1
|
An Q, Duan L, Wang Y, Wang F, Liu X, Liu C, Hu Q. Role of CD4 + T cells in cancer immunity: a single-cell sequencing exploration of tumor microenvironment. J Transl Med 2025; 23:179. [PMID: 39953548 PMCID: PMC11829416 DOI: 10.1186/s12967-025-06167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Recent oncological research has intensely focused on the tumor immune microenvironment (TME), particularly the functions of CD4 + T lymphocytes. CD4+ T lymphocytes have been implicated in antigen presentation, cytokine release, and cytotoxicity, suggesting their contribution to the dynamics of the TME. Furthermore, the application of single-cell sequencing has yielded profound insights into the phenotypic diversity and functional specificity of CD4+ T cells in the TME. In this review, we discuss the current findings from single-cell analyses, emphasizing the heterogeneity of CD4+ T cell subsets and their implications in tumor immunology. In addition, we review the critical signaling pathways and molecular networks underpinning CD4+ T cell activities, thereby offering novel perspectives on therapeutic targets and strategies for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Qi An
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Duan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuanyuan Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fuxin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Gannan Medical University, Jiangxi, 341000, China.
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, 100034, China.
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Cha J, Kim DH, Kim G, Cho JW, Sung E, Baek S, Hong MH, Kim CG, Sim NS, Hong HJ, Lee JE, Hemberg M, Park S, Yoon SO, Ha SJ, Koh YW, Kim HR, Lee I. Single-cell analysis reveals cellular and molecular factors counteracting HPV-positive oropharyngeal cancer immunotherapy outcomes. J Immunother Cancer 2024; 12:e008667. [PMID: 38857913 PMCID: PMC11168198 DOI: 10.1136/jitc-2023-008667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/19/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Oropharyngeal squamous cell carcinoma (OPSCC) induced by human papillomavirus (HPV-positive) is associated with better clinical outcomes than HPV-negative OPSCC. However, the clinical benefits of immunotherapy in patients with HPV-positive OPSCC remain unclear. METHODS To identify the cellular and molecular factors that limited the benefits associated with HPV in OPSCC immunotherapy, we performed single-cell RNA (n=20) and T-cell receptor sequencing (n=10) analyses of tonsil or base of tongue tumor biopsies prior to immunotherapy. Primary findings from our single-cell analysis were confirmed through immunofluorescence experiments, and secondary validation analysis were performed via publicly available transcriptomics data sets. RESULTS We found significantly higher transcriptional diversity of malignant cells among non-responders to immunotherapy, regardless of HPV infection status. We also observed a significantly larger proportion of CD4+ follicular helper T cells (Tfh) in HPV-positive tumors, potentially due to enhanced Tfh differentiation. Most importantly, CD8+ resident memory T cells (Trm) with elevated KLRB1 (encoding CD161) expression showed an association with dampened antitumor activity in patients with HPV-positive OPSCC, which may explain their heterogeneous clinical outcomes. Notably, all HPV-positive patients, whose Trm presented elevated KLRB1 levels, showed low expression of CLEC2D (encoding the CD161 ligand) in B cells, which may reduce tertiary lymphoid structure activity. Immunofluorescence of HPV-positive tumors treated with immune checkpoint blockade showed an inverse correlation between the density of CD161+ Trm and changes in tumor size. CONCLUSIONS We found that CD161+ Trm counteracts clinical benefits associated with HPV in OPSCC immunotherapy. This suggests that targeted inhibition of CD161 in Trm could enhance the efficacy of immunotherapy in HPV-positive oropharyngeal cancers. TRIAL REGISTRATION NUMBER NCT03737968.
Collapse
Affiliation(s)
- Junha Cha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Da Hee Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gamin Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Won Cho
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Euijeong Sung
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nam Suk Sim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jun Hong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Eun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Martin Hemberg
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Seyeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sun Ock Yoon
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yoon Woo Koh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
3
|
Li L, Hu Y, Li X, Ju B. A comprehensive analysis of the KLRB1 expression and its clinical implication in testicular germ cell tumors: A review. Medicine (Baltimore) 2024; 103:e37688. [PMID: 38608099 PMCID: PMC11018193 DOI: 10.1097/md.0000000000037688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/06/2024] [Accepted: 03/01/2024] [Indexed: 04/14/2024] Open
Abstract
Testicular germ cell tumors (TGCT) are the most common testicular malignancies. KLRB1 is considered to influence the development and progression of a number of cancers. However, it is unclear how the KLRB1 gene functions in TGCT. First, it was determined the expression level of KLRB1 in TGCT using The Cancer Genome Atlas (TCGA) (The Cancer Genome Atlas) dataset and GTEx (Genotype-Tissue Expression) dataset. The clinical significance and biological functions of KLRB1 were explored using the TCGA dataset, and we analyzed the correlation of the KLRB1 gene with tumor immunity and infiltrating immune cells using gene set variation analysis and the TIMER database. We found that the expression level of KLRB1 was upregulated in TGCT malignant tissues with the corresponding normal tissues as controls, and KLRB1 expression correlated with clinicopathologic features of TGCT. Functional enrichment analysis suggested that KLRB1 might be involved in immune response and inflammatory response. KLRB1 was highly positively correlated with natural killer cell activation in immune response and positively correlated with tumor-infiltrating immune cells. This study demonstrated for the first time the role of KLRB1 in TGCT, which may serve as a new biomarker associated with immune infiltration and provide a potential therapeutic target for the treatment of TGCT.
