1
|
Kathad U, Biyani N, Peru y Colón De Portugal RL, Zhou J, Kochat H, Bhatia K. Expanding the repertoire of Antibody Drug Conjugate (ADC) targets with improved tumor selectivity and range of potent payloads through in-silico analysis. PLoS One 2024; 19:e0308604. [PMID: 39186767 PMCID: PMC11346940 DOI: 10.1371/journal.pone.0308604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/28/2024] [Indexed: 08/28/2024] Open
Abstract
Antibody-Drug Conjugates (ADCs) have emerged as a promising class of targeted cancer therapeutics. Further refinements are essential to unlock their full potential, which is currently limited by a lack of validated targets and payloads. Essential aspects of developing effective ADCs involve the identification of surface antigens, ideally distinguishing target tumor cells from healthy types, uniformly expressed, accompanied by a high potency payload capable of selective targeting. In this study, we integrated transcriptomics, proteomics, immunohistochemistry and cell surface membrane datasets from Human Protein Atlas, Xenabrowser and Gene Expression Omnibus utilizing Lantern Pharma's proprietary AI platform Response Algorithm for Drug positioning and Rescue (RADR®). We used this in combination with evidence based filtering to identify ADC targets with improved tumor selectivity. Our analysis identified a set of 82 targets and a total of 290 target indication combinations for effective tumor targeting. We evaluated the impact of tumor mutations on target expression levels by querying 416 genes in the TCGA mutation database against 22 tumor subtypes. Additionally, we assembled a catalog of compounds to identify potential payloads using the NCI-Developmental Therapeutics Program. Our payload mining strategy classified 729 compounds into three subclasses based on GI50 values spanning from pM to 10 nM range, in combination with sensitivity patterns across 9 different cancer indications. Our results identified a diverse range of both targets and payloads, that can serve to facilitate multiple choices for precise ADC targeting. We propose an initial approach to identify suitable target-indication-payload combinations, serving as a valuable starting point for development of future ADC candidates.
Collapse
Affiliation(s)
- Umesh Kathad
- Lantern Pharma Inc., Dallas, TX, United States of America
| | - Neha Biyani
- Lantern Pharma Inc., Dallas, TX, United States of America
| | | | - Jianli Zhou
- Lantern Pharma Inc., Dallas, TX, United States of America
| | - Harry Kochat
- The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Kishor Bhatia
- Lantern Pharma Inc., Dallas, TX, United States of America
| |
Collapse
|
2
|
Melrose J. CNS/PNS proteoglycans functionalize neuronal and astrocyte niche microenvironments optimizing cellular activity by preserving membrane polarization dynamics, ionic microenvironments, ion fluxes, neuronal activation, and network neurotransductive capacity. J Neurosci Res 2024; 102:e25361. [PMID: 39034899 DOI: 10.1002/jnr.25361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
3
|
Brassard J, Hughes MR, Dean P, Hernaez DC, Thornton S, Banville AC, Smazynski J, Warren M, Zhang K, Milne K, Gilks CB, Mes-Masson AM, Huntsman DG, Nelson BH, Roskelley CD, McNagny KM. A tumor-restricted glycoform of podocalyxin is a highly selective marker of immunologically cold high-grade serous ovarian carcinoma. Front Oncol 2023; 13:1286754. [PMID: 38188285 PMCID: PMC10771318 DOI: 10.3389/fonc.2023.1286754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Targeted-immunotherapies such as antibody-drug conjugates (ADC), chimeric antigen receptor (CAR) T cells or bispecific T-cell engagers (eg, BiTE®) all aim to improve cancer treatment by directly targeting cancer cells while sparing healthy tissues. Success of these therapies requires tumor antigens that are abundantly expressed and, ideally, tumor specific. The CD34-related stem cell sialomucin, podocalyxin (PODXL), is a promising target as it is overexpressed on a variety of tumor types and its expression is consistently linked to poor prognosis. However, PODXL is also expressed in healthy tissues including kidney podocytes and endothelia. To circumvent this potential pitfall, we developed an antibody, named PODO447, that selectively targets a tumor-associated glycoform of PODXL. This tumor glycoepitope is expressed by 65% of high-grade serous ovarian carcinoma (HGSOC) tumors. Methods In this study we characterize these PODO447-expressing tumors as a distinct subset of HGSOC using four different patient cohorts that include pre-chemotherapy, post-neoadjuvant chemotherapy (NACT) and relapsing tumors as well as tumors from various peritoneal locations. Results We find that the PODO447 epitope expression is similar across tumor locations and negligibly impacted by chemotherapy. Invariably, tumors with high levels of the PODO447 epitope lack infiltrating CD8+ T cells and CD20+ B cells/plasma cells, an immune phenotype consistently associated with poor outcome. Discussion We conclude that the PODO447 glycoepitope is an excellent biomarker of immune "cold" tumors and a candidate for the development of targeted-therapies for these hard-to-treat cancers.
