1
|
Yang X, Wu Y, Ficorella L, Wilcox N, Dennis J, Tyrer J, Carver T, Pashayan N, Tischkowitz M, Pharoah PDP, Easton DF, Antoniou AC. Validation of the BOADICEA model for epithelial tubo-ovarian cancer risk prediction in UK Biobank. Br J Cancer 2024; 131:1473-1479. [PMID: 39294438 PMCID: PMC11519606 DOI: 10.1038/s41416-024-02851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND The clinical validity of the multifactorial BOADICEA model for epithelial tubo-ovarian cancer (EOC) risk prediction has not been assessed in a large sample size or over a longer term. METHODS We evaluated the model discrimination and calibration in the UK Biobank cohort comprising 199,429 women (733 incident EOCs) of European ancestry without previous cancer history. We predicted 10-year EOC risk incorporating data on questionnaire-based risk factors (QRFs), family history, a 36-SNP polygenic risk score and pathogenic variants (PV) in six EOC susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, BRIP1 and PALB2). RESULTS Discriminative ability was maximised under the multifactorial model that included all risk factors (AUC = 0.68, 95% CI: 0.66-0.70). This model was well calibrated in deciles of predicted risk with calibration slope=0.99 (95% CI: 0.98-1.01). Discriminative ability was similar in women younger or older than 60 years. The AUC was higher when analyses were restricted to PV carriers (0.76, 95% CI: 0.69-0.82). Using relative risk (RR) thresholds, the full model classified 97.7%, 1.7%, 0.4% and 0.2% women in the RR < 2.0, 2.0 ≤ RR < 2.9, 2.9 ≤ RR < 6.0 and RR ≥ 6.0 categories, respectively, identifying 9.1 of incident EOC among those with RR ≥ 2.0. DISCUSSION BOADICEA, implemented in CanRisk ( www.canrisk.org ), provides valid 10-year EOC risks and can facilitate clinical decision-making in EOC risk management.
Collapse
Affiliation(s)
- Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Yujia Wu
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Lorenzo Ficorella
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Naomi Wilcox
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Tim Carver
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Sun C, Cheng X, Xu J, Chen H, Tao J, Dong Y, Wei S, Chen R, Meng X, Ma Y, Tian H, Guo X, Bi S, Zhang C, Kang J, Zhang M, Lv H, Shang Z, Lv W, Zhang R, Jiang Y. A review of disease risk prediction methods and applications in the omics era. Proteomics 2024; 24:e2300359. [PMID: 38522029 DOI: 10.1002/pmic.202300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Risk prediction and disease prevention are the innovative care challenges of the 21st century. Apart from freeing the individual from the pain of disease, it will lead to low medical costs for society. Until very recently, risk assessments have ushered in a new era with the emergence of omics technologies, including genomics, transcriptomics, epigenomics, proteomics, and so on, which potentially advance the ability of biomarkers to aid prediction models. While risk prediction has achieved great success, there are still some challenges and limitations. We reviewed the general process of omics-based disease risk model construction and the applications in four typical diseases. Meanwhile, we highlighted the problems in current studies and explored the potential opportunities and challenges for future clinical practice.
Collapse
Affiliation(s)
- Chen Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Jing Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Haiyan Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junxian Tao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Yu Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Siyu Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Rui Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xin Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yingnan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Hongsheng Tian
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xuying Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuo Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jingxuan Kang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhenwei Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| |
Collapse
|
3
|
Moss E, Taylor A, Andreou A, Ang C, Arora R, Attygalle A, Banerjee S, Bowen R, Buckley L, Burbos N, Coleridge S, Edmondson R, El-Bahrawy M, Fotopoulou C, Frost J, Ganesan R, George A, Hanna L, Kaur B, Manchanda R, Maxwell H, Michael A, Miles T, Newton C, Nicum S, Ratnavelu N, Ryan N, Sundar S, Vroobel K, Walther A, Wong J, Morrison J. British Gynaecological Cancer Society (BGCS) ovarian, tubal and primary peritoneal cancer guidelines: Recommendations for practice update 2024. Eur J Obstet Gynecol Reprod Biol 2024; 300:69-123. [PMID: 39002401 DOI: 10.1016/j.ejogrb.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/15/2024]
Affiliation(s)
- Esther Moss
- College of Life Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Adrian Andreou
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath BA1 3NG, UK
| | - Christine Ang
- Northern Gynaecological Oncology Centre, Gateshead, UK
| | - Rupali Arora
- Department of Cellular Pathology, University College London NHS Trust, 60 Whitfield Street, London W1T 4E, UK
| | | | | | - Rebecca Bowen
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath BA1 3NG, UK
| | - Lynn Buckley
- Beverley Counselling & Psychotherapy, 114 Holme Church Lane, Beverley, East Yorkshire HU17 0PY, UK
| | - Nikos Burbos
- Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospital Colney Lane, Norwich NR4 7UY, UK
| | | | - Richard Edmondson
- Saint Mary's Hospital, Manchester and University of Manchester, M13 9WL, UK
| | - Mona El-Bahrawy
- Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | | | - Jonathan Frost
- Gynaecological Oncology, Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath, Bath BA1 3NG, UK; University of Exeter, Exeter, UK
| | - Raji Ganesan
- Department of Cellular Pathology, Birmingham Women's Hospital, Birmingham B15 2TG, UK
| | | | - Louise Hanna
- Department of Oncology, Velindre Cancer Centre, Whitchurch, Cardiff CF14 2TL, UK
| | - Baljeet Kaur
- North West London Pathology (NWLP), Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Cancer Research UK Barts Centre, Queen Mary University of London and Barts Health NHS Trust, UK
| | - Hillary Maxwell
- Dorset County Hospital, Williams Avenue, Dorchester, Dorset DT1 2JY, UK
| | - Agnieszka Michael
- Royal Surrey NHS Foundation Trust, Guildford GU2 7XX and University of Surrey, School of Biosciences, GU2 7WG, UK
| | - Tracey Miles
- Royal United Hospitals Bath NHS Foundation Trust, Combe Park, Bath BA1 3NG, UK
| | - Claire Newton
- Gynaecology Oncology Department, St Michael's Hospital, University Hospitals Bristol NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Shibani Nicum
- Department of Oncology, University College London Cancer Institute, London, UK
| | | | - Neil Ryan
- The Centre for Reproductive Health, Institute for Regeneration and Repair (IRR), 4-5 Little France Drive, Edinburgh BioQuarter City, Edinburgh EH16 4UU, UK
| | - Sudha Sundar
- Institute of Cancer and Genomic Sciences, University of Birmingham and Pan Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham B18 7QH, UK
| | - Katherine Vroobel
- Department of Cellular Pathology, Royal Marsden Foundation NHS Trust, London SW3 6JJ, UK
| | - Axel Walther
- Bristol Cancer Institute, University Hospitals Bristol and Weston NHS Foundation Trust, UK
| | - Jason Wong
- Department of Histopathology, East Suffolk and North Essex NHS Foundation Trust, Ipswich Hospital, Heath Road, Ipswich IP4 5PD, UK
| | - Jo Morrison
- University of Exeter, Exeter, UK; Department of Gynaecological Oncology, GRACE Centre, Musgrove Park Hospital, Somerset NHS Foundation Trust, Taunton TA1 5DA, UK.
| |
Collapse
|
4
|
Ficorella L, Yang X, Easton DF, Antoniou AC. BOADICEA model: updates to the BRCA2 breast cancer risks for ages 60 years and older. BJC REPORTS 2024; 2:53. [PMID: 39072245 PMCID: PMC11269170 DOI: 10.1038/s44276-024-00079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Breast cancer risks in older BRCA2 pathogenic variant carriers are understudied. Recent studies show a marked decline in the relative risk at older ages. We used data from two large studies to update the breast cancer risks in the BOADICEA model for BRCA2 carriers 60 years and older.
Collapse
Affiliation(s)
- Lorenzo Ficorella
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Ishizawa S, Niu J, Tammemagi MC, Irajizad E, Shen Y, Lu KH, Meyer LA, Toumazis I. Estimating sojourn time and sensitivity of screening for ovarian cancer using a Bayesian framework. J Natl Cancer Inst 2024:djae145. [PMID: 39038822 DOI: 10.1093/jnci/djae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Ovarian cancer is among the leading causes of gynecologic cancer-related death. Past ovarian cancer screening trials using combination of cancer antigen 125 testing and transvaginal ultrasound failed to yield statistically significant mortality reduction. Estimates of ovarian cancer sojourn time-that is, the period from when the cancer is first screen detectable until clinical detection-may inform future screening programs. METHODS We modeled ovarian cancer progression as a continuous time Markov chain and estimated screening modality-specific sojourn time and sensitivity using a Bayesian approach. Model inputs were derived from the screening arms (multimodal and ultrasound) of the UK Collaborative Trial of Ovarian Cancer Screening and the Prostate, Lung, Colorectal and Ovarian cancer screening trials. We assessed the quality of our estimates by using the posterior predictive P value. We derived histology-specific sojourn times by adjusting the overall sojourn time based on the corresponding histology-specific survival from the Surveillance, Epidemiology, and End Results Program. RESULTS The overall ovarian cancer sojourn time was 2.1 years (posterior predictive P value = .469) in the Prostate, Lung, Colorectal and Ovarian studies, with 65.7% screening sensitivity. The sojourn time was 2.0 years (posterior predictive P value = .532) in the United Kingdom Collaborative Trial of Ovarian Cancer Screening's multimodal screening arm and 2.4 years (posterior predictive P value = .640) in the ultrasound screening arm, with sensitivities of 93.2% and 64.5%, respectively. Stage-specific screening sensitivities in the Prostate, Lung, Colorectal and Ovarian studies were 39.1% and 82.9% for early-stage and advanced-stage disease, respectively. The histology-specific sojourn times ranged from 0.8 to 1.8 years for type II ovarian cancer and 2.9 to 6.6 years for type I ovarian cancer. CONCLUSIONS Annual screening is not effective for all ovarian cancer subtypes. Screening sensitivity for early-stage ovarian cancers is not sufficient for substantial mortality reduction.