Collapse
Affiliation(s)
- Luyu Li
- The First Clinical School of Medicine Henan University of Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Yaorui Hu
- Department of Neurobiology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Institute of Neurobiology, Health and Rehabilitation Sciences of University, Qingdao, Shandong 266000, China
| | - Xiao Li
- Department of Andrology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Baojun Ju
- Department of Andrology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, China
| |
Collapse
|
4
|
Baudouin R, Hans S, Lisan Q, Morin B, Adimi Y, Martin J, Lechien JR, Tartour E, Badoual C. Prognostic Significance of the Microenvironment in Human Papillomavirus Oropharyngeal Carcinoma: A Systematic Review. Laryngoscope 2024; 134:1507-1516. [PMID: 37642393 DOI: 10.1002/lary.31010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE The immune microenvironment of HPV-associated (HPV+) oropharyngeal squamous cell carcinomas (OPSCCs) (HPV+OPSCCs) differs from that of HPV-independent oropharyngeal cancers (HPV-independent OPSCCs). The literature on the subject is very abundant, demanding an organized synthesis of this wealth of information to evaluate the hypothesis associating the favorable prognosis of HPV+OPSCC patients with a different immune microenvironment. A systematic review of the literature was conducted regarding the microenvironment of HPV+OPSCCs. DATA SOURCE MEDLINE/PubMed, Embase, and Cochrane Library databases. REVIEW METHODS A literature search was performed following PRISMA guidelines (Moher D. PLoS Med. 2009). The PEO (Population, Exposure, and Outcome) framework is detailed as follows: P: patients with oropharyngeal squamous cell carcinomas, E: human papillomavirus (HPV), and O: histological and immunological composition of the tumoral microenvironment (TME). No meta-analysis was performed. RESULTS From 1,202 studies that were screened, 58 studies were included (n = 6,474 patients; n = 3,581 (55%) HPV+OPSCCs and n = 2,861(45%) HPV-independent OPSCCs). The presence of tumor-infiltrating lymphocytes (TIL), CD3+ in 1,733 patients, CD4+ in 520 patients, and CD8+ (cytotoxic T lymphocytes (CTL)) in 3,104 patients, and high levels of PD-L1 expression in 1,222 patients is strongly correlated with an improved clinical outcome in HPV+OPSCCs. CONCLUSION This systematic review provides the most comprehensive information on the immune microenvironment of HPV+OPSCCs to date. Tumor-infiltrating lymphocytes and PD-L1 expression are associated with a favorable prognosis. B, CD8+ and resident memory cells densities are higher in HPV+OPSCCs. The importance of myeloid lineages is still a matter of debate and research. LEVEL OF EVIDENCE NA Laryngoscope, 134:1507-1516, 2024.
Collapse
Affiliation(s)
- R Baudouin
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Montigny-le-Bretonneux, France
| | - S Hans
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Montigny-le-Bretonneux, France
| | - Q Lisan
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Montigny-le-Bretonneux, France
| | - B Morin
- Department of Pathology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
- Department of Biological Immunology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| | - Y Adimi
- Department of Pathology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
- Department of Biological Immunology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| | - J Martin
- Department of Pathology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
- Department of Biological Immunology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| | - J R Lechien
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Montigny-le-Bretonneux, France
| | - E Tartour
- Department of Biological Immunology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| | - C Badoual
- Department of Pathology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| |
Collapse
|
5
|
Xia J, Zhou X. Necroptosis-related KLRB1 was a potent tumor suppressor and immunotherapy determinant in breast cancer. Heliyon 2024; 10:e27294. [PMID: 38509875 PMCID: PMC10951529 DOI: 10.1016/j.heliyon.2024.e27294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Breast cancer is a multifaceted and diverse illness that impacts millions of people globally. Identifying the underlying causes of BRCA and creating efficient treatment plans are urgent. Necroptosis is widely involved in cancer development. However, the specific roles of necroptosis in cancer immunotherapy of breast cancer have not been explored. In this study, we aim to establish the connection between necroptosis and immunotherapy in BRCA. TCGA, METABRIC, GSE103091, GSE159956, and GSE96058 were included for bioinformatics analysis. NMF and CoxBoost algorithms were used to develop the necroptosis-related patterns and model, respectively. A necroptosis-related model was developed and determined KLRB1 as a critical tumor suppressor by in vitro validation. The mutation characteristics, immune characteristics, and molecular functions of KLRB1 were explored. We further examined how necroptosis-related KLRB1 functions in BRCA as a powerful tumor suppressor and regulates the activity of macrophages by in vitro validation, including CCK8, EdU, and Transwell assays. KLRB1 was also revealed to be an immunotherapy determinant.
