1
|
Mu J, Shen Y, Zhu F, Zhang Q. Association of TLR4 polymorphisms (Asp299Gly and Thr399Ile) with sepsis: a meta-analysis and trial sequence analysis. APMIS 2024; 132:869-880. [PMID: 39222487 DOI: 10.1111/apm.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Several investigations have been carried out to explore the genetic association of TLR4 codon variants, specifically Asp299Gly and Thr399Ile, and susceptibility to sepsis, but the results have been contradictory. The present study aimed to conduct a meta-analysis to draw a definitive conclusion regarding the role of TLR4 genetic variants (Asp299Gly and Thr399Ile) in sepsis. A thorough literature search was conducted using the PubMed, Scopus, and Science Direct databases. The inclusion and exclusion criteria were established to ensure the accuracy of the data. The Comprehensive Meta-Analysis Software v4 was utilized to perform the meta-analysis and related analyses. A total of 13 studies were analyzed, including 2328 sepsis cases and 2495 healthy controls for the TLR4 Asp299Gly variant. Eight studies provided genotype data for the rs4986791 polymorphism. The Asp299Gly variant showed a marginal protective effect in the allele (p = 0.08, odds ratio = 0.71) and dominant (p = 0.09, odds ratio = 0.71) genetic models, although it was not statistically significant. The trial sequential analysis indicated that further case-control studies are necessary to draw definitive conclusions about the TLR4 polymorphisms in sepsis. The TLR4 Asp299Gly variant may have a protective effect against sepsis. However, additional research with larger sample sizes across diverse populations is required to validate this finding.
Collapse
Affiliation(s)
- Jingjing Mu
- Department of Critical care Medicine 330 wards, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Shen
- Department of Critical Care Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Furong Zhu
- School of Nursing Wenzhou Medical University, Cixi Institute of Biomedicine, Wenzhou Medical University, Wenzhou, China
| | - Qixia Zhang
- Department of Critical care Medicine 330 wards, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Li M, Pan S, Chen H, Yan S, Liu Y. Effect of TLR-4 gene polymorphisms on sepsis susceptibility in neonates: a systematic review and meta-analysis. Biomark Med 2022; 16:1005-1017. [PMID: 36052709 DOI: 10.2217/bmm-2022-0390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To clarify the role of polymorphisms rs4986790 and rs4986791 in TLR-4 with susceptibility to neonatal sepsis. Methods: To evaluate the possible correlation of polymorphisms rs4986790 and rs4986791 with sepsis risk, odds ratios (ORs) were calculated. The heterogeneity was evaluated by χ2-based Q-test. Results: For rs4986790, ORs were 1.36 (95% CI: 1.05-1.79, p = 0.017) and 1.84 (95% CI: 0.04-7.9, p = 0.410) under AG+GG versus AA and G vs. A models, respectively. For rs4986791, ORs were 2.22 (95% CI: 1.25-3.94, p = 0.006) and 2.20 (95% CI: 1.26-3.85, p = 0.005) under CT+TT versus CC and of T versus C models, respectively. Conclusion: The rs4986790 and rs4986791 polymorphisms in TLR-4 could influence the sepsis susceptibility in neonates.
Collapse
Affiliation(s)
- Ming Li
- Intensive Care Unit, Shanghai Construction Group Hospital, Shanghai, 200433, China
| | - Shiguang Pan
- Intensive Care Unit, Yantai Qi Shan Hospital, Yantai, Shandong, 264001, China
| | - Huilin Chen
- Intensive Care Unit, Shanghai Construction Group Hospital, Shanghai, 200433, China
| | - Shuying Yan
- Intensive Care Unit, Shanghai Construction Group Hospital, Shanghai, 200433, China
| | - Yuxin Liu
- Emergency Department, Chongqing University Affiliated Three Gorges Hospital (Bai'an Branch), Chongqing, 404000, China
| |
Collapse
|
3
|
Anter A, Ahmed ASF, Hammad ASA, Almalki WH, Abdel Hafez SMN, Kasem AW, El-Moselhy MA, Alrabia MW, Ibrahim ARN, El-Daly M. The Severity of Acute Kidney and Lung Injuries Induced by Cecal Ligation and Puncture Is Attenuated by Menthol: Role of Proliferating Cell Nuclear Antigen and Apoptotic Markers. Front Med (Lausanne) 2022; 9:904286. [PMID: 35814769 PMCID: PMC9260148 DOI: 10.3389/fmed.2022.904286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Sepsis-induced acute lung injury (ALI) and acute kidney injury (AKI) are major causes of mortality. Menthol is a natural compound that has anti-inflammatory and antioxidative actions. Since exaggerated inflammatory and oxidative stress are characteristics of sepsis, the aim of this study was to evaluate the effect of menthol against sepsis-induced mortality, ALI, and AKI. Methods The cecal ligation and puncture (CLP) procedure was employed as a model of sepsis. Rats were grouped into sham, sham-Menthol, CLP, and CLP-Menthol (100 mg/kg, p.o). Key Findings A survival study showed that menthol enhanced the survival after sepsis from 0% in septic group to 30%. Septic rats developed histological evidence of ALI and AKI. Menthol markedly suppressed sepsis induced elevation of tissue TNF-a, ameliorated sepsis-induced cleavage of caspase-3 and restored the antiapoptotic marker Bcl2. Significance We introduced a role of the proliferating cell nuclear antigen (PCNA) in these tissues with a possible link to the damage induced by sepsis. PCNA level was markedly reduced in septic animals and menthol ameliorated this effect. Our data provide novel evidence that menthol protects against organ damage and decreases mortality in experimental sepsis.