Collapse
Affiliation(s)
- Sayaka Ishizawa
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiangong Niu
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin C Tammemagi
- Department of Health Sciences, Brock University, St Catharines, ON, Canada
| | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Larissa A Meyer
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Iakovos Toumazis
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Papini NM, Presseller E, Bulik CM, Holde K, Larsen JT, Thornton LM, Albiñana C, Vilhjálmsson BJ, Mortensen PB, Yilmaz Z, Petersen LV. Interplay of polygenic liability with birth-related, somatic, and psychosocial factors in anorexia nervosa risk: a nationwide study. Psychol Med 2024; 54:2073-2086. [PMID: 38347808 PMCID: PMC11323254 DOI: 10.1017/s0033291724000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BACKGROUND Although several types of risk factors for anorexia nervosa (AN) have been identified, including birth-related factors, somatic, and psychosocial risk factors, their interplay with genetic susceptibility remains unclear. Genetic and epidemiological interplay in AN risk were examined using data from Danish nationwide registers. AN polygenic risk score (PRS) and risk factor associations, confounding from AN PRS and/or parental psychiatric history on the association between the risk factors and AN risk, and interactions between AN PRS and each level of target risk factor on AN risk were estimated. METHODS Participants were individuals born in Denmark between 1981 and 2008 including nationwide-representative data from the iPSYCH2015, and Danish AN cases from the Anorexia Nervosa Genetics Initiative and Eating Disorder Genetics Initiative cohorts. A total of 7003 individuals with AN and 45 229 individuals without a registered AN diagnosis were included. We included 22 AN risk factors from Danish registers. RESULTS Risk factors showing association with PRS for AN included urbanicity, parental ages, genitourinary tract infection, and parental socioeconomic factors. Risk factors showed the expected association to AN risk, and this association was only slightly attenuated when adjusted for parental history of psychiatric disorders or/and for the AN PRS. The interaction analyses revealed a differential effect of AN PRS according to the level of the following risk factors: sex, maternal age, genitourinary tract infection, C-section, parental socioeconomic factors and psychiatric history. CONCLUSIONS Our findings provide evidence for interactions between AN PRS and certain risk-factors, illustrating potential diverse risk pathways to AN diagnosis.
Collapse
Affiliation(s)
- Natalie M Papini
- Department of Health Sciences, Northern Arizona University, Flagstaff, AZ, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Presseller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
- Center for Weight, Eating, and Lifestyle Science, Drexel University, Philadelphia, PA, USA
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Katrine Holde
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark
| | - Janne T Larsen
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark
| | - Laura M Thornton
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clara Albiñana
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
| | - Bjarni J Vilhjálmsson
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
- Bioinformatic Research Centre, Aarhus University, Aarhus, Denmark
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Preben B Mortensen
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
| | - Zeynep Yilmaz
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Liselotte V Petersen
- National Centre for Register-based Research, Aarhus BSS, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Liu J, Hu T, Guan Y, Zhai J. The Associations and Causal Relationships of Ovarian Cancer - Construction of a Prediction Model. Int J Womens Health 2024; 16:1127-1135. [PMID: 38912202 PMCID: PMC11193432 DOI: 10.2147/ijwh.s462883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/01/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose To explore the risk and protective factors for developing ovarian cancer and construct a risk prediction model. Methods Information related to patients diagnosed with ovarian cancer on the electronic medical record data platform of three tertiary hospitals in Guangdong Province from May 2018 to September 2023 was collected as the case group. Patients with non-ovarian cancer who attended the clinic during the same period were included in the control group. Logistic regression analysis was used to screen the independent variables and explore the factors associated with the development of ovarian cancer. An ovarian cancer risk prediction model was constructed using a decision tree C4.5 algorithm. The ROC and calibration curves were plotted, and the model was validated. Results Logistic regression analysis identified independent risk and protective factors for ovarian cancer. The sample size was divided into training and test sets in a ratio of 7:3 for model construction and validation. The AUC of the training and test sets of the decision tree model were 0.961 (95% CI:0.944-0.978) and 0.902 (95% CI:0.840-0.964), respectively, and the optimal cut-off values and their coordinates were 0.532 (0.091, 0.957), and 0.474 (0.159, 0.842) respectively. The accuracies of the training and test sets were 93.3% and 84.2%, respectively, and their sensitivities were 95.7% and 84.2%, respectively. Conclusion The constructed ovarian cancer risk prediction model has good predictive ability, which is conducive to improving the efficiency of early warning of ovarian cancer in high-risk groups.
Collapse
Affiliation(s)
- Jing Liu
- Department of Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, People’s Republic of China
| | - Tingting Hu
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Department of Gynecology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, People’s Republic of China
| | - Yulan Guan
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510105, People’s Republic of China
| | - Jinguo Zhai
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| |
Collapse
|
8
|
Sideris M, Menon U, Manchanda R. Screening and prevention of ovarian cancer. Med J Aust 2024; 220:264-274. [PMID: 38353066 DOI: 10.5694/mja2.52227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/11/2023] [Indexed: 03/07/2024]
Abstract
Ovarian cancer remains the most lethal gynaecological malignancy with 314 000 cases and 207 000 deaths annually worldwide. Ovarian cancer cases and deaths are predicted to increase in Australia by 42% and 55% respectively by 2040. Earlier detection and significant downstaging of ovarian cancer have been demonstrated with multimodal screening in the largest randomised controlled trial of ovarian cancer screening in women at average population risk. However, none of the randomised trials have demonstrated a mortality benefit. Therefore, ovarian cancer screening is not currently recommended in women at average population risk. More frequent surveillance for ovarian cancer every three to four months in women at high risk has shown good performance characteristics and significant downstaging, but there is no available information on a survival benefit. Population testing offers an emerging novel strategy to identify women at high risk who can benefit from ovarian cancer prevention. Novel multicancer early detection biomarker, longitudinal multiple marker strategies, and new biomarkers are being investigated and evaluated for ovarian cancer screening. Risk-reducing salpingo-oophorectomy (RRSO) decreases ovarian cancer incidence and mortality and is recommended for women at over a 4-5% lifetime risk of ovarian cancer. Pre-menopausal women without contraindications to hormone replacement therapy (HRT) undergoing RRSO should be offered HRT until 51 years of age to minimise the detrimental consequences of premature menopause. Currently risk-reducing early salpingectomy and delayed oophorectomy (RRESDO) should only be offered to women at increased risk of ovarian cancer within the context of a research trial. Pre-menopausal early salpingectomy is associated with fewer menopausal symptoms and better sexual function than bilateral salpingo-oophorectomy. A Sectioning and Extensively Examining the Fimbria (SEE-FIM) protocol should be used for histopathological assessment in women at high risk of ovarian cancer who are undergoing surgical prevention. Opportunistic salpingectomy may be offered at routine gynaecological surgery to all women who have completed their family. Long term prospective opportunistic salpingectomy studies are needed to determine the effect size of ovarian cancer risk reduction and the impact on menopause.
Collapse
Affiliation(s)
- Michail Sideris
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Usha Menon
- Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Institute of Clinical Trials and Methodology, University College London, London, UK
- Barts Health NHS Trust, London, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
9
|
Barnes DR, Tyrer JP, Dennis J, Leslie G, Bolla MK, Lush M, Aeilts AM, Aittomäki K, Andrieu N, Andrulis IL, Anton-Culver H, Arason A, Arun BK, Balmaña J, Bandera EV, Barkardottir RB, Berger LP, de Gonzalez AB, Berthet P, Białkowska K, Bjørge L, Blanco AM, Blok MJ, Bobolis KA, Bogdanova NV, Brenton JD, Butz H, Buys SS, Caligo MA, Campbell I, Castillo C, Claes KB, Colonna SV, Cook LS, Daly MB, Dansonka-Mieszkowska A, de la Hoya M, deFazio A, DePersia A, Ding YC, Domchek SM, Dörk T, Einbeigi Z, Engel C, Evans DG, Foretova L, Fortner RT, Fostira F, Foti MC, Friedman E, Frone MN, Ganz PA, Gentry-Maharaj A, Glendon G, Godwin AK, González-Neira A, Greene MH, Gronwald J, Guerrieri-Gonzaga A, Hamann U, Hansen TV, Harris HR, Hauke J, Heitz F, Hogervorst FB, Hooning MJ, Hopper JL, Huff CD, Huntsman DG, Imyanitov EN, Izatt L, Jakubowska A, James PA, Janavicius R, John EM, Kar S, Karlan BY, Kennedy CJ, Kiemeney LA, Konstantopoulou I, Kupryjanczyk J, Laitman Y, Lavie O, Lawrenson K, Lester J, Lesueur F, Lopez-Pleguezuelos C, Mai PL, Manoukian S, May T, McNeish IA, Menon U, Milne RL, Modugno F, Mongiovi JM, Montagna M, Moysich KB, Neuhausen SL, Nielsen FC, Noguès C, Oláh E, Olopade OI, Osorio A, Papi L, Pathak H, Pearce CL, Pedersen IS, Peixoto A, Pejovic T, Peng PC, Peshkin BN, Peterlongo P, Powell CB, Prokofyeva D, Pujana MA, Radice P, Rashid MU, Rennert G, Richenberg G, Sandler DP, Sasamoto N, Setiawan VW, Sharma P, Sieh W, Singer CF, Snape K, Sokolenko AP, Soucy P, Southey MC, Stoppa-Lyonnet D, Sutphen R, Sutter C, Teixeira MR, Terry KL, Thomsen LCV, Tischkowitz M, Toland AE, Van Gorp T, Vega A, Velez Edwards DR, Webb PM, Weitzel JN, Wentzensen N, Whittemore AS, Winham SJ, Wu AH, Yadav S, Yu Y, Ziogas A, Berchuck A, Couch FJ, Goode EL, Goodman MT, Monteiro AN, Offit K, Ramus SJ, Risch HA, Schildkraut JM, Thomassen M, Simard J, Easton DF, Jones MR, Chenevix-Trench G, Gayther SA, Antoniou AC, Pharoah PD. Large-scale genome-wide association study of 398,238 women unveils seven novel loci associated with high-grade serous epithelial ovarian cancer risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.29.24303243. [PMID: 38496424 PMCID: PMC10942532 DOI: 10.1101/2024.02.29.24303243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background Nineteen genomic regions have been associated with high-grade serous ovarian cancer (HGSOC). We used data from the Ovarian Cancer Association Consortium (OCAC), Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA), UK Biobank (UKBB), and FinnGen to identify novel HGSOC susceptibility loci and develop polygenic scores (PGS). Methods We analyzed >22 million variants for 398,238 women. Associations were assessed separately by consortium and meta-analysed. OCAC and CIMBA data were used to develop PGS which were trained on FinnGen data and validated in UKBB and BioBank Japan. Results Eight novel variants were associated with HGSOC risk. An interesting discovery biologically was finding that TP53 3'-UTR SNP rs78378222 was associated with HGSOC (per T allele relative risk (RR)=1.44, 95%CI:1.28-1.62, P=1.76×10-9). The optimal PGS included 64,518 variants and was associated with an odds ratio of 1.46 (95%CI:1.37-1.54) per standard deviation in the UKBB validation (AUROC curve=0.61, 95%CI:0.59-0.62). Conclusions This study represents the largest GWAS for HGSOC to date. The results highlight that improvements in imputation reference panels and increased sample sizes can identify HGSOC associated variants that previously went undetected, resulting in improved PGS. The use of updated PGS in cancer risk prediction algorithms will then improve personalized risk prediction for HGSOC.
