1
|
Chen C, Lu F, Huang H, Pan Y. Translating CD47-targeted therapy in gastrointestinal cancers: Insights from preclinical to clinical studies. iScience 2024; 27:111478. [PMID: 39720535 PMCID: PMC11667074 DOI: 10.1016/j.isci.2024.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
This review presents a thorough investigation of the role of CD47 in gastrointestinal cancers. We performed a comprehensive, in-depth review of over 100 preclinical and clinical studies focused on inhibiting CD47. The research highlights the potential of targeted CD47 to enhance existing treatments by boosting the immune response to cancer cells. Considering the essential need to balance the toxicity and efficacy of CD47 inhibition, our review emphasizes the need to optimize CD47 inhibitors. We also demonstrate the necessity of combining CD47 antibodies with conventional chemotherapy, radiotherapy, or other targeted therapies to enhance treatment effectiveness. Finally, we propose the integration of CD47-targeted therapies into treatment plans as a promising approach to reshape the therapeutic landscape of gastrointestinal cancers. Continued research in this field holds great potential for improving the outcomes of gastrointestinal cancer patients and overcoming the challenges associated with this formidable spectrum of diseases.
Collapse
Affiliation(s)
- Changgan Chen
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, People's Republic of China
| | - Fengchun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, People's Republic of China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, People's Republic of China
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou 350001, People's Republic of China
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| |
Collapse
|
2
|
Chen K, Li Y, Ni J, Yang X, Zhou Y, Pang Y, Ye R, Chen H, Yu S, Wang P, Zhu Z. Identification of a novel subtype of SPP1 + macrophages expressing SIRPα: implications for tumor immune evasion and treatment response prediction. Exp Hematol Oncol 2024; 13:119. [PMID: 39696410 DOI: 10.1186/s40164-024-00587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND SPP1 + macrophages are among the major phagocytic cells, yet promoting tumor immune evasion and predicting unfavorable prognosis, in various cancer types. Meanwhile, the predictive value of the abundance of SPP1 + macrophages in patients receiving immunotherapy remains debatable, indicating the potential existence of subtypes of SPP1 + macrophages with diverse biological functions. METHODS The single cell RNA sequencing data of myeloid cells integrated from several cancers including esophageal squamous cell carcinoma was analyzed for characterizing the function and cellular interactions of SPP1 + macrophages expressing SIRPα. Multiplexed immunohistochemistry was used to quantify the quantity and spatial distribution of SPP1 + macrophages expressing SIRPα. Kaplan-Meier method was used for survival analysis. In vitro and in vivo studies investigating the function of SPP1 + macrophages were performed. RESULTS SPP1 + macrophages possessed a high phagocytic signature and could engulf more tumor cells in vitro and in vivo. SIRPα expression could represent the phagocytic activity of SPP1 + macrophages and delineated subsets of SPP1 + macrophages with different functions. SPP1 + SIRPα + macrophages showed close spatial distance to tumor cells and positively correlated with PD1 + CD8 + T cells. A high abundance of SPP1 + SIRPα + macrophages at baseline corresponded to patients' response to PD-1/PD-L1 inhibitors. CONCLUSION A novel subtype of SPP1 + macrophages expressing SIRPα was identified and their abundance predicted patients' response to PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Kun Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yida Li
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yechun Pang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Ruiting Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Hongru Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Silai Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Peng Wang
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
- Institute of Thoracic Oncology, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Makwana K, Velazquez EJ, Marzese DM, Smith B, Bhowmick NA, Faries MB, Hamid O, Boiko AD. NRF-1 transcription factor regulates expression of an innate immunity checkpoint, CD47, during melanomagenesis. Front Immunol 2024; 15:1495032. [PMID: 39742254 PMCID: PMC11685207 DOI: 10.3389/fimmu.2024.1495032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025] Open
Abstract
Transmembrane integrin-associated protein CD47 functions as a potent innate immunity checkpoint and is upregulated by many types of malignant cells, including melanoma during tumor progression. Binding of CD47 to its target receptor, SIRPα, on myeloid cell lineages leads to the initiation of the downstream signaling cascades that inhibit innate immunity anti-tumor responses. Molecular mechanisms underlying upregulation of CD47 during melanoma progression remain largely unknown. In this report, we performed ATAC-Sequencing on patient-derived melanoma cells, as well as, the analysis of ATAC-Seq datasets covering clinical melanoma samples to demonstrate a significant increase in chromatin accessibility for the CD47 promoter region in comparison to normal cells and tissues. Additionally, profiling of multiple CD47 transcript isoforms established that upregulation of CD47 in malignant cells occurs at the mRNA level. Using chromatin immunoprecipitation (ChIP) approaches along with the analysis of ChIP-Seq cancer datasets, we identified the transcription factor NRF-1 which binds at multiple sites within the proximal CD47 promoter region. In combination with serial deletions of CD47 promoter, we defined the minimal DNA region required for its activation, as well as, specific DNA locations within that region, which are preferentially occupied by NRF-1 in tumor cells.
Collapse
Affiliation(s)
- Kuldeep Makwana
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Edwin J. Velazquez
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Diego M. Marzese
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Cancer Epigenetics Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Bethany Smith
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Neil A. Bhowmick
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mark B. Faries
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA, United States
| | - Omid Hamid
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA, United States
| | - Alexander D. Boiko
- Department of Medicine, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
4
|
Fan G, Na J, Shen Z, Lin F, Zhong L. Heterogeneity of tumor-associated neutrophils in hepatocellular carcinoma. Mol Immunol 2024; 177:1-16. [PMID: 39642781 DOI: 10.1016/j.molimm.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
Neutrophils are the most abundant cell type in human blood and play a crucial role in the immune system and development of tumors. This review begins with the generation and development of neutrophils, traces their release from the bone marrow into the bloodstream, and finally discusses their role in the hepatocellular carcinoma (HCC) microenvironment. It elaborates in detail the mechanisms by which tumor-associated neutrophils (TANs) exert antitumor or protumor effects under the influence of various mediators in the tumor microenvironment. Neutrophils can exert antitumor effects through direct cytotoxic action. However, they can also accelerate the formation and progression of HCC by being recruited and infiltrated, promoting tumor angiogenesis, and maintaining an immunosuppressive microenvironment. Therefore, based on the heterogeneity and plasticity of neutrophils in tumor development, this review summarizes the current immunotherapies targeting TANs, discusses potential opportunities and challenges, and provides new insights into exploring more promising strategies for treating HCC.
Collapse
Affiliation(s)
- Guixiang Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Faquan Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
5
|
Biedermann A, Patra-Kneuer M, Mougiakakos D, Büttner-Herold M, Mangelberger-Eberl D, Berges J, Kellner C, Altmeyer S, Bittenbring JT, Augsberger C, Ilieva-Babinsky K, Haskamp S, Beier F, Lischer C, Vera J, Lührmann A, Bertz S, Völkl S, Jacobs B, Steidl S, Mackensen A, Bruns H. Blockade of the CD47/SIRPα checkpoint axis potentiates the macrophage-mediated antitumor efficacy of tafasitamab. Haematologica 2024; 109:3928-3940. [PMID: 38934068 PMCID: PMC11609795 DOI: 10.3324/haematol.2023.284795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Macrophages are one of the key mediators of the therapeutic effects exerted by monoclonal antibodies, such as the anti-CD19 antibody tafasitamab, approved in combination with lenalidomide for the treatment of relapsed or refractory diffuse large B-cell lymphoma (DLBCL). However, antibody-dependent cellular phagocytosis (ADCP) in the tumor microenvironment can be counteracted by increased expression of the inhibitory receptor SIRPα on macrophages and its ligand, the immune checkpoint molecule CD47, on tumor cells. The aim of this study was to investigate the impact of the CD47-SIRPα axis on tafasitamab- mediated phagocytosis and explore the potential of anti-CD47 blockade to enhance its antitumor activity. Elevated expression of both SIRPα and CD47 was observed in DLBCL patient-derived lymph node biopsies compared to healthy control lymph nodes. CRISPR-mediated CD47 overexpression affected tafasitamab-mediated ADCP in vitro and increased expression of SIRPα on macrophages correlated with decreased ADCP activity of tafasitamab against DLBCL cell lines. A combination of tafasitamab and an anti-CD47 blocking antibody enhanced ADCP activity of in vitro-generated macrophages. Importantly, tafasitamab-mediated phagocytosis was elevated in combination with CD47 blockade using primary DLBCL cells and patient-derived lymphoma-associated macrophages in an autologous setting. Furthermore, lymphoma cells with low CD19 expression were efficiently eliminated by the combination treatment. Finally, combined treatment of tafasitamab and an anti-CD47 antibody resulted in enhanced tumor volume reduction and survival benefit in lymphoma xenograft mouse models. These findings provide evidence that CD47 blockade can enhance the phagocytic potential of tumor-targeting immunotherapies such as tafasitamab and suggest that there is value in exploring the combination in the clinic.
Collapse
MESH Headings
- CD47 Antigen/metabolism
- CD47 Antigen/antagonists & inhibitors
- Humans
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/antagonists & inhibitors
- Animals
- Mice
- Antigens, Differentiation/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Macrophages/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Phagocytosis/drug effects
- Tumor Microenvironment/drug effects
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
Collapse
Affiliation(s)
- Alexander Biedermann
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | | | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Otto-von-Guericke University (OVGU) Magdeburg, Magdeburg
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of athology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen
| | | | - Johannes Berges
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich
| | - Sarah Altmeyer
- Medizinische Klinik I, Saarland University Medical School, Homburg/Saar
| | | | | | | | - Stefan Haskamp
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - Fabian Beier
- Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Medical School, Aachen
| | | | - Julio Vera
- Department of Dermatology, University Hospital Erlangen, Erlangen, GER
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| | - Simone Bertz
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - Benedikt Jacobs
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | | | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen.
| |
Collapse
|
6
|
Yang M, Zhou J, Lu L, Deng D, Huang J, Tang Z, Shi X, Lo P, Lovell JF, Zheng Y, Jin H. Tumor cell membrane-based vaccines: A potential boost for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230171. [PMID: 39713208 PMCID: PMC11655317 DOI: 10.1002/exp.20230171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Because therapeutic cancer vaccines can, in theory, eliminate tumor cells specifically with relatively low toxicity, they have long been considered for application in repressing cancer progression. Traditional cancer vaccines containing a single or a few discrete tumor epitopes have failed in the clinic, possibly due to challenges in epitope selection, target downregulation, cancer cell heterogeneity, tumor microenvironment immunosuppression, or a lack of vaccine immunogenicity. Whole cancer cell or cancer membrane vaccines, which provide a rich source of antigens, are emerging as viable alternatives. Autologous and allogenic cellular cancer vaccines have been evaluated as clinical treatments. Tumor cell membranes (TCMs) are an intriguing antigen source, as they provide membrane-accessible targets and, at the same time, serve as integrated carriers of vaccine adjuvants and other therapeutic agents. This review provides a summary of the properties and technologies for TCM cancer vaccines. Characteristics, categories, mechanisms, and preparation methods are discussed, as are the demonstrable additional benefits derived from combining TCM vaccines with chemotherapy, sonodynamic therapy, phototherapy, and oncolytic viruses. Further research in chemistry, biomedicine, cancer immunology, and bioinformatics to address current drawbacks could facilitate the clinical adoption of TCM vaccines.