Collapse
Affiliation(s)
- Aliaa Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
- *Correspondence: Al-Shaimaa F. Ahmed,
| | - Asmaa S. A. Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - AlShaimaa W. Kasem
- Department of Pathology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Mohamed A. El-Moselhy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
- Department of Clinical Pharmacy and Pharmacology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Mohammad W. Alrabia
- Department of Microbiology and Medical Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed R. N. Ibrahim
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| |
Collapse
|
4
|
Elloumi N, Tahri S, Fakhfakh R, Abida O, Mahfoudh N, Hachicha H, Marzouk S, Bahloul Z, Masmoudi H. Role of innate immune receptors TLR4 and TLR2 polymorphisms in systemic lupus erythematosus susceptibility. Ann Hum Genet 2022; 86:137-144. [PMID: 35128637 DOI: 10.1111/ahg.12458] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/22/2023]
Abstract
AIM Through their recognition of various bacterial cell wall components, TLR2 and TLR4 participate in the innate response and modulate the activation of adaptive immunity. Therefore, the genetic background of these receptors might play a crucial role in autoimmune diseases such as systemic lupus erythematosus (SLE). In this study, we investigated the possible association between polymorphisms within TLR2 and TLR4 genes with SLE susceptibility. MATERIAL AND METHODS A total of 100 SLE patients and 200 unrelated healthy controls of the Tunisian population were enrolled in the study.TLR4rs4986790, TLR4rs4986791, and TLR2rs5743708 genotyping were performed using a polymerase chain reaction-restriction fragment length polymorphism method. The number of guanine-thymine (GT) repeat microsatellite in the intron 2 of TLR2 gene was analyzed by sequencing. RESULTS We reported a lack of allelic and genotypic association between SNPs of TLR4 and TLR2 genes and SLE pathogenesis. No correlation was found with any SLE features. However, SLE susceptibility was associated with the GT repeat microsatellite polymorphism in the human TLR2 gene. Further subclassification of alleles into three subclasses revealed a significant association between the long-sized repeats ((GT) >23) and SLE. CONCLUSION Though the results showed the absence of genetic association of TLR4 and TLR2 SNPs with the risk of developing SLE, we have identified a protective association between the microsatellite polymorphism in intron 2 of the TLR2 gene and SLE. Functionally, these (GT)n repeats may confer modifying effects or susceptibility to certain inflammatory conditions.
