution. MMT cells (MMTs) are observed in non-small-cell lung carcinoma (NSCLC) associated with CAF abundance and patient mortality. By fate-mapping study, RNA velocity, and pseudotime analysis, existence of novel macrophage-lineage-derived CAF subset in the TME of Lewis lung carcinoma (LLC) model is confirmed, which is directly transited via MMT from M2-TAM in vivo and bone-marrow-derived macrophages (BMDM) in vitro. Adoptive transfer of BMDM-derived MMTs markedly promote CAF formation in LLC-bearing mice. Mechanistically, a Smad3-centric regulatory network is upregulated in the MMTs of NSCLC, where chromatin immunoprecipitation sequencing(ChIP-seq) detects a significant enrichment of Smad3 binding on fibroblast differentiation genes in the macrophage-lineage cells in LLC-tumor. More importantly, macrophage-specific deletion and pharmaceutical inhibition of Smad3 effectively block MMT, therefore, suppressing the CAF formation and cancer progression in vivo. Thus, MMT may represent a novel therapeutic target of CAF for cancer immunotherapy.
Collapse
Affiliation(s)
- Philip Chiu‐Tsun Tang
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
- Department of Medicine and TherapeuticsLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | - Jeff Yat‐Fai Chung
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
| | - Vivian Wei‐wen Xue
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
| | - Jun Xiao
- Department of Medicine and TherapeuticsLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | | | - Xiao‐Ru Huang
- Department of Medicine and TherapeuticsLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
- Guangdong‐Hong Kong Joint Laboratory on Immunological and Genetic Kidney DiseasesGuangdong Academy of Medical SciencesGuangdong Provincial People's HospitalGuangzhouChina
| | - Shuang Zhou
- Department of Histology and EmbryologyTongji University School of MedicineTongji University Cancer InstituteShanghaiChina
| | - Alex Siu‐Wing Chan
- Department of Applied Social SciencesThe Hong Kong Polytechnic UniversityKowloonHong KongChina
| | - Anna Chi‐Man Tsang
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
| | | | - Tin‐Lap Lee
- ReproductionDevelopment and Endocrinology ProgramSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
| | - Kam‐Tong Leung
- Department of PaediatricsPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Eric W.‐F. Lam
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, Sun Yat‐sen UniversityGuangzhouGuangdong510060China
| | - Ka‐Fai To
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
| | - Patrick Ming‐Kuen Tang
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
| | - Hui‐Yao Lan
- Department of Medicine and TherapeuticsLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
- The Chinese University of Hong Kong‐Guangdong Academy of Sciences/Guangdong Provincial People's Hospital Joint Research Laboratory on Immunological and Genetic Kidney DiseasesThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
37
|
Chao X, Wang S, Hlobik M, Ballabio A, Ni HM, Ding WX. Loss of Hepatic Transcription Factor EB Attenuates Alcohol-Associated Liver Carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:87-103. [PMID: 34717896 PMCID: PMC8747011 DOI: 10.1016/j.ajpath.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/03/2023]
Abstract
Alcohol is a well-known risk factor for hepatocellular carcinoma. Autophagy plays a dual role in liver cancer, as it suppresses tumor initiation and promotes tumor progression. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy, which is impaired in alcohol-related liver disease. However, the role of TFEB in alcohol-associated liver carcinogenesis is unknown. Liver-specific Tfeb knockout (KO) mice and their matched wild-type (WT) littermates were injected with the carcinogen diethylnitrosamine (DEN), followed by chronic ethanol feeding. The numbers of both total and larger tumors increased significantly in DEN-treated mice fed ethanol diet than in mice fed control diet. Although the number of tumors was not different between WT and L-Tfeb KO mice fed either control or ethanol diet, the number of larger tumors was less in L-Tfeb KO mice than in WT mice. No differences were observed in liver injury, steatosis, inflammation, ductular reaction, fibrosis, and tumor cell proliferation in DEN-treated mice fed ethanol. However, the levels of glypican 3, a marker of malignant hepatocellular carcinoma, markedly decreased in DEN-treated L-Tfeb KO mice fed ethanol in comparison to the WT mice. These findings indicate that chronic ethanol feeding promotes DEN-initiated liver tumor development, which is attenuated by genetic deletion of hepatic TFEB.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Shaogui Wang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Madeline Hlobik