Collapse
Affiliation(s)
- Muyang Yang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jie Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Liseng Lu
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deqiang Deng
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zijian Tang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Pui‐Chi Lo
- Department of Biomedical SciencesCity University of Hong KongKowloonHong KongChina
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNew YorkUSA
| | - Yongfa Zheng
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
7
|
Zhao S, Di Y, Fan H, Xu C, Li H, Wang Y, Wang W, Li C, Wang J. Targeted delivery of extracellular vesicles: the mechanisms, techniques and therapeutic applications. MOLECULAR BIOMEDICINE 2024; 5:60. [PMID: 39567444 PMCID: PMC11579273 DOI: 10.1186/s43556-024-00230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-derived vesicles with a phospholipid bilayer measuring 50-150 nm in diameter with demonstrated therapeutic potentials. Limitations such as the natural biodistribution (mainly concentrated in the liver and spleen) and short plasma half-life of EVs present significant challenges to their clinical translation. In recent years, growing research indicated that engineered EVs with enhanced targeting to lesion sites have markedly promoted therapeutic efficacy. However, there is a dearth of systematic knowledge on the recent advances in engineering EVs for targeted delivery. Herein, we provide an overview of the targeting mechanisms, engineering techniques, and clinical translations of natural and engineered EVs in therapeutic applications. Enrichment of EVs at lesion sites may be achieved through the recognition of tissue markers, pathological changes, and the circumvention of mononuclear phagocyte system (MPS). Alternatively, external stimuli, including magnetic fields and ultrasound, may also be employed. EV engineering techniques that fulfill targeting functions includes genetic engineering, membrane fusion, chemical modification and physical modification. A comparative statistical analysis was conducted to elucidate the discrepancies between the diverse techniques on size, morphology, stability, targeting and therapeutic efficacy in vitro and in vivo. Additionally, a summary of the registered clinical trials utilizing EVs from 2010 to 2023 has been provided, with a full discussion on the perspectives. This review provides a comprehensive overview of the mechanisms and techniques associated with targeted delivery of EVs in therapeutic applications to advocate further explorations of engineered EVs and accelerate their clinical applications.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yunfeng Di
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huilan Fan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chengyan Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Haijing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
| | - Wei Wang
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chun Li
- Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Ministry of Education, Beijing, 100029, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyu Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
Wang T, Ye L, Zhou Y, Zhang X, Li R, Zhou Y, Weng J, Mo Q, Yu Y. Pancreatic cancer-derived exosomal miR-510 promotes macrophage M2 polarization and facilitates cancer cell aggressive phenotypes. Hum Cell 2024; 38:17. [PMID: 39528705 DOI: 10.1007/s13577-024-01144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Extensive tumor microenvironment (TME) and tumor-associated macrophages (TAMs) contribute to the initiation and progression of pancreatic cancer (PC). Cancer cell-derived exosomal miRNAs that stimulate macrophage M2 polarization might play an important role in the process. In the current study, we observed significant upregulation of miR-510 in PC cell lines in comparison to normal HPDE cell line, with PANC-1 exhibiting the highest and MIA PaCa-2 the lowest miR-510 levels. Functional assays demonstrated that miR-510 overexpression enhanced, while its inhibition reduced, PC cell viability, migration, invasion, and EMT. In vivo, miR-510 mimics promoted tumor growth and macrophage M2 polarization, whereas miR-510 inhibition had the opposite effect. Exosomes from PANC-1 and MIA PaCa-2 cells, characterized by nanoparticle tracking analysis and TEM, contained significantly higher miR-510 levels than those from HPDE cells. Macrophages incubated with conditioned media from these PC cells showed increased M2 polarization markers, a process inhibited by the exosome inhibitor GW4869. The delivery of miR-510 via PC cell-derived exosomes facilitated macrophage M2 polarization and regulated the STAT signaling pathway, suggesting that exosomal miR-510 plays a crucial role in the tumor microenvironment of PC by modulating macrophage M2 polarization.
Collapse
Affiliation(s)
- Tao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Lin Ye
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Yingjie Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Xionghan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Renjian Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Yi Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Jun Weng
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Qingrong Mo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China.
| |
Collapse
|
9
|
Li W, Huang Y, Liu J, Zhou Y, Sun H, Fan Y, Liu F. Defective macrophage efferocytosis in advanced atherosclerotic plaque and mitochondrial therapy. Life Sci 2024; 359:123204. [PMID: 39491771 DOI: 10.1016/j.lfs.2024.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease primarily affecting large and medium-sized arterial vessels, characterized by lipoprotein disorders, intimal thickening, smooth muscle cell proliferation, and the formation of vulnerable plaques. Macrophages (MΦs) play a vital role in the inflammatory response throughout all stages of atherosclerotic development and are considered significant therapeutic targets. In early lesions, macrophage efferocytosis rapidly eliminates harmful cells. However, impaired efferocytosis in advanced plaques perpetuates the inflammatory microenvironment of AS. Defective efferocytosis has emerged as a key factor in atherosclerotic pathogenesis and the progression to severe cardiovascular disease. Herein, this review probes into investigate the potential mechanisms at the cellular, molecular, and organelle levels underlying defective macrophage efferocytosis in advanced lesion plaques. In the inflammatory microenvironments of AS with interactions among diverse inflammatory immune cells, impaired macrophage efferocytosis is strongly linked to multiple factors, such as a lower absolute number of phagocytes, the aberrant expression of crucial molecules, and impaired mitochondrial energy provision in phagocytes. Thus, focusing on molecular targets to enhance macrophage efferocytosis or targeting mitochondrial therapy to restore macrophage metabolism homeostasis has emerged as a potential strategy to mitigate the progression of advanced atherosclerotic plaque, providing various treatment options.
Collapse
Affiliation(s)
- Wanling Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yaqing Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hongyu Sun
- The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yonghong Fan
- The General Hospital of Western Theater Command, Chengdu 610083, China.
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
10
|
Jasiewicz NE, Mei K, Oh HM, Bonacquisti EE, Chaudhari A, Byrum C, Jensen BC, Nguyen J. In situ-crosslinked Zippersomes enhance cardiac repair by increasing accumulation and retention. Bioeng Transl Med 2024; 9:e10697. [PMID: 39545082 PMCID: PMC11558206 DOI: 10.1002/btm2.10697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 11/17/2024] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are a promising treatment for myocardial infarction (MI), but their therapeutic efficacy is limited by inefficient accumulation at the target site. A minimally invasive MSC EV therapy that enhances EV accumulation at the disease site and extends EV retention could significantly improve post-infarct cardiac regeneration. Here, we show that EVs decorated with the next-generation of high-affinity (HiA) heterodimerizing leucine zippers, termed HiA Zippersomes, amplify targetable surface areas through in situ crosslinking and exhibited ~7-fold enhanced accumulation within the infarcted myocardium in mice after 3 days and continued to be retained up to Day 21, surpassing the performance of unmodified EVs. After MI in mice, HiA Zippersomes increase the ejection fraction by 53% and 100% compared with unmodified EVs and phosphate-buffered saline (PBS), respectively. This notable improvement in cardiac function played a crucial role in restoring healthy heart performance. HiA Zippersomes also robustly decrease infarct size by 52% and 60% compared with unmodified EVs and PBS, respectively, thus representing a promising platform for minimally invasive vesicle delivery to the infarcted heart compared to intramyocardial injections.
Collapse
Affiliation(s)
- Natalie E. Jasiewicz
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Kuo‐Ching Mei
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Hannah M. Oh
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Emily E. Bonacquisti
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Ameya Chaudhari
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Camryn Byrum
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Brian C. Jensen
- McAllister Heart Institute, University of North CarolinaChapel HillNorth CarolinaUSA
- Division of Cardiology, Department of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
11
|
Bess SN, Igoe MJ, Muldoon TJ. The Physiological and Therapeutic Role of CD47 in Macrophage Function and Cancer. Immunol Invest 2024:1-35. [PMID: 39415597 DOI: 10.1080/08820139.2024.2415409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Immunotherapy is an emerging strategy in cancer therapeutics aimed at modulating the immune system to inhibit pro-tumor pathways and increase a tumor's sensitivity to chemotherapy. Several clinically approved immunotherapy treatments, such as monoclonal antibody treatments, have been successful in solid tumors such as breast, colorectal, and pancreatic. However, an outstanding challenge of these strategies is tumor cell resistance. One target of interest for immune cell modulation is targeting macrophages that enter the tumor microenvironment. More specifically, an immune checkpoint of interest is CD47. CD47 is a transmembrane protein that inhibits phagocytic activity by acting as a "don't eat me" signal. In both mice and humans, healthy cells can express CD47, while solid malignancies like colorectal and breast cancer express it most strongly. METHODS Analysis of literature data on the physiological and functional roles of tissue-resident macrophages, along with the structure and mechanisms of action of the CD47 pathway was explored. We also explored how CD47 can influence different aspects of the tumor microenvironment (i.e. cellular metabolism and hypoxia) in addition to current clinical strategies and challenges associated with targeting CD47. RESULTS Overall, it was discovered that CD47 is overexpressed in a variety of cancer types in addition to normal tissue, making it a promising treatment regimen to enhance the capability of macrophages to phagocytose tumor cells. However, treatment efficacy is varied in pre-clinical and clinical models due to various challenges such as off-target effects. CONCLUSION This review emphasizes the diverse functionality of macrophages in normal and cancerous tissue, while also emphasizing the importance of macrophage targeting and their clinical significance.
Collapse
Affiliation(s)
- Shelby N Bess
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Matthew J Igoe
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Timothy J Muldoon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
12
|
Li M, Li Y, Zheng J, Ma Z, Zhang J, Wu H, Zhu Y, Li P, Nie F. Ultrasound-responsive nanocarriers with siRNA and Fe 3O 4 regulate macrophage polarization and phagocytosis for augmented non-small cell lung cancer immunotherapy. J Nanobiotechnology 2024; 22:605. [PMID: 39375761 PMCID: PMC11460142 DOI: 10.1186/s12951-024-02883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
The immunosuppressive tumor microenvironment (TME) significantly inhibits the effective anti-tumor immune response, greatly affecting the efficacy of immunotherapy. Most tumor-associated macrophages (TAMs) belong to the M2 phenotype, which contributes significantly to the immunosuppressive effects in non-small cell lung cancer (NSCLC) TME. The interaction between signal regulatory protein α (SIRPα) expressed on macrophages and CD47, a transmembrane protein overexpressed on cancer cells, activates the "eat-me-not" signaling pathway, inhibiting phagocytosis. In this study, a folic acid (FA)-modified ultrasound responsive gene/drugs delivery system, named FA@ PFP @ Fe3O4 @LNB-SIRPα siRNA (FA-PFNB-SIRPα siRNA), was developed using 1,2-dioleoacyl-3-trimethylammonium-propane (DOTAP), FA-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [amino (polyethylene glycol)2000] (DSPE-PEG2000-FA), cholesterol, and perfluoropentane (PFP), for the delivery of siRNA encoding SIRPα mRNA and immune adjuvant Fe3O4 nanoparticles. Under ultrasound conditions, the nanobubbles effectively transfected macrophages, inhibiting SIRPα mRNA and protein expression, promoting the phagocytosis of TAMs, and synergistically reversing M2 polarization. This system promotes the infiltration of T cells, enhances the proliferation and activation of cytotoxic T cells, and inhibits the infiltration of immunosuppressive cells in tumor tissues. Administration of FA-PFNB-SIRPα siRNA combined with ultrasound significantly inhibits NSCLC progression. The study highlights the potential of ultrasound nanotechnology-enabled delivery of SIRPα siRNA and Fe3O4 as an effective strategy for macrophage-based immunotherapy to reshape the immunosuppressive TME for cancer therapy.