Collapse
Affiliation(s)
- Nesrine Elloumi
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Safa Tahri
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Raouia Fakhfakh
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Olfa Abida
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Nadia Mahfoudh
- Immunology Department, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
| | - Hend Hachicha
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| | - Sameh Marzouk
- Internal Medicine Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Zouhir Bahloul
- Internal Medicine Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - Hatem Masmoudi
- Research laboratory LR18/SP12 auto-immunity, cancer and immunogenetics, Immunology Department, Habib Bourguiba university Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Yehia R, Schaalan M, Abdallah DM, Saad AS, Sarhan N, Saleh S. Impact of TNF-α Gene Polymorphisms on Pancreatic and Non-Small Cell Lung Cancer-Induced Cachexia in Adult Egyptian Patients: A Focus on Pathogenic Trajectories. Front Oncol 2021; 11:783231. [PMID: 34900737 PMCID: PMC8651494 DOI: 10.3389/fonc.2021.783231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023] Open
Abstract
Background Cachexia is a frequent syndrome in pancreatic and non-small cell lung (NSCL) cancer patients. The storm of cancer-induced inflammatory cytokines, in particular TNF-α, is a crucial pathogenic mechanism. Among the molecular alterations accused of cancer-induced cachexia, TNF-α 308 G/A (rs1800629) and −1031T/C (rs1799964) are single-nucleotide polymorphisms (SNPs) within the gene encoding this pro-inflammatory cytokine. Recent studies have demonstrated the crucial role of non-coding microRNAs (miRNAs) in pathogenesis of different diseases including cachexia. Moreover, the mechanistic cytokine signaling pathway of miR-155, as a TNF-α regulator, supports the involvement of SOCS1, TAB2, and Foxp3, which are direct targets of TNF-α gene. Aim A case–control study (NCT04131478) was conducted primarily to determine the incidence of TNF-α 308 G/A (rs1800629) and −1031T/C (rs1799964) gene polymorphisms in adult Egyptian patients with local/advanced or metastatic pancreatic or NSCL cancer and investigate both as cachexia risk factors. The association of gene polymorphism with cachexia severity and the expression of miR-155 in cachectic patients were analyzed. A mechanistic investigation of the cytokine signaling pathway, involving SOCS1, TAB2, and Foxp3, was also performed. Results In both pancreatic and NSCL cancer cohorts, the mutant TNF-α variant of 308 G/A was positively associated with cachexia; on the contrary, that of 1031T/C was negatively associated with cachexia in the NSCL cancer patients. MiR-155 was higher in cachexia and in alignment with its severity in the cachectic group as compared with the non-cachectic group in both the pancreatic and NSCL cancer patients. Though TAB2 did not change to any significant extent in cachectic patients, the levels of SOCS1 and Foxp3 were significantly lower in the cachectic group as compared with the non-cachectic group. Conclusion Carriers of the A allele 308 G/A gene and high miR-155 are at greater risk of cachexia in both the pancreatic and NSCL cancer patients; however, the mutant variant of 1031T/C gene is protective against cachexia in the NSCL cancer patients. Finally, high levels of miR-155 in the cachectic group lead to negative feedback inhibition of both SOCS1 and Foxp3 in both the pancreatic and NSCL cancer patients.
Collapse
Affiliation(s)
- Rana Yehia
- Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Mona Schaalan
- Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amr S Saad
- Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Neven Sarhan
- Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Samira Saleh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Taha SI, Shata AK, Baioumy SA, Fouad SH, Anis SG, Mossad IM, Moustafa NM, Abdou DM, Youssef MK. Toll-Like Receptor 4 Polymorphisms (896A/G and 1196C/T) as an Indicator of COVID-19 Severity in a Convenience Sample of Egyptian Patients. J Inflamm Res 2021; 14:6293-6303. [PMID: 34866927 PMCID: PMC8636845 DOI: 10.2147/jir.s343246] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background The clinical spectrum of COVID-19 is extremely variable. Thus, it is likely that the heterogeneity in the genetic make-up of the host may contribute to disease severity. Toll‐like receptor (TLR)-4 plays a vital role in the innate immune response to SARS-CoV-2 infection. The susceptibility of humans to severe COVID-19 concerning TLR-4 single nucleotide polymorphisms (SNPs) has not been well examined. Objective The goal of this research was to investigate the association between TLR-4 (Asp299Gly and Thr399Ile) SNPs and COVID-19 severity and progression as well as the cytokine storm in Egyptian patients. Methods We genotyped 300 adult COVID-19 Egyptian patients for TLR-4 (Asp299Gly and Thr399Ile) SNPs using PCR-restriction fragment length polymorphism (PCR-RFLP). We also measured interleukin (IL)-6 levels by enzyme-linked immunosorbent assay (ELISA) as an indicator of the cytokine storm. Results The minor 299Gly (G) and 399Ile (T) alleles were associated with a significant (P < 0.001) positive risk of severe COVID-19 (OR = 3.14; 95% CI = 2.02–4.88 and OR = 2.75; 95% CI = 1.66–4.57), their frequency in the severe group were 71.8% (84/150) and 70.7% (58/150), respectively. We detected significant differences between TLR-4 (Asp299Gly, Thr399Ile) genotypes with regard to serum levels of IL-6. Levels of IL-6 increased significantly with the presence of the mutant 299Gly (G) and 399Ile (T) alleles to reach the highest levels in the Gly299Gly (GG) and the Ile399Ile (TT) genotypes (170 pg/mL (145–208.25) and 112 pg/mL (24–284.75), respectively). Conclusion The TLR-4 (Asp299Gly and Thr399Ile) minor alleles 299Gly (G) and 399Ile (T) are associated with COVID-19 severity, mortality, and the cytokine storm.
