1
|
Cao R, Ni J, Zhang X, Qi M, Zhang Z, Liu Z, Chen G. Recent Advances in enhancer of zeste homolog 2 Inhibitors: Structural insights and therapeutic applications. Bioorg Chem 2024; 154:108070. [PMID: 39709735 DOI: 10.1016/j.bioorg.2024.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
Enhancer of Zeste Homolog 2 (EZH2) is overexpressed in many malignancies and plays a critical role in cancer progression. Therefore, it is considered a promising target for therapeutic intervention. Although several EZH2 inhibitors have entered clinical trials, only one has received FDA approval. In this review, we focus on the latest advancements in highly selective and potent dual-targeting EZH2 inhibitors, as well as proteolysis-targeted chimeras (PROTACs) and hydrophobic tagging (HYT) degraders. These novel compounds have been developed to address the existing gaps in the management of abnormal EZH2 expression. Notably, EZH2 inhibitors have shown great efficacy in antitumor therapy and have also demonstrated promising results in antiviral, anti-inflammatory, antisclerotic, bone protection, and nerve injury pain applications. The insights gained from this analysis could provide valuable guidance for future drug design and optimization of EZH2 inhibitors, potentially expediting the discovery of new inhibitors or degraders targeting EZH2.
Collapse
Affiliation(s)
- Ruolin Cao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jiayang Ni
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaoyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Minggang Qi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhen Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhongbo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
2
|
Nguyen LL, Watson ZL, Ortega R, Woodruff ER, Jordan KR, Iwanaga R, Yamamoto TM, Bailey CA, To F, Lin S, Villagomez FR, Jeong AD, Guntupalli SR, Behbakht K, Gibaja V, Arnoult N, Chuong EB, Bitler BG. EHMT1/2 Inhibition Promotes Regression of Therapy-Resistant Ovarian Cancer Tumors in a CD8 T-cell-Dependent Manner. Mol Cancer Res 2024; 22:1117-1127. [PMID: 39136655 PMCID: PMC11614706 DOI: 10.1158/1541-7786.mcr-24-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024]
Abstract
Poly ADP-ribose polymerase inhibitors (PARPi) are first-line maintenance therapy for ovarian cancer and an alternative therapy for several other cancer types. However, PARPi-resistance is rising, and there is currently an unmet need to combat PARPi-resistant tumors. Here, we created an immunocompetent, PARPi-resistant mouse model to test the efficacy of combinatory PARPi and euchromatic histone methyltransferase 1/2 inhibitor (EHMTi) in the treatment of PARPi-resistant ovarian cancer. We discovered that inhibition of EHMT1/2 resensitizes cells to PARPi. Markedly, we show that single EHMTi and combinatory EHMTi/PARPi significantly reduced PARPi-resistant tumor burden and that this reduction is partially dependent on CD8 T cells. Altogether, our results show a low-toxicity drug that effectively treats PARPi-resistant ovarian cancer in an immune-dependent manner, supporting its entry into clinical development and potential incorporation of immunotherapy. Implications: Targeting the epigenome of therapy-resistant ovarian cancer induces an antitumor response mediated in part through an antitumor immune response.
Collapse
Affiliation(s)
- Lily L. Nguyen
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Zachary L. Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Raquel Ortega
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ritsuko Iwanaga
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Tomomi M. Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Courtney A. Bailey
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Francis To
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Shujian Lin
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Abigail D. Jeong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Saketh R. Guntupalli
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kian Behbakht
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Nausica Arnoult
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Edward B. Chuong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| |
Collapse
|
3
|
Yang L, Huang K, Cao L, Ma Y, Li S, Zhou J, Zhao Z, Wang S. Molecular profiling of core immune-escape genes highlights TNFAIP3 as an immune-related prognostic biomarker in neuroblastoma. Inflamm Res 2024; 73:1529-1545. [PMID: 39028490 DOI: 10.1007/s00011-024-01914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most prevalent and deadliest pediatric solid tumor. With of over 50% of high-risk neuroblastoma cases relapse, the imperative for novel drug targets and therapeutic strategies is accentuated. In neuroblastoma, the existence of tumor-associated macrophages (TAMs) correlates with an unfavorable patient prognosis. However, the clinical relevance and prognostic implications of regulatory genes linked to TAMs infiltration in neuroblastoma remain unclear, and further study is required. METHODS We conducted a comprehensive analysis utilizing transcriptome expression profiles from three primary datasets associated with neuroblastoma (GSE45547, GSE49710, TARGET) to identify hub genes implicated in immune evasion within neuroblastoma. Subsequently, we utilized single-cell RNA sequencing analysis on 17 clinical neuroblastoma samples to investigate the expression and distribution of these hub genes, leading to the identification of TNFAIP3. The above three public databases were merged to allowed for the validation of TNFAIP3's molecular functions through GO and KEGG analysis. Furthermore, we assessed TNFAIP3's correlation with immune infiltration and its potential immunotherapeutic impact by multiple algorithms. Our single-cell transcriptome data revealed the role of TNFAIP3 in macrophage polarization. Finally, preliminary experimental verifications to confirm the biological functions of TNFAIP3-mediated TAMs in NB. RESULTS A total of 6 genes related to immune evasion were screened and we found that TNFAIP3 exhibited notably higher expression in macrophages than other immune cell types, based on the scRNA-sequencing data. GO and KEGG analysis showed that low expression of TNFAIP3 significantly correlated with the activation of multiple oncogenic pathways as well as immune-related pathways. Then validation affirmed that individuals within the TNFAIP3 high-expression cohort could potentially derive greater advantages from immunotherapeutic interventions, alongside exhibiting heightened immune responsiveness. Deciphering the pseudotime trajectory of macrophages, we revealed the potential of TNFAIP3 in inducing the polarization of macrophages towards the M1 phenotype. Finally, we confirmed that patients in the TNFAIP3 high expression group might benefit more from immunotherapy or chemotherapy as substantiated by RT-qPCR and immunofluorescence examinations. Moreover, the role of TNFAIP3 in macrophage polarization was validated. Preliminary experiment showed that TNFAIP3-mediated TAMs inhibit the proliferation, migration and invasion capabilities of NB cells. CONCLUSIONS Our results suggest that TNFAIP3 was first identified as a promising biomarker for immunotherapy and potential molecular target in NB. Besides, the presence of TNFAIP3 within TAMs may offer a novel therapeutic strategy for NB.