Collapse
Affiliation(s)
- Jie Xia
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xudong Zhou
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Tittarelli A, Pereda C, Gleisner MA, López MN, Flores I, Tempio F, Lladser A, Achour A, González FE, Durán-Aniotz C, Miranda JP, Larrondo M, Salazar-Onfray F. Long-Term Survival and Immune Response Dynamics in Melanoma Patients Undergoing TAPCells-Based Vaccination Therapy. Vaccines (Basel) 2024; 12:357. [PMID: 38675738 PMCID: PMC11053591 DOI: 10.3390/vaccines12040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer vaccines present a promising avenue for treating immune checkpoint blockers (ICBs)-refractory patients, fostering immune responses to modulate the tumor microenvironment. We revisit a phase I/II trial using Tumor Antigen-Presenting Cells (TAPCells) (NCT06152367), an autologous antigen-presenting cell vaccine loaded with heat-shocked allogeneic melanoma cell lysates. Initial findings showcased TAPCells inducing lysate-specific delayed-type hypersensitivity (DTH) reactions, correlating with prolonged survival. Here, we extend our analysis over 15 years, categorizing patients into short-term (<36 months) and long-term (≥36 months) survivors, exploring novel associations between clinical outcomes and demographic, genetic, and immunologic parameters. Notably, DTHpos patients exhibit a 53.1% three-year survival compared to 16.1% in DTHneg patients. Extended remissions are observed in long-term survivors, particularly DTHpos/M1cneg patients. Younger age, stage III disease, and moderate immune events also benefit short-term survivors. Immunomarkers like increased C-type lectin domain family 2 member D on CD4+ T cells and elevated interleukin-17A were detected in long-term survivors. In contrast, toll-like receptor-4 D229G polymorphism and reduced CD32 on B cells are associated with reduced survival. TAPCells achieved stable long remissions in 35.2% of patients, especially M1cneg/DTHpos cases. Conclusions: Our study underscores the potential of vaccine-induced immune responses in melanoma, emphasizing the identification of emerging biological markers and clinical parameters for predicting long-term remission.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile;
| | - Cristian Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
| | - María A. Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Mercedes N. López
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
| | - Iván Flores
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
| | - Fabián Tempio
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
| | - Alvaro Lladser
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile;
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 8580702, Chile
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden;
- Division of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Fermín E. González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile;
| | - Claudia Durán-Aniotz
- Latin American Brain Health Institute (BrainLat), Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibañez, Santiago 7941169, Chile;
| | | | - Milton Larrondo
- Banco de Sangre, Hospital Clínico de la Universidad de Chile, Santiago 8380453, Chile;
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden;
- Division of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
7
|
Ma Z, An P, Hao S, Huang Z, Yin A, Li Y, Tian J. Single-cell sequencing analysis and multiple machine-learning models revealed the cellular crosstalk of dendritic cells and identified FABP5 and KLRB1 as novel biomarkers for psoriasis. Front Immunol 2024; 15:1374763. [PMID: 38596682 PMCID: PMC11002082 DOI: 10.3389/fimmu.2024.1374763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background Psoriasis is an immune-mediated disorder influenced by environmental factors on a genetic basis. Despite advancements, challenges persist, including the diminishing efficacy of biologics and small-molecule targeted agents, alongside managing recurrence and psoriasis-related comorbidities. Unraveling the underlying pathogenesis and identifying valuable biomarkers remain pivotal for diagnosing and treating psoriasis. Methods We employed a series of bioinformatics (including single-cell sequencing data analysis and machine learning techniques) and statistical methods to integrate and analyze multi-level data. We observed the cellular changes in psoriatic skin tissues, screened the key genes Fatty acid binding protein 5 (FABP5) and The killer cell lectin-like receptor B1 (KLRB1), evaluated the efficacy of six widely prescribed drugs on psoriasis treatment in modulating the dendritic cell-associated pathway, and assessed their overall efficacy. Finally, RT-qPCR, immunohistochemistry, and immunofluorescence assays were used to validate. Results The regulatory influence of dendritic cells (DCs) on T cells through the CD70/CD27 signaling pathway may emerge as a significant facet of the inflammatory response in psoriasis. Notably, FABP5 and KLRB1 exhibited up-regulation and co-localization in psoriatic skin tissues and M5-induced HaCaT cells, serving as potential biomarkers influencing psoriasis development. Conclusion Our study analyzed the impact of DC-T cell crosstalk in psoriasis, elucidated the characterization of two biomarkers, FABP5 and KLRB1, in psoriasis, and highlighted the promise and value of tofacitinib in psoriasis therapy targeting DCs.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, China
| | - Siyu Hao
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Anqi Yin
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangtian Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| |
Collapse
|
8
|
Hu X, Dong Y, Xie S, Song Y, Yu C, He Y, Wang Z, Hu Q, Ni Y, Ding L. Immune checkpoint CD161/LLT1-associated immunological landscape and diagnostic value in oral squamous cell carcinoma. J Pathol Clin Res 2024; 10:e353. [PMID: 38502058 PMCID: PMC10792702 DOI: 10.1002/cjp2.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 03/20/2024]
Abstract
An active host adaptive response is characterized by the existence of programmed cell death protein 1 (PD-1)+ /IFN-γ+ cytotoxic T cells and IFN-γ-induced PD-L1+ tumor cells (TCs), which predicts high response rate to anti-PD-1/L1 therapy. Recently, CD161 and its ligand LLT1 (CLEC2D) have been identified as an emerging checkpoint for immunotherapy. Clarifying its heterogeneous clinical expression pattern and its immune landscape is a prerequisite for maximizing the response rate of CD161 blockade therapy in a specific population of oral squamous cell carcinoma (OSCC) patients. Here, we investigated the expression pattern of CD161/LLT1 and its association with major immunocytes (T cells, B cells, NK cells, and macrophages) by multiplex immunofluorescence, immunohistochemistry, and flow cytometry in 109 OSCC tissues and 102 peripheral blood samples. TCs showed higher LLT1 levels than tumor infiltrating lymphocytes (TILs), whereas CD161 was highly expressed in CD8+ T cells at the tumor front, which was decreased in paracancerous tissue. High expression of TC-derived LLT1 (LLT1TC ) conferred poor clinical outcomes, whereas higher CD161+ and LLT1+ TILs were associated with better prognosis. Meanwhile, patients with high LLT1TC showed a decreased ratio of CD8+ /Foxp3+ T cells in situ, but CD161+ TILs correlated with more peripheral CD3+ T cells. Interestingly, treatment of OSCC patients with nivolumab (anti-PD-1) could restore tumoral CD161/LLT1 signal. Furthermore, an OSCC subgroup characterized by high LLT1+ TCs and low CD161+ CD8+ T cells showed fewer peripheral T cells and a higher risk of lymph node metastasis, leading to a shorter 5-year survival time (29%). More LLT1TC at the invasive front was another risk characteristic of exhausted T cells. In conclusion, in view of this heterogeneity, the LLT1/CD161 distribution pattern should be determined before CD161-based immunotherapy.