Collapse
Affiliation(s)
- Sara I Taha
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Aalaa K Shata
- Department of Pulmonary Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shereen A Baioumy
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa H Fouad
- Department of Internal Medicine/Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sherif G Anis
- Department of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Isis M Mossad
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine Ain Shams University, Cairo, Egypt
| | - Nouran M Moustafa
- Department of Basic Medical Science, Faculty of Medicine, Dar Al Uloom University, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dina M Abdou
- Department of Internal Medicine/Hematology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mariam K Youssef
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Association of TLR4 gene polymorphisms with sepsis after a burn injury: findings of the functional role of rs2737190 SNP. Genes Immun 2021; 22:24-34. [PMID: 33531683 DOI: 10.1038/s41435-021-00121-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/11/2020] [Accepted: 01/13/2021] [Indexed: 02/01/2023]
Abstract
Sepsis is a life-threatening organ dysfunction condition caused by a dysregulated response to an infection that is common among patients with moderate to severe burn injury. Previously, genomic variants in Toll-like receptor 4 (TLR4), a key innate immunity receptor, have been associated with sepsis and infection susceptibility. In this study, the association of six TLR4 SNPs with sepsis after burn injury was tested in the Mexican mestizo population. We found that the rs2737190 polymorphism is associated with sepsis after burn trauma. Interestingly, the G allele and GG genotype were associated with a lower risk of developing sepsis. Since the rs2737190 SNP is in the promoter region of the TLR4 gene, we analyzed the possibility that this polymorphism regulates the TLR4 pathway. We cultured peripheral blood mononuclear cells from different genotype carriers and found, after stimulation with LPS, that carriers of the GG genotype showed a higher expression of TLR4, IL6, and TNFα than AA genotype carriers. The results suggest that the GG genotype produces an increase in the TLR4 expression, and therefore an improvement in the immune response. We conclude that the rs2737190 polymorphism may become a useful marker for genetic studies of sepsis in patients after a burn injury.
Collapse
|
8
|
C-Reactive Protein-to-Albumin Ratio Predicts Sepsis and Prognosis in Patients with Severe Burn Injury. Mediators Inflamm 2021; 2021:6621101. [PMID: 33833617 PMCID: PMC8016580 DOI: 10.1155/2021/6621101] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background Sepsis is a leading cause of mortality among severe burns. This study was conducted to investigate the predictive role of C-reactive protein-to-albumin ratio (CAR) for sepsis and prognosis in severe burns. Methods Patients with severe burn injuries from 2013 to 2017 were enrolled and divided into septic and nonseptic groups based on the presence of sepsis within 30 days postburn. Independent risk factors for sepsis were performed by the univariate and multivariate logistic regression analyses. The association between CAR level at admission and postburn 30-day mortality was designed via the Kaplan–Meier method. Results Of all the 196 enrolled patients, 83 patients developed sepsis within 30 days postburn injury, with an incidence of 42.3%. TBSA percentage (OR: 1.65, 95% CI: 1.17-2.32, P = 0.014) and CAR at admission (OR: 2.25, 95% CI: 1.33-3.56, P = 0.009) were the two independent risk factors for sepsis in severe burns by the multivariate logistic regression analysis. A higher CAR level (≥1.66) at admission was associated with a lower postburn 30-day survival rate (P = 0.005). Conclusions The CAR level at admission was an independent risk factor for sepsis and prognosis in severe burns.
Collapse
|
9
|
Tumor Necrosis Factor-α -308G/A Genetic Polymorphism and the Susceptibility of Posttraumatic Sepsis. Int Surg 2020. [DOI: 10.9738/intsurg-d-19-00016.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Summary of background data
The association between tumor necrosis factor α (TNFα) -308G/A polymorphism and susceptibility to posttraumatic sepsis has been studied extensively. But the results have not remained very clear.
Purpose
We carried out this meta-analysis to explore the influence of TNF on susceptibility to posttraumatic sepsis.
Methods
Relevant studies were identified from PubMed, Web of Science, Embase, and China National Knowledge Internet without language limitation, following the inclusion and exclusion criteria. Statistical analyses were implemented with the STATA 12.0 statistical software.