Collapse
Affiliation(s)
- Linyu Yang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Huang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lijian Cao
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Ma
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Suwen Li
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jianwu Zhou
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhen Zhao
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Wang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Sakai M, Masuda Y, Tarumoto Y, Aihara N, Tsunoda Y, Iwata M, Kamiya Y, Komorizono R, Noda T, Yusa K, Tomonaga K, Makino A. Genome-scale CRISPR-Cas9 screen identifies host factors as potential therapeutic targets for SARS-CoV-2 infection. iScience 2024; 27:110475. [PMID: 39100693 PMCID: PMC11295705 DOI: 10.1016/j.isci.2024.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/01/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Although many host factors important for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported, the mechanisms by which the virus interacts with host cells remain elusive. Here, we identified tripartite motif containing (TRIM) 28, TRIM33, euchromatic histone lysine methyltransferase (EHMT) 1, and EHMT2 as proviral factors involved in SARS-CoV-2 infection by CRISPR-Cas9 screening. Our result suggested that TRIM28 may play a role in viral particle formation and that TRIM33, EHMT1, and EHMT2 may be involved in viral transcription and replication. UNC0642, a compound that specifically inhibits the methyltransferase activity of EHMT1/2, strikingly suppressed SARS-CoV-2 growth in cultured cells and reduced disease severity in a hamster infection model. This study suggests that EHMT1/2 may be a therapeutic target for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Madoka Sakai
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yoshie Masuda
- Laboratory of Stem Cell Genetics, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yusuke Tarumoto
- Laboratory of Stem Cell Genetics, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Naoyuki Aihara
- Laboratory of Veterinary Pathology, Azabu University, Kanagawa 2520206, Japan
| | - Yugo Tsunoda
- Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
- CREST, Japan Science and Technology Agency, Saitama 1020076, Japan
| | - Michiko Iwata
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yumiko Kamiya
- Laboratory of Veterinary Pathology, Azabu University, Kanagawa 2520206, Japan
| | - Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
- CREST, Japan Science and Technology Agency, Saitama 1020076, Japan
| | - Kosuke Yusa
- Laboratory of Stem Cell Genetics, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
| |
Collapse
|
5
|
Luo Y, Lu J, Lei Z, Zhu H, Rao D, Wang T, Fu C, Zhang Z, Xia L, Huang W. Lysine methylation modifications in tumor immunomodulation and immunotherapy: regulatory mechanisms and perspectives. Biomark Res 2024; 12:74. [PMID: 39080807 PMCID: PMC11289998 DOI: 10.1186/s40364-024-00621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Lysine methylation is a crucial post-translational modification (PTM) that significantly impacts gene expression regulation. This modification not only influences cancer development directly but also has significant implications for the immune system. Lysine methylation modulates immune cell functions and shapes the anti-tumor immune response, highlighting its dual role in both tumor progression and immune regulation. In this review, we provide a comprehensive overview of the intrinsic role of lysine methylation in the activation and function of immune cells, detailing how these modifications affect cellular processes and signaling pathways. We delve into the mechanisms by which lysine methylation contributes to tumor immune evasion, allowing cancer cells to escape immune surveillance and thrive. Furthermore, we discuss the therapeutic potential of targeting lysine methylation in cancer immunotherapy. Emerging strategies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell (CAR-T) therapy, are being explored for their efficacy in modulating lysine methylation to enhance anti-tumor immune responses. By targeting these modifications, we can potentially improve the effectiveness of existing treatments and develop novel therapeutic approaches to combat cancer more effectively.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chenan Fu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiwei Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Qin X, Lam A, Zhang X, Sengupta S, Iorgulescu JB, Ni H, Das S, Rager M, Zhou Z, Zuo T, Meara GK, Floru AE, Kemet C, Veerapaneni D, Kashy D, Lin L, Lloyd K, Kwok L, Smith KS, Nagaraju RT, Meijers R, Ceol C, Liu CT, Alexandrescu S, Wu CJ, Keskin DB, George RE, Feng H. CKLF instigates a "cold" microenvironment to promote MYCN-mediated tumor aggressiveness. SCIENCE ADVANCES 2024; 10:eadh9547. [PMID: 38489372 PMCID: PMC10942121 DOI: 10.1126/sciadv.adh9547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Solid tumors, especially those with aberrant MYCN activation, often harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance. Despite this knowledge, there are no effective strategies to tackle this problem. We found that chemokine-like factor (CKLF) is highly expressed by various solid tumor cells and transcriptionally up-regulated by MYCN. Using the MYCN-driven high-risk neuroblastoma as a model system, we demonstrated that as early as the premalignant stage, tumor cells secrete CKLF to attract CCR4-expressing CD4+ cells, inducing immunosuppression and tumor aggression. Genetic depletion of CD4+ T regulatory cells abolishes the immunorestrictive and protumorigenic effects of CKLF. Our work supports that disrupting CKLF-mediated cross-talk between tumor and CD4+ suppressor cells represents a promising immunotherapeutic approach to battling MYCN-driven tumors.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Andrew Lam