Collapse
Affiliation(s)
- Ming Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yuanyuan Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jun Zheng
- State Key Laboratory of Ultrasound in Medicine and Engineering, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhen Ma
- Peking University Third Hospital, Beijing, 100191, China
| | - Jianye Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Hao Wu
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yangyang Zhu
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Pan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| | - Fang Nie
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Hashemi M, Mohandesi Khosroshahi E, Tanha M, Khoushab S, Bizhanpour A, Azizi F, Mohammadzadeh M, Matinahmadi A, Khazaei Koohpar Z, Asadi S, Taheri H, Khorrami R, Ramezani Farani M, Rashidi M, Rezaei M, Fattah E, Taheriazam A, Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024; 10:e37376. [PMID: 39309904 PMCID: PMC11415696 DOI: 10.1016/j.heliyon.2024.e37376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Immune checkpoints are a set of inhibitory and stimulatory molecules/mechanisms that affect the activity of immune cells to maintain the existing balance between pro- and anti-inflammatory signaling pathways and avoid the progression of autoimmune disorders. Tumor cells can employ these checkpoints to evade immune system. The discovery and development of immune checkpoint inhibitors (ICIs) was thereby a milestone in the area of immuno-oncology. ICIs stimulate anti-tumor immune responses primarily by disrupting co-inhibitory signaling mechanisms and accelerate immune-mediated killing of tumor cells. Despite the beneficial effects of ICIs, they sometimes encounter some degrees of therapeutic resistance, and thereby do not effectively act against tumors. Among multiple combination therapies have been introduced to date, targeting autophagy, as a cellular degradative process to remove expired organelles and subcellular constituents, has represented with potential capacities to overcome ICI-related therapy resistance. It has experimentally been illuminated that autophagy induction blocks the immune checkpoint molecules when administered in conjugation with ICIs, suggesting that autophagy activation may restrict therapeutic challenges that ICIs have encountered with. However, the autophagy flux can also provoke the immune escape of tumors, which must be considered. Since the conventional FDA-approved ICIs have designed and developed to target programmed cell death receptor/ligand 1 (PD-1/PD-L1) as well as cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) immune checkpoint molecules, we aim to review the effects of autophagy targeting in combination with anti-PD-1/PD-L1- and anti-CTLA-4-based ICIs on cancer therapeutic resistance and tumor immune evasion.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Azizi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadzadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hengameh Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Huang X, Wang Q, Nan Y, Zhang X, Xu K, Ju D, Ding W. Targeting CD47 and Angiogenesis Demonstrates Effective Anti-Tumor Effect in Bladder Cancer. Biomedicines 2024; 12:2152. [PMID: 39335665 PMCID: PMC11430664 DOI: 10.3390/biomedicines12092152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Although immunotherapy has shown potential in cancer treatment, current immunotherapeutics for bladder cancer are limited by a low response rate. Therefore, it is necessary to investigate other suitable immunotherapeutic targets and strategies for bladder cancer. Methods: To evaluate whether CD47 could be a suitable target for bladder cancer immunotherapy, CD47 protein expression levels in 116 bladder cancer tissue samples were assessed by IHC staining. In vitro anti-tumor effect of blocking CD47 was examined by phagocytosis assays. In vivo anti-tumor effects of targeting CD47 and angiogenesis were experimented in the HSPCs-CDX model. Results: We find that CD47 is highly expressed in bladder cancer samples and is associated with poor prognosis. Blocking CD47 could enhance the human PBMC-derived macrophages' phagocytosis of T24 (from 10.40% to 29.70%) and 5637 (from 5.31% to 33.52%) human bladder cancer cells, as well as demonstrate anti-tumor effects in the HSPCs-CDX model (tumor growth inhibition rate, TGI: 33.05%). During CD47 treatment, we observed that the level of angiogenesis increased after CD47 blockade, and it might undermine the effect of CD47 immunotherapy. We then combined CD47 blockade with anti-angiogenic drugs to treat bladder cancer and discovered that inhibiting angiogenesis could further improve the anti-tumor effect of CD47 blockade (TGI: 76.39%). Finally, we tested the anti-tumor effect of co-targeting CD47 and angiogenesis using a bispecific fusion protein, SIRPα-VEGFR1, which successfully inhibited tumor growth to a similar extent as a combination therapy. Conclusions: Our study suggests that targeting CD47 could inhibit the growth of bladder cancer by promoting macrophage-mediated anti-tumor immunity. Moreover, blocking CD47 and angiogenesis could achieve a potent anti-tumor effect and could be an effective immunotherapy strategy for bladder cancer.
Collapse
Affiliation(s)
- Xiting Huang
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qian Wang
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyang Nan
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuyao Zhang
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ke Xu
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Road, Shanghai 200040, China
| | - Dianwen Ju
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, 12 Central Urumqi Road, Shanghai 200040, China
| |
Collapse
|
15
|
Lica JJ, Pradhan B, Safi K, Jakóbkiewicz-Banecka J, Hellmann A. Promising Therapeutic Strategies for Hematologic Malignancies: Innovations and Potential. Molecules 2024; 29:4280. [PMID: 39275127 PMCID: PMC11397263 DOI: 10.3390/molecules29174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
In this review we explore innovative approaches in the treatment of hematologic cancers by combining various therapeutic modalities. We discuss the synergistic potential of combining inhibitors targeting different cellular pathways with immunotherapies, molecular therapies, and hormonal therapies. Examples include combining PI3K inhibitors with proteasome inhibitors, NF-κB inhibitors with immunotherapy checkpoint inhibitors, and neddylation inhibitors with therapies targeting the tumor microenvironment. Additionally, we discuss the potential use of small molecules and peptide inhibitors in hematologic cancer treatment. These multidimensional therapeutic combinations present promising strategies for enhancing treatment efficacy and overcoming resistance mechanisms. However, further clinical research is required to validate their effectiveness and safety profiles in hematologic cancer patients.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Faculty of Health Science, Powiśle University, 80-214 Gdańsk, Poland
| | - Bhaskar Pradhan
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Kawthar Safi
- Department of Biochemistry and Clinical Chemistry, Faculty of Biology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | - Andrzej Hellmann
- Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| |
Collapse
|
16
|
Kudo T. Advances in the treatment of human epidermal growth factor receptor 2-positive gastric cancer. Int J Clin Oncol 2024; 29:1220-1227. [PMID: 39083154 DOI: 10.1007/s10147-024-02587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024]
Abstract
Human epidermal growth factor receptor 2 has been a pivotal biomarker for gastric cancer treatment strategies for many years. However, more than a decade after the ToGA trial demonstrated the efficacy of trastuzumab in improving survival, the development of treatments targeting human epidermal growth factor receptor 2 remains challenging. Several large-scale clinical trials of tyrosine kinase inhibitors, non-trastuzumab anti-human epidermal growth factor receptor 2 antibodies, and antibody-drug conjugates have failed to meet the primary endpoints. The concept of trastuzumab beyond progression and the complexity of resistance mechanisms to anti-human epidermal growth factor receptor 2 therapy after trastuzumab treatment presented significant obstacles, leading to trastuzumab being the sole therapy for human epidermal growth factor receptor 2-positive gastric cancer for some time. Nevertheless, the landscape has shifted in recent years, especially since the introduction of the antibody-drug conjugate trastuzumab deruxtecan in 2020. This has rekindled the interest in developing treatments targeting human epidermal growth factor receptor 2 in gastric cancer.
Collapse
Affiliation(s)
- Toshihiro Kudo
- Department of Medical Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan.
| |
Collapse
|
17
|
Martin KE, Hammer Q, Perica K, Sadelain M, Malmberg KJ. Engineering immune-evasive allogeneic cellular immunotherapies. Nat Rev Immunol 2024; 24:680-693. [PMID: 38658708 DOI: 10.1038/s41577-024-01022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
Allogeneic cellular immunotherapies hold a great promise for cancer treatment owing to their potential cost-effectiveness, scalability and on-demand availability. However, immune rejection of adoptively transferred allogeneic T and natural killer (NK) cells is a substantial obstacle to achieving clinical responses that are comparable to responses obtained with current autologous chimeric antigen receptor T cell therapies. In this Perspective, we discuss strategies to confer cell-intrinsic, immune-evasive properties to allogeneic T cells and NK cells in order to prevent or delay their immune rejection, thereby widening the therapeutic window. We discuss how common viral and cancer immune escape mechanisms can serve as a blueprint for improving the persistence of off-the-shelf allogeneic cell therapies. The prospects of harnessing genome editing and synthetic biology to design cell-based precision immunotherapies extend beyond programming target specificities and require careful consideration of innate and adaptive responses in the recipient that may curtail the biodistribution, in vivo expansion and persistence of cellular therapeutics.
Collapse
Affiliation(s)
- Karen E Martin
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karlo Perica
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway.
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway.
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Li Z, Han B, Qi M, Li Y, Duan Y, Yao Y. Modulating macrophage-mediated programmed cell removal: An attractive strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189172. [PMID: 39151808 DOI: 10.1016/j.bbcan.2024.189172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Macrophage-mediated programmed cell removal (PrCR) is crucial for the identification and elimination of needless cells that maintain tissue homeostasis. The efficacy of PrCR depends on the balance between pro-phagocytic "eat me" signals and anti-phagocytic "don't eat me" signals. Recently, a growing number of studies have shown that tumourigenesis and progression are closely associated with PrCR. In the tumour microenvironment, PrCR activated by the "eat me" signal is counterbalanced by the "don't eat me" signal of CD47/SIRPα, resulting in tumour immune escape. Therefore, targeting exciting "eat me" signalling while simultaneously suppressing "don't eat me" signalling and eventually inducing macrophages to produce effective PrCR will be a very attractive antitumour strategy. Here, we comprehensively review the functions of PrCR-activating signal molecules (CRT, PS, Annexin1, SLAMF7) and PrCR-inhibiting signal molecules (CD47/SIRPα, MHC-I/LILRB1, CD24/Siglec-10, SLAMF3, SLAMF4, PD-1/PD-L1, CD31, GD2, VCAM1), the interactions between these molecules, and Warburg effect. In addition, we highlight the molecular regulatory mechanisms that affect immune system function by exciting or suppressing PrCR. Finally, we review the research advances in tumour therapy by activating PrCR and discuss the challenges and potential solutions to smooth the way for tumour treatment strategies that target PrCR.
Collapse
Affiliation(s)
- Zhenzhen Li
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menghui Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Zhou L, Fan S, Zhang W, Gong Z, Wang D, Tang D. The battle within: cell death by phagocytosis in cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03650-x. [PMID: 39167272 DOI: 10.1007/s12094-024-03650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The process by which living cells are phagocytosed and digested to death is called cell death by phagocytosis, a term that has just recently been generalized and redefined. It is characterized by the phagocytosis of living cells and the cessation of cell death by phagocytosis. Phagocytosis of dead cells is a widely discussed issue in cancer, cell death by phagocytosis can stimulate phagocytosis and stimulate adaptive immunity in tumors, and at the same time, do not-eat-me signaling is an important site for cancer cells to evade recognition by phagocytes. Therefore, we discuss in this review cell death by phagocytosis occurring in cancer tissues and emphasize the difference between this new concept and the phagocytosis of dead tumor cells. Immediately thereafter, we describe the mechanisms by which cell death by phagocytosis occurs and how tumors escape phagocytosis. Finally, we summarize the potential clinical uses of cell death by phagocytosis in tumor therapy and strive to provide ideas for tumor therapy.