Results
Seven case-control studies were included in the meta-analyses on the association of TNFα -308 G/A genetic polymorphism and risk of posttraumatic sepsis. TNFα -308 G/A genetic polymorphism was significantly associated with susceptibility to posttraumatic sepsis in the dominant model [odds ratio (OR), 2.17; 95% confidence interval (95% CI), 1.19–3.95; P = 0.011] and allelic model (OR, 1.72; 95% CI, 1.23–2.39; P = 0.001), but not in the heterozygous model (OR, 1.38; 95% CI, 0.58–3.39; P = 0.489). There was no significant publication bias for these 3 models. However, marked heterogeneity existed in the dominant model (I2 = 68.9%, P = 0.004) and the heterozygous model (I2 = 68.9%, P = 0.022).
Conclusions
TNF -308 G/A genetic polymorphism may have an influence on susceptibility to posttraumatic sepsis. Further studies with large sample sizes and well-designed studies are needed to confirm these results.
Collapse
|
10
|
Gene Polymorphisms of TLR4 and TLR9 and Haemophilus influenzae Meningitis in Angolan Children. Genes (Basel) 2020; 11:genes11091099. [PMID: 32967147 PMCID: PMC7564843 DOI: 10.3390/genes11091099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
Bacterial meningitis (BM) is a severe disease caused by various bacterial pathogens. Toll-like receptors (TLRs) protect humans from invading pathogens. In this study, we determined whether single nucleotide polymorphisms (SNPs) of TLR4 and TLR9 are associated with susceptibility to and outcome of BM in Angolan children. Samples were taken from 241 patients and 265 age-matched ethnic controls. The SNPs TLR4 rs4986790 (896A > G) and TLR9 rs187084 (−1486T > C) were determined by high-resolution melting analysis (HRMA). The frequency of variant genotypes in TLR4 was significantly higher in patients with Haemophilus influenzae meningitis than controls (odds ratio (OR), 2.5; 95% confidence interval (CI), 1.2–5.4; p = 0.021), whereas the frequency of variant genotypes in TLR9 was significantly lower in patients with H. influenzae meningitis than controls (OR, 0.4; 95% CI, 0.2–0.9; p = 0.036). No such differences were found with other causative pathogens, such as Streptococcus pneumoniae and Neisseria meningitidis. At the time of discharge, patients with meningitis caused by Gram-negative bacteria who were carriers of variant TLR4 genotypes had a higher risk of ataxia (OR, 12.91; 95% CI, 1.52–109.80; p = 0.019) and other neurological sequelae (OR, 11.85; 95% CI, 1.07–131.49; p = 0.044) than those with the wild-type TLR4 genotype. Our study suggests an association between H. influenzae meningitis and genetic variation between TLR4 and TLR9 in Angolan children.
Collapse
|
11
|
Georgescu AM, Banescu C, Azamfirei R, Hutanu A, Moldovan V, Badea I, Voidazan S, Dobreanu M, Chirtes IR, Azamfirei L. Evaluation of TNF-α genetic polymorphisms as predictors for sepsis susceptibility and progression. BMC Infect Dis 2020; 20:221. [PMID: 32171247 PMCID: PMC7071754 DOI: 10.1186/s12879-020-4910-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background The goal of the study was to evaluate a potential role for tumor necrosis factor alpha (TNF-α) genetic variability as biomarker in sepsis. In particular, we aimed to determine if single nucleotide polymorphisms (SNPs) of TNF-α gene are associated with sepsis in terms of risk, severity and outcome. Methods We performed a prospective study on 163 adult critically ill septic patients (septic shock 65, sepsis 98, further divided in 40 survivors and 123 deceased) and 232 healthy controls. Genotyping of TNF-α SNPs (-308G/A, -238G/A, -376G/A and +489G/A) was performed for all patients and controls and plasma cytokine levels were measured during the first 24 h after sepsis onset. Results TNF-α +489G/A A-allele carriage was associated with significantly lower risk of developing sepsis and sepsis shock (AA+AG vs GG: OR = 0.53; p = 0.004; 95% CI = 0.34–0.82 and OR = 0.39; p = 0.003; 95% CI = 0.21–0.74, respectively) but not with sepsis-related outcomes. There was no significant association between any of the other TNF-α promoter SNPs, or their haplotype frequencies and sepsis or septic shock risk. Circulating TNF-α levels were higher in septic shock; they were not correlated with SNP genotype distribution; GG homozygosity for each polymorphism was correlated with higher TNF-α levels in septic shock. Conclusions TNF-α +489G/A SNP A-allele carriage may confer protection against sepsis and septic shock development but apparently does not influence sepsis-related mortality. Promoter TNF-α SNPs did not affect transcription and were not associated with distinct sepsis, septic shock risk or outcomes.