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
38
|
Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduct Target Ther 2021; 6:379. [PMID: 34744168 PMCID: PMC8572923 DOI: 10.1038/s41392-021-00778-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/26/2021] [Indexed: 01/18/2023] Open
Abstract
In recent years, accumulating evidence has elucidated the role of lysosomes in dynamically regulating cellular and organismal homeostasis. Lysosomal changes and dysfunction have been correlated with the development of numerous diseases. In this review, we interpreted the key biological functions of lysosomes in four areas: cellular metabolism, cell proliferation and differentiation, immunity, and cell death. More importantly, we actively sought to determine the characteristic changes and dysfunction of lysosomes in cells affected by these diseases, the causes of these changes and dysfunction, and their significance to the development and treatment of human disease. Furthermore, we outlined currently available targeting strategies: (1) targeting lysosomal acidification; (2) targeting lysosomal cathepsins; (3) targeting lysosomal membrane permeability and integrity; (4) targeting lysosomal calcium signaling; (5) targeting mTOR signaling; and (6) emerging potential targeting strategies. Moreover, we systematically summarized the corresponding drugs and their application in clinical trials. By integrating basic research with clinical findings, we discussed the current opportunities and challenges of targeting lysosomes in human disease.
Collapse
|
39
|
Raudenska M, Balvan J, Masarik M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol Cancer 2021; 20:140. [PMID: 34706732 PMCID: PMC8549397 DOI: 10.1186/s12943-021-01423-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is best known for its role in organelle and protein turnover, cell quality control, and metabolism. The autophagic machinery has, however, also adapted to enable protein trafficking and unconventional secretory pathways so that organelles (such as autophagosomes and multivesicular bodies) delivering cargo to lysosomes for degradation can change their mission from fusion with lysosomes to fusion with the plasma membrane, followed by secretion of the cargo from the cell. Some factors with key signalling functions do not enter the conventional secretory pathway but can be secreted in an autophagy-mediated manner.Positive clinical results of some autophagy inhibitors are encouraging. Nevertheless, it is becoming clear that autophagy inhibition, even within the same cancer type, can affect cancer progression differently. Even next-generation inhibitors of autophagy can have significant non-specific effects, such as impacts on endosome-related secretory pathways and secretion of extracellular vesicles (EVs). Many studies suggest that cancer cells release higher amounts of EVs compared to non-malignant cells, which makes the effect of autophagy inhibitors on EVs secretion highly important and attractive for anticancer therapy. In this review article, we discuss how different inhibitors of autophagy may influence the secretion of EVs and summarize the non-specific effects of autophagy inhibitors with a focus on endosome-related secretory pathways. Modulation of autophagy significantly impacts not only the quantity of EVs but also their content, which can have a deep impact on the resulting pro-tumourigenic or anticancer effect of autophagy inhibitors used in the antineoplastic treatment of solid cancers.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, CZ-166 28, Prague, Czech Republic.