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Xu Zhang
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - J. Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongru Ni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- School of Biotechnology, KIIT University, Bhubanesw, India
| | - Madison Rager
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zhenwei Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tao Zuo
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Grace K. Meara
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexander E. Floru
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Chinyere Kemet
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Divya Veerapaneni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Daniel Kashy
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Liang Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Lauren Kwok
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kaylee S. Smith
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Raghavendar T. Nagaraju
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, University of Manchester, Manchester, UK
- Colorectal and Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Rob Meijers
- Institute for Protein Innovation, Boston, MA, USA
| | - Craig Ceol
- Department of Molecular, Cell and Cancer Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rani E. George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Kwon Y, Choi Y, Kim M, Jo H, Jeong MS, Jung HS, Jeoung D. HDAC6-MYCN-CXCL3 axis mediates allergic inflammation and is necessary for allergic inflammation-promoted cellular interactions. Mol Immunol 2024; 166:1-15. [PMID: 38176167 DOI: 10.1016/j.molimm.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Histone deacetylase 6 (HDAC6) has been shown to play an important role in allergic inflammation. This study hypothesized that novel downstream targets of HDAC6 would mediate allergic inflammation. Experiments employing HDAC6 knock out C57BL/6 mice showed that HDAC6 mediated passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA). Antigen stimulation increased expression of N-myc (MYCN) and CXCL3 in an HDAC6-dependent manner in the bone marrow-derived mast cells. MYCN and CXCL3 were necessary for both PCA and PSA. The role of early growth response 3 (EGR3) in the regulation of HDAC6 expression has been reported. ChIP assays showed EGR3 as a direct regulator of MYCN. miR-34a-5p was predicted to be a negative regulator of MYCN. Luciferase activity assays showed miR-34a-5p as a direct regulator of MYCN. miR-34a-5p mimic negatively regulated PCA and PSA. MYCN decreased miR-34a-5p expression in antigen-stimulated rat basophilic leukemia cells (RBL2H3). MYCN was shown to bind to the promoter sequence of CXCL3. In an IgE-independent manner, recombinant CXCL3 protein increased expression of HDAC6, MYCN, and β-hexosaminidase activity in RBL2H3 cells. Mouse recombinant CXCL3 protein enhanced the angiogenic potential of the culture medium of RBL2H3. CXCL3 was necessary for the enhanced angiogenic potential of the culture medium of antigen-stimulated RBL2H3. The culture medium of RBL2H3 was able to induce M2 macrophage polarization in a CXCL3-dependent manner. Recombinant CXCL3 protein also increased the expression of markers of M2 macrophage. Thus, the identification of the novel role of HDAC6-MYCN-CXCL3 axis can help better understand the pathogenesis of anaphylaxis.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea
| | - Yunji Choi
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea
| | - Misun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Hyein Jo
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea
| | - Myeong Seon Jeong
- Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
8
|
Epp S, Chuah SM, Halasz M. Epigenetic Dysregulation in MYCN-Amplified Neuroblastoma. Int J Mol Sci 2023; 24:17085. [PMID: 38069407 PMCID: PMC10707345 DOI: 10.3390/ijms242317085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroblastoma (NB), a childhood cancer arising from the neural crest, poses significant clinical challenges, particularly in cases featuring amplification of the MYCN oncogene. Epigenetic factors play a pivotal role in normal neural crest and NB development, influencing gene expression patterns critical for tumorigenesis. This review delves into the multifaceted interplay between MYCN and known epigenetic modifications during NB genesis, shedding light on the intricate regulatory networks underlying the disease. We provide an extensive survey of known epigenetic mechanisms, encompassing DNA methylation, histone modifications, non-coding RNAs, super-enhancers (SEs), bromodomains (BET), and chromatin modifiers in MYCN-amplified (MNA) NB. These epigenetic changes collectively contribute to the dysregulated gene expression landscape observed in MNA NB. Furthermore, we review emerging therapeutic strategies targeting epigenetic regulators, including histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi), and DNA methyltransferase inhibitors (DNMTi). We also discuss and summarize current drugs in preclinical and clinical trials, offering insights into their potential for improving outcomes for MNA NB patients.