Collapse
Affiliation(s)
- Anca Meda Georgescu
- Infectious Diseases Clinic, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu St, 540139, Targu Mures, Romania
| | - Claudia Banescu
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu St, 540139, Targu Mures, Romania.
| | - Razvan Azamfirei
- Johns Hopkins School of Medicine, Johns Hopkins University, 733 N Broadway, Baltimore, MD, 21202, USA
| | - Adina Hutanu
- Immunology Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu St, 540139, Targu Mures, Romania
| | - Valeriu Moldovan
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu St, 540139, Targu Mures, Romania
| | - Iudita Badea
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu St, 540139, Targu Mures, Romania
| | - Septimiu Voidazan
- Department of Epidemiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu St, 540139, Targu Mures, Romania
| | - Minodora Dobreanu
- Immunology Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu St, 540139, Targu Mures, Romania
| | - Ioana Raluca Chirtes
- Infectious Diseases Clinic, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu St, 540139, Targu Mures, Romania
| | - Leonard Azamfirei
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 38 Gh. Marinescu St, 540139, Targu Mures, Romania
| |
Collapse
|
12
|
Tarragô AM, da Silva Neto PV, Ramasawmy R, Pereira GL, Toro DM, de Amorim Xabregas L, Costa AG, Victória MB, da Silva Victória F, Malheiro A. Combination of genetic polymorphisms in TLR influence cytokine profile in HCV patients treated with DAAs in the State of Amazonas. Cytokine 2020; 130:155052. [PMID: 32179425 DOI: 10.1016/j.cyto.2020.155052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
Hepatitis C is a public health problem and affects approximately 3% of the world's population. HCV infections have a wide spectrum of clinical manifestations, and several single nucleotide polymorphisms (SNPs) in the genes of the toll-like receptors are cited to influence the clinical outcomes. A cross-sectional study was conducted in the Amazonas State, Brazil in which SNPs in TLR4 and TLR9 genes were genotyped by PCR-RFLP in 151 HCV chronic liver disease patients and 206 healthy donors. The circulating cytokines IL-6, TNF, IL-10, IL-2, IFN-γ, IL-4 and IL-17A were measured by cytometric bead array (CBA) which revealed that the combined genotypes of TLR9 -1237T/T and -1486C/T seem to influence the cytokine profile under lipopolysaccharide (LPS) stimulation of the Th17 profile, especially among patients with advanced chronic liver disease when treated with DAAs.
Collapse
Affiliation(s)
- Andréa Monteiro Tarragô
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Amazonas, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil.
| | - Pedro Vieira da Silva Neto
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Amazonas, Brazil
| | - Rajendranath Ramasawmy
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil; Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Amazonas, Brazil
| | - Grenda Leite Pereira
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Amazonas, Brazil
| | - Diana Mota Toro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Amazonas, Brazil
| | - Lilyane de Amorim Xabregas
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Allyson Guimaraes Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil; Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil; Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Amazonas, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Marilú Barbieri Victória
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil; Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil
| | - Flamir da Silva Victória
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil; Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Amazonas, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil.
| |
Collapse
|
13
|
Zhu Y, Wei SW, Ding A, Zhu WP, Mai MF, Cui TX, Yang H, Zhang H. The Long Noncoding RNA ANRIL Promotes Cell Apoptosis in Lipopolysaccharide-Induced Acute Kidney Injury Mediated by the TLR4/Nuclear Factor-Kappa B Pathway. Kidney Blood Press Res 2020; 45:209-221. [PMID: 32069473 DOI: 10.1159/000505154] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/01/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The purpose of this study is to analyze the expression and biological function of lncRNA ANRIL, microRNA-199a, TLR4, and nuclear factor-kappa B (NF-κB) in acute renal injury (AKI) induced by lipopolysaccharide (LPS). METHODS The levels of ANRIL and microRNA-199a in mouse cells and kidneys were detected by quantitative-polymerase chain reaction. Western blot analysis was used for the NF-κB pathway protein. MTT assay was used for cell viability. Enzyme-linked immunosorbent assay was used for the secretion of inflammatory factors in mouse kidney tissue. Apoptosis was measured by flow cytometry and Western blotting. The potential binding region between ANRIL and miR-199a was verified by luciferase reporter assay. RESULTS The upregulation of ANRIL can reduce the expression of microRNA-199a and increases the number of apoptotic cells. The expression levels of ANRIL in LPS-induced AKI mice and LPS-treated HK2 cells were upregulated compared with the control group. Overexpression of ANRIL increased apoptosis and promoted TLR4 (Toll-like receptor 4), NF-κB phosphorylation, and downstream transcription factor production. CONCLUSION ANRIL/NF-κB pathway in LPS-induced apoptosis provided theoretical guidance for ANRIL in the treatment of AKI.