| |
Collapse
|
40
|
Liu J, Yan X, Wang Z, Zhang N, Lin A, Li Z. Adipocyte factor CTRP6 inhibits homocysteine-induced proliferation, migration, and dedifferentiation of vascular smooth muscle cells through PPARγ/NLRP3. Biochem Cell Biol 2021; 99:596-605. [PMID: 34469206 DOI: 10.1139/bcb-2020-0670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NLRP3 and PPARγ play important roles in the development of atherosclerosis (AS). Studies have shown that PPARγ regulates the expression of NLRP3 in vascular diseases. In addition, the adipocyte factor CTRP6 can improve the activation of PPARγ in vascular diseases. However, the regulatory relationship between CTRP6, PPARγ, and NLRP3 in AS and its underlying mechanism have not been reported. Since proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) are key events in AS, in this study, we induced proliferation, migration, and dedifferentiation of VSCMs through homocysteine (HCY) to detect the specific effects of CTRP6, PPARγ, and NLRP3. Subsequently, CTRP6 was overexpressed and the PPARγ inhibitor GW9662 and agonist rosiglitazone were administered to HCY-induced VSCMs to investigate the mechanisms. The results show that the expression of CTRP6 decreased in HCY-induced VSMCs. In addition, CTRP6 overexpression inhibited the proliferation and migration of HCY-induced VSMCs, as well as cell cycle acceleration and dedifferentiation. Overexpression of CTRP6 increased HCY-induced PPARγ expression and inhibited NLRP3 expression. The addition of GW9662 and rosiglitazone further demonstrated that overexpression of CTRP6 inhibited HCY-induced VSMC proliferation, migration, and dedifferentiation through PPARγ/NLRP3 signaling. In conclusion, CTRP6 inhibited HCY-induced proliferation, migration, and dedifferentiation of VSMCs through PPARγ/NLRP3.
Collapse
Affiliation(s)
- JiLi Liu
- Department of Geriatrics, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - XiaoNing Yan
- The Fourth Clinical College, Shanxi Hospital of Integrated Traditional and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| | - ZhaoLin Wang
- Department of Traditional Chinese Medicine, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Na Zhang
- Department of Hematology, Shanxi Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi 030012, China
| | - AnHua Lin
- Department of Endocrinology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, China
| | - ZhiQiang Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, China
| |
Collapse
|
41
|
Kuo WT, Chang JM, Chen CC, Tsao N, Chang CP. Autophagy drives plasticity and functional polarization of tumor-associated macrophages. IUBMB Life 2021; 74:157-169. [PMID: 34467634 DOI: 10.1002/iub.2543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 08/07/2021] [Indexed: 01/11/2023]
Abstract
Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are key cells in regulating tumor development, metastasis, immune responses, inflammation, and chemoresistance. In response to TME stimulation, circulating monocytes are recruited and differentiated as TAMs. Most TAMs are defined as alternatively activated (M2) phenotype to create immunosuppressive TME and support tumor progression. In contrast, classically activated (M1) TAMs can produce pro-inflammatory cytokines and enhance immune responses against tumor development. Autophagy is a conserved catabolic process to control cellular homeostasis and biological function. Emerging evidence reveals crucial contribution of autophagy in modulating TAM plasticity and functional polarization in TME. In this review, we introduce the current understanding of autophagy-regulated TAM function in development of cancer. We focus on how autophagy modulates antigen presentation, LC3-associated phagocytosis, cytokine secretion, inflammasome regulation, recruitment, differentiation, and polarization of TAMs and suggest strategies for potential therapeutics by targeting autophagy in TAMs. We expect this review can provide a new notion of future cancer immunotherapy.
Collapse
Affiliation(s)
- Wan-Ting Kuo
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Ming Chang
- Department of Surgery, Division of Thoracic Surgery, Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chien-Chin Chen
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Nina Tsao
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Peng Chang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
42
|
Wang H, Fu Y. NR1D1 suppressed the growth of ovarian cancer by abrogating the JAK/STAT3 signaling pathway. BMC Cancer 2021; 21:871. [PMID: 34330232 PMCID: PMC8323274 DOI: 10.1186/s12885-021-08597-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Nuclear receptor subfamily 1 group D member 1 (NR1D1), a nuclear receptor associated with a variety of physiological processes, has a low level in ovarian cancer tissues compared with adjacent normal tissues. However, its role in ovarian cancer remains unclear. Methods The level of NR1D1 in ovarian cancer cells was determined by quantitative real-time PCR. Its role in ovarian cancer was explored through gain-of-function and lose-of-function. Cell growth was evaluated by CCK8 assay, immunofluorescence and flow cytometry. Western blot was conducted to assess the activation of JAK/STAT3 signaling pathway. A xenograft model of ovarian cancer was established to explore the role of NR1D1 in vivo. Results Up-regulation of NR1D1 repressed the ovarian cancer cell proliferation and induced cell cycle arrest and apoptosis, while silencing NR1D1 promoted their proliferation and G1/S transition. In addition, the JAK/STAT3 signaling pathway, an intracellular signal transduction closely associated with cancer progression, was inhibited by NR1D1. Consistently, xenografts with NR1D1 over-expression grew more slowly in vivo than the controls. Furthermore, NR1D1 up-regulated the expression of suppressor of cytokine signaling 3 (SOCS3), an inhibitor of the JAK/STAT3 signaling pathway. Whereas, SOCS3 silencing abolished the function of NR1D1 over-expression on ovarian cancer growth and JAK/STAT3 signaling pathway. Conclusions NR1D1 up-regulated the expression of SOCS3, resulting in suppression of the JAK/STAT3 signaling pathway, thus retarding the growth of ovarian cancer cells. This study highlights a profound role of NR1D1 in the treatment of ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08597-8.