Collapse
Affiliation(s)
- Daniel R. Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jonathan P. Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Amber M. Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, USA
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Nadine Andrieu
- Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Irene L. Andrulis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Adalgeir Arason
- Department of Pathology, Landspitali - the National University Hospital of Iceland, Reykjavik, Iceland
- BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Banu K. Arun
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Department of Medical Oncology, University Hospital of Vall d’Hebron, Barcelona, Spain
| | - Elisa V. Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Rosa B. Barkardottir
- Department of Pathology, Landspitali - the National University Hospital of Iceland, Reykjavik, Iceland
- BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Lieke P.V. Berger
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, The Netherlands
| | | | - Pascaline Berthet
- Département de Biopathologie, Centre François Baclesse, Caen, France
| | - Katarzyna Białkowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Line Bjørge
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amie M. Blanco
- Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA, USA
| | - Marinus J. Blok
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kristie A. Bobolis
- City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA, USA
| | - Natalia V. Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
- National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, Budapest, Hungary
| | - Saundra S. Buys
- Department of Medicine, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT, USA
| | | | - Ian Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Carmen Castillo
- Hereditary Cancer Program, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain
| | - Kathleen B.M. Claes
- Centre for Medical Genetics, Ghent University, Gent, Belgium
- Department of Biomolecular Medicine, University of Ghent, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | | | - EMBRACE Collaborators
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Sarah V. Colonna
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT, USA
| | - Linda S. Cook
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Mary B. Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Agnieszka Dansonka-Mieszkowska
- Department of Pathology and Laboratory Medicine, Institute of Oncology and Maria Sklodowska-Curie Cancer Center, Warsaw, Poland
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Anna deFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Allison DePersia
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan M. Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Zakaria Einbeigi
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - D. Gareth Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary’s Hospital, Manchester, UK
- Genomic Medicine, North West Genomics hub, Manchester Academic Health Science Centre, Manchester Universities Foundation Trust, St. Mary’s Hospital, Manchester, UK
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | | | - Eitan Friedman
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
- Assuta Medical Center, Tel-Aviv, Israel
| | - Megan N. Frone
- National Cancer Institute, Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Patricia A. Ganz
- Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research, Jonsson Comprehensive Cancer Centre, UCLA, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre, Madrid, Spain
- Spanish Network on Rare Diseases, Madrid, Spain
| | - Mark H. Greene
- National Cancer Institute, Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas v.O. Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Essen, Germany
| | - Frans B.L. Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Maartje J. Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Chad D Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David G. Huntsman
- British Columbia’s Ovarian Cancer Research (OVCARE) Program, BC Cancer, Vancouver General Hospital, and University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia
| | - kConFab Investigators
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise Izatt
- Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Paul A. James
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Center and the Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ramunas Janavicius
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Hematology, Oncology and Transfusion Medicine Center, Oncogenetics Unit, Vilnius University Hospital Santaros Clinics, Vilnius, Lithuania
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Esther M. John
- Department of Epidemiology & Population Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Siddhartha Kar
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Beth Y. Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
- Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Catherine J. Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research ‘Demokritos’, Athens, Greece
| | - Jolanta Kupryjanczyk
- Department of Pathology and Laboratory Medicine, Institute of Oncology and Maria Sklodowska-Curie Cancer Center, Warsaw, Poland
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ofer Lavie
- Technion-Israel Institute of Technology, Haifa, Israel
- Carmel Medical Center, Haifa, Israel
| | - Kate Lawrenson
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Women’s Cancer Program at the Samuel Oschin Cancer Institute Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
- Women’s Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fabienne Lesueur
- Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Carlos Lopez-Pleguezuelos
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Escola de Doutoramento Internacional, Universidade de Santiago, Santiago de Compostela, Spain
| | - Phuong L. Mai
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Taymaa May
- Princess Margaret Cancer Center, Toronto, Canada
| | - Iain A. McNeish
- Division of Cancer and Ovarian Cancer Action Research Centre, Department Surgery & Cancer, Imperial College London, London, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Usha Menon
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Roger L. Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Francesmary Modugno
- Womens Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jennifer M. Mongiovi
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Finn C. Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Catherine Noguès
- Département d’Anticipation et de Suivi des Cancers, Oncogénétique Clinique, Institut Paoli-Calmettes, Marseille, France
- Aix Marseille Université, INSERM, IRD, SESSTIM, Marseille, France
| | - Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | | | - Ana Osorio
- Spanish Network on Rare Diseases, Madrid, Spain
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Madrid, Spain
| | - Laura Papi
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Medical Genetics Unit, University of Florence, Florence, Italy
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Celeste L. Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Inge S. Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ana Peixoto
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Tanja Pejovic
- Department of Obstetrics & Gynecology, Providence Medical Center, Medford, OR, USA
- Providence Cancer Center, Medford, OR, USA
| | - Pei-Chen Peng
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Beth N. Peshkin
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Jess and Mildred Fisher Center for Hereditary Cancer and Clinical Genomics Research, Georgetown University, Washington, DC, USA
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, Milan, Italy
| | - C. Bethan Powell
- Hereditary Cancer Program, Kaiser Permanente Northern California, San Francisco, CA, USA
| | | | - Miquel Angel Pujana
- ProCURE, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain
- ProCURE, IDIBGI (Girona Biomedical Research Institute), Catalan Institute of Oncology, Girona, Spain
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Muhammad U. Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Gad Rennert
- Technion-Israel Institute of Technology, Haifa, Israel
- The Association for Promotion of Research in Precision Medicine, Haifa, Israel
| | - George Richenberg
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Rockville, MD, USA
| | - Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, USA
| | - Weiva Sieh
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian F. Singer
- Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Katie Snape
- Medical Genetics Unit, St George’s, University of London, London, UK
| | - Anna P. Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St. Petersburg, Russia
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec – Université Laval Research Center, Québec City, QC, Canada
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, East Melbourne, Victoria, Australia
| | - Dominique Stoppa-Lyonnet
- Genetics Department, Institut Curie, Paris, France
- Unité INSERM U830, Paris, France
- Université Paris Cité, Paris, France
| | - Rebecca Sutphen
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel R. Teixeira
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Kathryn L. Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Liv Cecilie V. Thomsen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
- Medical Birth Registry of Norway, Norwegian Institute of Public Health, Norway
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, QC, Canada
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Amanda E. Toland
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Toon Van Gorp
- Division of Gynecologic Oncology, University Hospital Leuven, Leuven, Belgium
- Leuven Cancer Institute, University of Leuven, Leuven, Belgium
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Digna R. Velez Edwards
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Penelope M. Webb
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alice S. Whittemore
- Department of Epidemiology & Population Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Stacey J. Winham
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Andrew Berchuck
- Department of Gynecologic Oncology, Duke University Hospital, Durham, NC, USA
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ellen L. Goode
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Marc T. Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alvaro N. Monteiro
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- AnaNeo Therapeutics, New York, NY, USA
| | - Susan J. Ramus
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Harvey A. Risch
- Chronic Disease Epidemiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec – Université Laval Research Center, Québec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Michelle R. Jones
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul D.P. Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Xiang R, Kelemen M, Xu Y, Harris LW, Parkinson H, Inouye M, Lambert SA. Recent advances in polygenic scores: translation, equitability, methods and FAIR tools. Genome Med 2024; 16:33. [PMID: 38373998 PMCID: PMC10875792 DOI: 10.1186/s13073-024-01304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Polygenic scores (PGS) can be used for risk stratification by quantifying individuals' genetic predisposition to disease, and many potentially clinically useful applications have been proposed. Here, we review the latest potential benefits of PGS in the clinic and challenges to implementation. PGS could augment risk stratification through combined use with traditional risk factors (demographics, disease-specific risk factors, family history, etc.), to support diagnostic pathways, to predict groups with therapeutic benefits, and to increase the efficiency of clinical trials. However, there exist challenges to maximizing the clinical utility of PGS, including FAIR (Findable, Accessible, Interoperable, and Reusable) use and standardized sharing of the genomic data needed to develop and recalculate PGS, the equitable performance of PGS across populations and ancestries, the generation of robust and reproducible PGS calculations, and the responsible communication and interpretation of results. We outline how these challenges may be overcome analytically and with more diverse data as well as highlight sustained community efforts to achieve equitable, impactful, and responsible use of PGS in healthcare.