Collapse
Affiliation(s)
- Ye Zhu
- Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China,
| | - Sheng-Wei Wei
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ao Ding
- Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wei-Ping Zhu
- Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Mei-Fang Mai
- Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Tong-Xia Cui
- Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hui Yang
- Department of Rheumatology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hua Zhang
- Department of Rheumatology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
14
|
Li Y, Guo W, Cai Y. NEAT1 Promotes LPS-induced Inflammatory Injury in Macrophages by Regulating MiR-17-5p/TLR4. Open Med (Wars) 2020; 15:38-49. [PMID: 32099901 PMCID: PMC7026743 DOI: 10.1515/med-2020-0007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background The inflammatory response of macrophages is responsible for sepsis. Long noncoding RNA nuclear enriched abundant transcript 1 (NEAT1) has been reported to be involved in sepsis development. However, its underlying mechanism remains largely unclear. This study aims to investigate the effect of NEAT1 on inflammatory response of macrophages and explore the regulatory network of NEAT1/microRNA-17-5p (miR-17-5p)/Toll-like receptor 4 (TLR4). Methods The serum samples of 68 sepsis patients and 32 heathy controls were collected. THP-1 macrophages were treated with lipopolysaccharide (LPS) to induce inflammatory injury model of sepsis. The expressions of NEAT1, miR-17-5p and TLR4 were measured by quantitative real-time polymerase chain reaction or western blot. The inflammatory response was investigated by levels of inflammatory cytokines, tumor necrosis factor-alpha (TNF-ɑ), interleukin-1beta (IL-1β) and IL-6 as well as nitric oxide (NO) production. The interaction among NEAT1, miR-17-5p and TLR4 were investigated by bioinformatics analysis, luciferase reporter assay and RNA pull-down. Results NEAT1 expression was enhanced in patient serum and associated with severity of sepsis. Knockdown of NEAT1 inhibited levels of TNF-ɑ, IL-1β, IL-6 and NO release in LPS-treated macrophages. miR-17-5p is bound to NEAT1 and its abrogation reversed NEAT1 knockdown-mediated inhibition of inflammatory response in LPS-treated macrophages. Overexpression of miR-17-5p weakened LPS-induced inflammatory response. TLR4 as a target of miR-17-5p was regulated by NEAT1 and miR-17-5p. TLR4 res-to ration alleviated silencing NEAT1-induced inflammatory suppression. Conclusion Silence of NEAT1 suppressed LPS-induced inflammatory response of macrophages by mediating miR-17-5p and TLR4, indicating that NEAT1 might be a promising target for sepsis treatment.
Collapse
Affiliation(s)
- Yanhui Li
- ChenZhou NO.1 People's Hospital LuoJiaJin, ChenZhou China
| | - Wei Guo
- ICU 1 Zone, ChenZhou NO.1 People's Hospital, ChenZhou, HuNan, 423000, China
| | - Yeping Cai
- ICU 1 Zone, ChenZhou NO.1 People's Hospital, ChenZhou, HuNan, 423000, China
| |
Collapse
|
15
|
Wu D, Zhou M, Li L, Leng X, Zhang Z, Wang N, Sun Y. Severe Burn Injury Progression and Phasic Changes of Gene Expression in Mouse Model. Inflammation 2020; 42:1239-1251. [PMID: 30877509 DOI: 10.1007/s10753-019-00984-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Patients with severe burns are susceptible to infectious complications including burn-site infections and sepsis. The purpose of this study was to explore the pathologic development of burn injury in a mouse model and to screen genes dysregulated at different time points on the basis of gene expression microarrays. Differential expression analysis identified a total 223 genes that related to only time progression independent of burn injury and 214 genes with aberrant expression due to burn injury. Weighted gene co-expression network analysis (WGCNA) of the 214 genes obtained seven gene modules which named as red, blue, turquoise, green, brown, yellow, and gray module, and the blue module was found to be significantly associated with severe burn injury progression, and in which several genes were previously reported being associated with inflammation and immune response, such as interleukin IL-6, IL-8, and IL-1b. Functional enrichment analysis indicated significant enrichment of biological processes that related to metabolism and catabolism, and pathways of proteasome, notch signaling and cell cycle. This result supports a phase progression of severe burn with gene expression changes and interpretation of biological processes in mouse.