Collapse
Affiliation(s)
- Julyanne Brassard
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Michael R. Hughes
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Pamela Dean
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Diana Canals Hernaez
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Shelby Thornton
- Molecular and Advanced Pathology Core (MAPcore), University of British Columbia, Vancouver, BC, Canada
| | | | | | - Mary Warren
- British Columbia Cancer Agency, Victoria, BC, Canada
| | - Kevin Zhang
- British Columbia Cancer Agency, Victoria, BC, Canada
| | - Katy Milne
- British Columbia Cancer Agency, Victoria, BC, Canada
| | - C. Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - David G. Huntsman
- Molecular and Advanced Pathology Core (MAPcore), University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, University of British Columbia, Vancouver, BC, Canada
| | | | - Calvin D. Roskelley
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M. McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Suzuki H, Ohishi T, Tanaka T, Kaneko MK, Kato Y. A Cancer-Specific Monoclonal Antibody against Podocalyxin Exerted Antitumor Activities in Pancreatic Cancer Xenografts. Int J Mol Sci 2023; 25:161. [PMID: 38203331 PMCID: PMC10779310 DOI: 10.3390/ijms25010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Podocalyxin (PODXL) overexpression is associated with poor clinical outcomes in various tumors. PODXL is involved in tumor malignant progression through the promotion of invasiveness and metastasis. Therefore, PODXL is considered a promising target of monoclonal antibody (mAb)-based therapy. However, PODXL also plays an essential role in normal cells, such as vascular and lymphatic endothelial cells. Therefore, cancer specificity or selectivity is required to reduce adverse effects on normal cells. Here, we developed an anti-PODXL cancer-specific mAb (CasMab), PcMab-6 (IgG1, kappa), by immunizing mice with a soluble PODXL ectodomain derived from a glioblastoma LN229 cell. PcMab-6 reacted with the PODXL-positive LN229 cells but not with PODXL-knockout LN229 cells in flow cytometry. Importantly, PcMab-6 recognized pancreatic ductal adenocarcinoma (PDAC) cell lines (MIA PaCa-2, Capan-2, and PK-45H) but did not react with normal lymphatic endothelial cells (LECs). In contrast, one of the non-CasMabs, PcMab-47, showed high reactivity to both the PDAC cell lines and LECs. Next, we engineered PcMab-6 into a mouse IgG2a-type (PcMab-6-mG2a) and a humanized IgG1-type (humPcMab-6) mAb and further produced the core fucose-deficient types (PcMab-6-mG2a-f and humPcMab-6-f, respectively) to potentiate the antibody-dependent cellular cytotoxicity (ADCC). Both PcMab-6-mG2a-f and humPcMab-6-f exerted ADCC and complement-dependent cellular cytotoxicity in the presence of effector cells and complements, respectively. In the PDAC xenograft model, both PcMab-6-mG2a-f and humPcMab-6-f exhibited potent antitumor effects. These results indicated that humPcMab-6-f could apply to antibody-based therapy against PODXL-expressing pancreatic cancers.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi 410-0301, Japan;
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
5
|
Jo A, Green A, Medina JE, Iyer S, Ohman AW, McCarthy ET, Reinhardt F, Gerton T, Demehin D, Mishra R, Kolin DL, Zheng H, Cheon J, Crum CP, Weinberg RA, Rueda BR, Castro CM, Dinulescu DM, Lee H. Inaugurating High-Throughput Profiling of Extracellular Vesicles for Earlier Ovarian Cancer Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301930. [PMID: 37485618 PMCID: PMC10520636 DOI: 10.1002/advs.202301930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/13/2023] [Indexed: 07/25/2023]
Abstract
Detecting early cancer through liquid biopsy is challenging due to the lack of specific biomarkers for early lesions and potentially low levels of these markers. The current study systematically develops an extracellular-vesicle (EV)-based test for early detection, specifically focusing on high-grade serous ovarian carcinoma (HGSOC). The marker selection is based on emerging insights into HGSOC pathogenesis, notably that it arises from precursor lesions within the fallopian tube. This work thus establishes murine fallopian tube (mFT) cells with oncogenic mutations and performs proteomic analyses on mFT-derived EVs. The identified markers are then evaluated with an orthotopic HGSOC animal model. In serially-drawn blood of tumor-bearing mice, mFT-EV markers increase with tumor initiation, supporting their potential use in early cancer detection. A pilot clinical study (n = 51) further narrows EV markers to five candidates, EpCAM, CD24, VCAN, HE4, and TNC. The combined expression of these markers distinguishes HGSOC from non-cancer with 89% sensitivity and 93% specificity. The same markers are also effective in classifying three groups (non-cancer, early-stage HGSOC, and late-stage HGSOC). The developed approach, for the first time inaugurated in fallopian tube-derived EVs, could be a minimally invasive tool to monitor women at high risk of ovarian cancer for timely intervention.