Collapse
Affiliation(s)
- Xinyang Hu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingPR China
| | - Yuexin Dong
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingPR China
| | - Shixin Xie
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingPR China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingPR China
| | - Chenhang Yu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingPR China
| | - Yijia He
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingPR China
| | - Zhiyong Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingPR China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingPR China
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingPR China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingPR China
| |
Collapse
|
9
|
Deng J, Lai G, Zhang C, Li K, Zhu W, Xie B, Zhong X. A robust primary liver cancer subtype related to prognosis and drug response based on a multiple combined classifying strategy. Heliyon 2024; 10:e25570. [PMID: 38352751 PMCID: PMC10861988 DOI: 10.1016/j.heliyon.2024.e25570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The recurrence or resistance to treatment of primary liver cancer (PLL) is significantly related to the heterogeneity present within the tumor. In this study, we integrated prognosis risk score, mRNAsi index, and immune characteristics clustering to classify patients. The four subtypes obtained from the combined classification are associated with PLC's prognosis and drug response. In these subtypes, we observed mRNAsiH_ICCA subtype, the intersection between high mRNAsi and immune characteristics clustering A, had the worst prognosis. Specifically, immune characteristics clustering B (ICC_B) had high drug sensitivity in most drugs regardless of the value of mRNAsi. On the other hand, patients with low mRNAsi responded better to ten drugs including KU-55933 and NU7441, while patients with high mRNAsi might benefit from drugs like Leflunomide. By matching the specific characteristics of each combined subtype with the drug-induced cell line expression profile, we identified a group of potential therapeutic drugs that might regulate the expression of disease signature genes. We developed a feasible multiple combined typing strategy, hoping to guide therapeutic selection and promote the development of precision medicine.
Collapse
Affiliation(s)
- Jielian Deng
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
- Medical Department, Yidu Cloud (Beijing) Technology Co., Beijing, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Cong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Kangjie Li
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Wenyan Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Medical Department, Yidu Cloud (Beijing) Technology Co., Beijing, China
| | - Biao Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiaoni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Kovacsovics-Bankowski M, Sweere JM, Healy CP, Sigal N, Cheng LC, Chronister WD, Evans SA, Marsiglio J, Gibson B, Swami U, Erickson-Wayman A, McPherson JP, Derose YS, Eliason AL, Medina CO, Srinivasan R, Spitzer MH, Nguyen N, Hyngstrom J, Hu-Lieskovan S. Lower frequencies of circulating suppressive regulatory T cells and higher frequencies of CD4 + naïve T cells at baseline are associated with severe immune-related adverse events in immune checkpoint inhibitor-treated melanoma. J Immunother Cancer 2024; 12:e008056. [PMID: 38233101 PMCID: PMC10806651 DOI: 10.1136/jitc-2023-008056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Immune-related adverse events (irAEs) are major barriers of clinical management and further development of immune checkpoint inhibitors (ICIs) for cancer therapy. Therefore, biomarkers associated with the onset of severe irAEs are needed. In this study, we aimed to identify immune features detectable in peripheral blood and associated with the development of severe irAEs that required clinical intervention. METHODS We used a 43-marker mass cytometry panel to characterize peripheral blood mononuclear cells from 28 unique patients with melanoma across 29 lines of ICI therapy before treatment (baseline), before the onset of irAEs (pre-irAE) and at the peak of irAEs (irAE-max). In the 29 lines of ICI therapy, 18 resulted in severe irAEs and 11 did not. RESULTS Unsupervised and gated population analysis showed that patients with severe irAEs had a higher frequency of CD4+ naïve T cells and lower frequency of CD16+ natural killer (NK) cells at all time points. Gated population analysis additionally showed that patients with severe irAEs had fewer T cell immunoreceptor with Ig and ITIM domain (TIGIT+) regulatory T cells at baseline and more activated CD38+ CD4+ central memory T cells (TCM) and CD39+ and Human Leukocyte Antigen-DR Isotype (HLA-DR)+ CD8+ TCM at peak of irAEs. The differentiating immune features at baseline were predominantly seen in patients with gastrointestinal and cutaneous irAEs and type 1 diabetes. Higher frequencies of CD4+ naïve T cells and lower frequencies of CD16+ NK cells were also associated with clinical benefit to ICI therapy. CONCLUSIONS This study demonstrates that high-dimensional immune profiling can reveal novel blood-based immune signatures associated with risk and mechanism of severe irAEs. Development of severe irAEs in melanoma could be the result of reduced immune inhibitory capacity pre-ICI treatment, resulting in more activated TCM cells after treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John Marsiglio
- The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Berit Gibson
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Umang Swami
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alyssa Erickson-Wayman
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jordan P McPherson
- Department of Pharmacy, Huntsman Cancer Institute Cancer Hospital, Salt Lake City, Utah, USA
| | - Yoko S Derose