Collapse
Affiliation(s)
- Soraya Epp
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Shin Mei Chuah
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Melinda Halasz
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
9
|
Kennedy PT, Zannoupa D, Son MH, Dahal LN, Woolley JF. Neuroblastoma: an ongoing cold front for cancer immunotherapy. J Immunother Cancer 2023; 11:e007798. [PMID: 37993280 PMCID: PMC10668262 DOI: 10.1136/jitc-2023-007798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
Neuroblastoma is the most frequent extracranial childhood tumour but effective treatment with current immunotherapies is challenging due to its immunosuppressive microenvironment. Efforts to date have focused on using immunotherapy to increase tumour immunogenicity and enhance anticancer immune responses, including anti-GD2 antibodies; immune checkpoint inhibitors; drugs which enhance macrophage and natural killer T (NKT) cell function; modulation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway; and engineering neuroblastoma-targeting chimeric-antigen receptor-T cells. Some of these strategies have strong preclinical foundation and are being tested clinically, although none have demonstrated notable success in treating paediatric neuroblastoma to date. Recently, approaches to overcome heterogeneity of neuroblastoma tumours and treatment resistance are being explored. These include rational combination strategies with the aim of achieving synergy, such as dual targeting of GD2 and tumour-associated macrophages or natural killer cells; GD2 and the B7-H3 immune checkpoint; GD2 and enhancer of zeste-2 methyltransferase inhibitors. Such combination strategies provide opportunities to overcome primary resistance to and maximize the benefits of immunotherapy in neuroblastoma.
Collapse
Affiliation(s)
- Paul T Kennedy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Demetra Zannoupa
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Meong Hi Son
- Department of Pediatrics, Samsung Medical Center, Gangnam-gu, Seoul, Korea (the Republic of)
| | - Lekh N Dahal
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - John F Woolley
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Pollin G, De Assuncao T, Doria Jorge S, Chi YI, Charlesworth M, Madden B, Iovanna J, Zimmermann M, Urrutia R, Lomberk G. Writers and readers of H3K9me2 form distinct protein networks during the cell cycle that include candidates for H3K9 mimicry. Biosci Rep 2023; 43:BSR20231093. [PMID: 37782747 PMCID: PMC10611923 DOI: 10.1042/bsr20231093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023] Open
Abstract
Histone H3 lysine 9 methylation (H3K9me), which is written by the Euchromatic Histone Lysine Methyltransferases EHMT1 and EHMT2 and read by the heterochromatin protein 1 (HP1) chromobox (CBX) protein family, is dysregulated in many types of cancers. Approaches to inhibit regulators of this pathway are currently being evaluated for therapeutic purposes. Thus, knowledge of the complexes supporting the function of these writers and readers during the process of cell proliferation is critical for our understanding of their role in carcinogenesis. Here, we immunopurified each of these proteins and used mass spectrometry to define their associated non-histone proteins, individually and at two different phases of the cell cycle, namely G1/S and G2/M. Our findings identify novel binding proteins for these writers and readers, as well as corroborate known interactors, to show the formation of distinct protein complex networks in a cell cycle phase-specific manner. Furthermore, there is an organizational switch between cell cycle phases for interactions among specific writer-reader pairs. Through a multi-tiered bioinformatics-based approach, we reveal that many interacting proteins exhibit histone mimicry, based on an H3K9-like linear motif. Gene ontology analyses, pathway enrichment, and network reconstruction inferred that these comprehensive EHMT and CBX-associated interacting protein networks participate in various functions, including transcription, DNA repair, splicing, and membrane disassembly. Combined, our data reveals novel complexes that provide insight into key functions of cell cycle-associated epigenomic processes that are highly relevant for better understanding these chromatin-modifying proteins during cell cycle and carcinogenesis.