Collapse
Affiliation(s)
- Ala Jo
- Center for Systems BiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| | - Allen Green
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jamie E. Medina
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Sonia Iyer
- Whitehead InstituteMassachusetts Institute of TechnologyCambridgeMA02142USA
| | - Anders W. Ohman
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Eric T. McCarthy
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Ferenc Reinhardt
- Whitehead InstituteMassachusetts Institute of TechnologyCambridgeMA02142USA
| | - Thomas Gerton
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Daniel Demehin
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Ranjan Mishra
- Whitehead InstituteMassachusetts Institute of TechnologyCambridgeMA02142USA
| | - David L. Kolin
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Hui Zheng
- Biostatistics CenterMassachusetts General HospitalBostonMA02114USA
| | - Jinwoo Cheon
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| | - Christopher P. Crum
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Robert A. Weinberg
- Whitehead InstituteMassachusetts Institute of TechnologyCambridgeMA02142USA
| | - Bo R. Rueda
- Division of Gynecologic OncologyDepartment of Obstetrics and GynecologyMassachusetts General HospitalBostonMA02114USA
| | - Cesar M. Castro
- Center for Systems BiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Cancer CenterMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Daniela M. Dinulescu
- Division of Women's and Perinatal PathologyDepartment of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Hakho Lee
- Center for Systems BiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
- Center for NanomedicineInstitute for Basic ScienceSeoul03722Republic of Korea
| |
Collapse
|
6
|
Wang Y, Jiang R, Wang T, Wu Z, Gong H, Cai X, Liu J, Yang X, Wei H, Jiao J, Jia Q, Yang C, Zhao C, Xiao J. Identification of ARAP3 as a regulator of tumor progression, macrophage infiltration and osteoclast differentiation in a tumor microenvironment-related prognostic model of Ewing sarcoma. Am J Cancer Res 2023; 13:3721-3740. [PMID: 37693165 PMCID: PMC10492096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/11/2023] [Indexed: 09/12/2023] Open
Abstract
Understanding the specificity and complexity of the tumor microenvironment (TME) of Ewing sarcoma (ES) is essential for identifying the immune characteristics of ES, improving the prediction of immunotherapeutic response, and facilitating therapeutic target discovery. In this study, we not only evaluated the gene sets associated with TME in ES using ESTIMATE and WGCNA algorithms based on the transcriptome data of ES, but also constructed a prognostic model (ES Score) using univariate Cox regression and Lasso regression and assessed its predictive ability on immune cell infiltration. Subsequently, we identified ARAP3 as a key gene affecting the TME of ES. In addition, bioinformatic analyses and in vitro experiments proved that the high expression of ARAP3 regulated ES cell proliferation, migration, as well as apoptosis via the p53 signaling pathway and affected macrophage infiltration and osteoclast differentiation through regulating IL1B and IL11 secretion of tumor cells.