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | - Matthew H Spitzer
- Teiko.bio Inc, Salt Lake City, Utah, USA
- Department of Otolaryngology-Head and Neck Cancer, University of California San Francisco, San Francisco, California, USA
| | | | - John Hyngstrom
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Siwen Hu-Lieskovan
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Chen H, Chen E, Lu Y, Xu Y. Identification of immune-related genes in diagnosing retinopathy of prematurity with sepsis through bioinformatics analysis and machine learning. Front Genet 2023; 14:1264873. [PMID: 38028617 PMCID: PMC10667920 DOI: 10.3389/fgene.2023.1264873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background: There is increasing evidence indicating that immune system dysregulation plays a pivotal role in the pathogenesis of retinopathy of prematurity (ROP) and sepsis. This study aims to identify key diagnostic candidate genes in ROP with sepsis. Methods: We obtained publicly available data on ROP and sepsis from the gene expression omnibus database. Differential analysis and weighted gene correlation network analysis (WGCNA) were performed to identify differentially expressed genes (DEGs) and key module genes. Subsequently, we conducted functional enrichment analysis to gain insights into the biological functions and pathways. To identify immune-related pathogenic genes and potential mechanisms, we employed several machine learning algorithms, including Support Vector Machine Recursive Feature Elimination (SVM-RFE), Least Absolute Shrinkage and Selection Operator (LASSO), and Random Forest (RF). We evaluated the diagnostic performance using nomogram and Receiver Operating Characteristic (ROC) curves. Furthermore, we used CIBERSORT to investigate immune cell dysregulation in sepsis and performed cMAP analysis to identify potential therapeutic drugs. Results: The sepsis dataset comprised 352 DEGs, while the ROP dataset had 307 DEGs and 420 module genes. The intersection between DEGs for sepsis and module genes for ROP consisted of 34 genes, primarily enriched in immune-related pathways. After conducting PPI network analysis and employing machine learning algorithms, we pinpointed five candidate hub genes. Subsequent evaluation using nomograms and ROC curves underscored their robust diagnostic potential. Immune cell infiltration analysis revealed immune cell dysregulation. Finally, through cMAP analysis, we identified some small molecule compounds that have the potential for sepsis treatment. Conclusion: Five immune-associated candidate hub genes (CLEC5A, KLRB1, LCN2, MCEMP1, and MMP9) were recognized, and the nomogram for the diagnosis of ROP with sepsis was developed.
Collapse
Affiliation(s)
- Han Chen
- Department of Ophthalmology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Enguang Chen
- Department of Ophthalmology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Lu
- Department of Ophthalmology, Anhui No. 2 Provincial People’s Hospital, Anhui, Hefei, China
| | - Yu Xu
- Department of Ophthalmology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Di Roio A, Hubert M, Besson L, Bossennec M, Rodriguez C, Grinberg-Bleyer Y, Lalle G, Moudombi L, Schneider R, Degletagne C, Treilleux I, Campbell DJ, Metzger S, Duhen T, Trédan O, Caux C, Ménétrier-Caux C. MDR1-EXPRESSING CD4 + T CELLS WITH TH1.17 FEATURES RESIST TO NEOADJUVANT CHEMOTHERAPY AND ARE ASSOCIATED WITH BREAST CANCER CLINICAL RESPONSE. J Immunother Cancer 2023; 11:e007733. [PMID: 37940345 PMCID: PMC10632904 DOI: 10.1136/jitc-2023-007733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Multidrug resistance-1 (MDR1) transporter limits the intracellular accumulation of chemotherapies (paclitaxel, anthracyclines) used in breast cancer (BC) treatment. In addition to tumor cells, MDR1 is expressed on immune cell subsets in which it confers chemoresistance. Among human T cells, MDR1 is expressed by most CD8+ T cells, and a subset of CD4+ T helper (Th) cells. Here we explored the expression, function and regulation of MDR1 on CD4+ T cells and investigated the role of this population in response to neoadjuvant chemotherapy (NAC) in BC. METHODS Phenotypic and functional characteristics of MDR1+ CD4 Th cells were assessed on blood from healthy donors and patients with BC by flow cytometry. These features were extended to CD4+ Th cells from untreated breast tumor by flow cytometry and RNA-sequencing (RNA-seq). We performed in vitro polarization assays to decipher MDR1 regulation on CD4 Th cells. We evaluated in vitro the impact of chemotherapy agents on MDR1+ CD4+ Th cells. We analyzed the impact of NAC treatment on MDR1+ CD4+ Th cells from blood and tumors and their association with treatment efficacy in two independent BC cohorts and in a public RNA-seq data set of BC tumor biopsies before and after NAC. Finally, we performed single cell (sc) RNAseq of blood CD4+ memory T cells from NAC-treated patients and combined them with an scRNAseq public data set. RESULTS MDR1+ CD4 Th cells were strongly enriched in Th1.17 polyfunctional cells but also in Th17 cells, both in blood and untreated breast tumor tissues. Mechanistically, Tumor growth factor (TGF)-β1 was required for MDR1 induction during in vitro Th17 or Th1.17 polarization. MDR1 expression conferred a selective advantage to Th1.17 and Th17 cells following paclitaxel treatment in vitro and in vivo in NAC-treated patients. scRNAseq demonstrated MDR1 association with tumor Th1.17 and Th with features of cytotoxic cells. Enrichment in MDR1+ CD4+ Th1.17 and Th17 cells, in blood and tumors positively correlated with pathological response. Absence of early modulation of Th1.17 and Th17 in NAC-resistant patients, argue for its use as a biomarker for chemotherapy regimen adjustment. CONCLUSION MDR1 favored the enrichment of Th1.17 and Th17 in blood and tumor after NAC that correlated to clinical response.