Collapse
Affiliation(s)
- Ruidong Xiang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Martin Kelemen
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Yu Xu
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Laura W Harris
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK.
| | - Samuel A Lambert
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
11
|
Felici A, Peduzzi G, Giorgolo F, Spinelli A, Calderisi M, Monreale A, Farinella R, Pellungrini R, Canzian F, Campa D. The local environment and germline genetic variation predict cancer risk in the UK Biobank prospective cohort. ENVIRONMENTAL RESEARCH 2024; 241:117562. [PMID: 37944693 DOI: 10.1016/j.envres.2023.117562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND There is a growing body of evidence on the effect of the local environment exposure on cancer susceptibility. Nonetheless, several of the associations remain controversial. Moreover, our understanding of the possible interaction between the local environment and the genetic variability is still very limited. OBJECTIVE The aim of this study was to clarify the role of the local environment and its possible interplay with genetics on common cancers development. METHODS Using the UK Biobank (UKBB) prospective cohort, we selected 12 local environment exposures: nitrogen oxides, nitrogen dioxides, particulate matter (10 and 2.5 μm), noise pollution, urban traffic, living distance from the coast, percentage of greenspace, natural environment, water, and domestic garden within 1000 m from the residential coordinates of each participant. All these exposures were tested for association with 17 different types of cancer for a total of 53,270 cases and 302,645 controls. Additionally, a polygenic score (PGS) was computed for each cancer, to test possible gene-environment interactions. Finally, mediation analyses were carried out. RESULTS Thirty-six statistically significant associations considering multiple testing (p < 2.19 × 10-4) were observed. Among the novel associations we observed that individuals living farther from the coast had a higher risk of developing prostate cancer (OR = 1.13, CI95% = 1.06-1.20, P = 1.98 × 10-4). This association was partially mediated by physical activity (indirect effect (IE) = -8.48 × 10-7) and the time spent outdoor (IE = 9.07 × 10-6). All PGSs showed statistically significant associations. Finally, genome-environment interaction analysis showed that local environment and genetic variability affect cancer risk independently. DISCUSSION Living close to the coast and air pollution were associated with a decreased risk of prostate cancer and skin melanoma, respectively. These findings from the UKBB support the role of the local environment on cancer development, which is independent from genetics and may be mediated by several lifestyle factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Monreale
- Department of Computer Science, University of Pisa, Pisa, Italy
| | | | | | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
12
|
Kachuri L, Chatterjee N, Hirbo J, Schaid DJ, Martin I, Kullo IJ, Kenny EE, Pasaniuc B, Witte JS, Ge T. Principles and methods for transferring polygenic risk scores across global populations. Nat Rev Genet 2024; 25:8-25. [PMID: 37620596 PMCID: PMC10961971 DOI: 10.1038/s41576-023-00637-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Polygenic risk scores (PRSs) summarize the genetic predisposition of a complex human trait or disease and may become a valuable tool for advancing precision medicine. However, PRSs that are developed in populations of predominantly European genetic ancestries can increase health disparities due to poor predictive performance in individuals of diverse and complex genetic ancestries. We describe genetic and modifiable risk factors that limit the transferability of PRSs across populations and review the strengths and weaknesses of existing PRS construction methods for diverse ancestries. Developing PRSs that benefit global populations in research and clinical settings provides an opportunity for innovation and is essential for health equity.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jibril Hirbo
- Department of Medicine Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Iman Martin
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, MD, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bogdan Pasaniuc
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
13
|
Sowamber R, Lukey A, Huntsman D, Hanley G. Ovarian Cancer: From Precursor Lesion Identification to Population-Based Prevention Programs. Curr Oncol 2023; 30:10179-10194. [PMID: 38132375 PMCID: PMC10742141 DOI: 10.3390/curroncol30120741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous group of malignancies, including high-grade serous ovarian cancer (HGSC). HGSC is often diagnosed at advanced stages and is linked to TP53 variants. While BRCA variants elevate risk, most HGSC cases occur in individuals without known genetic variants, necessitating prevention strategies for people without known high-risk genetic variants. Effective prevention programs are also needed due to the lack of traditional screening options. An emerging primary prevention strategy is opportunistic salpingectomy, which involves removing fallopian tubes during another planned pelvic surgery. Opportunistic salpingectomy offers a safe and cost-effective preventative option that is gaining global adoption. With the publication of the first cohort study of patients who underwent salpingectomy, specifically for cancer prevention, attention has turned to broadening opportunities for salpingectomy in addition to more targeted approaches. Prevention opportunities are promising with increasing adoption of salpingectomy and the increased understanding of the etiology of the distinct histotypes of ovarian cancer. Yet, further research on targeted risk-reducing salpingectomy with thoughtful consideration of equity is necessary to reduce death and suffering from ovarian cancer.
Collapse
Affiliation(s)
- Ramlogan Sowamber
- Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V6T 1Z4, Canada
| | - Alexandra Lukey
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - David Huntsman
- Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Gillian Hanley
- Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
14
|
Phung MT, Lee AW, McLean K, Anton-Culver H, Bandera EV, Carney ME, Chang-Claude J, Cramer DW, Doherty JA, Fortner RT, Goodman MT, Harris HR, Jensen A, Modugno F, Moysich KB, Pharoah PDP, Qin B, Terry KL, Titus LJ, Webb PM, Wu AH, Zeinomar N, Ziogas A, Berchuck A, Cho KR, Hanley GE, Meza R, Mukherjee B, Pike MC, Pearce CL, Trabert B. A framework for assessing interactions for risk stratification models: the example of ovarian cancer. J Natl Cancer Inst 2023; 115:1420-1426. [PMID: 37436712 PMCID: PMC10637032 DOI: 10.1093/jnci/djad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/08/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
Generally, risk stratification models for cancer use effect estimates from risk/protective factor analyses that have not assessed potential interactions between these exposures. We have developed a 4-criterion framework for assessing interactions that includes statistical, qualitative, biological, and practical approaches. We present the application of this framework in an ovarian cancer setting because this is an important step in developing more accurate risk stratification models. Using data from 9 case-control studies in the Ovarian Cancer Association Consortium, we conducted a comprehensive analysis of interactions among 15 unequivocal risk and protective factors for ovarian cancer (including 14 non-genetic factors and a 36-variant polygenic score) with age and menopausal status. Pairwise interactions between the risk/protective factors were also assessed. We found that menopausal status modifies the association among endometriosis, first-degree family history of ovarian cancer, breastfeeding, and depot-medroxyprogesterone acetate use and disease risk, highlighting the importance of understanding multiplicative interactions when developing risk prediction models.
Collapse
Affiliation(s)
- Minh Tung Phung
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Alice W Lee
- Department of Public Health, California State University, Fullerton, Fullerton, CA, USA
| | - Karen McLean
- Department of Gynecologic Oncology and Department of Pharmacology & Therapeutics, Elm & Carlton Streets, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hoda Anton-Culver
- Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Elisa V Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Michael E Carney
- Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel W Cramer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Anne Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Renee T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Marc T Goodman
- Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Allan Jensen
- Department of Lifestyle, Reproduction and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesmary Modugno
- Women’s Cancer Research Center, Magee-Women’s Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburg, PA, USA
| | - Kirsten B Moysich
- Division of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Centre, Los Angeles, CA, USA
| | - Bo Qin
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kathryn L Terry
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Linda J Titus
- Public Health, Muskie School of Public Service, University of Southern Maine, Portland, ME, USA
| | - Penelope M Webb
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nur Zeinomar
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Argyrios Ziogas
- Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Andrew Berchuck
- Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Kathleen R Cho
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gillian E Hanley
- Department of Obstetrics & Gynecology, University of British Columbia Faculty of Medicine, Vancouver, BC, Canada
| | - Rafael Meza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Bhramar Mukherjee
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Malcolm C Pike
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Britton Trabert
- Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Populations Sciences Program, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
15
|
Wei X, Oxley S, Sideris M, Kalra A, Brentnall A, Sun L, Yang L, Legood R, Manchanda R. Quality of life after risk-reducing surgery for breast and ovarian cancer prevention: a systematic review and meta-analysis. Am J Obstet Gynecol 2023; 229:388-409.e4. [PMID: 37059410 DOI: 10.1016/j.ajog.2023.03.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVE This study aimed to assess the impact of risk-reducing surgery for breast cancer and ovarian cancer prevention on quality of life. We considered risk-reducing mastectomy, risk-reducing salpingo-oophorectomy, and risk-reducing early salpingectomy and delayed oophorectomy. DATA SOURCES We followed a prospective protocol (International Prospective Register of Systematic Reviews: CRD42022319782) and searched MEDLINE, Embase, PubMed, and Cochrane Library from inception to February 2023. STUDY ELIGIBILITY CRITERIA We followed a PICOS (population, intervention, comparison, outcome, and study design) framework. The population included women at increased risk of breast cancer or ovarian cancer. We focused on studies reporting quality of life outcomes (health-related quality of life, sexual function, menopause symptoms, body image, cancer-related distress or worry, anxiety, or depression) after risk-reducing surgery, including risk-reducing mastectomy for breast cancer and risk-reducing salpingo-oophorectomy or risk-reducing early salpingectomy and delayed oophorectomy for ovarian cancer. METHODS We used the Methodological Index for Non-Randomized Studies (MINORS) for study appraisal. Qualitative synthesis and fixed-effects meta-analysis were performed. RESULTS A total of 34 studies were included (risk-reducing mastectomy: 16 studies; risk-reducing salpingo-oophorectomy: 19 studies; risk-reducing early salpingectomy and delayed oophorectomy: 2 studies). Health-related quality of life was unchanged or improved in 13 of 15 studies after risk-reducing mastectomy (N=986) and 10 of 16 studies after risk-reducing salpingo-oophorectomy (N=1617), despite short-term deficits (N=96 after risk-reducing mastectomy and N=459 after risk-reducing salpingo-oophorectomy). Sexual function (using the Sexual Activity Questionnaire) was affected in 13 of 16 studies (N=1400) after risk-reducing salpingo-oophorectomy in terms of decreased sexual pleasure (-1.21 [-1.53 to -0.89]; N=3070) and increased sexual discomfort (1.12 [0.93-1.31]; N=1400). Hormone replacement therapy after premenopausal risk-reducing salpingo-oophorectomy was associated with an increase (1.16 [0.17-2.15]; N=291) in sexual pleasure and a decrease (-1.20 [-1.75 to -0.65]; N=157) in sexual discomfort. Sexual function was affected in 4 of 13 studies (N=147) after risk-reducing mastectomy, but stable in 9 of 13 studies (N=799). Body image was unaffected in 7 of 13 studies (N=605) after risk-reducing mastectomy, whereas 6 of 13 studies (N=391) reported worsening. Increased menopause symptoms were reported in 12 of 13 studies (N=1759) after risk-reducing salpingo-oophorectomy with a reduction (-1.96 [-2.81 to -1.10]; N=1745) in the Functional Assessment of Cancer Therapy - Endocrine Symptoms. Cancer-related distress was unchanged or decreased in 5 of 5 studies after risk-reducing mastectomy (N=365) and 8 of 10 studies after risk-reducing salpingo-oophorectomy (N=1223). Risk-reducing early salpingectomy and delayed oophorectomy (2 studies, N=413) led to better sexual function and menopause-specific quality of life. CONCLUSION Risk-reducing surgery may be associated with quality of life outcomes. Risk-reducing mastectomy and risk-reducing salpingo-oophorectomy reduce cancer-related distress, and do not affect health-related quality of life. Women and clinicians should be aware of body image problems after risk-reducing mastectomy, and of sexual dysfunction and menopause symptoms after risk-reducing salpingo-oophorectomy. Risk-reducing early salpingectomy and delayed oophorectomy may be a promising alternative to mitigate quality of life-related risks of risk-reducing salpingo-oophorectomy.