Collapse
Affiliation(s)
- Yao Wang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Runyi Jiang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Ting Wang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Zhipeng Wu
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Haiyi Gong
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Xiaopan Cai
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Jialiang Liu
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Xinghai Yang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Haifeng Wei
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Jian Jiao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Qi Jia
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Cheng Yang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Chenglong Zhao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| | - Jianru Xiao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University Shanghai, China
| |
Collapse
|
7
|
Chandler KB, Pavan CH, Cotto Aparicio HG, Sackstein R. Enrichment and nLC-MS/MS Analysis of Head and Neck Cancer Mucinome Glycoproteins. J Proteome Res 2023; 22:1231-1244. [PMID: 36971183 DOI: 10.1021/acs.jproteome.2c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Mucin-domain glycoproteins expressed on cancer cell surfaces play central roles in cell adhesion, cancer progression, stem cell renewal, and immune evasion. Despite abundant evidence that mucin-domain glycoproteins are critical to the pathobiology of head and neck squamous cell carcinoma (HNSCC), our knowledge of the composition of that mucinome is grossly incomplete. Here, we utilized a catalytically inactive point mutant of the enzyme StcE (StcEE447D) to capture mucin-domain glycoproteins in head and neck cancer cell line lysates followed by their characterization using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), in-gel digestion, nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS), and enrichment analyses. We demonstrate the feasibility of this workflow for the study of mucin-domain glycoproteins in HNSCC, identify a set of mucin-domain glycoproteins common to multiple HNSCC cell lines, and report a subset of mucin-domain glycoproteins that are uniquely expressed in HSC-3 cells, a cell line derived from a highly aggressive metastatic tongue squamous cell carcinoma. This effort represents the first attempt to identify mucin-domain glycoproteins in HNSCC in an untargeted, unbiased analysis, paving the way for a more comprehensive characterization of the mucinome components that mediate aggressive tumor cell phenotypes. Data associated with this study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029420.
Collapse
|
8
|
Román-Fernández A, Mansour MA, Kugeratski FG, Anand J, Sandilands E, Galbraith L, Rakovic K, Freckmann EC, Cumming EM, Park J, Nikolatou K, Lilla S, Shaw R, Strachan D, Mason S, Patel R, McGarry L, Katoch A, Campbell KJ, Nixon C, Miller CJ, Leung HY, Le Quesne J, Norman JC, Zanivan S, Blyth K, Bryant DM. Spatial regulation of the glycocalyx component podocalyxin is a switch for prometastatic function. SCIENCE ADVANCES 2023; 9:eabq1858. [PMID: 36735782 PMCID: PMC9897673 DOI: 10.1126/sciadv.abq1858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The glycocalyx component and sialomucin podocalyxin (PODXL) is required for normal tissue development by promoting apical membranes to form between cells, triggering lumen formation. Elevated PODXL expression is also associated with metastasis and poor clinical outcome in multiple tumor types. How PODXL presents this duality in effect remains unknown. We identify an unexpected function of PODXL as a decoy receptor for galectin-3 (GAL3), whereby the PODXL-GAL3 interaction releases GAL3 repression of integrin-based invasion. Differential cortical targeting of PODXL, regulated by ubiquitination, is the molecular mechanism controlling alternate fates. Both PODXL high and low surface levels occur in parallel subpopulations within cancer cells. Orthotopic intraprostatic xenograft of PODXL-manipulated cells or those with different surface levels of PODXL define that this axis controls metastasis in vivo. Clinically, interplay between PODXL-GAL3 stratifies prostate cancer patients with poor outcome. Our studies define the molecular mechanisms and context in which PODXL promotes invasion and metastasis.
Collapse
Affiliation(s)
- Alvaro Román-Fernández
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Mohammed A. Mansour
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Cancer Biology and Therapy Lab, Division of Human Sciences, School of Applied Sciences, London South Bank University, London SE1 0AA, UK
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Fernanda G. Kugeratski
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Houston, TX 77054, USA
| | | | - Emma Sandilands
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Kai Rakovic
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Eva C. Freckmann
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Erin M. Cumming
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Ji Park
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Konstantina Nikolatou
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Robin Shaw
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Susan Mason
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | | | - Archana Katoch
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | | | - Colin Nixon
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Crispin J. Miller
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Hing Y. Leung
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - John Le Quesne
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - James C. Norman
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Sara Zanivan
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Karen Blyth
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - David M. Bryant
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
- The CRUK Beatson Institute, Glasgow G61 1BD, UK
| |
Collapse
|
9
|
VT68.2: An Antibody to Chondroitin Sulfate Proteoglycan 4 (CSPG4) Displays Reactivity against a Tumor-Associated Carbohydrate Antigen. Int J Mol Sci 2023; 24:ijms24032506. [PMID: 36768830 PMCID: PMC9917008 DOI: 10.3390/ijms24032506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The anti-CSPG4 monoclonal antibodies (mAbs) have shown anti-tumor activity and therapeutic potential for treating breast cancer. In addition, CSPG4 is a dominant tumor-associated antigen that is also involved in normal-tissue development in humans. Therefore, the potential for off-tumor activity remains a serious concern when targeting CSPG4 therapeutically. Previous work suggested that glycans contribute to the binding of specific anti-CSPG4 antibodies to tumor cells, but the specificity and importance of this contribution are unknown. In this study, the reactivity of anti-CSPG4 mAbs was characterized with a peptide mimetic of carbohydrate antigens expressed in breast cancer. ELISA, flow cytometry, and microarray assays were used to screen mAbs for their ability to bind to carbohydrate-mimicking peptides (CMPs), cancer cells, and glycans. The mAb VT68.2 displayed a distinctly strong binding to a CMP (P10s) and bound to triple-negative breast cancer cells. In addition, VT68.2 showed a higher affinity for N-linked glycans that contain terminal fucose and fucosylated lactosamines. The functional assays demonstrated that VT68.2 inhibited cancer cell migration. These results define the glycoform reactivity of an anti-CSPG4 antibody and may lead to the development of less toxic therapeutic approaches that target tumor-specific glyco-peptides.