Collapse
Affiliation(s)
- Anthony Di Roio
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Margaux Hubert
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Laurie Besson
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Marion Bossennec
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Céline Rodriguez
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | | | - Guilhem Lalle
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Lyvia Moudombi
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Raphael Schneider
- Plateforme Gilles Thomas, Centre de Recherche en cancérologie de Lyon, Lyon, France
| | - Cyril Degletagne
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | - Isabelle Treilleux
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
- BioPathology Department, Centre Léon Bérard, Lyon, Rhône-Alpes, France
| | - Daniel J Campbell
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Séverine Metzger
- Clinical Research Platform, DRCI, Centre Léon Bérard, Lyon, Rhône-Alpes, France
| | - Thomas Duhen
- Earle A Chiles Research Institute, Portland, Oregon, USA
| | | | - Christophe Caux
- TERI Department, Centre de Recherche en Cancerologie de Lyon, Lyon, France
| | | |
Collapse
|
13
|
Wang Y, Zhang B, Zhang Z, Ge J, Xu L, Mao J, Zhou X, Mao L, Xu Q, Sang M. Predicting Prognosis and Immunotherapy Response in Multiple Cancers Based on the Association of PANoptosis-Related Genes with Tumor Heterogeneity. Genes (Basel) 2023; 14:1994. [PMID: 38002938 PMCID: PMC10671595 DOI: 10.3390/genes14111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
PANoptosis is a newly recognized inflammatory pathway for programmed cell death (PCD). It participates in regulating the internal environment, homeostasis, and disease process in various complex ways and plays a crucial role in tumor development, but its mechanism of action is still unclear. In this study, we comprehensively analyzed the expression of 14 PANoptosis-related genes (PANRGs) in 28 types of tumors. Most PANRGs are upregulated in tumors, including Z-DNA binding protein 1 (ZBP1), nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain-containing 3 (NLRP3), caspase (CASP) 1, CASP6, CASP8, PYCARD, FADD, MAP3K7, RNF31, and RBCK1. PANRGs are highly expressed in GBM, LGG, and PAAD, while their levels in ACC are much lower than those in normal tissues. We found that both the CNV and SNV gene sets in BLCA are closely related to survival performance. Subsequently, we conducted clustering and LASSO analysis on each tumor and found that the inhibitory and the stimulating immune checkpoints positively correlate with ZBP1, NLRP3, CASP1, CASP8, and TNFAIP3. The immune infiltration results indicated that KIRC is associated with most infiltrating immune cells. According to the six tumor dryness indicators, PANRGs in LGG show the strongest tumor dryness but have a negative correlation with RNAss. In KIRC, LIHC, and TGCT, most PANRGs play an important role in tumor heterogeneity. Additionally, we analyzed the linear relationship between PANRGs and miRNA and found that MAP3K7 correlates to many miRNAs in most cancers. Finally, we predicted the possible drugs for targeted therapy of the cancers. These data greatly enhance our understanding of the components of cancer and may lead to the discovery of new biomarkers for predicting immunotherapy response and improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Yunhan Wang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Boyu Zhang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Zongying Zhang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Jia Ge
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Lin Xu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Jiawei Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Mengmeng Sang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.W.); (B.Z.); (Z.Z.); (J.G.); (L.X.); (J.M.); (X.Z.); (L.M.)
| |
Collapse
|
14
|
van Bockel D, Kelleher A. The crossroads: divergent roles of virus-specific CD4 + T lymphocytes in determining the outcome for human papillomavirus infection. Immunol Cell Biol 2023; 101:525-534. [PMID: 37159056 DOI: 10.1111/imcb.12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2022] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
Despite the widespread availability of effective prophylactic vaccines to prevent human papillomavirus (HPV) infection, HPV remains a major health burden. For health care systems in countries with the capacity for vaccine roll out, incomplete strategies result in citizens with naturally occurring infection, who are at an a posteriori risk of HPV-driven disease. Genital HPV infection is the most common sexually transmitted virus globally. Those classified as high-risk HPV strains are more likely to generate persistent disease. Within this group, HPV16 and 18 are the most prevalent and likely to induce persistent high-grade squamous intraepithelial neoplasia; neoplasia is a large step toward cancerous growth known as a squamous cell carcinoma which contribute to all cervical, 70% of oropharyngeal, 78% of vaginal and 88% of anal cancers. This review will illuminate the relevance of CD4+ T lymphocytes in determining the outcome of papillomavirus infection from the perspective of oropharyngeal and anogenital HPV-driven disease in the immune competent and immunocompromised. The focus is on recent investigations for this "silent" pandemic among current global health crises that should not be forgotten. Informing effective strategies that control viral infection through naturally acquired or induced immunity will identify aspects of scientific and clinical practice that may improve outcome.