Collapse
Affiliation(s)
- Xia Wei
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, United Kingdom; Wolfson Institute of Population Health, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom
| | - Samuel Oxley
- Wolfson Institute of Population Health, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom; Department of Gynaecological Oncology, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Michail Sideris
- Wolfson Institute of Population Health, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom; Department of Gynaecological Oncology, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Ashwin Kalra
- Wolfson Institute of Population Health, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom; Department of Gynaecological Oncology, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Adam Brentnall
- Wolfson Institute of Population Health, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom
| | - Li Sun
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, United Kingdom; Wolfson Institute of Population Health, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom
| | - Li Yang
- School of Public Health, Peking University, Beijing, China
| | - Rosa Legood
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ranjit Manchanda
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, United Kingdom; Wolfson Institute of Population Health, Cancer Research UK Barts Centre, Queen Mary University of London, London, United Kingdom; Department of Gynaecological Oncology, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom; Medical Research Council Clinical Trials Unit, Institute of Clinical Trials and Methodology, Faculty of Population Health Sciences, University College London, London, United Kingdom; Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
16
|
Abstract
Since the publication of the first genome-wide association study for cancer in 2007, thousands of common alleles that are associated with the risk of cancer have been identified. The relative risk associated with individual variants is small and of limited clinical significance. However, the combined effect of multiple risk variants as captured by polygenic scores (PGSs) may be much greater and therefore provide risk discrimination that is clinically useful. We review the considerable research efforts over the past 15 years for developing statistical methods for PGSs and their application in large-scale genome-wide association studies to develop PGSs for various cancers. We review the predictive performance of these PGSs and the multiple challenges currently limiting the clinical application of PGSs. Despite this, PGSs are beginning to be incorporated into clinical multifactorial risk prediction models to stratify risk in both clinical trials and clinical implementation studies.
Collapse
Affiliation(s)
- Xin Yang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Hu C, Nagaraj AB, Shimelis H, Montalban G, Lee KY, Huang H, Lumby CA, Na J, Susswein LR, Roberts ME, Marshall ML, Hiraki S, LaDuca H, Chao E, Yussuf A, Pesaran T, Neuhausen SL, Haiman CA, Kraft P, Lindstrom S, Palmer JR, Teras LR, Vachon CM, Yao S, Ong I, Nathanson KL, Weitzel JN, Boddicker N, Gnanaolivu R, Polley EC, Mer G, Cui G, Karam R, Richardson ME, Domchek SM, Yadav S, Hruska KS, Dolinsky J, Weroha SJ, Hart SN, Simard J, Masson JY, Pang YP, Couch FJ. Functional and Clinical Characterization of Variants of Uncertain Significance Identifies a Hotspot for Inactivating Missense Variants in RAD51C. Cancer Res 2023; 83:2557-2571. [PMID: 37253112 PMCID: PMC10390864 DOI: 10.1158/0008-5472.can-22-2319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/07/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Pathogenic protein-truncating variants of RAD51C, which plays an integral role in promoting DNA damage repair, increase the risk of breast and ovarian cancer. A large number of RAD51C missense variants of uncertain significance (VUS) have been identified, but the effects of the majority of these variants on RAD51C function and cancer predisposition have not been established. Here, analysis of 173 missense variants by a homology-directed repair (HDR) assay in reconstituted RAD51C-/- cells identified 30 nonfunctional (deleterious) variants, including 18 in a hotspot within the ATP-binding region. The deleterious variants conferred sensitivity to cisplatin and olaparib and disrupted formation of RAD51C/XRCC3 and RAD51B/RAD51C/RAD51D/XRCC2 complexes. Computational analysis indicated the deleterious variant effects were consistent with structural effects on ATP-binding to RAD51C. A subset of the variants displayed similar effects on RAD51C activity in reconstituted human RAD51C-depleted cancer cells. Case-control association studies of deleterious variants in women with breast and ovarian cancer and noncancer controls showed associations with moderate breast cancer risk [OR, 3.92; 95% confidence interval (95% CI), 2.18-7.59] and high ovarian cancer risk (OR, 14.8; 95% CI, 7.71-30.36), similar to protein-truncating variants. This functional data supports the clinical classification of inactivating RAD51C missense variants as pathogenic or likely pathogenic, which may improve the clinical management of variant carriers. SIGNIFICANCE Functional analysis of the impact of a large number of missense variants on RAD51C function provides insight into RAD51C activity and information for classification of the cancer relevance of RAD51C variants.
Collapse
Affiliation(s)
| | | | | | - Gemma Montalban
- CHU de Quebec-Université Laval Research Center, Université Laval, Quebec City, Quebec, Canada
| | | | | | | | - Jie Na
- Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | | - Peter Kraft
- T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Sara Lindstrom
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - Lauren R. Teras
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | | | - Song Yao
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irene Ong
- University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jacques Simard
- CHU de Quebec-Université Laval Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Jean Yves Masson
- CHU de Quebec-Université Laval Research Center, Université Laval, Quebec City, Quebec, Canada
| | | | | |
Collapse
|
18
|
Møller NB, Boonen DS, Feldner ES, Hao Q, Larsen M, Lænkholm AV, Borg Å, Kvist A, Törngren T, Jensen UB, Boonen SE, Thomassen M, Terkelsen T. Validation of the BOADICEA model for predicting the likelihood of carrying pathogenic variants in eight breast and ovarian cancer susceptibility genes. Sci Rep 2023; 13:8536. [PMID: 37237042 PMCID: PMC10220031 DOI: 10.1038/s41598-023-35755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
BOADICEA is a comprehensive risk prediction model for breast and/or ovarian cancer (BC/OC) and for carrying pathogenic variants (PVs) in cancer susceptibility genes. In addition to BRCA1 and BRCA2, BOADICEA version 6 includes PALB2, CHEK2, ATM, BARD1, RAD51C and RAD51D. To validate its predictions for these genes, we conducted a retrospective study including 2033 individuals counselled at clinical genetics departments in Denmark. All counselees underwent comprehensive genetic testing by next generation sequencing on suspicion of hereditary susceptibility to BC/OC. Likelihoods of PVs were predicted from information about diagnosis, family history and tumour pathology. Calibration was examined using the observed-to-expected ratio (O/E) and discrimination using the area under the receiver operating characteristics curve (AUC). The O/E was 1.11 (95% CI 0.97-1.26) for all genes combined. At sub-categories of predicted likelihood, the model performed well with limited misestimation at the extremes of predicted likelihood. Discrimination was acceptable with an AUC of 0.70 (95% CI 0.66-0.74), although discrimination was better for BRCA1 and BRCA2 than for the other genes in the model. This suggests that BOADICEA remains a valid decision-making aid for determining which individuals to offer comprehensive genetic testing for hereditary susceptibility to BC/OC despite suboptimal calibration for individual genes in this population.
Collapse
Affiliation(s)
- Nanna Bæk Møller
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21, 8200, Aarhus N, Denmark
| | - Desirée Sofie Boonen
- Department of Clinical Genetics, Odense University Hospital, J. B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Elisabeth Simone Feldner
- Department of Clinical Genetics, Odense University Hospital, J. B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Qin Hao
- Department of Clinical Genetics, Odense University Hospital, J. B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Martin Larsen
- Department of Clinical Genetics, Odense University Hospital, J. B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Anne-Vibeke Lænkholm
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Therese Törngren
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21, 8200, Aarhus N, Denmark
| | - Susanne Eriksen Boonen
- Department of Clinical Genetics, Odense University Hospital, J. B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, J. B. Winsløws Vej 4, 5000, Odense, Denmark.
| | - Thorkild Terkelsen
- Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21, 8200, Aarhus N, Denmark.