Collapse
Affiliation(s)
- Lujia Zhou
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shiying Fan
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Zhiyuan Gong
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
20
|
Lee JW, Yoon HY, Ko YJ, Kim EH, Song S, Hue S, Gupta N, Malin D, Kim J, Kong B, Kim S, Kim IS, Kwon IC, Yang Y, Kim SH. Dual-Action Protein-siRNA Conjugates for Targeted Disruption of CD47-Signal Regulatory Protein α Axis in Cancer Therapy. ACS NANO 2024; 18:22298-22315. [PMID: 39117621 DOI: 10.1021/acsnano.4c06471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A series of successes in RNA interference (RNAi) therapies for liver diseases using lipid nanoparticles and N-acetylgalactosamine have heralded a current era of RNA therapeutics. However, alternative delivery strategies are required to take RNAi out of the comfort zone of hepatocytes. Here we report SIRPα IgV/anti-CD47 siRNA (vS-siCD47) conjugates that selectively and persistently disrupt the antiphagocytic CD47/SIRPα axis in solid tumors. Conjugation of the SIRPα IgV domain protein to siRNAs enables tumor dash through CD47-mediated erythrocyte piggyback, primarily blocking the physical interaction between CD47 on cancer cells and SIRPα on phagocytes. After internalization of the vS-siCD47 conjugates within cancer cells, the detached free-standing anti-CD47 siRNAs subsequently attack CD47 through the RNAi mechanism. The dual-action approach of the vS-siCD47 conjugate effectively overcomes the "don't eat me" barrier and stimulates phagocyte-mediated tumor destruction, demonstrating a highly selective and potent CD47-blocking immunotherapy. This delivery strategy, employing IgV domain protein-siRNA conjugates with a dual mode of target suppression, holds promise for expanding RNAi applications beyond hepatocytes and advancing RNAi-based cancer immunotherapies for solid tumors.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Young Ji Ko
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Hye Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sukyung Song
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seungmi Hue
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Nilaksh Gupta
- K2B Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Dmitry Malin
- K2B Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Jay Kim
- K2B Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Byoungjae Kong
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Sehoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoosoo Yang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
21
|
Liu W, Cheng G, Cui H, Tian Z, Li B, Han Y, Wu JX, Sun J, Zhao Y, Chen T, Yu G. Theoretical basis, state and challenges of living cell-based drug delivery systems. Theranostics 2024; 14:5152-5183. [PMID: 39267776 PMCID: PMC11388066 DOI: 10.7150/thno.99257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
The therapeutic efficacy of drugs is determined, to a certain extent, by the efficiency of drug delivery. The low efficiency of drug delivery systems (DDSs) is frequently associated with serious toxic side effects and can even prove fatal in certain cases. With the rapid development of technology, drug delivery has evolved from using traditional frameworks to using nano DDSs (NDDSs), endogenous biomaterials DDSs (EBDDSs), and living cell DDSs (LCDDSs). LCDDSs are receiving widespread attention from researchers at present owing to the unique advantages of living cells in targeted drug delivery, including their excellent biocompatibility properties, low immunogenicity, unique biological properties and functions, and role in the treatment of diseases. However, the theoretical basis and techniques involved in the application of LCDDSs have not been extensively summarized to date. Therefore, this review comprehensively summarizes the properties and applications of living cells, elaborates the various drug loading approaches and controlled drug release, and discusses the results of clinical trials. The review also discusses the current shortcomings and prospects for the future development of LCDDSs, which will serve as highly valuable insights for the development and clinical transformation of LCDDSs in the future.
Collapse
Affiliation(s)
- Wei Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Guowang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Zhen Tian
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Bowen Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yanhua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jia-Xin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jie Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yuyue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangtao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
22
|
Zhang Z, Mao Y, Huang S, Xu R, Huang Y, Li S, Sun Y, Gu X, Ma Z. Microglia Promote Inhibitory Synapse Phagocytosis in the Spinal Cord Dorsal Horn and Modulate Pain-Like Behaviors in a Murine Cancer-Induced Bone Pain Model. Anesth Analg 2024; 139:411-419. [PMID: 38241681 DOI: 10.1213/ane.0000000000006824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
BACKGROUND The microglial activation has been implicated in cancer-induced bone pain. Recent studies have revealed that microglia mediate synaptic pruning in the central nervous system, where the cluster of differentiation 47-signal regulatory protein α (CD47-SIRPα) axis creates a "don't eat me" signal and elicits an antiphagocytic effect to protect synapses against elimination. To date, the synaptic phagocytosis in microglia has never been investigated in the murine cancer-induced bone pain model. The present experiments sought to explore whether microglia phagocytize synapses in mice with bone cancer pain as well as the possible mechanisms. METHODS Male C3H/HeN mice were used to induce bone cancer pain. Minocycline and S-ketamine were injected into D14. The number of spontaneous flinches (NSF) and paw withdrawal mechanical thresholds (PWMT) were measured on D0, D4, D7, D10, D14, D21, and D28. Hematoxylin and eosin staining presented bone lesions. Western blotting examined the Gephyrin, CD47, and SIRPα expression. Flow cytometry evaluated the proportion of SIRPα + cells in the spine. Immunofluorescence and 3-dimensional reconstruction showed the Gephyrin puncta inside microglial lysosomes. RESULTS Mice embedded with tumor cells induced persistent spontaneous pain and mechanical hyperalgesia. Hematoxylin and eosin staining revealed bone destruction and tumor infiltration in marrow cavities. Microglia underwent a responsive and proliferative burst (t = -16.831, P < .001). Western blotting manifested lowered Gephyrin expression in the tumor group (D4, D7, D10, D14, D21, and D28: P < .001). Immunofluorescence and 3-dimensional reconstruction showed larger volumes of Gephyrin puncta inside microglial lysosomes (t = -23.273, P < .001; t = -27.997, P < .001). Treatment with minocycline or S-ketamine exhibited pain relief and antiphagocytic effects (t = -6.191, P < .001, t = -7.083, P < .001; t = -20.767, P < .001, t = -17.080, P < .001; t = 11.789, P < .001, t = 16.777, P < .001; t = 8.868, P < .001, t = 21.319, P < .001). Last but not least, the levels of CD47 and SIRPα proteins were downregulated (D10: P = .004, D14, D21, and D28: P < .001; D10, D14, D21, and D28: P < .001). Flow cytometry and immunofluorescence substantiated reduced microglial SIRPα (t = 11.311, P < .001; t = 12.189, P < .001). CONCLUSIONS Microglia-mediated GABAergic synapse pruning in the spinal cord dorsal horn in bone cancer pain mice, which might be associated with the declined CD47-SIRPα signal. Our research uncovered an innovative mechanism that highlighted microglia-mediated synaptic phagocytosis in a murine cancer-induced bone pain model.
Collapse
Affiliation(s)
- Zuoxia Zhang
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanting Mao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Simin Huang
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Xu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yulin Huang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shuming Li
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yu'e Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhengliang Ma
- From the Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Díaz MA, Fusco M, Benítez CA, Gayet F, García L, Victoria L, Jaramillo S, Bayo J, Zubieta MR, Rizzo MM, Piccioni F, Malvicini M. Targeting hyaluronan metabolism-related molecules associated with resistant tumor-initiating cells potentiates chemotherapy efficacy in lung cancer. Sci Rep 2024; 14:16803. [PMID: 39039104 PMCID: PMC11263553 DOI: 10.1038/s41598-024-66914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
The success of chemotherapy regimens in patients with non-small cell lung cancer (NSCLC) could be restricted at least in part by cancer stem cells (CSC) niches within the tumor microenvironment (TME). CSC express CD133, CD44, CD47, and SOX2, among other markers and factors. Analysis of public data revealed that high expression of hyaluronan (HA), the main glycosaminoglycan of TME, correlated positively with CSC phenotype and decreased disease-free interval in NSCLC patients. We aimed to cross-validate these findings on human and murine lung cancer cells and observed that CD133 + CSC differentially expressed higher levels of HA, HAS3, ABCC5, SOX2, and CD47 (p < 0.01). We modulated HA expression with 4-methylumbelliferone (4Mu) and detected an increase in sensitivity to paclitaxel (Pa). We evaluated the effect of 4Mu + chemotherapy on survival, HA metabolism, and CSC profile. The combination of 4Mu with Pa reduced the clonogenic and tumor-forming ability of CSC. Pa-induced HAS3, ABCC5, SOX2, and CD47 expression was mitigated by 4Mu. Pa + 4Mu combination significantly reduced in vivo tumor growth, enhancing animal survival and restoring the CSC profile in the TME to basal levels. Our results suggest that HA is involved in lung CSC phenotype and chemosensitivity, and its modulation by 4Mu improves treatment efficacy to inhibit tumor progression.
Collapse
Affiliation(s)
- Marco Aurelio Díaz
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Mariel Fusco
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Constanza Arriola Benítez
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Fernando Gayet
- Servicio de Oncología, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Ludmila García
- Laboratorio Central, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Lucia Victoria
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Sebastián Jaramillo
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
| | - Juan Bayo
- Programa de Hepatología Experimental y Terapia Génica, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Tecnicas, Pilar, Argentina
| | | | - Manglio M Rizzo
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina
- Servicio de Oncología, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Flavia Piccioni
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina.
| | - Mariana Malvicini
- Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Universidad Austral-Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar, Argentina.
| |
Collapse
|
24
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
25
|
Chan C, Stip M, Nederend M, Jansen M, Passchier E, van den Ham F, Wienke J, van Tetering G, Leusen J. Enhancing IgA-mediated neutrophil cytotoxicity against neuroblastoma by CD47 blockade. J Immunother Cancer 2024; 12:e008478. [PMID: 38782540 PMCID: PMC11116899 DOI: 10.1136/jitc-2023-008478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Approximately half of the neuroblastoma patients develop high-risk neuroblastoma. Current treatment involves a multimodal strategy, including immunotherapy with dinutuximab (IgG ch14.18) targeting GD2. Despite achieving promising results, the recurrence rate remains high and poor survival persists. The therapeutic efficacy of dinutuximab is compromised by suboptimal activation of neutrophils and severe neuropathic pain, partially induced by complement activation. METHODS To enhance neutrophil cytotoxicity, IgG ch14.18 was converted to the IgA isotype, resulting in potent neutrophil-mediated antibody-dependent cell-mediated cytotoxicity (ADCC), without complement activation. However, myeloid checkpoint molecules hamper neutrophil cytotoxicity, for example through CD47 that is overexpressed on neuroblastomas and orchestrates an immunosuppressive environment upon ligation to signal regulatory protein alpha (SIRPα) expressed on neutrophils. In this study, we combined IgA therapy with CD47 blockade. RESULTS In vitro killing assays showed enhanced IgA-mediated ADCC by neutrophils targeting neuroblastoma cell lines and organoids in comparison to IgG. Notably, when combined with CD47 blockade, both IgG and IgA therapy were enhanced, though the combination with IgA resulted in the greatest improvement of ADCC. Furthermore, in a neuroblastoma xenograft model, we systemically blocked CD47 with a SIRPα fusion protein containing an ablated IgG1 Fc, and compared IgA therapy to IgG therapy. Only IgA therapy combined with CD47 blockade increased neutrophil influx to the tumor microenvironment. Moreover, the IgA combination strategy hampered tumor outgrowth most effectively and prolonged tumor-specific survival. CONCLUSION These promising results highlight the potential to enhance immunotherapy efficacy against high-risk neuroblastoma through improved neutrophil cytotoxicity by combining IgA therapy with CD47 blockade.