Collapse
Affiliation(s)
- David van Bockel
- The Kirby Institute for Infection and Immunity, UNSW Medicine, UNSW Sydney, Kensington Campus, Sydney, NSW, Australia
| | - Anthony Kelleher
- The Kirby Institute for Infection and Immunity, UNSW Medicine, UNSW Sydney, Kensington Campus, Sydney, NSW, Australia
| |
Collapse
|
15
|
Chen J, Lian Y, Zhao B, Han J, Li X, Wu J, Hou M, Yue M, Zhang K, Liu G, Tu M, Ruan W, Ji S, An Y. Deciphering the Prognostic and Therapeutic Significance of Cell Cycle Regulator CENPF: A Potential Biomarker of Prognosis and Immune Microenvironment for Patients with Liposarcoma. Int J Mol Sci 2023; 24:ijms24087010. [PMID: 37108172 PMCID: PMC10139200 DOI: 10.3390/ijms24087010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Liposarcoma (LPS) is one of the most common subtypes of sarcoma with a high recurrence rate. CENPF is a regulator of cell cycle, differential expression of which has been shown to be related with various cancers. However, the prognostic value of CENPF in LPS has not been deciphered yet. Using data from TCGA and GEO datasets, the expression difference of CENPF and its effects on the prognosis or immune infiltration of LPS patients were analyzed. As results show, CENPF was significantly upregulated in LPS compared to normal tissues. Survival curves illustrated that high CENPF expression was significantly associated with adverse prognosis. Univariate and multivariate analysis suggested that CENPF expression could be an independent risk factor for LPS. CENPF was closely related to chromosome segregation, microtubule binding and cell cycle. Immune infiltration analysis elucidated a negative correlation between CENPF expression and immune score. In conclusion, CENPF not only could be considered as a potential prognostic biomarker but also a potential malignant indicator of immune infiltration-related survival for LPS. The elevated expression of CENPF reveals an unfavorable prognostic outcome and worse immune score. Thus, therapeutically targeting CENPF combined with immunotherapy might be an attractive strategy for the treatment of LPS.
Collapse
Affiliation(s)
- Jiahao Chen
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Yingying Lian
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Binbin Zhao
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Jiayang Han
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Xinyu Li
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Jialin Wu
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Mengwen Hou
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Man Yue
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Kaifeng Zhang
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Guangchao Liu
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Mengjie Tu
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Weimin Ruan
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shaoping Ji
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| | - Yang An
- Cell Signal Transduction Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng 475004, China
- Kaifeng Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng 475004, China
| |
Collapse
|
16
|
Lao L, Zeng W, Huang P, Chen H, Jia Z, Wang P, Huang D, Chen J, Nie Y, Yang L, Wu W, Liu J. CD8+ T cell-Dependent Remodeling of the Tumor Microenvironment Overcomes Chemoresistance. Cancer Immunol Res 2023; 11:320-338. [PMID: 36603133 PMCID: PMC9975671 DOI: 10.1158/2326-6066.cir-22-0356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2022] [Revised: 09/01/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The therapeutic efficacy of chemotherapy is in part a result of its ability to enhance adaptive antitumor immune responses. However, tumor cells exploit various evasion mechanisms to escape the immune attack and blunt chemosensitivity. Herein, we report that through single-cell profiling of the tumor immune microenvironment, we identified a subset of CD161-overexpressing CD8+ T cells enriched in chemoresistant tumors. CD161 engagement repressed the calcium influx and cytolytic capacity of CD8+ T cells through acid sphingomyelinase activation and ceramide generation. Targeting CD161 in adoptively transferred cytotoxic T lymphocytes enhanced antitumor immunity and reversed chemoresistance in patient-derived xenografts in vivo. Clinically, CD161 expression on CD8+ T cells was associated with chemoresistance and shortened patient survival. Our findings provide insights into novel immunosuppressive mechanisms in chemoresistance and highlight targeting CD161 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Liyan Lao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| | - Wenfeng Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| | - Penghan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| | - Huiping Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| | - Zishuo Jia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| | - Pei Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| | - Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| | - Linbin Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Bioland Laboratory, Guangzhou, China
| |
Collapse
|
17
|
Wei Y, Xu T, Li C, Zhou X, Qian W, Shen C, Wang Q, Xing X, Ou X, He X, Yin H, Hu C, Wang Y, Ji Q, Su F, Lu X. CD161 Characterizes an Inflamed Subset of Cytotoxic T Lymphocytes Associated with Prolonged Survival in Human Papillomavirus-Driven Oropharyngeal Cancer. Cancer Immunol Res 2023; 11:306-319. [PMID: 36633583 PMCID: PMC9975669 DOI: 10.1158/2326-6066.cir-22-0454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2022] [Revised: 11/05/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Human papillomavirus (HPV)-driven oropharyngeal carcinoma (OPSCC) is distinct from tobacco- or alcohol-associated OPSCC and has a unique immune landscape. Studies have supported the heterogeneity of T cells, accompanied by a broad repertoire of T-cell responses, within tumors driven by HPV infection. However, the phenotype and function of these HPV-related T cells remain unclear. Using a combination of single-cell RNA sequencing, flow cytometry, pharmacologic inhibition, and immunofluorescence staining, we explored the prognostic implication of HPV-related T cells and further validated our findings in two independent cohorts. Cytotoxic T lymphocytes (CTL) within OPSCC displayed a spectrum of transcriptional signatures. Among which, we identified CD161 receptor, encoded by KLRB1, as a potential marker to distinguish the CTL subsets in HPV-positive OPSCC with a divergent evolutionary trajectory. In-depth analysis revealed that CD161+ CTLs exhibited a more robust immune response over the CD161- counterparts and a T cell-inflamed phenotype that could be further reinvigorated by immune-checkpoint blockade. Despite the high expression of exhaustion markers, reinforcement of CD161+ CTL reactivity was expected to boost immune responses, considering their functional reversibility. We further confirmed that the high level of intratumoral CD161+ CTLs associated with a favorable treatment response and prolonged overall survival. Therefore, our research not only provides an insight into the immune landscape of HPV-driven OPSCC but also sheds light on a special subset of CTLs with prognostic and therapeutic significance.