Collapse
Affiliation(s)
- Gareth Pollin
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Thiago M. De Assuncao
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Salomao Doria Jorge
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Young-In Chi
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | | | - Benjamin Madden
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, MN, U.S.A
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Michael T. Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI Center, Medical College of Wisconsin, Milwaukee, WI, U.S.A
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| |
Collapse
|
11
|
Qin X, Chen B. Comprehensive analysis and validation reveal potential MYCN regulatory biomarkers associated with neuroblastoma prognosis. J Biomol Struct Dyn 2023; 41:8902-8917. [PMID: 36300516 DOI: 10.1080/07391102.2022.2138977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
Neuroblastoma (NB) is an embryonic malignant tumor that occurs in the sympathetic nervous system. The treatment results of patients in the high-risk group are poor, and relapse and treatment failure can occur even with multiple combination treatments. The proto-oncogene MYCN is a BHLH Transcription Factor used as an independent prognostic factor for NB. The proportion of MYCN amplification in tumor tissues of high-risk patients reaches 40-50%. Hence, exploring new MYCN target genes is a meaningful approach in developing treatment for high-risk NB patients. The microarray datasets were obtained from Gene Expression Omnibus (GEO), and differentially expressed genes (DEGs) were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and miRPathDB were used for enrichment analysis. STRING and Cytoscape were used to construct a protein-protein interaction (PPI) network and for modular analysis. The miRNet and NetworkAnalyst databases were used to predict and construct gene-miRNA and gene-TFs networks. The R2 database was used for expression, correlation, and prognostic analyses. The diagnostic value of the biomarkers was predicted by ROC analysis, and RT-qPCR was used to validate the identified hub genes. Finally, using specific MYCN siRNA and overexpressing plasmids, the correlation between the identified hub genes and MYCN was investigated. Our results showed that FBXO9, HECW2, MIB2, RNF19B, RNF213, TRIM36, and ZBTB16 are novel biomarkers that affect the prognosis of the NB patients. In addition, FBXO9, RNF19B, and TRIM36 were preliminarily confirmed as potential target genes of MYCN. Overall, FBXO9, HECW2, MIB2, RNF19B, RNF213, TRIM36, and ZBTB16 are expected to become novel biomarkers for the treatment of high-risk NB patients.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiuni Qin
- Guangzhou Concord Cancer Center, Guangzhou, China
| | - Bo Chen
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Gao J, Fosbrook C, Gibson J, Underwood TJ, Gray JC, Walters ZS. Review: Targeting EZH2 in neuroblastoma. Cancer Treat Rev 2023; 119:102600. [PMID: 37467626 DOI: 10.1016/j.ctrv.2023.102600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Neuroblastoma is one of the commonest extra-cranial pediatric tumors, and accounts for over 15% of all childhood cancer mortality. Risk stratification for children with neuroblastoma is based on age, stage, histology, and tumor cytogenetics. The majority of patients are considered to have high-risk neuroblastoma, for which the long-term survival is less than 50%. Current treatments combine surgical resection, chemotherapy, stem cell transplantation, radiotherapy, anti-GD2 based immunotherapy as well as the differentiating agent isotretinoin. Despite the intensive multimodal therapies applied, there are high relapse rates, and recurrent disease is often resistant to further therapy. Enhancer of Zeste Homolog 2 (EZH2), a catalytic subunit of Polycomb Repressive Complex 2 (PRC2), is a histone methyltransferase that represses transcription through trimethylation of lysine residue K27 on histone H3 (H3K27me3). It is responsible for epigenetic repression of transcription, making EZH2 an essential regulator for cell differentiation. Overexpression of EZH2 has been shown to promote tumorigenesis, cancer cell proliferation and prevent tumor cells from differentiating in a number of cancers. Therefore, research has been ongoing for the past decade, developing treatments that target EZH2 in neuroblastoma. This review summarises the role of EZH2 in neuroblastoma and evaluates the latest research findings on the therapeutic potential of targeting EZH2 in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Jinhui Gao
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK.
| | - Claire Fosbrook
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Jane Gibson
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Timothy J Underwood
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Juliet C Gray
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| | - Zoë S Walters
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, UK
| |
Collapse
|
13
|
Jin ML, Jeong KW. Histone modifications in drug-resistant cancers: From a cancer stem cell and immune evasion perspective. Exp Mol Med 2023; 55:1333-1347. [PMID: 37394580 PMCID: PMC10394043 DOI: 10.1038/s12276-023-01014-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 07/04/2023] Open
Abstract
The development and immune evasion of cancer stem cells (CSCs) limit the efficacy of currently available anticancer therapies. Recent studies have shown that epigenetic reprogramming regulates the expression of characteristic marker proteins and tumor plasticity associated with cancer cell survival and metastasis in CSCs. CSCs also possess unique mechanisms to evade external attacks by immune cells. Hence, the development of new strategies to restore dysregulated histone modifications to overcome cancer resistance to chemotherapy and immunotherapy has recently attracted attention. Restoring abnormal histone modifications can be an effective anticancer strategy to increase the therapeutic effect of conventional chemotherapeutic and immunotherapeutic drugs by weakening CSCs or by rendering them in a naïve state with increased sensitivity to immune responses. In this review, we summarize recent findings regarding the role of histone modifiers in the development of drug-resistant cancer cells from the perspectives of CSCs and immune evasion. In addition, we discuss attempts to combine currently available histone modification inhibitors with conventional chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ming Li Jin
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
14
|
Vonderhaar EP, Dwinell MB, Craig BT. Targeted immune activation in pediatric solid tumors: opportunities to complement local control approaches. Front Immunol 2023; 14:1202169. [PMID: 37426669 PMCID: PMC10325564 DOI: 10.3389/fimmu.2023.1202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Surgery or radiation therapy is nearly universally applied for pediatric solid tumors. In many cases, in diverse tumor types, distant metastatic disease is present and evades surgery or radiation. The systemic host response to these local control modalities may lead to a suppression of antitumor immunity, with potential negative impact on the clinical outcomes for patients in this scenario. Emerging evidence suggests that the perioperative immune responses to surgery or radiation can be modulated therapeutically to preserve anti-tumor immunity, with the added benefit of preventing these local control approaches from serving as pro-tumorigenic stimuli. To realize the potential benefit of therapeutic modulation of the systemic response to surgery or radiation on distant disease that evades these modalities, a detailed knowledge of the tumor-specific immunology as well as the immune responses to surgery and radiation is imperative. In this Review we highlight the current understanding of the tumor immune microenvironment for the most common peripheral pediatric solid tumors, the immune responses to surgery and radiation, and current evidence that supports the potential use of immune activating agents in the perioperative window. Finally, we define existing knowledge gaps that limit the current translational potential of modulating perioperative immunity to achieve effective anti-tumor outcomes.