Collapse
Affiliation(s)
- Huailin Wang
- Department of Gynecology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China
| | - Yan Fu
- Department of Gynecology, the First Hospital of Jilin University, 71 Xinmin Avenue, Changchun, 130021, China.
| |
Collapse
|
43
|
Kim S, Song HS, Yu J, Kim YM. MiT Family Transcriptional Factors in Immune Cell Functions. Mol Cells 2021; 44:342-355. [PMID: 33972476 PMCID: PMC8175148 DOI: 10.14348/molcells.2021.0067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022] Open
Abstract
The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.
Collapse
Affiliation(s)
- Seongryong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyun-Sup Song
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jihyun Yu
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST, Daejeon 34141, Korea
| |
Collapse
|
44
|
Targeting the NLRP3 Inflammasome as a New Therapeutic Option for Overcoming Cancer. Cancers (Basel) 2021; 13:cancers13102297. [PMID: 34064909 PMCID: PMC8151587 DOI: 10.3390/cancers13102297] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are multiprotein complexes that regulate the maturation and secretion of the proinflammatory cytokines interleukin-1beta (IL-1β and interleukin-18 (IL-18) in response to various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied and best characterized inflammasome and has been shown to be involved in several pathologies. Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target. In this review, we discuss the role of NLRP3 in the development and progression of cancer, offering a detailed summary of NLRP3 inflammasome activation (and inhibition) in the pathogenesis of various forms of cancer. Moreover, we focus on the therapeutic potential of targeting NLRP3 for cancer therapy, emphasizing how understanding NLRP3 inflammasome-dependent cancer mechanisms might guide the development of new drugs that target the inflammatory response of tumor-associated cells.
Collapse
|
45
|
Doronzo G, Astanina E, Bussolino F. The Oncogene Transcription Factor EB Regulates Vascular Functions. Front Physiol 2021; 12:640061. [PMID: 33912071 PMCID: PMC8072379 DOI: 10.3389/fphys.2021.640061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Transcription factor EB (TFEB) represents an emerging player in vascular biology. It belongs to the bHLH-leucine zipper transcription factor microphthalmia family, which includes microphthalmia-associated transcription factor, transcription factor E3 and transcription factor EC, and is known to be deregulated in cancer. The canonical transcriptional pathway orchestrated by TFEB adapts cells to stress in all kinds of tissues by supporting lysosomal and autophagosome biogenesis. However, emerging findings highlight that TFEB activates other genetic programs involved in cell proliferation, metabolism, inflammation and immunity. Here, we first summarize the general principles and mechanisms by which TFEB activates its transcriptional program. Then, we analyze the current knowledge of TFEB in the vascular system, placing particular emphasis on its regulatory role in angiogenesis and on the involvement of the vascular unit in inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Gabriella Doronzo
- Department of Oncology, University of Torino, Candiolo, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Elena Astanina
- Department of Oncology, University of Torino, Candiolo, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy.,Laboratory of Vascular Oncology, Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Italy
| |
Collapse
|
46
|
Faria SS, Costantini S, de Lima VCC, de Andrade VP, Rialland M, Cedric R, Budillon A, Magalhães KG. NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. J Biomed Sci 2021; 28:26. [PMID: 33840390 PMCID: PMC8040227 DOI: 10.1186/s12929-021-00724-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most diagnosed malignancy in women. Increasing evidence has highlighted the importance of chronic inflammation at the local and/or systemic level in breast cancer pathobiology, influencing its progression, metastatic potential and therapeutic outcome by altering the tumor immune microenvironment. These processes are mediated by a variety of cytokines, chemokines and growth factors that exert their biological functions either locally or distantly. Inflammasomes are protein signaling complexes that form in response to damage- and pathogen-associated molecular patterns (DAMPS and PAMPS), triggering the release of pro-inflammatory cytokines. The