| |
Collapse
|
19
|
Menon U, Gentry-Maharaj A, Burnell M, Ryan A, Kalsi JK, Singh N, Dawnay A, Fallowfield L, McGuire AJ, Campbell S, Skates SJ, Parmar M, Jacobs IJ. Mortality impact, risks, and benefits of general population screening for ovarian cancer: the UKCTOCS randomised controlled trial. Health Technol Assess 2023:1-81. [PMID: 37183782 PMCID: PMC10542866 DOI: 10.3310/bhbr5832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Background Ovarian and tubal cancers are lethal gynaecological cancers, with over 50% of the patients diagnosed at advanced stage. Trial design Randomised controlled trial involving 27 primary care trusts adjacent to 13 trial centres based at NHS Trusts in England, Wales and Northern Ireland. Methods Postmenopausal average-risk women, aged 50-74, with intact ovaries and no previous ovarian or current non-ovarian cancer. Interventions One of two annual screening strategies: (1) multimodal screening (MMS) using a longitudinal CA125 algorithm with repeat CA125 testing and transvaginal scan (TVS) as second line test (2) ultrasound screening (USS) using TVS alone with repeat scan to confirm any abnormality. The control (C) group had no screening. Follow-up was through linkage to national registries, postal follow-up questionnaires and direct communication with trial centres and participants. Objective To assess comprehensively risks and benefits of ovarian cancer screening in the general population. Outcome Primary outcome was death due to ovarian or tubal cancer as assigned by an independent outcomes review committee. Secondary outcomes included incidence and stage at diagnosis of ovarian and tubal cancer, compliance, performance characteristics, harms and cost-effectiveness of the two screening strategies and a bioresource for future research. Randomisation The trial management system confirmed eligibility and randomly allocated participants using computer-generated random numbers to MMS, USS and C groups in a 1:1:2 ratio. Blinding Investigators and participants were unblinded and outcomes review committee was masked to randomisation group. Analyses Primary analyses were by intention to screen, comparing separately MMS and USS with C using the Versatile test. Results 1,243,282 women were invited and 205,090 attended for recruitment between April 2001 and September 2005. Randomised 202,638 women: 50,640 MMS, 50,639 USS and 101,359 C group. Numbers analysed for primary outcome 202,562 (>99.9%): 50,625 (>99.9%) MMS, 50,623 (>99.9%) USS, and 101,314 (>99.9%) C group. Outcome Women in MMS and USS groups underwent 345,570 and 327,775 annual screens between randomisation and 31 December 2011. At median follow-up of 16.3 (IQR 15.1-17.3) years, 2055 women developed ovarian or tubal cancer: 522 (1.0% of 50,625) MMS, 517 (1.0% of 50,623) USS, and 1016 (1.0% of 101314) in C group. Compared to the C group, in the MMS group, the incidence of Stage I/II disease was 39.2% (95% CI 16.1 to 66.9) higher and stage III/IV 10.2% (95% CI -21.3 to 2.4) lower. There was no difference in stage in the USS group. 1206 women died of the disease: 296 (0.6%) MMS, 291 (0.6%) USS, and 619 (0.6%) C group. There was no significant reduction in ovarian and tubal cancer deaths in either MMS (p = 0.580) or USS (p = 0.360) groups compared to the C group. Overall compliance with annual screening episode was 80.8% (345,570/420,047) in the MMS and 78.0% (327,775/420,047) in the USS group. For ovarian and tubal cancers diagnosed within one year of the last test in a screening episode, in the MMS group, the sensitivity, specificity and positive predictive values were 83.8% (95% CI 78.7 to 88.1), 99.8% (95% CI 99.8 to 99.9), and 28.8% (95% CI 25.5 to 32.2) and in the USS group, 72.2% (95% CI 65.9 to 78.0), 99.5% (95% CI 99.5 to 99.5), and 9.1% (95% CI 7.8 to 10.5) respectively. The final within-trial cost-effectiveness analysis was not undertaken as there was no mortality reduction. A bioresource (UKCTOCS Longitudinal Women's Cohort) of longitudinal outcome data and over 0.5 million serum samples including serial annual samples in women in the MMS group was established and to date has been used in many new studies, mainly focused on early detection of cancer. Harms Both screening tests (venepuncture and TVS) were associated with minor complications with low (8.6/100,000 screens MMS; 18.6/100,000 screens USS) complication rates. Screening itself did not cause anxiety unless more intense repeat testing was required following abnormal screens. In the MMS group, for each screen-detected ovarian or tubal cancer, an additional 2.3 (489 false positives; 212 cancers) women in the MMS group had unnecessary false-positive (benign adnexal pathology or normal adnexa) surgery. Overall, 14 (489/345,572 annual screens) underwent unnecessary surgery per 10,000 screens. In the USS group, for each screen-detected ovarian or tubal cancer, an additional 10 (1630 false positives; 164 cancers) underwent unnecessary false-positive surgery. Overall, 50 (1630/327,775 annual screens) women underwent unnecessary surgery per 10,000 screens. Conclusions Population screening for ovarian and tubal cancer for average-risk women using these strategies should not be undertaken. Decreased incidence of Stage III/IV cancers during multimodal screening did not translate to mortality reduction. Researchers should be cautious about using early stage as a surrogate outcome in screening trials. Meanwhile the bioresource provides a unique opportunity to evaluate early cancer detection tests. Funding Long-term follow-up UKCTOCS (2015-2020) - National Institute for Health and Care Research (NIHR HTA grant 16/46/01), Cancer Research UK, and The Eve Appeal. UKCTOCS (2001-2014) - Medical Research Council (MRC) (G9901012/G0801228), Cancer Research UK (C1479/A2884), and the UK Department of Health, with additional support from The Eve Appeal. Researchers at UCL were supported by the NIHR UCL Hospitals Biomedical Research Centre and by MRC Clinical Trials Unit at UCL core funding (MR_UU_12023).
Collapse
Affiliation(s)
- Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Matthew Burnell
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Andy Ryan
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Jatinderpal K Kalsi
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Naveena Singh
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Anne Dawnay
- Department of Clinical Biochemistry, Barts Health NHS Service Trust, London, UK
| | - Lesley Fallowfield
- Sussex Health Outcomes Research and Education in Cancer (SHORE-C), Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | | | | | - Steven J Skates
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mahesh Parmar
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Ian J Jacobs
- Department of Women's Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Dite GS, Spaeth E, Murphy NM, Allman R. A combined clinical and genetic model for predicting risk of ovarian cancer. Eur J Cancer Prev 2023; 32:57-64. [PMID: 36503897 PMCID: PMC9746333 DOI: 10.1097/cej.0000000000000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Women with a family history of ovarian cancer or a pathogenic or likely pathogenic gene variant are at high risk of the disease, but very few women have these risk factors. We assessed whether a combined polygenic and clinical risk score could predict risk of ovarian cancer in population-based women who would otherwise be considered as being at average risk. METHODS We used the UK Biobank to conduct a prospective cohort study assessing the performance of 10-year ovarian cancer risks based on a polygenic risk score, a clinical risk score and a combined risk score. We used Cox regression to assess association, Harrell's C-index to assess discrimination and Poisson regression to assess calibration. RESULTS The combined risk model performed best and problems with calibration were overcome by recalibrating the model, which then had a hazard ratio per quintile of risk of 1.338 [95% confidence interval (CI), 1.152-1.553], a Harrell's C-index of 0.663 (95% CI, 0.629-0.698) and overall calibration of 1.000 (95% CI, 0.874-1.145). In the refined model with estimates based on the entire dataset, women in the top quintile of 10-year risk were at 1.387 (95% CI, 1.086-1.688) times increased risk, while women in the top quintile of full-lifetime risk were at 1.527 (95% CI, 1.187-1.866) times increased risk compared with the population. CONCLUSION Identification of women who are at high risk of ovarian cancer can allow healthcare providers and patients to engage in joint decision-making discussions around the risks and benefits of screening options or risk-reducing surgery.
Collapse
Affiliation(s)
| | - Erika Spaeth
- Phenogen Sciences Inc, Charlotte, North Carolina, USA
| | | | - Richard Allman
- Genetic Technologies Limited, Fitzroy, Victoria, Australia
| |
Collapse
|
21
|
Oxley S, Xiong R, Wei X, Kalra A, Sideris M, Legood R, Manchanda R. Quality of Life after Risk-Reducing Hysterectomy for Endometrial Cancer Prevention: A Systematic Review. Cancers (Basel) 2022; 14:5832. [PMID: 36497314 PMCID: PMC9736914 DOI: 10.3390/cancers14235832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Risk-reducing hysterectomy (RRH) is the gold-standard prevention for endometrial cancer (EC). Knowledge of the impact on quality-of-life (QoL) is crucial for decision-making. This systematic review aims to summarise the evidence. METHODS We searched major databases until July 2022 (CRD42022347631). Given the paucity of data on RRH, we also included hysterectomy as treatment for benign disease. We used validated quality-assessment tools, and performed qualitative synthesis of QoL outcomes. RESULTS Four studies (64 patients) reported on RRH, 25 studies (1268 patients) on hysterectomy as treatment for uterine bleeding. There was moderate risk-of-bias in many studies. Following RRH, three qualitative studies found substantially lowered cancer-worry, with no decision-regret. Oophorectomy (for ovarian cancer prevention) severely impaired menopause-specific QoL and sexual-function, particularly without hormone-replacement. Quantitative studies supported these results, finding low distress and generally high satisfaction. Hysterectomy as treatment of bleeding improved QoL, resulted in high satisfaction, and no change or improvements in sexual and urinary function, although small numbers reported worsening. CONCLUSIONS There is very limited evidence on QoL after RRH. Whilst there are benefits, most adverse consequences arise from oophorectomy. Benign hysterectomy allows for some limited comparison; however, more research is needed for outcomes in the population of women at increased EC-risk.
Collapse
Affiliation(s)
- Samuel Oxley
- Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1A 7BE, UK
| | - Ran Xiong
- Department of Women’s Health, Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London SE18 4QH, UK
| | - Xia Wei
- Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK
| | - Ashwin Kalra
- Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1A 7BE, UK
| | - Michail Sideris
- Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1A 7BE, UK
| | - Rosa Legood
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1A 7BE, UK
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, Faculty of Population Health Sciences, University College London, London WC1V 6LJ, UK
- Department of Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
22
|
Hanson H, Kulkarni A, Loong L, Kavanaugh G, Torr B, Allen S, Ahmed M, Antoniou AC, Cleaver R, Dabir T, Evans DG, Golightly E, Jewell R, Kohut K, Manchanda R, Murray A, Murray J, Ong KR, Rosenthal AN, Woodward ER, Eccles DM, Turnbull C, Tischkowitz M, Lalloo F. UK consensus recommendations for clinical management of cancer risk for women with germline pathogenic variants in cancer predisposition genes: RAD51C, RAD51D, BRIP1 and PALB2. J Med Genet 2022; 60:417-429. [PMID: 36411032 PMCID: PMC10176381 DOI: 10.1136/jmg-2022-108898] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022]
Abstract
Germline pathogenic variants (GPVs) in the cancer predisposition genes BRCA1, BRCA2, MLH1, MSH2, MSH6, BRIP1, PALB2, RAD51D and RAD51C are identified in approximately 15% of patients with ovarian cancer (OC). While there are clear guidelines around clinical management of cancer risk in patients with GPV in BRCA1, BRCA2, MLH1, MSH2 and MSH6, there are few guidelines on how to manage the more moderate OC risk in patients with GPV in BRIP1, PALB2, RAD51D and RAD51C, with clinical questions about appropriateness and timing of risk-reducing gynaecological surgery. Furthermore, while recognition of RAD51C and RAD51D as OC predisposition genes has been established for several years, an association with breast cancer (BC) has only more recently been described and clinical management of this risk has been unclear. With expansion of genetic testing of these genes to all patients with non-mucinous OC, new data on BC risk and improved estimates of OC risk, the UK Cancer Genetics Group and CanGene-CanVar project convened a 2-day meeting to reach a national consensus on clinical management of BRIP1, PALB2, RAD51D and RAD51C carriers in clinical practice. In this paper, we present a summary of the processes used to reach and agree on a consensus, as well as the key recommendations from the meeting.