Collapse
Affiliation(s)
- Emily P. Vonderhaar
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael B. Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian T. Craig
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
15
|
Liao Q, Yang J, Ge S, Chai P, Fan J, Jia R. Novel insights into histone lysine methyltransferases in cancer therapy: From epigenetic regulation to selective drugs. J Pharm Anal 2023; 13:127-141. [PMID: 36908859 PMCID: PMC9999304 DOI: 10.1016/j.jpha.2022.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases (KMTs) is essential for epigenome homeostasis. The dysregulation of KMTs is associated with tumor initiation, metastasis, chemoresistance, invasiveness, and the immune microenvironment. Therapeutically, their promising effects are being evaluated in diversified preclinical and clinical trials, demonstrating encouraging outcomes in multiple malignancies. In this review, we have updated recent understandings of KMTs' functions and the development of their targeted inhibitors. First, we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis, tumor suppression, and immune regulation. In addition, we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors. In summary, we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
Collapse
Affiliation(s)
- Qili Liao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200001, China
| |
Collapse
|
16
|
Zhang Y, Chen J, Liu H, Mi R, Huang R, Li X, Fan F, Xie X, Ding J. The role of histone methylase and demethylase in antitumor immunity: A new direction for immunotherapy. Front Immunol 2023; 13:1099892. [PMID: 36713412 PMCID: PMC9874864 DOI: 10.3389/fimmu.2022.1099892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Epigenetic modifications may alter the proliferation and differentiation of normal cells, leading to malignant transformation. They can also affect normal stimulation, activation, and abnormal function of immune cells in the tissue microenvironment. Histone methylation, coordinated by histone methylase and histone demethylase to stabilize transcription levels in the promoter area, is one of the most common types of epigenetic alteration, which gained increasing interest. It can modify gene transcription through chromatin structure and affect cell fate, at the transcriptome or protein level. According to recent research, histone methylation modification can regulate tumor and immune cells affecting anti-tumor immune response. Consequently, it is critical to have a thorough grasp of the role of methylation function in cancer treatment. In this review, we discussed recent data on the mechanisms of histone methylation on factors associated with immune resistance of tumor cells and regulation of immune cell function.
Collapse
Affiliation(s)
- Yuanling Zhang
- School of Medicine, Guizhou University, Guiyang, China,Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Junhao Chen
- Graduate School of Zunyi Medical University, Zunyi, China
| | - Hang Liu
- Department of Medical Cosmetology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Rui Mi
- Department of General Surgery, Zhijin County People’s Hospital, Bijie, China
| | - Rui Huang
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xian Li
- Orthopedics Department, Dongguan Songshan Lake Tungwah Hospital, DongGuan, China
| | - Fei Fan
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Xueqing Xie
- School of Medicine, Guizhou University, Guiyang, China
| | - Jie Ding
- Department of Gastrointestinal Surgery, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jie Ding,
| |
Collapse
|
17
|
Cornel AM, Dunnebach E, Hofman DA, Das S, Sengupta S, van den Ham F, Wienke J, Strijker JGM, van den Beemt DAMH, Essing AHW, Koopmans B, Engels SAG, Lo Presti V, Szanto CS, George RE, Molenaar JJ, van Heesch S, Dierselhuis MP, Nierkens S. Epigenetic modulation of neuroblastoma enhances T cell and NK cell immunogenicity by inducing a tumor-cell lineage switch. J Immunother Cancer 2022; 10:jitc-2022-005002. [PMID: 36521927 PMCID: PMC9756225 DOI: 10.1136/jitc-2022-005002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Immunotherapy in high-risk neuroblastoma (HR-NBL) does not live up to its full potential due to inadequate (adaptive) immune engagement caused by the extensive immunomodulatory capacity of HR-NBL. We aimed to tackle one of the most notable immunomodulatory processes in neuroblastoma (NBL), absence of major histocompatibility complex class I (MHC-I) surface expression, a process greatly limiting cytotoxic T cell engagement. We and others have previously shown that MHC-I expression can be induced by cytokine-driven immune modulation. Here, we aimed to identify tolerable pharmacological repurposing strategies to upregulate MHC-I expression and therewith enhance T cell immunogenicity in NBL. METHODS Drug repurposing libraries were screened to identify compounds enhancing MHC-I surface expression in NBL cells using high-throughput flow cytometry analyses optimized for adherent cells. The effect of positive hits was confirmed in a panel of NBL cell lines and patient-derived organoids. Compound-treated NBL cell lines and organoids were cocultured with preferentially expressed antigen of melanoma (PRAME)-reactive tumor-specific T cells and healthy-donor natural killer (NK) cells to determine the in vitro effect on T cell and NK cell cytotoxicity. Additional immunomodulatory effects of histone deacetylase inhibitors (HDACi) were identified by transcriptome and translatome analysis of treated organoids. RESULTS Drug library screening revealed MHC-I upregulation by inhibitor of apoptosis inhibitor (IAPi)- and HDACi drug classes. The effect of IAPi was limited due to repression of nuclear factor kappa B (NFκB) pathway activity in NBL, while the MHC-I-modulating effect of HDACi was widely translatable to a panel of NBL cell lines and patient-derived organoids. Pretreatment of NBL cells with the HDACi entinostat enhanced the cytotoxic capacity of tumor-specific T cells against NBL in vitro, which coincided with increased expression of additional players regulating T cell cytotoxicity (eg, TAP1/2 and immunoproteasome subunits). Moreover, MICA and MICB, important in NK cell cytotoxicity, were also increased by entinostat exposure. Intriguingly, this increase in immunogenicity was accompanied by a shift toward a more mesenchymal NBL cell lineage. CONCLUSIONS This study indicates the potential of combining (immuno)therapy with HDACi to enhance both T cell-driven and NKcell-driven immune responses in patients with HR-NBL.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Ester Dunnebach