Collapse
Affiliation(s)
- Chilam Chan
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marjolein Stip
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marco Jansen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Femke van den Ham
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith Wienke
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Geert van Tetering
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jeanette Leusen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
27
|
Liang H, Zheng Y, Huang Z, Dai J, Yao L, Xie D, Chen D, Qiu H, Wang H, Li H, Leng J, Tang Z, Zhang D, Zhou H. Pan-cancer analysis for the prognostic and immunological role of CD47: interact with TNFRSF9 inducing CD8 + T cell exhaustion. Discov Oncol 2024; 15:149. [PMID: 38720108 PMCID: PMC11078914 DOI: 10.1007/s12672-024-00951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE The research endeavors to explore the implications of CD47 in cancer immunotherapy effectiveness. Specifically, there is a gap in comprehending the influence of CD47 on the tumor immune microenvironment, particularly in relation to CD8 + T cells. Our study aims to elucidate the prognostic and immunological relevance of CD47 to enhance insights into its prospective utilities in immunotherapeutic interventions. METHODS Differential gene expression analysis, prognosis assessment, immunological infiltration evaluation, pathway enrichment analysis, and correlation investigation were performed utilizing a combination of R packages, computational algorithms, diverse datasets, and patient cohorts. Validation of the concept was achieved through the utilization of single-cell sequencing technology. RESULTS CD47 demonstrated ubiquitous expression across various cancer types and was notably associated with unfavorable prognostic outcomes in pan-cancer assessments. Immunological investigations unveiled a robust correlation between CD47 expression and T-cell infiltration rather than T-cell exclusion across multiple cancer types. Specifically, the CD47-high group exhibited a poorer prognosis for the cytotoxic CD8 + T cell Top group compared to the CD47-low group, suggesting a potential impairment of CD8 + T cell functionality by CD47. The exploration of mechanism identified enrichment of CD47-associated differentially expressed genes in the CD8 + T cell exhausted pathway in multiple cancer contexts. Further analyses focusing on the CD8 TCR Downstream Pathway and gene correlation patterns underscored the significant involvement of TNFRSF9 in mediating these effects. CONCLUSION A robust association exists between CD47 and the exhaustion of CD8 + T cells, potentially enabling immune evasion by cancer cells and thereby contributing to adverse prognostic outcomes. Consequently, genes such as CD47 and those linked to T-cell exhaustion, notably TNFRSF9, present as promising dual antigenic targets, providing critical insights into the field of immunotherapy.
Collapse
Affiliation(s)
- Hongxin Liang
- Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China
| | - Yong Zheng
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zekai Huang
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jinchi Dai
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Lintong Yao
- Southern Medical University, Guangzhou, 510515, China
| | - Daipeng Xie
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Duo Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hongrui Qiu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Huili Wang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Hao Li
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jinhang Leng
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ziming Tang
- Southern Medical University, Guangzhou, 510515, China
| | - Dongkun Zhang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Haiyu Zhou
- Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, 510100, China.
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
28
|
Scuderi SA, Ardizzone A, Salako AE, Pantò G, De Luca F, Esposito E, Capra AP. Pentraxin 3: A Main Driver of Inflammation and Immune System Dysfunction in the Tumor Microenvironment of Glioblastoma. Cancers (Basel) 2024; 16:1637. [PMID: 38730589 PMCID: PMC11083335 DOI: 10.3390/cancers16091637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Brain tumors are a heterogeneous group of brain neoplasms that are highly prevalent in individuals of all ages worldwide. Within this pathological framework, the most prevalent and aggressive type of primary brain tumor is glioblastoma (GB), a subtype of glioma that falls within the IV-grade astrocytoma group. The death rate for patients with GB remains high, occurring within a few months after diagnosis, even with the gold-standard therapies now available, such as surgery, radiation, or a pharmaceutical approach with Temozolomide. For this reason, it is crucial to continue looking for cutting-edge therapeutic options to raise patients' survival chances. Pentraxin 3 (PTX3) is a multifunctional protein that has a variety of regulatory roles in inflammatory processes related to extracellular matrix (ECM). An increase in PTX3 blood levels is considered a trustworthy factor associated with the beginning of inflammation. Moreover, scientific evidence suggested that PTX3 is a sensitive and earlier inflammation-related marker compared to the short pentraxin C-reactive protein (CRP). In several tumoral subtypes, via regulating complement-dependent and macrophage-associated tumor-promoting inflammation, it has been demonstrated that PTX3 may function as a promoter of cancer metastasis, invasion, and stemness. Our review aims to deeply evaluate the function of PTX3 in the pathological context of GB, considering its pivotal biological activities and its possible role as a molecular target for future therapies.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Ayomide Eniola Salako
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
- University of Florence, 50121 Florence, Italy
| | - Giuseppe Pantò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (S.A.S.); (A.A.); (A.E.S.); (F.D.L.); (A.P.C.)
| |
Collapse
|
29
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Benesova I, Capkova L, Ozaniak A, Pacas P, Kopeckova K, Galova D, Lischke R, Buchler T, Ozaniak Strizova Z. A comprehensive analysis of CD47 expression in various histological subtypes of soft tissue sarcoma: exploring novel opportunities for macrophage-directed treatments. J Cancer Res Clin Oncol 2024; 150:134. [PMID: 38493445 PMCID: PMC10944806 DOI: 10.1007/s00432-024-05661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE The CD47 molecule, often referred to as the "do not eat me" signal, is frequently overexpressed in tumor cells. This signaling pathway limits phagocytosis by macrophages. Our objective was to determine CD47 abundance in various soft tissue sarcomas (STS) to investigate whether it could serve as a potential evasion mechanism for tumor cells. Additionally, we aimed to assess the prognostic value of CD47 expression by examining its association with different clinicopathological factors. This study aimed to elucidate the significance of CD47 in the context of emerging anti-tumor targeting approaches. METHODS In this retrospective study, formalin-fixed paraffine-embedded (FFPE) tumor tissues of 55 treatment-naïve patients were evaluated by immunohistochemistry for the abundance of CD47 molecule on tumor cells. The categorization of CD47 positivity was as follows: 0 (no staining of tumor cells), 1 + (less than 1/3 of tumor area positive), 2 + (between 1/3 and 2/3 of tumor area positive), and 3 + (more than 2/3 of tumor area positive for CD47). Next, we compared CD47 abundance between different tumor grades (G1-3). We used Kaplan-Meier survival curves with log-rank test to analyze the differences in survival between patients with different CD47 expression. Moreover, we performed Cox proportional hazards regression model to evaluate the clinical significance of CD47. RESULTS CD47 is widely prevalent across distinct STS subtypes. More than 80% of high grade undifferentiated pleiomorphic sarcoma (UPS), 70% of myxofibrosarcoma (MFS) and more than 60% of liposarcoma (LPS) samples displayed a pattern of moderate-to-diffuse positivity. This phenomenon remains consistent regardless of the tumor grade. However, there was a tendency for higher CD47 expression levels in the G3 group compared to the combined G1 + G2 groups when all LPS, MFS, and UPS were analyzed together. No significant associations were observed between CD47 abundance, death, and metastatic status. Additionally, high CD47 expression was associated with a statistically significant increase in progression-free survival in the studied cohort of patients. CONCLUSION This study highlights the potential of the CD47 molecule as a promising immunotherapeutic target in STS, particularly given its elevated expression levels in diverse sarcoma types. Our data showed a notable trend linking CD47 expression to tumor grade, while also suggesting an interesting correlation between enhanced abundance of CD47 expression and a reduced hazard risk of disease progression. Although these findings shed light on different roles of CD47 in STS, further research is crucial to assess its potential in clinical settings.
Collapse
Affiliation(s)
- Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Linda Capkova
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Katerina Kopeckova
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Dominika Galova
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Robert Lischke
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic.
| |
Collapse
|
31
|
Li T, Niu M, Zhou J, Wu K, Yi M. The enhanced antitumor activity of bispecific antibody targeting PD-1/PD-L1 signaling. Cell Commun Signal 2024; 22:179. [PMID: 38475778 PMCID: PMC10935874 DOI: 10.1186/s12964-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The programmed cell death 1 (PD-1) signaling pathway, a key player in immune checkpoint regulation, has become a focal point in cancer immunotherapy. In the context of cancer, upregulated PD-L1 on tumor cells can result in T cell exhaustion and immune evasion, fostering tumor progression. The advent of PD-1/PD-L1 inhibitor has demonstrated clinical success by unleashing T cells from exhaustion. Nevertheless, challenges such as resistance and adverse effects have spurred the exploration of innovative strategies, with bispecific antibodies (BsAbs) emerging as a promising frontier. BsAbs offer a multifaceted approach to cancer immunotherapy by simultaneously targeting PD-L1 and other immune regulatory molecules. We focus on recent advancements in PD-1/PD-L1 therapy with a particular emphasis on the development and potential of BsAbs, especially in the context of solid tumors. Various BsAb products targeting PD-1 signaling are discussed, highlighting their unique mechanisms of action and therapeutic potential. Noteworthy examples include anti-TGFβ × PD-L1, anti-CD47 × PD-L1, anti-VEGF × PD-L1, anti-4-1BB × PD-L1, anti-LAG-3 × PD-L1, and anti-PD-1 × CTLA-4 BsAbs. Besides, we summarize ongoing clinical studies evaluating the efficacy and safety of these innovative BsAb agents. By unraveling the intricacies of the tumor microenvironment and harnessing the synergistic effects of anti-PD-1/PD-L1 BsAbs, there exists the potential to elevate the precision and efficacy of cancer immunotherapy, ultimately enabling the development of personalized treatment strategies tailored to individual patient profiles.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
32
|
Wang T, Wang SQ, Du YX, Sun DD, Liu C, Liu S, Sun YY, Wang HL, Zhang CS, Liu HL, Jin L, Chen XP. Gentulizumab, a novel anti-CD47 antibody with potent antitumor activity and demonstrates a favorable safety profile. J Transl Med 2024; 22:220. [PMID: 38429732 PMCID: PMC10905820 DOI: 10.1186/s12967-023-04710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Targeting CD47/SIRPα axis has emerged as a promising strategy in cancer immunotherapy. Despite the encouraging clinical efficacy observed in hematologic malignancies through CD47-SIRPα blockade, there are safety concerns related to the binding of anti-CD47 antibodies to CD47 on the membrane of peripheral blood cells. METHODS In order to enhance the selectivity and therapeutic efficacy of the antibody, we developed a humanized anti-CD47 monoclonal antibody called Gentulizumab (GenSci059). The binding capacity of GenSci059 to CD47 was evaluated using flow cytometry and surface plasmon resonance (SPR) methods, the inhibitory effect of GenSci059 on the CD47-SIRPα interaction was evaluated through competitive ELISA assays. The anti-tumor activity of GenSci059 was assessed using in vitro macrophage models and in vivo patient-derived xenograft (PDX) models. To evaluate the safety profile of GenSci059, binding assays were conducted using blood cells. Additionally, we investigated the underlying mechanisms contributing to the weaker binding of GenSci059 to erythrocytes. Finally, toxicity studies were performed in non-human primates to assess the potential risks associated with GenSci059. RESULTS GenSci059 displayed strong binding to CD47 in both human and monkey, and effectively inhibited the CD47-SIRPα interaction. With doses ranging from 5 to 20 mg/kg, GenSci059 demonstrated potent inhibition of the growth of subcutaneous tumor with the inhibition rates ranged from 30.3% to complete regression. Combination of GenSci059 with 2.5 mg/kg Rituximab at a dose of 2.5 mg/kg showed enhanced tumor inhibition compared to monotherapy, exhibiting synergistic effects. GenSci059 exhibited minimal binding to hRBCs compared to Hu5F9-G4. The binding of GenSci059 to CD47 depended on the cyclization of N-terminal pyroglutamic acid and the spatial conformation of CD47, but was not affected by its glycosylation modifications. A maximum tolerated dose (MTD) of 450 mg/kg was observed for GenSci059, and no significant adverse effects were observed in repeated dosages up to 10 + 300 mg/kg, indicating a favorable safety profile. CONCLUSION GenSci059 selectively binds to CD47, effectively blocks the CD47/SIRPα axis signaling pathway and enhances the phagocytosis effects of macrophages toward tumor cells. This monoclonal antibody demonstrates potent antitumor activity and exhibits a favorable safety profile, positioning it as a promising and effective therapeutic option for cancer.