Collapse
Affiliation(s)
- Helen Hanson
- South West Thames Regional Genetic Services, St George's University Hospitals NHS Foundation Trust, London, UK
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | - Anjana Kulkarni
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Lucy Loong
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | - Grace Kavanaugh
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | - Bethany Torr
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | - Sophie Allen
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | - Munaza Ahmed
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ruth Cleaver
- Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Tabib Dabir
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Ellen Golightly
- Lothian Menopause Service, Chalmers Sexual Health Centre, Edinburgh, UK
| | - Rosalyn Jewell
- Department of Clinical Genetics, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kelly Kohut
- South West Thames Regional Genetic Services, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, London, UK
- Department of Health Services Research and Policy, London School of Hygiene & Tropical Medicine, London, UK
- Department of Gynaecological Oncology, Barts Health NHS Trust, London, UK
| | - Alex Murray
- All Wales Medical Genomics Services, University Hospital of Wales, Cardiff, UK
| | - Jennie Murray
- South East Scotland Clinical Genetics Service, Western General Hospital, Edinburgh, UK
| | - Kai-Ren Ong
- West Midlands Regional Genetics Service, Birmingham Women's Hospital, Birmingham, UK
| | - Adam N Rosenthal
- Department of Gynaecological Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Emma Roisin Woodward
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Diana M Eccles
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | | | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Central Manchester NHS Foundation Trust, Manchester, UK
| |
Collapse
|
23
|
Hereditary Breast and Ovarian Cancer Service in Sparsely Populated Western Pomerania. Healthcare (Basel) 2022; 10:healthcare10102021. [PMID: 36292468 PMCID: PMC9601587 DOI: 10.3390/healthcare10102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
The German Consortium Hereditary Breast and Ovarian Cancer (GC-HBOC) consists of 23 academic centers striving to provide high-quality regional care for affected individuals and healthy at-risk family members. According to the standard operating procedures defined by the GC-HBOC, a Familial Breast and Ovarian Cancer Center was implemented at the University Medicine Greifswald over a four-year period from 2018 to 2021, despite the COVID-19 pandemic. Genetic analyses were performed in a total of 658 individuals, including 41 males, which paved the way to local annual risk-adapted breast cancer surveillance for 91 women and prophylactic surgery for 34 women in 2021. Our experience in the North Eastern part of Germany demonstrates that it is possible to establish a high-risk breast and ovarian cancer service even in a sparsely populated region. Major facilitators are the interdisciplinary collaboration of dedicated local experts, the support of the GC-HBOC, fruitful clinical and scientific cooperations and the use of technical improvements. As a blueprint, our project report may help to further expand the network of specialized and knowledge-generating care for HBOC families.
Collapse
|
24
|
Early diagnosis of symptomatic ovarian cancer in primary care in the UK: opportunities and challenges. Prim Health Care Res Dev 2022; 23:e52. [PMID: 36052862 PMCID: PMC9472236 DOI: 10.1017/s146342362200041x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Ovarian cancer is the sixth most common cause of cancer-related death in the UK amongst women. Ovarian cancer presents particular challenges for general practitioners (GPs) to diagnose due to its rarity and presentation with non-specific symptoms. Methods: A narrative overview of the literature was conducted by searching PubMed and Researchgate for relevant articles, using keywords such as “ovarian cancer,” “primary care” and “diagnosis.” Results and Discussion: Studies have shown that in the UK, GPs have a lower readiness to refer and investigate potential cancer symptoms compared with their international counterparts; and this has been correlated with reduced survival. Early diagnosis can be facilitated through a people-focussed and system-based approach which involves both educating GPs and using risk algorithms, rapid diagnostic centres/multi-disciplinary centres and being data-driven through the identification of best practice from national audits. Further research is required into the best evidence-based early investigations for ovarian cancer and more effective biomarkers.
Collapse
|
25
|
Rolfes M, Borde J, Möllenhoff K, Kayali M, Ernst C, Gehrig A, Sutter C, Ramser J, Niederacher D, Horváth J, Arnold N, Meindl A, Auber B, Rump A, Wang-Gohrke S, Ritter J, Hentschel J, Thiele H, Altmüller J, Nürnberg P, Rhiem K, Engel C, Wappenschmidt B, Schmutzler RK, Hahnen E, Hauke J. Prevalence of Cancer Predisposition Germline Variants in Male Breast Cancer Patients: Results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancers (Basel) 2022; 14:3292. [PMID: 35805063 PMCID: PMC9265404 DOI: 10.3390/cancers14133292] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Male breast cancer (mBC) is associated with a high prevalence of pathogenic variants (PVs) in the BRCA2 gene; however, data regarding other BC predisposition genes are limited. In this retrospective multicenter study, we investigated the prevalence of PVs in BRCA1/2 and 23 non-BRCA1/2 genes using a sample of 614 patients with mBC, recruited through the centers of the German Consortium for Hereditary Breast and Ovarian Cancer. A high proportion of patients with mBC carried PVs in BRCA2 (23.0%, 142/614) and BRCA1 (4.6%, 28/614). The prevalence of BRCA1/2 PVs was 11.0% in patients with mBC without a family history of breast and/or ovarian cancer. Patients with BRCA1/2 PVs did not show an earlier disease onset than those without. The predominant clinical presentation of tumor phenotypes was estrogen receptor (ER)-positive, progesterone receptor (PR)-positive, and HER2-negative (77.7%); further, 10.2% of the tumors were triple-positive, and 1.2% were triple-negative. No association was found between ER/PR/HER2 status and BRCA1/2 PV occurrence. Comparing the prevalence of protein-truncating variants (PTVs) between patients with mBC and control data (ExAC, n = 27,173) revealed significant associations of PTVs in both BRCA1 and BRCA2 with mBC (BRCA1: OR = 17.04, 95% CI = 10.54−26.82, p < 10−5; BRCA2: OR = 77.71, 95% CI = 58.71−102.33, p < 10−5). A case-control investigation of 23 non-BRCA1/2 genes in 340 BRCA1/2-negative patients and ExAC controls revealed significant associations of PTVs in CHEK2, PALB2, and ATM with mBC (CHEK2: OR = 3.78, 95% CI = 1.59−7.71, p = 0.002; PALB2: OR = 14.77, 95% CI = 5.02−36.02, p < 10−5; ATM: OR = 3.36, 95% CI = 0.89−8.96, p = 0.04). Overall, our findings support the benefit of multi-gene panel testing in patients with mBC irrespective of their family history, age at disease onset, and tumor phenotype.
Collapse
Affiliation(s)
- Muriel Rolfes
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; (M.R.); (J.B.); (M.K.); (C.E.); (K.R.); (B.W.); (R.K.S.); (J.H.)
| | - Julika Borde
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; (M.R.); (J.B.); (M.K.); (C.E.); (K.R.); (B.W.); (R.K.S.); (J.H.)
| | - Kathrin Möllenhoff
- Mathematisches Institut, Heinrich-Heine-Universität Duesseldorf, 40225 Duesseldorf, Germany;
| | - Mohamad Kayali
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; (M.R.); (J.B.); (M.K.); (C.E.); (K.R.); (B.W.); (R.K.S.); (J.H.)
| | - Corinna Ernst
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; (M.R.); (J.B.); (M.K.); (C.E.); (K.R.); (B.W.); (R.K.S.); (J.H.)
| | - Andrea Gehrig
- Institute of Human Genetics, University Wuerzburg, 97074 Wuerzburg, Germany;
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Juliane Ramser
- Department of Gynecology and Obstetrics, Technical University Munich, 80333 Munich, Germany;
| | - Dieter Niederacher
- Department of Gynecology and Obstetrics, University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Judit Horváth
- Institute for Human Genetics, University Hospital Muenster, 48149 Muenster, Germany;
| | - Norbert Arnold
- Institute of Clinical Molecular Biology, Department of Gynecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, 24105 Kiel, Germany;
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, LMU Munich, University Hospital Munich, 80337 Munich, Germany;
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, 30645 Hannover, Germany;
| | - Andreas Rump
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01062 Dresden, Germany;
| | - Shan Wang-Gohrke
- Department of Gynecology and Obstetrics, University of Ulm, 89075 Ulm, Germany;
| | - Julia Ritter
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 04103 Leipzig, Germany;
| | - Holger Thiele
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.T.); (J.A.); (P.N.)
| | - Janine Altmüller
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.T.); (J.A.); (P.N.)
- Core Facility Genomics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (H.T.); (J.A.); (P.N.)
| | - Kerstin Rhiem
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; (M.R.); (J.B.); (M.K.); (C.E.); (K.R.); (B.W.); (R.K.S.); (J.H.)
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany;
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; (M.R.); (J.B.); (M.K.); (C.E.); (K.R.); (B.W.); (R.K.S.); (J.H.)
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; (M.R.); (J.B.); (M.K.); (C.E.); (K.R.); (B.W.); (R.K.S.); (J.H.)
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; (M.R.); (J.B.); (M.K.); (C.E.); (K.R.); (B.W.); (R.K.S.); (J.H.)
| | - Jan Hauke
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany; (M.R.); (J.B.); (M.K.); (C.E.); (K.R.); (B.W.); (R.K.S.); (J.H.)
| |
Collapse
|
26
|
Gynecologic Cancer Risk and Genetics: Informing an Ideal Model of Gynecologic Cancer Prevention. Curr Oncol 2022; 29:4632-4646. [PMID: 35877228 PMCID: PMC9322111 DOI: 10.3390/curroncol29070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Individuals with proven hereditary cancer syndrome (HCS) such as BRCA1 and BRCA2 have elevated rates of ovarian, breast, and other cancers. If these high-risk people can be identified before a cancer is diagnosed, risk-reducing interventions are highly effective and can be lifesaving. Despite this evidence, the vast majority of Canadians with HCS are unaware of their risk. In response to this unmet opportunity for prevention, the British Columbia Gynecologic Cancer Initiative convened a research summit “Gynecologic Cancer Prevention: Thinking Big, Thinking Differently” in Vancouver, Canada on 26 November 2021. The aim of the conference was to explore how hereditary cancer prevention via population-based genetic testing could decrease morbidity and mortality from gynecologic cancer. The summit invited local, national, and international experts to (1) discuss how genetic testing could be more broadly implemented in a Canadian system, (2) identify key research priorities in this topic and (3) outline the core essential elements required for such a program to be successful. This report summarizes the findings from this research summit, describes the current state of hereditary genetic programs in Canada, and outlines incremental steps that can be taken to improve prevention for high-risk Canadians now while developing an organized population-based hereditary cancer strategy.