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Damon A Hofman
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA,School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Femke van den Ham
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Judith Wienke
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | | | - Denise A M H van den Beemt
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Anke H W Essing
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Bianca Koopmans
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Sem A G Engels
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Vania Lo Presti
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Celina S Szanto
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | - Rani E George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan J Molenaar
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands
| | | | | | - S Nierkens
- Prinses Maxima Centrum voor Kinderoncologie, Utrecht, The Netherlands,Center for Translational Immunology, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Song J, Huang F, Chen L, Feng K, Jian F, Huang T, Cai YD. Identification of methylation signatures associated with CAR T cell in B-cell acute lymphoblastic leukemia and non-hodgkin’s lymphoma. Front Oncol 2022; 12:976262. [PMID: 36033519 PMCID: PMC9402909 DOI: 10.3389/fonc.2022.976262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
CD19-targeted CAR T cell immunotherapy has exceptional efficacy for the treatment of B-cell malignancies. B-cell acute lymphocytic leukemia and non-Hodgkin’s lymphoma are two common B-cell malignancies with high recurrence rate and are refractory to cure. Although CAR T-cell immunotherapy overcomes the limitations of conventional treatments for such malignancies, failure of treatment and tumor recurrence remain common. In this study, we searched for important methylation signatures to differentiate CAR-transduced and untransduced T cells from patients with acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. First, we used three feature ranking methods, namely, Monte Carlo feature selection, light gradient boosting machine, and least absolute shrinkage and selection operator, to rank all methylation features in order of their importance. Then, the incremental feature selection method was adopted to construct efficient classifiers and filter the optimal feature subsets. Some important methylated genes, namely, SERPINB6, ANK1, PDCD5, DAPK2, and DNAJB6, were identified. Furthermore, the classification rules for distinguishing different classes were established, which can precisely describe the role of methylation features in the classification. Overall, we applied advanced machine learning approaches to the high-throughput data, investigating the mechanism of CAR T cells to establish the theoretical foundation for modifying CAR T cells.
Collapse
Affiliation(s)
- Jiwei Song
- College of Life Science, Changchun Sci-Tech University, Shuangyang, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Fangfang Jian
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
19
|
Kacher J, Manches O, Aspord C, Sartelet H, Chaperot L. Impaired Antitumor Immune Response in MYCN-amplified Neuroblastoma Is Associated with Lack of CCL2 Secretion and Poor Dendritic Cell Recruitment. CANCER RESEARCH COMMUNICATIONS 2022; 2:577-589. [PMID: 36923280 PMCID: PMC10010397 DOI: 10.1158/2767-9764.crc-21-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
In neuroblastoma, MYCN amplification is associated with sparse immune infiltrate and poor prognosis. Dendritic cells (DC) are crucial immune sentinels but their involvement in neuroblastoma pathogenesis is poorly understood. We observed that the migration of monocytes, myeloid and plasmacytoid DC induced by MYCN-nonamplified neuroblastoma supernatants was abrogated by the addition of anti-CCL2 antibodies, demonstrating the involvement of the CCR2/CCL2 axis in their recruitment by these tumors. Using public RNA sequencing and microarray datasets, we describe lower level of expression of CCL2 in MYCN-amplified neuroblastoma tumors, and we propose a working model for T-cell recruitment in neuroblastoma tumors in which CCL2 produced by neuroblastoma cells initiates the recruitment of monocytes, myeloid and plasmacytoid DCs. Among these cells, the CD1c+ subset may recruit T cells by means of CCL19/CCL22 secretion. In vitro, supernatants from DCs cocultured with neuroblastoma cell lines and activated contain CCL22 and CCL19, and are chemotactic for both CD4+ and CD8+ T cells. We also looked at immunomodulation induced by neuroblastoma cell lines, and found MYCN-nonamplified neuroblastoma cell lines were able to create a microenvironment where DC activation is enhanced. Overall, our findings highlight a major role for CCL2/CCR2 axis in monocytes, myeloid and plasmacytoid cells recruitment toward MYCN-nonamplified neuroblastoma, allowing further immune cell recruitment, and show that these tumors present a microenvironment that can favor DC responses. Significance In MYCN-nonamplified neuroblastoma, CCL2 produced by neuroblastoma cells induces the recruitment of antigen-presenting cells (DCs and monocytes/macrophages), allowing infiltration by T cells, in link with CCL19 and CCL22 production, hence favoring immune responses.