dysregulation of inflammasome activation can lead to the development of inflammatory diseases, neurodegeneration, and cancer. A crucial signaling pathway leading to acute and chronic inflammation occurs through the activation of NLRP3 inflammasome followed by caspase 1-dependent release of IL-1β and IL-18 pro-inflammatory cytokines, as well as, by gasdermin D-mediated pyroptotic cell death. In this review we focus on the role of NLRP3 inflammasome and its components in breast cancer signaling, highlighting that a more detailed understanding of the clinical relevance of these pathways could significantly contribute to the development of novel therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Susan Costantini
- Experimental Pharmacology Unit - Laboratory of Mercogliano (AV), Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | | | | | - Mickaël Rialland
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1231, 21000, Dijon, France
- UFR Sciences de la Vie, Terre et Environnement, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Rebe Cedric
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, 21000, Dijon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1231, 21000, Dijon, France
| | - Alfredo Budillon
- Experimental Pharmacology Unit - Laboratory of Mercogliano (AV), Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
47
|
Vetvicka V, Teplyakova TV, Shintyapina AB, Korolenko TA. Effects of Medicinal Fungi-Derived β-Glucan on Tumor Progression. J Fungi (Basel) 2021; 7:250. [PMID: 33806255 PMCID: PMC8065548 DOI: 10.3390/jof7040250] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
β-Glucans have been studied in animal species, from earthworms to humans. They form a heterogenous group of glucose polymers found in fungi, plants, bacteria, and seaweed. β-Glucans have slowly emerged as an important target for the recognition of pathogens. In the current review, we highlight the major roles of mushroom-derived β-glucans on cancer progression.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 630117, USA
| | - Tamara V. Teplyakova
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559 Novosibirsk, Russia;
| | - Alexandra B. Shintyapina
- Federal Research Center of Fundamental and Translational Medicine, Federal State Budget Scientific Institution, 630117 Novosibirsk, Russia;
| | - Tatiana A. Korolenko
- Laboratory of Experimental Models of Neurodegeneration, Scientific Research Institute of Neurosciences and Medicine, Federal State Budgetary Scientific Institution, 4 Timakov St., 630117 Novosibirsk, Russia;
| |
Collapse
|
48
|
Zhu X, Zhuo Y, Wu S, Chen Y, Ye J, Deng Y, Feng Y, Liu R, Cai S, Zou Z, Wang B, Wu CL, Zeng G, Zhong W. TFEB Promotes Prostate Cancer Progression via Regulating ABCA2-Dependent Lysosomal Biogenesis. Front Oncol 2021; 11:632524. [PMID: 33732651 PMCID: PMC7959325 DOI: 10.3389/fonc.2021.632524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 01/11/2023] Open
Abstract
Transcription factor EB (TFEB), a member of the MiT family, is dysregulated in different cancers and exerts specific biological functions within the tumor microenvironment. Downregulation of TFEB induces macrophage polarization in the TME and promotes tumor progression. However, the biological role and clinical significance of TFEB in prostate cancer (PCa) remain unknown. This study aimed to identify the role of TFEB in PCa and its potential clinical value. We explored TFEB expression in PCa using public databases and verified its prognostic value using immunohistochemistry in PCa tissue samples. The results revealed that TFEB expression was up-regulated in PCa tissues and was associated with cancer metastasis. Next, overexpression of TFEB promoted PCa cell malignant behavior in in vivo and in vitro experiments. RNA-sequencing and bioinformatics analysis showed high expression of TFEB promoted lysosomal biogenesis and knockdown of TFEB expression decreased the number of lysosomes. Furthermore, the ATP-binding cassette transporter A2 (ABCA2) was identified as a target gene of TFEB, which was verified using the cleavage under targets and release using nuclease (CUT&RUN) assay and qRT-PCR. Silencing of ABCA2 reduced lysosomal biogenesis and decreased matrix metalloproteinases expression, which reduced PCa cell invasion and migration in the tumor microenvironment. Our study suggests that TFEB promotes PCa progression by regulating ABCA2 through lysosomal biogenesis and may serve as a prognostic factor or as a potential therapeutic target of PCa.