Collapse
|
27
|
Archer S, Fennell N, Colvin E, Laquindanum R, Mills M, Dennis R, Stutzin Donoso F, Gold R, Fan A, Downes K, Ford J, Antoniou AC, Kurian AW, Evans DG, Tischkowitz M. Personalised Risk Prediction in Hereditary Breast and Ovarian Cancer: A Protocol for a Multi-Centre Randomised Controlled Trial. Cancers (Basel) 2022; 14:2716. [PMID: 35681696 PMCID: PMC9179465 DOI: 10.3390/cancers14112716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/16/2022] Open
Abstract
Women who test positive for an inherited pathogenic/likely pathogenic gene variant in BRCA1, BRCA2, PALB2, CHEK2 and ATM are at an increased risk of developing certain types of cancer-specifically breast (all) and epithelial ovarian cancer (only BRCA1, BRCA2, PALB2). Women receive broad cancer risk figures that are not personalised (e.g., 44-63% lifetime risk of breast cancer for those with PALB2). Broad, non-personalised risk estimates may be problematic for women when they are considering how to manage their risk. Multifactorial-risk-prediction tools have the potential to deliver personalised risk estimates. These may be useful in the patient's decision-making process and impact uptake of risk-management options. This randomised control trial (registration number to follow), based in genetic centres in the UK and US, will randomise participants on a 1:1 basis to either receive conventional cancer risk estimates, as per routine clinical practice, or to receive a personalised risk estimate. This personalised risk estimate will be calculated using the CanRisk risk prediction tool, which combines the patient's genetic result, family history and polygenic risk score (PRS), along with hormonal and lifestyle factors. Women's decision-making around risk management will be monitored using questionnaires, completed at baseline (pre-appointment) and follow-up (one, three and twelve months after receiving their risk assessment). The primary outcome for this study is the type and timing of risk management options (surveillance, chemoprevention, surgery) taken up over the course of the study (i.e., 12 months). The type of risk-management options planned to be taken up in the future (i.e., beyond the end of the study) and the potential impact of personalised risk estimates on women's psychosocial health will be collected as secondary-outcome measures. This study will also assess the acceptability, feasibility and cost-effectiveness of using personalised risk estimates in clinical care.
Collapse
Affiliation(s)
- Stephanie Archer
- Primary Care Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK;
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - Nichola Fennell
- Academic Department of Medical Genetics, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (N.F.); (R.D.); (R.G.); (M.T.)
| | - Ellen Colvin
- Manchester Centre for Genomic Medicine, St. Marys Hospital, Oxford Road, Manchester M13 9WL, UK; (E.C.); (D.G.E.)
| | - Rozelle Laquindanum
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (R.L.); (M.M.); (A.F.); (J.F.); (A.W.K.)
| | - Meredith Mills
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (R.L.); (M.M.); (A.F.); (J.F.); (A.W.K.)
| | - Romy Dennis
- Academic Department of Medical Genetics, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (N.F.); (R.D.); (R.G.); (M.T.)
| | - Francisca Stutzin Donoso
- Primary Care Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK;
| | - Rochelle Gold
- Academic Department of Medical Genetics, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (N.F.); (R.D.); (R.G.); (M.T.)
| | - Alice Fan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (R.L.); (M.M.); (A.F.); (J.F.); (A.W.K.)
| | - Kate Downes
- Cambridge Genomics Laboratory, Cambridge University Hospitals Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK;
| | - James Ford
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (R.L.); (M.M.); (A.F.); (J.F.); (A.W.K.)
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Antonis C. Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge CB1 8RN, UK;
| | - Allison W. Kurian
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (R.L.); (M.M.); (A.F.); (J.F.); (A.W.K.)
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - D. Gareth Evans
- Manchester Centre for Genomic Medicine, St. Marys Hospital, Oxford Road, Manchester M13 9WL, UK; (E.C.); (D.G.E.)
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Marc Tischkowitz
- Academic Department of Medical Genetics, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK; (N.F.); (R.D.); (R.G.); (M.T.)
| |
Collapse
|
28
|
Gaba F, Oxley S, Liu X, Yang X, Chandrasekaran D, Kalsi J, Antoniou A, Side L, Sanderson S, Waller J, Ahmed M, Wallace A, Wallis Y, Menon U, Jacobs I, Legood R, Marks D, Manchanda R. Unselected Population Genetic Testing for Personalised Ovarian Cancer Risk Prediction: A Qualitative Study Using Semi-Structured Interviews. Diagnostics (Basel) 2022; 12:1028. [PMID: 35626184 PMCID: PMC9139231 DOI: 10.3390/diagnostics12051028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
Unselected population-based personalised ovarian cancer (OC) risk assessments combining genetic, epidemiological and hormonal data have not previously been undertaken. We aimed to understand the attitudes, experiences and impact on the emotional well-being of women from the general population who underwent unselected population genetic testing (PGT) for personalised OC risk prediction and who received low-risk (<5% lifetime risk) results. This qualitative study was set within recruitment to a pilot PGT study using an OC risk tool and telephone helpline. OC-unaffected women ≥ 18 years and with no prior OC gene testing were ascertained through primary care in London. In-depth, semi-structured and 1:1 interviews were conducted until informational saturation was reached following nine interviews. Six interconnected themes emerged: health beliefs; decision making; factors influencing acceptability; effect on well-being; results communication; satisfaction. Satisfaction with testing was high and none expressed regret. All felt the telephone helpline was helpful and should remain optional. Delivery of low-risk results reduced anxiety. However, care must be taken to emphasise that low risk does not equal no risk. The main facilitators were ease of testing, learning about children’s risk and a desire to prevent disease. Barriers included change in family dynamics, insurance, stigmatisation and personality traits associated with stress/worry. PGT for personalised OC risk prediction in women in the general population had high acceptability/satisfaction and reduced anxiety in low-risk individuals. Facilitators/barriers observed were similar to those reported with genetic testing from high-risk cancer clinics and unselected PGT in the Jewish population.
Collapse
Affiliation(s)
- Faiza Gaba
- Wolfson Institute of Population Health, Barts CRUK Centre, Queen Mary University of London, Old Anatomy Building, Charterhouse Square, London EC1M 6BQ, UK; (F.G.); (S.O.); (X.L.); (D.C.)
- Department of Gynaecological Oncology, St Bartholomew’s Hospital, London EC1A 7BE, UK
| | - Samuel Oxley
- Wolfson Institute of Population Health, Barts CRUK Centre, Queen Mary University of London, Old Anatomy Building, Charterhouse Square, London EC1M 6BQ, UK; (F.G.); (S.O.); (X.L.); (D.C.)
- Department of Gynaecological Oncology, St Bartholomew’s Hospital, London EC1A 7BE, UK
| | - Xinting Liu
- Wolfson Institute of Population Health, Barts CRUK Centre, Queen Mary University of London, Old Anatomy Building, Charterhouse Square, London EC1M 6BQ, UK; (F.G.); (S.O.); (X.L.); (D.C.)
| | - Xin Yang
- Strangeways Research Laboratory, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, The University of Cambridge, Cambridge CB1 8RN, UK; (X.Y.); (A.A.)
| | - Dhivya Chandrasekaran
- Wolfson Institute of Population Health, Barts CRUK Centre, Queen Mary University of London, Old Anatomy Building, Charterhouse Square, London EC1M 6BQ, UK; (F.G.); (S.O.); (X.L.); (D.C.)
- Department of Gynaecological Oncology, St Bartholomew’s Hospital, London EC1A 7BE, UK
| | - Jatinderpal Kalsi
- Department of Women’s Cancer, University College London, Gower St, Bloomsbury, London WC1E 6BT, UK;
| | - Antonis Antoniou
- Strangeways Research Laboratory, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, The University of Cambridge, Cambridge CB1 8RN, UK; (X.Y.); (A.A.)
| | - Lucy Side
- Department of Clinical Genetics, University Hospital Southampton NHS Foundation Trust, Tremona Rd, Southampton SO16 6YD, UK;
| | - Saskia Sanderson
- Early Disease Detection Research Project UK (EDDRP UK), 2 Redman Place, London E20 1JQ, UK;
| | - Jo Waller
- Cancer Prevention Group, King’s College London, Great Maze Pond, London SE1 9RT, UK;
| | - Munaza Ahmed
- North East Thames Regional Genetics Unit, Department Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK;
| | - Andrew Wallace
- Manchester Centre for Genomic Medicine, 6th Floor Saint Marys Hospital, Oxford Rd, Manchester M13 9WL, UK;
| | - Yvonne Wallis
- West Midlands Regional Genetics Laboratory, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TG, UK;
| | - Usha Menon
- Medical Research Council Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, 90 High Holborn, London WC1V 6LJ, UK;
| | - Ian Jacobs
- Department of Women’s Health, University of New South Wales, Sydney 2052, Australia;
| | - Rosa Legood
- Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London WC1H 9SH, UK; (R.L.); (D.M.)
| | - Dalya Marks
- Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London WC1H 9SH, UK; (R.L.); (D.M.)
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Barts CRUK Centre, Queen Mary University of London, Old Anatomy Building, Charterhouse Square, London EC1M 6BQ, UK; (F.G.); (S.O.); (X.L.); (D.C.)
- Department of Gynaecological Oncology, St Bartholomew’s Hospital, London EC1A 7BE, UK
- Medical Research Council Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London, 90 High Holborn, London WC1V 6LJ, UK;
- Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London WC1H 9SH, UK; (R.L.); (D.M.)
- Department of Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
29
|
Fitzgerald RC, Antoniou AC, Fruk L, Rosenfeld N. The future of early cancer detection. Nat Med 2022; 28:666-677. [PMID: 35440720 DOI: 10.1038/s41591-022-01746-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
Abstract
A proactive approach to detecting cancer at an early stage can make treatments more effective, with fewer side effects and improved long-term survival. However, as detection methods become increasingly sensitive, it can be difficult to distinguish inconsequential changes from lesions that will lead to life-threatening cancer. Progress relies on a detailed understanding of individualized risk, clear delineation of cancer development stages, a range of testing methods with optimal performance characteristics, and robust evaluation of the implications for individuals and society. In the future, advances in sensors, contrast agents, molecular methods, and artificial intelligence will help detect cancer-specific signals in real time. To reduce the burden of cancer on society, risk-based detection and prevention needs to be cost effective and widely accessible.
Collapse
Affiliation(s)
- Rebecca C Fitzgerald
- Early Detection Programme, Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK.
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health & Primary Care, University of Cambridge, Cambridge, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| |
Collapse
|