Collapse
|
10
|
Jo A, Green A, Medina JE, Iyer S, Ohman AW, McCarthy ET, Reinhardt F, Gerton T, Demehin D, Mishra R, Kolin DL, Zheng H, Crum CP, Weinberg RA, Rueda BR, Castro CM, Dinulescu DM, Lee H. Profiling extracellular vesicles in circulation enables the early detection of ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524549. [PMID: 36711872 PMCID: PMC9882285 DOI: 10.1101/2023.01.19.524549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ovarian cancer is a heterogeneous group of tumors in both cell type and natural history. While outcomes are generally favorable when detected early, the most common subtype, high-grade serous carcinoma (HGSOC), typically presents at an advanced stage and portends less favorable prognoses. Its aggressive nature has thwarted early detection efforts through conventional detection methods such as serum CA125 and ultrasound screening and thus inspired the investigation of novel biomarkers. Here, we report the systematic development of an extracellular-vesicle (EV)-based test to detect early-stage HGSOC. Our study is based on emerging insights into HGSOC biology, notably that it arises from precursor lesions within the fallopian tube before traveling to ovarian and/or peritoneal surfaces. To identify HGSOC marker candidates, we established murine fallopian tube (mFT) cells with oncogenic mutations in Brca1/2, Tp53 , and Pten genes, and performed proteomic analyses on mFT EVs. The identified markers were then evaluated with an orthotopic HGSOC animal model. In serially-drawn blood samples of tumor-bearing mice, mFT-EV markers increased with tumor initiation, supporting their potential use in early cancer detection. A pilot human clinical study ( n = 51) further narrowed EV markers to five candidates, EpCAM, CD24, VCAN, HE4, and TNC. Combined expression of these markers achieved high OvCa diagnostic accuracy (cancer vs. non-cancer) with a sensitivity of 0.89 and specificity of 0.93. The same five markers were also effective in a three-group classification: non-cancer, early-stage (I & II) HGSOC, and late-stage (III & IV) HGSOC. In particular, they differentiated early-stage HGSOC from the rest with a specificity of 0.91. Minimally invasive and repeatable, this EV-based testing could be a versatile and serial tool for informing patient care and monitoring women at high risk for ovarian cancer.
Collapse
|
11
|
Riley NM, Wen RM, Bertozzi CR, Brooks JD, Pitteri SJ. Measuring the multifaceted roles of mucin-domain glycoproteins in cancer. Adv Cancer Res 2022; 157:83-121. [PMID: 36725114 PMCID: PMC10582998 DOI: 10.1016/bs.acr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mucin-domain glycoproteins are highly O-glycosylated cell surface and secreted proteins that serve as both biochemical and biophysical modulators. Aberrant expression and glycosylation of mucins are known hallmarks in numerous malignancies, yet mucin-domain glycoproteins remain enigmatic in the broad landscape of cancer glycobiology. Here we review the multifaceted roles of mucins in cancer through the lens of the analytical and biochemical methods used to study them. We also describe a collection of emerging tools that are specifically equipped to characterize mucin-domain glycoproteins in complex biological backgrounds. These approaches are poised to further elucidate how mucin biology can be understood and subsequently targeted for the next generation of cancer therapeutics.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States.
| | - Ru M Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, United States; Howard Hughes Medical Institute, Stanford, CA, United States
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, United States; Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, United States.