Collapse
Affiliation(s)
- Jamila Kacher
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.,Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Olivier Manches
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.,Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.,Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Hervé Sartelet
- Laboratoire de Biopathologie, CHRU de Nancy, Nancy, France.,Inserm U1256, Université de Lorraine, Nancy, France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.,Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| |
Collapse
|
20
|
Huang JL, Chen SY, Lin CS. Targeting Cancer Stem Cells through Epigenetic Modulation of Interferon Response. J Pers Med 2022; 12:jpm12040556. [PMID: 35455671 PMCID: PMC9027081 DOI: 10.3390/jpm12040556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cancer cells and are thought to play a critical role in the initiation and maintenance of tumor mass. CSCs exhibit similar hallmarks to normal stem cells, such as self-renewal, differentiation, and homeostasis. In addition, CSCs are equipped with several features so as to evade anticancer mechanisms. Therefore, it is hard to eliminate CSCs by conventional anticancer therapeutics that are effective at clearing bulk cancer cells. Interferons are innate cytokines and are the key players in immune surveillance to respond to invaded pathogens. Interferons are also crucial for adaptive immunity for the killing of specific aliens including cancer cells. However, CSCs usually evolve to escape from interferon-mediated immune surveillance and to shape the niche as a “cold” tumor microenvironment (TME). These CSC characteristics are related to their unique epigenetic regulations that are different from those of normal and bulk cancer cells. In this review, we introduce the roles of epigenetic modifiers, focusing on LSD1, BMI1, G9a, and SETDB1, in contributing to CSC characteristics and discussing the interplay between CSCs and interferon response. We also discuss the emerging strategy for eradicating CSCs by targeting these epigenetic modifiers, which can elevate cytosolic nuclei acids, trigger interferon response, and reshape a “hot” TME for improving cancer immunotherapy. The key epigenetic and immune genes involved in this crosstalk can be used as biomarkers for precision oncology.
Collapse
Affiliation(s)
- Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan;
| | - Si-Yun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence:
| |
Collapse
|
21
|
High Expression of Interferon Pathway Genes CXCL10 and STAT2 Is Associated with Activated T-Cell Signature and Better Outcome of Oral Cancer Patients. J Pers Med 2022; 12:jpm12020140. [PMID: 35207629 PMCID: PMC8877377 DOI: 10.3390/jpm12020140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
To improve the survival rate of cancer patients, biomarkers for both early diagnosis and patient stratification for appropriate therapeutics play crucial roles in precision oncology. Investigation of altered gene expression and the relevant molecular pathways in cancer cells are helpful for discovering such biomarkers. In this study, we explore the potential prognostic biomarkers for oral cancer patients through systematically analyzing five oral cancer transcriptomic data sets (TCGA, GSE23558, GSE30784, GSE37991, and GSE138206). Gene Set Enrichment Analysis (GSEA) was individually applied to each data set and the upregulated Hallmark molecular pathways of each data set were intersected to generate 13 common pathways including interferon-α/γ pathways. Among the 5 oral cancer data sets, 43 interferon pathway genes were commonly upregulated and 17 genes exhibited prognostic values in TCGA cohort. After validating in another oral cancer cohort (GSE65858), high expressions of C-X-C motif chemokine ligand 10 (CXCL10) and Signal transducer and activator of transcription 2 (STAT2) were confirmed to be good prognostic biomarkers. GSEA of oral cancers stratified by CXCL10/STAT2 expression showed that activation of T-cell pathways and increased tumor infiltration scores of Type 1 T helper (Th1) and CD8+ T cells were associated with high CXCL10/STAT2 expression. These results suggest that high CXCL10/STAT2 expression can predict a favorable outcome in oral cancer patients.
Collapse
|
22
|
EHMT2/G9a as an Epigenetic Target in Pediatric and Adult Brain Tumors. Int J Mol Sci 2021; 22:ijms222011292. [PMID: 34681949 PMCID: PMC8539543 DOI: 10.3390/ijms222011292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/09/2021] [Indexed: 02/08/2023] Open
Abstract
Epigenetic mechanisms, including post-translational modifications of DNA and histones that influence chromatin structure, regulate gene expression during normal development and are also involved in carcinogenesis and cancer progression. The histone methyltransferase G9a (euchromatic histone lysine methyltransferase 2, EHMT2), which mostly mediates mono- and dimethylation by histone H3 lysine 9 (H3K9), influences gene expression involved in embryonic development and tissue differentiation. Overexpression of G9a has been observed in several cancer types, and different classes of G9a inhibitors have been developed as potential anticancer agents. Here, we review the emerging evidence suggesting the involvement of changes in G9a activity in brain tumors, namely glioblastoma (GBM), the main type of primary malignant brain cancer in adults, and medulloblastoma (MB), the most common type of malignant brain cancer in children. We also discuss the role of G9a in neuroblastoma (NB) and the drug development of G9a inhibitors.
Collapse
|