Collapse
Affiliation(s)
- Tao Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Si-Qin Wang
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Yin-Xiao Du
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Dan-Dan Sun
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Chang Liu
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Shuang Liu
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Ying-Ying Sun
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Hai-Long Wang
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Chun-Sheng Zhang
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Hai-Long Liu
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China
| | - Lei Jin
- GeneScience Pharmaceuticals Co., Ltd, Changchun, 130012, Jilin, People's Republic of China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
33
|
Sudo M, Tsutsui H, Fujimoto J. Carbon Ion Irradiation Activates Anti-Cancer Immunity. Int J Mol Sci 2024; 25:2830. [PMID: 38474078 DOI: 10.3390/ijms25052830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Carbon ion beams have the unique property of higher linear energy transfer, which causes clustered damage of DNA, impacting the cell repair system. This sometimes triggers apoptosis and the release in the cytoplasm of damaged DNA, leading to type I interferon (IFN) secretion via the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Dendritic cells phagocytize dead cancer cells and damaged DNA derived from injured cancer cells, which together activate dendritic cells to present cancer-derived antigens to antigen-specific T cells in the lymph nodes. Thus, carbon ion radiation therapy (CIRT) activates anti-cancer immunity. However, cancer is protected by the tumor microenvironment (TME), which consists of pro-cancerous immune cells, such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. The TME is too robust to be destroyed by the CIRT-mediated anti-cancer immunity. Various modalities targeting regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages have been developed. Preclinical studies have shown that CIRT-mediated anti-cancer immunity exerts its effects in the presence of these modalities. In this review article, we provide an overview of CIRT-mediated anti-cancer immunity, with a particular focus on recently identified means of targeting the TME.
Collapse
Affiliation(s)
- Makoto Sudo
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Hiroko Tsutsui
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Jiro Fujimoto
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Osaka Heavy Ion Therapy Center, Osaka 540-0008, Japan
| |
Collapse
|
34
|
Luo X, Mo J, Zhang M, Huang W, Bao Y, Zou R, Yao L, Yuan L. CD47-a novel prognostic predicator in epithelial ovarian cancer and correlations with clinicopathological and gene mutation features. World J Surg Oncol 2024; 22:44. [PMID: 38317230 PMCID: PMC10845810 DOI: 10.1186/s12957-024-03308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is insensitive to immunotherapy due to its poor immunogenicity; thus, suitable biomarkers need to be identified for better prognostic stratification and individualized treatment. CD47 is a novel immunotherapy target; however, its impact on EOC prognosis is controversial and correlation with genetic features is unclear. The aim of this study was to investigate the prognostic significance of CD47 and its correlations with biological behaviors and genetic features of EOC. METHODS Immunohistochemistry (IHC) and next-generation sequencing (NGS) were performed to examine expressions of CD47, PD-L1, and genomic mutations in the tissue samples of 75 EOC patients. Various clinicopathologic and genomic features were then evaluated to determine their correlation with CD47 expression. Kaplan-Meier analysis and Cox regression analysis were used to identify independent prognostic factors. Risk score modeling was then established, and the predictive capacity of this model was further confirmed by nomogram analysis. RESULTS CD47 was mainly expressed in the tumor cell membrane and cytoplasm, and the rate of high CD47 expression was 63.7%. CD47 expression was associated with various clinicopathological factors, including FIGO stage, CA125 and HE4 value, presence of multidisciplinary surgeries, presence and volume of ascites, lymph-node metastasis, Ki-67 index and platinum-resistant, as well as genetic characteristics like BRCA mutation, HRD status, and TP53 mutation in EOC. Patients with high CD47 expression showed worse prognosis than the low-expression group. Cox regression analysis demonstrated that CA125, CD47, and BRCA mutation were independent factors for EOC prognosis. Patients were then categorized into high-risk and low-risk subgroups based on the risk score of the aforementioned independent factors, and the prognosis of the high-risk group was worse than those of the low-risk group. The nomogram showed adequate discrimination with a concordance index of 0.777 (95% CI, 0.732-0.822). The calibration curve showed good consistency. CONCLUSION CD47 correlated with various malignant biology and genetic characteristics of EOC and may play pivotal and multifaceted roles in the tumor microenvironment of EOC Finally, we constructed a reliable prediction model centered on CD47 and integrated CA125 and BRCA to better guide high-risk population management.
Collapse
Affiliation(s)
- Xukai Luo
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jiahang Mo
- Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Min Zhang
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Wu Huang
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yiting Bao
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Ruoyao Zou
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Liangqing Yao
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Lei Yuan
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
35
|
Lonez C, Breman E. Allogeneic CAR-T Therapy Technologies: Has the Promise Been Met? Cells 2024; 13:146. [PMID: 38247837 PMCID: PMC10814647 DOI: 10.3390/cells13020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
This last decade, chimeric antigen receptor (CAR) T-cell therapy has become a real treatment option for patients with B-cell malignancies, while multiple efforts are being made to extend this therapy to other malignancies and broader patient populations. However, several limitations remain, including those associated with the time-consuming and highly personalized manufacturing of autologous CAR-Ts. Technologies to establish "off-the-shelf" allogeneic CAR-Ts with low alloreactivity are currently being developed, with a strong focus on gene-editing technologies. Although these technologies have many advantages, they have also strong limitations, including double-strand breaks in the DNA with multiple associated safety risks as well as the lack of modulation. As an alternative, non-gene-editing technologies provide an interesting approach to support the development of allogeneic CAR-Ts in the future, with possibilities of fine-tuning gene expression and easy development. Here, we will review the different ways allogeneic CAR-Ts can be manufactured and discuss which technologies are currently used. The biggest hurdles for successful therapy of allogeneic CAR-Ts will be summarized, and finally, an overview of the current clinical evidence for allogeneic CAR-Ts in comparison to its autologous counterpart will be given.
Collapse
|
36
|
Malinge P, Chauchet X, Bourguignon J, Bosson N, Calloud S, Bautzova T, Borlet M, Laursen M, Kelpsas V, Rose N, Gueneau F, Ravn U, Magistrelli G, Fischer N. Structural analysis of light chain-driven bispecific antibodies targeting CD47 and PD-L1. MAbs 2024; 16:2362432. [PMID: 38849989 PMCID: PMC11164222 DOI: 10.1080/19420862.2024.2362432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
In contrast to natural antibodies that rely mainly on the heavy chain to establish contacts with their cognate antigen, we have developed a bispecific antibody format in which the light chain (LC) drives antigen binding and specificity. To better understand epitope-paratope interactions in this context, we determined the X-ray crystallographic structures of an antigen binding fragment (Fab) in complex with human CD47 and another Fab in complex with human PD-L1. These Fabs contain a κ-LC and a λ-LC, respectively, which are paired with an identical heavy chain (HC). The structural analysis of these complexes revealed the dominant contribution of the LCs to antigen binding, but also that the common HC provides some contacts in both CD47 and PD-L1 Fab complexes. The anti-CD47 Fab was affinity optimized by diversifying complementary-determining regions of the LC followed by phage display selections. Using homology modeling, the contributions of the amino acid modification to the affinity increase were analyzed. Our results demonstrate that, despite a less prominent role in natural antibodies, the LC can mediate high affinity binding to different antigens and neutralize their biological function. Importantly, Fabs containing a common variable heavy (VH) domain enable the generation of bispecific antibodies retaining a truly native structure, maximizing their therapeutic potential.
Collapse
Affiliation(s)
- Pauline Malinge
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Xavier Chauchet
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | | | - Nicolas Bosson
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | | | - Tereza Bautzova
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Marie Borlet
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | | | | | | | - Franck Gueneau
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Ulla Ravn
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | | | - Nicolas Fischer
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| |
Collapse
|
37
|
Morimoto M, Till NA, Bertozzi CR. Tumor Immune Cell Targeting Chimeras (TICTACs) For Targeted Depletion of Macrophage-Associated Checkpoint Receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570444. [PMID: 38106036 PMCID: PMC10723462 DOI: 10.1101/2023.12.06.570444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Immune cells in the tumor microenvironment are not only powerful regulators of immunosuppression and tumorigenesis, but also represent a dominant cell type, with tumor-associated macrophages (TAMs) comprising up to 50% of total cell mass in solid tumors. Immunotherapies such as immune checkpoint inhibitors (ICIs) derive their efficacy from this cancer-immune cell interface, however, immune-related adverse events resulting from systemic blockade remain a significant challenge. To address this need for potent, yet highly tumor-specific immunotherapies, we developed Tumor-Immune Cell Targeting Chimeras (TICTACs), antibody conjugates that are capable of selectively depleting immune checkpoint receptors such as SIRPa from the surface of TAMs. These chimeric molecules consist of a synthetic glycan ligand that binds the C-type lectin CD206, a well-established TAM marker, conjugated to a non-blocking antibody that binds but does not inhibit the checkpoint receptor. By engaging CD206, which constitutively recycles between the plasma membrane and early endosomes, TICTACs facilitate robust removal of the checkpoint receptors from the surface of CD206high macrophages, while having no effect on CD206low macrophages. By decoupling antibody selectivity from its blocking function, we present a new paradigm for developing highly tumor-specific immunotherapies.