| |
Collapse
|
12
|
Abstract
Mucin domains are densely O-glycosylated modular protein domains found in various extracellular and transmembrane proteins. Mucin-domain glycoproteins play important roles in many human diseases, such as cancer and cystic fibrosis, but the scope of the mucinome remains poorly defined. Recently, we characterized a bacterial O-glycoprotease, StcE, and demonstrated that an inactive point mutant retains binding selectivity for mucin-domain glycoproteins. In this work, we leverage inactive StcE to selectively enrich and identify mucin-domain glycoproteins from complex samples like cell lysate and crude ovarian cancer patient ascites fluid. Our enrichment strategy is further aided by an algorithm to assign confidence to mucin-domain glycoprotein identifications. This mucinomics platform facilitates detection of hundreds of glycopeptides from mucin domains and highly overlapping populations of mucin-domain glycoproteins from ovarian cancer patients. Ultimately, we demonstrate our mucinomics approach can reveal key molecular signatures of cancer from in vitro and ex vivo sources. Mucin-domain glycoproteins are densely O-glycosylated proteins with unique secondary structure that imparts a large influence on cellular environments. Here, the authors develop a technique to selectively enrich and characterize mucin-domain glycoproteins from cell lysate and patient biofluids.
Collapse
|
13
|
Canals Hernaez D, Hughes MR, Li Y, Mainero Rocca I, Dean P, Brassard J, Bell EM, Samudio I, Mes-Masson AM, Narimatsu Y, Clausen H, Blixt O, Roskelley CD, McNagny KM. Targeting a Tumor-Specific Epitope on Podocalyxin Increases Survival in Human Tumor Preclinical Models. Front Oncol 2022; 12:856424. [PMID: 35600398 PMCID: PMC9115113 DOI: 10.3389/fonc.2022.856424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Podocalyxin (Podxl) is a CD34-related cell surface sialomucin that is normally highly expressed by adult vascular endothelia and kidney podocytes where it plays a key role in blocking adhesion. Importantly, it is also frequently upregulated on a wide array of human tumors and its expression often correlates with poor prognosis. We previously showed that, in xenograft studies, Podxl plays a key role in metastatic disease by making tumor initiating cells more mobile and invasive. Recently, we developed a novel antibody, PODO447, which shows exquisite specificity for a tumor-restricted glycoform of Podxl but does not react with Podxl expressed by normal adult tissue. Here we utilized an array of glycosylation defective cell lines to further define the PODO447 reactive epitope and reveal it as an O-linked core 1 glycan presented in the context of the Podxl peptide backbone. Further, we show that when coupled to monomethyl auristatin E (MMAE) toxic payload, PODO447 functions as a highly specific and effective antibody drug conjugate (ADC) in killing ovarian, pancreatic, glioblastoma and leukemia cell lines in vitro. Finally, we demonstrate PODO447-ADCs are highly effective in targeting human pancreatic and ovarian tumors in xenografted NSG and Nude mouse models. These data reveal PODO447-ADCs as exquisitely tumor-specific and highly efficacious immunotherapeutic reagents for the targeting of human tumors. Thus, PODO447 exhibits the appropriate characteristics for further development as a targeted clinical immunotherapy.
Collapse
Affiliation(s)
- Diana Canals Hernaez
- The Biomedical Research Centre and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Hughes
- The Biomedical Research Centre and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Yicong Li
- The Biomedical Research Centre and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Ilaria Mainero Rocca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Pamela Dean
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Julyanne Brassard
- The Biomedical Research Centre and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Erin M Bell
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ismael Samudio
- Centre for Drug Research and Development, Vancouver, BC, Canada
| | | | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine (ICMM), University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine (ICMM), University of Copenhagen, Copenhagen, Denmark
| | - Ola Blixt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre and School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Berois N, Pittini A, Osinaga E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers (Basel) 2022; 14:cancers14030645. [PMID: 35158915 PMCID: PMC8833780 DOI: 10.3390/cancers14030645] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aberrant glycosylation is a common feature of many cancers, and it plays crucial roles in tumor development and biology. Cancer progression can be regulated by several physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor immunotherapy approaches. This review summarizes the strategies developed in cancer immunotherapy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in clinical oncology. Abstract Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer immunotherapy targeting TACAs, including different antibody developments, the production of vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use, such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a result of recent developments in technologies used for cancer control.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Correspondence: (N.B.); (E.O.)
| | - Alvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (N.B.); (E.O.)
| |
Collapse
|