Collapse
Affiliation(s)
- Xuejin Zhu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangjia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shulin Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yanfei Chen
- Department of Urology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jianheng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yulin Deng
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuanfa Feng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ren Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shanghua Cai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhihao Zou
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Wang
- Department of Urology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
49
|
Cristofani R, Piccolella M, Crippa V, Tedesco B, Montagnani Marelli M, Poletti A, Moretti RM. The Role of HSPB8, a Component of the Chaperone-Assisted Selective Autophagy Machinery, in Cancer. Cells 2021; 10:335. [PMID: 33562660 PMCID: PMC7915307 DOI: 10.3390/cells10020335] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The cellular response to cancer-induced stress is one of the major aspects regulating cancer development and progression. The Heat Shock Protein B8 (HSPB8) is a small chaperone involved in chaperone-assisted selective autophagy (CASA). CASA promotes the selective degradation of proteins to counteract cell stress such as tumor-induced stress. HSPB8 is also involved in (i) the cell division machinery regulating chromosome segregation and cell cycle arrest in the G0/G1 phase and (ii) inflammation regulating dendritic cell maturation and cytokine production. HSPB8 expression and role are tumor-specific, showing a dual and opposite role. Interestingly, HSPB8 may be involved in the acquisition of chemoresistance to drugs. Despite the fact the mechanisms of HSPB8-mediated CASA activation in tumors need further studies, HSPB8 could represent an important factor in cancer induction and progression and it may be a potential target for anticancer treatment in specific types of cancer. In this review, we will discuss the molecular mechanism underlying HSPB8 roles in normal and cancer conditions. The basic mechanisms involved in anti- and pro-tumoral activities of HSPB8 are deeply discussed together with the pathways that modulate HSPB8 expression, in order to outline molecules with a beneficial effect for cancer cell growth, migration, and death.
Collapse
|
50
|
S N Chaitanya N, Devi A, Sahu S, Alugoju P. Molecular mechanisms of action of Trehalose in cancer: A comprehensive review. Life Sci 2021; 269:118968. [PMID: 33417959 DOI: 10.1016/j.lfs.2020.118968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Cellular homeostasis maintained by several cellular processes such as autophagy, apoptosis, inflammation, oxidative stress, aging, and neurodegeneration, contribute to cell growth and development. Cancer cells undergo aberrant changes from a normal cell that show abnormal behaviour such as reduced apoptosis and autophagy, increased oxidative stress and inflammation. Various pharmacological and genetic inhibitors have been reported as drug candidates to control cancer cells, but the use of natural molecules as anti-cancer agents are limited. There is an emerging need for the development of alternative natural therapeutic agents that maintain cellular homeostasis without affecting cell viability and physiology. This review highlights the multifunctional roles of Trehalose, a natural disaccharide that can target various cellular processes in the cancer. Trehalose possessing an antioxidant activity also has effect on cancer, which is explained through targeting cell progression, angiogenesis and metastasis pathways at molecular level targeting EGFR, PI3K, Akt, VEGF and MMP 9 proteins inside the cell.
Collapse
Affiliation(s)
- Nyshadham S N Chaitanya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana State 500046, India
| | - Arpita Devi
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Sibani Sahu
- Department of Human Genetics, Andhra University, Visakhapatnam, Andhra Pradesh 530001, India
| | - Phaniendra Alugoju
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|