Collapse
Affiliation(s)
- Mariko Morimoto
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford CA, USA
| | - Nicholas A Till
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford CA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford CA, USA
| |
Collapse
|
38
|
Su X, Jin W, Liu L, Zhu Z, Li C. Regulation of CD47 expression on CD14 + monocytes by interferon-α in PBC patients. Front Immunol 2023; 14:1256995. [PMID: 38111586 PMCID: PMC10725903 DOI: 10.3389/fimmu.2023.1256995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Background Primary biliary cholangitis (PBC) is a chronic intrahepatic cholestatic autoimmune liver disease characterized by inflammatory injury of small and medium-sized bile ducts in the liver. The pathogenesis of PBC has yet to be entirely understood. CD47/signal-regulatory protein alpha (SIRPα) is closely related to developing autoimmune diseases by promoting inflammatory response. However, the effect of CD47/SIRPα on inflammatory response in PBC patients is still unclear. Objective We investigated the expression of CD47/SIRPα and the effect of inflammatory cytokines on the CD47 expression, analyzed potential autoantibodies against CD47 and the effect of anti-CD47 antibody on the inflammatory response in PBC, provided laboratory basis for the study of the pathogenesis and targets for non-invasive diagnosis and treatment on PBC. Methods The expression levels of CD47 and SIRPα on peripheral blood mononuclear cells (PBMC) were measured in 14 patients with PBC (the PBC group) and 13 healthy subjects (the Control group) by flow cytometry (FCM). The PBMC derived from healthy subjects were stimulated with healthy subjects' serum, PBC patients' serum, IFN-α or TNF-α, and the CD47 expression level on CD14+ monocytes was detected by FCM. The level of serum anti-CD47 antibody or IFN-α in PBC patients and healthy subjects was analyzed by ELISA. FCM was used to examine the TNF-α expression level in CD14+ monocytes of healthy subjects stimulated with isotype control antibody, anti-CD47 antibody, LPS or LPS combined with CD47 antibody. Results The CD47 expression level on the CD14+ monocytes in PBC patients was statistically higher than that in the Control group (P<0.01). Compared with the Control group (PBMC+healthy serum), the CD47 expression on CD14+ monocyte stimulated with the PBC patients' serum (PBMC+PBC patients' serum) was increased (P<0.001); the CD47 expression on CD14+ monocyte stimulated with IFN-α (PBMC + IFN-α) increased gradually with the increased concentration of IFN-α (P<0.05). However, there was no similar trend on CD14+ monocyte stimulated with the TNF-α (PBMC+TNF-α) (P>0.05). The levels of serum anti-CD47 antibody and IFN-α in the PBC patients were higher than those in healthy subjects (P<0.05). The TNF-α expression level in CD14+ monocyte stimulated with the LPS (PBMC+LPS) or anti-CD47 antibody+LPS group (PBMC+LPS+anti-CD47 antibody) was significantly increased than that in the Control group (PBMC+isotype control antibody) (P<0.01 and P<0.001, respectively). The TNF-α expression level in CD14+ monocyte stimulated with the anti-CD47 antibody + LPS was higher than that with the LPS (P< 0.05). Conclusion The CD47 may be related to the pathogenesis of PBC by inflammatory response. The CD47/SIRPα signal were imbalanced in PBC patients. The presence of serum anti-CD47 antibodies in PBC patients provides a laboratory basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xi Su
- Department of Laboratory Medicine, Hunan Provincial People’s Hospital (the First- Affiliated Hospital of Hunan Normal University), Changsha, China
- Department of Laboratory Medicine, the First- Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
| | - Wenwen Jin
- Department of Laboratory Medicine, Hunan Provincial People’s Hospital (the First- Affiliated Hospital of Hunan Normal University), Changsha, China
- Department of Laboratory Medicine, the First- Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
| | - Lizhi Liu
- Department of Laboratory Medicine, the First- Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
| | - Zifei Zhu
- Department of Laboratory Medicine, Hunan Provincial People’s Hospital (the First- Affiliated Hospital of Hunan Normal University), Changsha, China
- Research Office of Clinical Laboratory, Clinical Translational Medicine Research Institute of Hunan Provincial People’s Hospital (the First-affiliated Hospital of Hunan Normal University), Changsha, China
| | - Cunyan Li
- Department of Laboratory Medicine, Hunan Provincial People’s Hospital (the First- Affiliated Hospital of Hunan Normal University), Changsha, China
- Research Office of Clinical Laboratory, Clinical Translational Medicine Research Institute of Hunan Provincial People’s Hospital (the First-affiliated Hospital of Hunan Normal University), Changsha, China
| |
Collapse
|
39
|
Wang C, Feng Y, Patel D, Xie H, Lv Y, Zhao H. The role of CD47 in non-neoplastic diseases. Heliyon 2023; 9:e22905. [PMID: 38125492 PMCID: PMC10731077 DOI: 10.1016/j.heliyon.2023.e22905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
CD47 is a 50 kDa five-spanning membrane receptor that plays a crucial role in multiple cellular processes, including myeloid cell activation, neutrophils transmigration, vascular remodeling, leukocyte adhesion and trans-endothelial migration. Recent studies have revealed that CD47 is a highly expressed anti-phagocytic signal in several types of cancer, and therefore, blocking of CD47 has shown an effective therapeutic potential in cancer immunotherapy. In addition, CD47 has been found to be involved in a complex interplay with microglia and other types of cells, and increasing evidence indicates that CD47 can be targeted as part of immune modulatory strategies for non-neoplastic diseases as well. In this review, we focus on CD47 and its role in non-neoplastic diseases, including neurological disorders, atherosclerosis and autoimmune diseases. In addition, we discuss the major challenges and potential remedies associated with CD47-SIRPα-based immunotherapies.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Deepali Patel
- School of Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Hongwei Xie
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Yaqing Lv
- Department of Outpatient, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
40
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
41
|
CHEN QIUQIANG, GUO XUEJUN, MA WENXUE. Opportunities and challenges of CD47-targeted therapy in cancer immunotherapy. Oncol Res 2023; 32:49-60. [PMID: 38188674 PMCID: PMC10767231 DOI: 10.32604/or.2023.042383] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/09/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of cancer, with the tumor microenvironment (TME) playing a pivotal role in modulating the immune response. CD47, a cell surface protein, has been identified as a crucial regulator of the TME and a potential therapeutic target for cancer therapy. However, the precise functions and implications of CD47 in the TME during immunotherapy for cancer patients remain incompletely understood. This comprehensive review aims to provide an overview of CD47's multifaced role in TME regulation and immune evasion, elucidating its impact on various types of immunotherapy outcomes, including checkpoint inhibitors and CAR T-cell therapy. Notably, CD47-targeted therapies offer a promising avenue for improving cancer treatment outcomes, especially when combined with other immunotherapeutic approaches. The review also discusses current and potential CD47-targeted therapies being explored for cancer treatment and delves into the associated challenges and opportunities inherent in targeting CD47. Despite the demonstrated effectiveness of CD47-targeted therapies, there are potential problems, including unintended effects on healthy cells, hematological toxicities, and the development if resistance. Consequently, further research efforts are warranted to fully understand the underlying mechanisms of resistance and to optimize CD47-targeted therapies through innovative combination approaches, ultimately improving cancer treatment outcomes. Overall, this comprehensive review highlights the significance of CD47 as a promising target for cancer immunotherapy and provides valuable insight into the challenges and opportunities in developing effective CD47-targeted therapies for cancer treatment.
Collapse
Affiliation(s)
- QIUQIANG CHEN
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University School of Medicine, Huzhou, 313000, China
| | - XUEJUN GUO
- Department of Hematology, Puyang Youtian General Hospital, Puyang, 457001, China
| | - WENXUE MA
- Department of Medicine, Moores Cancer Center, Sanford Stem Cell Institute, University of California San Diego, La Jolla, San Diego, 92093, USA
| |
Collapse
|
42
|
Zhang L, Zhao X, Niu Y, Ma X, Yuan W, Ma J. Engineering high-affinity dual targeting cellular nanovesicles for optimised cancer immunotherapy. J Extracell Vesicles 2023; 12:e12379. [PMID: 37974395 PMCID: PMC10654473 DOI: 10.1002/jev2.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/28/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Dual targeting to immune checkpoints has achieved a better therapeutic efficacy than single targeting due to synergistic extrication of tumour immunity. However, most dual targeting strategies are usually antibody dependent which facing drawbacks of antibodies, such as poor solid tumour penetration and unsatisfied affinity. To meet the challenges, we engineered a cell membrane displaying a fusion protein composed of SIRPα and PD-1 variants, the high-affinity consensus (HAC) of wild-type molecules, and with which prepared nanovesicles (NVs). Through disabling both SIRPα/CD47 and PD-1/PD-L1 signalling, HAC NVs significantly preserved the phagocytosis and antitumour effect of macrophages and T cells, respectively. In vivo study revealed that HAC NVs had better tumour penetration than monoclonal antibodies and higher binding affinity to CD47 and PD-L1 on tumour cells compared with the NVs expressing wild-type fusion protein. Exhilaratingly, dual-blockade of CD47 and PD-L1 with HAC NVs exhibited excellent therapeutic efficacy and biosafety. This study provided a novel biomaterial against tumoural immune escape and more importantly an attractive biomimetic technology of protein delivery for multi-targeting therapies.
Collapse
Affiliation(s)
- Luyao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine Chinese Academy of Medical SciencesBeijingChina
| | - Xu Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yanan Niu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoya Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of GerontologyInstitute of Geriatric Medicine Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
43
|
Dan J, Cai J, Zhong Y, Wang C, Huang S, Zeng Y, Fan Z, Xu C, Hu L, Zhang J, Hu J, Liu Y, Su X, Zhu W, Yan G, Liang J, Lin Y. Oncolytic virus M1 functions as a bifunctional checkpoint inhibitor to enhance the antitumor activity of DC vaccine. Cell Rep Med 2023; 4:101229. [PMID: 37820722 PMCID: PMC10591054 DOI: 10.1016/j.xcrm.2023.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/03/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Although promising, dendritic cell (DC) vaccines still provide limited clinical benefits, mainly due to the immunosuppressive tumor microenvironment (TME) and the lack of tumor-associated antigens (TAAs). Oncolytic virus therapy is an ideal strategy to overcome immunosuppression and expose TAAs; therefore, they may work synergistically with DC vaccines. In this study, we demonstrate that oncolytic virus M1 (OVM) can enhance the antitumor effects of DC vaccines across diverse syngeneic mouse tumor models by increasing the infiltration of CD8+ effector T cells in the TME. Mechanically, we show that tumor cells counteract DC vaccines through the SIRPα-CD47 immune checkpoint, while OVM can downregulate SIRPα in DCs and CD47 in tumor cells. Since OVM upregulates PD-L1 in DCs, combining PD-L1 blockade with DC vaccines and OVM further enhances antitumor activity. Overall, OVM strengthens the antitumor efficacy of DC vaccines by targeting the SIRPα-CD47 axis, which exerts dominant immunosuppressive effects on DC vaccines.
Collapse
Affiliation(s)
- Jia Dan
- Advanced Medical Technology Center, The First Affiliated Hospital-Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingqian Zhong
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaoqun Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanyu Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Zeng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhen Fan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Cuiying Xu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Linyi Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiayu Zhang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Jun Hu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiankai Liang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yuan Lin
- Advanced Medical Technology Center, The First Affiliated Hospital-Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
44
|
Chen Y, Zhu X, Liu H, Wang C, Chen Y, Wang H, Fang Y, Wu X, Xu Y, Li C, Lv X, Huang J, Han X, Li R, Hong W, Yu Z, Wei W, Tu J. The application of HER2 and CD47 CAR-macrophage in ovarian cancer. J Transl Med 2023; 21:654. [PMID: 37740183 PMCID: PMC10517545 DOI: 10.1186/s12967-023-04479-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND The chimeric antigen receptor (CAR)-T therapy has a limited therapeutic effect on solid tumors owing to the limited CAR-T cell infiltration into solid tumors and the inactivation of CAR-T cells by the immunosuppressive tumor microenvironment. Macrophage is an important component of the innate and adaptive immunity, and its unique phagocytic function has been explored to construct CAR macrophages (CAR-Ms) against solid tumors. This study aimed to investigate the therapeutic application of CAR-Ms in ovarian cancer. METHODS In this study, we constructed novel CAR structures, which consisted of humanized anti-HER2 or CD47 scFv, CD8 hinge region and transmembrane domains, as well as the 4-1BB and CD3ζ intracellular domains. We examined the phagocytosis of HER2 CAR-M and CD47 CAR-M on ovarian cancer cells and the promotion of adaptive immunity. Two syngeneic tumor models were used to estimate the in vivo antitumor activity of HER2 CAR-M and CD47 CAR-M. RESULTS We constructed CAR-Ms targeting HER2 and CD47 and verified their phagocytic ability to ovarian cancer cells in vivo and in vitro. The constructed CAR-Ms showed antigen-specific phagocytosis of ovarian cancer cells in vitro and could activate CD8+ cytotoxic T lymphocyte (CTL) to secrete various anti-tumor factors. For the in vivo model, mice with human-like immune systems were used. We found that CAR-Ms enhanced CD8+ T cell activation, affected tumor-associated macrophage (TAM) phenotype, and led to tumor regression. CONCLUSIONS We demonstrated the inhibition effect of our constructed novel HER2 CAR-M and CD47 CAR-M on target antigen-positive ovarian cancer in vitro and in vivo, and preliminarily verified that this inhibitory effect is due to phagocytosis, promotion of adaptive immunity and effect on tumor microenvironment.