Collapse
Affiliation(s)
- Ye Wei
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tingting Xu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chong Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xin Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wei Qian
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chunying Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qifeng Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xing Xing
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomin Ou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiayun He
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hongmei Yin
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Fengtao Su
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xueguan Lu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
18
|
Elsaghir A, El-Sabaa EMW, Ahmed AK, Abdelwahab SF, Sayed IM, El-Mokhtar MA. The Role of Cluster of Differentiation 39 (CD39) and Purinergic Signaling Pathway in Viral Infections. Pathogens 2023; 12:279. [PMID: 36839551 PMCID: PMC9967413 DOI: 10.3390/pathogens12020279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
CD39 is a marker of immune cells such as lymphocytes and monocytes. The CD39/CD73 pathway hydrolyzes ATP into adenosine, which has a potent immunosuppressive effect. CD39 regulates the function of a variety of immunologic cells through the purinergic signaling pathways. CD39+ T cells have been implicated in viral infections, including Human Immunodeficiency Virus (HIV), Cytomegalovirus (CMV), viral hepatitis, and Corona Virus Disease 2019 (COVID-19) infections. The expression of CD39 is an indicator of lymphocyte exhaustion, which develops during chronicity. During RNA viral infections, the CD39 marker can profile the populations of CD4+ T lymphocytes into two populations, T-effector lymphocytes, and T-regulatory lymphocytes, where CD39 is predominantly expressed on the T-regulatory cells. The level of CD39 in T lymphocytes can predict the disease progression, antiviral immune responses, and the response to antiviral drugs. Besides, the percentage of CD39 and CD73 in B lymphocytes and monocytes can affect the status of viral infections. In this review, we investigate the impact of CD39 and CD39-expressing cells on viral infections and how the frequency and percentage of CD39+ immunologic cells determine disease prognosis.
Collapse
Affiliation(s)
- Alaa Elsaghir
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ehsan M. W. El-Sabaa
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | | | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ibrahim M. Sayed
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
19
|
Weng M, Xie H, Zheng M, Hou X, Wang S, Huang Y. Identification of CD161 expression as a novel prognostic biomarker in breast cancer correlated with immune infiltration. Front Genet 2022; 13:996345. [PMID: 36246587 PMCID: PMC9561259 DOI: 10.3389/fgene.2022.996345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background:CD161 has been identified as a prognostic biomarker in many neoplasms, but its role in breast cancer (BC) has not been fully explained. We aimed to investigate the molecular mechanism and prognostic value of CD161 in BC. Methods:CD161 expression profile was extracted from TIMER, Oncomine, UALCAN databases, and verified by the Gene Expression Omnibus (GEO) database and quantitative real-time polymerase chain reaction (qRT-PCR). The prognostic value of CD161 was assessed via GEPIA, Kaplan–Meier plotter and PrognoScan databases. The Cox regression and nomogram analyses were conducted to further validate the association between CD161 expression and survival. Gene set enrichment analysis (GSEA), Gene Ontology (GO) analysis, and KEGG pathway enrichment analysis were performed to probe the tumor-associated annotations of CD161. CIBERSORT and ssGSEA were employed to investigate the correlation between CD161 expression and immune cell infiltration in BC, and the result was verified by TIMER and TISIDB. Results: Multiple BC cohorts showed that CD161 expression was decreased in BC, and a high CD161 expression was associated with a preferable prognosis. Therefore, we identified the combined model including CD161, age and PR status to predict the survival (C index = 0.78) of BC patients. Functional enrichment analysis indicated that CD161 and its co-expressed genes were closely related to several cancerous and immune signaling pathways, suggesting its involvement in immune response during cancer development. Moreover, immune infiltration analysis revealed that CD161 expression was correlated with immune infiltration. Conclusion: Collectively, our findings revealed that CD161 may serve as a potential biomarker for favorable prognosis and a promising immune therapeutic target in BC.
Collapse
Affiliation(s)
- Miaomiao Weng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mingjie Zheng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xinwen Hou
- Department of Clinical Laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Shui Wang, ; Yue Huang,
| | - Yue Huang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Shui Wang, ; Yue Huang,
| |
Collapse
|
20
|
Braud VM, Meghraoui-Kheddar A, Elaldi R, Petti L, Germain C, Anjuère F. LLT1-CD161 Interaction in Cancer: Promises and Challenges. Front Immunol 2022; 13:847576. [PMID: 35185935 PMCID: PMC8854185 DOI: 10.3389/fimmu.2022.847576] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
The success of immune checkpoint therapy in cancer has changed our way of thinking, promoting the design of future cancer treatments that places the immune system at the center stage. The knowledge gained on immune regulation and tolerance helped the identification of promising new clinical immune targets. Among them, the lectin-like transcript 1 (LLT1) is the ligand of CD161 (NKR-P1A) receptor expressed on natural killer cells and T cells. LLT1/CD161 interaction modulates immune responses but the exact nature of the signals delivered is still partially resolved. Investigation on the role of LLT1/CD161 interaction has been hampered by the lack of functional homologues in animal models. Also, some studies have been misled by the use of non-specific reagents. Recent studies and meta-analyses of single cell data are bringing new insights into the function of LLT1 and CD161 in human pathology and notably in cancer. The advances made on the characterization of the tumor microenvironment prompt us to integrate LLT1/CD161 interaction into the equation. This review recapitulates the key findings on the expression profile of LLT1 and CD161, their regulation, the role of their interaction in cancer development, and the relevance of targeting LLT1/CD161 interaction.
Collapse
Affiliation(s)
- Veronique M. Braud
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- *Correspondence: Veronique M. Braud,
| | - Aïda Meghraoui-Kheddar
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Roxane Elaldi
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Luciana Petti
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | | | - Fabienne Anjuère
- Université Côte d’Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|