Collapse
Affiliation(s)
- Yizhao Chen
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China
| | - Xiangling Zhu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China
| | - Hanze Liu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Shushan District, Hefei, China
| | - Cunzhi Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Shushan District, Hefei, China
| | - Yu Chen
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China
| | - Huihui Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China
| | - Xuming Wu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China
| | - Yuting Xu
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China
| | - Chunhua Li
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China
| | - Xinyue Lv
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China
| | - Jinghua Huang
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China
| | - Xintong Han
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China
| | - Ruilin Li
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei First People's Hospital, Hefei, China
| | - Wenming Hong
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Shushan District, Hefei, China.
| | - Zhiying Yu
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China.
- Shenzhen Second People's Hospital, #3002 Sungangxi Road, Futian District, Shenzhen, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China.
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China.
| |
Collapse
|
45
|
Han J, Lim J, Wang CPJ, Han JH, Shin HE, Kim SN, Jeong D, Lee SH, Chun BH, Park CG, Park W. Lipid nanoparticle-based mRNA delivery systems for cancer immunotherapy. NANO CONVERGENCE 2023; 10:36. [PMID: 37550567 PMCID: PMC10406775 DOI: 10.1186/s40580-023-00385-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Cancer immunotherapy, which harnesses the power of the immune system, has shown immense promise in the fight against malignancies. Messenger RNA (mRNA) stands as a versatile instrument in this context, with its capacity to encode tumor-associated antigens (TAAs), immune cell receptors, cytokines, and antibodies. Nevertheless, the inherent structural instability of mRNA requires the development of effective delivery systems. Lipid nanoparticles (LNPs) have emerged as significant candidates for mRNA delivery in cancer immunotherapy, providing both protection to the mRNA and enhanced intracellular delivery efficiency. In this review, we offer a comprehensive summary of the recent advancements in LNP-based mRNA delivery systems, with a focus on strategies for optimizing the design and delivery of mRNA-encoded therapeutics in cancer treatment. Furthermore, we delve into the challenges encountered in this field and contemplate future perspectives, aiming to improve the safety and efficacy of LNP-based mRNA cancer immunotherapies.
Collapse
Affiliation(s)
- Jieun Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jun-Hyeok Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Ha Eun Shin
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Se-Na Kim
- MediArk, Chungdae-ro 1, Seowon-gu, Cheongju, Chungcheongbuk, 28644, Republic of Korea
| | - Dooyong Jeong
- R&D center of HLB Pharmaceutical Co., Ltd., Hwaseong, Gyeonggi, 18469, Republic of Korea
| | - Sang Hwi Lee
- R&D center of HLB Pharmaceutical Co., Ltd., Hwaseong, Gyeonggi, 18469, Republic of Korea
| | - Bok-Hwan Chun
- R&D center of HLB Pharmaceutical Co., Ltd., Hwaseong, Gyeonggi, 18469, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
46
|
Jia D, Lu Y, Lv M, Wang F, Lu X, Zhu W, Wei J, Guo W, Liu R, Li G, Wang R, Li J, Yuan F. Targeted co-delivery of resiquimod and a SIRPα variant by liposomes to activate macrophage immune responses for tumor immunotherapy. J Control Release 2023; 360:858-871. [PMID: 37473808 DOI: 10.1016/j.jconrel.2023.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Tumor-associated macrophages (TAMs) are the major immune cells infiltrating the tumor microenvironment (TME) and typically exhibit an immunosuppressive M2-like phenotype, which facilitates tumor growth and promotes resistance to immunotherapy. Additionally, tumor cells tend to express high levels of CD47, a "don't eat me" signal, that obstructs macrophage phagocytosis. Consequently, re-educating TAMs in combination with CD47 blockage is promising to trigger intense macrophage immune responses against tumors. As a toll-like receptor 7/8 agonist, resiquimod (R848) possesses the capacity to re-educate TAMs from M2 type to M1 type. We found that intratumoral administration of R848 synergistically improved the antitumor immunotherapeutic effect of CV1 protein (a SIRPα variant with high antagonism to CD47). However, the poor bioavailability and potential toxicity of this combo strategy remain a challenge. Here, a TAMs-targeted liposome (named: R-LS/M/CV1) co-delivering R848 and CV1 protein was constructed via decorating mannose on the liposomal surface. R-LS/M/CV1 exhibited high abilities of targeting, re-education and pro-phagocytosis of tumor cells to M2 macrophages in vitro. Intratumoral administration of R-LS/M/CV1 remarkedly eliminated tumor burden in the MC38 tumor model via repolarization of TAMs to M1 type, pro-phagocytosis of TAMs against tumors, and recruitment of tumor-infiltrating T cells. More encouragingly, due to the double targeting to TAMs and tumor cells of mannose and CV1 protein, R-LS/M/CV1 effectively accumulated at the tumor site, thereby not only remarkedly inhibiting tumors, but also exerting no hematological and histopathological toxicity when administered systemically. Our integrated strategy based on re-educating TAMs and CD47 blockade provides a promising approach to trigger macrophage immune responses against tumors for immunotherapy.
Collapse
Affiliation(s)
- Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Yue Lu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China.
| | - Mingjia Lv
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Feifei Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Xiaomeng Lu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Weifan Zhu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Jianmei Wei
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Wen Guo
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Renmin Liu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Guangyong Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Rui Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Jun Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China.
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China.
| |
Collapse
|
47
|
Han S, Bao X, Zou Y, Wang L, Li Y, Yang L, Liao A, Zhang X, Jiang X, Liang D, Dai Y, Zheng QC, Yu Z, Guo J. d-lactate modulates M2 tumor-associated macrophages and remodels immunosuppressive tumor microenvironment for hepatocellular carcinoma. SCIENCE ADVANCES 2023; 9:eadg2697. [PMID: 37467325 PMCID: PMC10355835 DOI: 10.1126/sciadv.adg2697] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The polarization of tumor-associated macrophages (TAMs) from M2 to M1 phenotype demonstrates great potential for remodeling the immunosuppressive tumor microenvironment (TME) of hepatocellular carcinoma (HCC). d-lactate (DL; a gut microbiome metabolite) acts as an endogenous immunomodulatory agent that enhances Kupffer cells for clearance of pathogens. In this study, the potential of DL for transformation of M2 TAMs to M1 was confirmed, and the mechanisms underlying such polarization were mainly due to the modulation of phosphatidylinositol 3-kinase/protein kinase B pathway. A poly(lactide-co-glycolide) nanoparticle (NP) was used to load DL, and the DL-loaded NP was modified with HCC membrane and M2 macrophage-binding peptide (M2pep), forming a nanoformulation (DL@NP-M-M2pep). DL@NP-M-M2pep transformed M2 TAMs to M1 and remodeled the immunosuppressive TME in HCC mice, promoting the efficacy of anti-CD47 antibody for long-term animal survival. These findings reveal a potential TAM modulatory function of DL and provide a combinatorial strategy for HCC immunotherapy.
Collapse
Affiliation(s)
- Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xueying Bao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Lingzhi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yutong Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Anqi Liao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xuemei Zhang
- Department of Hepatopathy, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
| | - Di Liang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Qing-Chuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
48
|
Kumar V, Bauer C, Stewart JH. Targeting cGAS/STING signaling-mediated myeloid immune cell dysfunction in TIME. J Biomed Sci 2023; 30:48. [PMID: 37380989 PMCID: PMC10304357 DOI: 10.1186/s12929-023-00942-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Myeloid immune cells (MICs) are potent innate immune cells serving as first responders to invading pathogens and internal changes to cellular homeostasis. Cancer is a stage of altered cellular homeostasis that can originate in response to different pathogens, chemical carcinogens, and internal genetic/epigenetic changes. MICs express several pattern recognition receptors (PRRs) on their membranes, cytosol, and organelles, recognizing systemic, tissue, and organ-specific altered homeostasis. cGAS/STING signaling is a cytosolic PRR system for identifying cytosolic double-stranded DNA (dsDNA) in a sequence-independent but size-dependent manner. The longer the cytosolic dsDNA size, the stronger the cGAS/STING signaling activation with increased type 1 interferon (IFN) and NF-κB-dependent cytokines and chemokines' generation. The present article discusses tumor-supportive changes occurring in the tumor microenvironment (TME) or tumor immune microenvironment (TIME) MICs, specifically emphasizing cGAS/STING signaling-dependent alteration. The article further discusses utilizing MIC-specific cGAS/STING signaling modulation as critical tumor immunotherapy to alter TIME.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
- Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
- Surgery, Section of Surgical Oncology, Louisiana State University New Orleans-Louisiana Children's Medical Center Cancer Center, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
| |
Collapse
|
49
|
Koukourakis IM, Platoni K, Tiniakos D, Kouloulias V, Zygogianni A. Immune Response and Immune Checkpoint Molecules in Patients with Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy: A Review. Curr Issues Mol Biol 2023; 45:4495-4517. [PMID: 37232754 DOI: 10.3390/cimb45050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
It is well-established that tumor antigens and molecules expressed and secreted by cancer cells trigger innate and adaptive immune responses. These two types of anti-tumor immunity lead to the infiltration of the tumor's microenvironment by immune cells with either regulatory or cytotoxic properties. Whether this response is associated with tumor eradication after radiotherapy and chemotherapy or regrowth has been a matter of extensive research through the years, mainly focusing on tumor-infiltrating lymphocytes and monocytes and their subtypes, and the expression of immune checkpoint and other immune-related molecules by both immune and cancer cells in the tumor microenvironment. A literature search has been conducted on studies dealing with the immune response in patients with rectal cancer treated with neoadjuvant radiotherapy or chemoradiotherapy, assessing its impact on locoregional control and survival and underlying the potential role of immunotherapy in the treatment of this cancer subtype. Here, we provide an overview of the interactions between local/systemic anti-tumor immunity, cancer-related immune checkpoint, and other immunological pathways and radiotherapy, and how these affect the prognosis of rectal cancer patients. Chemoradiotherapy induces critical immunological changes in the tumor microenvironment and cancer cells that can be exploited for therapeutic interventions in rectal cancer.
Collapse
Affiliation(s)
- Ioannis M Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dina Tiniakos
- Department of Pathology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Vassilis Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece
| |
Collapse
|
50
|
Hao Y, Zhou X, Li Y, Li B, Cheng L. The CD47-SIRPα axis is a promising target for cancer immunotherapies. Int Immunopharmacol 2023; 120:110255. [PMID: 37187126 DOI: 10.1016/j.intimp.2023.110255] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Cluster of differentiation 47(CD47) is a transmembrane protein that is ubiquitously found on the surface of many cells in the body and uniquely overexpressed by both solid and hematologic malignant cells. CD47 interacts with signal-regulatory protein α (SIRPα), to trigger a "don't eat me" signal and thereby achieve cancer immune escape by inhibiting macrophage-mediated phagocytosis. Thus, blocking the CD47-SIRPα phagocytosis checkpoint, for release of the innate immune system, is a current research focus. Indeed, targeting the CD47-SIRPα axis as a cancer immunotherapy has shown promising efficacies in pre-clinical outcomes. Here, we first reviewed the origin, structure, and function of the CD47-SIRPα axis. Then, we reviewed its role as a target for cancer immunotherapies, as well as the factors regulating CD47-SIRPα axis-based immunotherapies. We specifically focused on the mechanism and progress of CD47-SIRPα axis-based immunotherapies and their combination with other treatment strategies. Finally, we discussed the challenges and directions for future research and identified potential CD47-SIRPα axis-based therapies that are suitable for clinical application.
Collapse
Affiliation(s)
- Yu Hao
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Yiling Li
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bolei Li
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & West China Hospital of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China; Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|