Collapse
Affiliation(s)
- Dan Wu
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China.
| | - Ming Zhou
- Department of Joint Surgery, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Liang Li
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Xiangfeng Leng
- Department of Plastic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Zheng Zhang
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Ning Wang
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| | - Yanwei Sun
- Department of Burn and Plastic Surgery, Zibo Central Hospital, Gongqingtuanxi Road, Zhangdian District, Zibo, 255036, Shandong, China
| |
Collapse
|
16
|
Mehrabadi S, Motevaseli E, Sadr SS, Moradbeygi K. Hypoxic-conditioned medium from adipose tissue mesenchymal stem cells improved neuroinflammation through alternation of toll like receptor (TLR) 2 and TLR4 expression in model of Alzheimer's disease rats. Behav Brain Res 2019; 379:112362. [PMID: 31739000 DOI: 10.1016/j.bbr.2019.112362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Microglia have a pivotal role to initiate immune responses in AD brains through toll-like receptors and induce neuroinflammation. Adipose tissue mesenchymal stem cells (ATSCs) secret many neurotrophic and anti-inflammatory factors called conditioned medium (CM). Many studies have demonstrated that CM of mesenchymal stem cells facilitate regeneration and attenuates inflammation in many disorders. To this purpose, the effect of ATSCs-conditioned medium (ATSC-CM) on brain inflammation and the role of toll-like receptors were investigated in this study. Seventy-two rats were randomly divided into 6 groups: control, sham, sham+ATSC-CM: 200μl ATSC-CM once a day intraperitoneally for 8 days, AD group injected the Aβ1-40 intra-hippocampal, AD+ASC-CM, which was injected Aβ1-40 intra-hippocampal and 200μl ATSC-CM once a day intraperitoneally for 8 days and AD+ rivastigmine: was injected Aβ1-40 intra-hippocampal and received rivastigmine (0.6 mg/kg) orally once a day for 2 weeks. Memory and learning were measured by Morris water maze and novel object recognition tests. For detection of beta-amyloid plaque, Congo red staining was used, and neuronal survival was assessed by Nissl staining. Expression of TLR2 and TLR4 was measured by real-time PCR, and finally, to assess inflammation markers (IL-1β and TNF-α) in the hippocampus, ELISA kits were used. In treatment group spatial and recognition memory significantly was improved. ATSC-CM administration decreased beta amyloid plaques and enhanced neuronal survival in AD brain rats. In addition, TLR2 and TLR4 expression decreased in treatment group. Results also showed that ATSC-CM reduced IL-1β and TNF-α as inflammation markers. ATSC-CM improved memory deficit, decreased beta amyloids formation, increased neuron survival, and attenuated inflammation by reducing the expression of TLRs.
Collapse
Affiliation(s)
- Shima Mehrabadi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Khadijeh Moradbeygi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Nursing, Abadan Faculty of Medical Sciences, Abadan, Iran
| |
Collapse
|
17
|
Siewiera J, Mews J, Królikowska K, Kalicki B, Jobs K. Hyperbaric oxygenation in pediatrics: indications in the light of evidence - based medicine. DEVELOPMENTAL PERIOD MEDICINE 2019; 23. [PMID: 31280252 PMCID: PMC8522372 DOI: 10.34763/devperiodmed.20192302.142148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperbaric oxygen therapy (HBOT), which is a centuries-old treatment, has now increasingly often been used in the pediatric population. The basic indications for HBOT are well-known disease entities, i.e. carbon monoxide poisoning or decompression sickness. Due to the immunomodulatory properties of hyperbaric oxygen, attempts are made to use HBOT in the treatment of atopic dermatitis or inflammatory bowel diseases. The close cooperation between pediatricians and hyperbaric medicine teams is very important to obtain optimal results. The aim of this article is to present the mechanism of hyperbaric oxygen activity, and its influence on selected disease entities. The paper outlines new perspectives for HBOT in the pediatric population.
Collapse
Affiliation(s)
- Jacek Siewiera
- Clinical Department of Hyperbaric Medicine at the Military Institute of Medicine, Warsaw, Poland,Judyta Mews Klinika Pediatrii Nefrologii i Alergologii Dziecięcej Wojskowy Instytut Medyczny ul. Szaserów 128, 04-141 Warszawa tel. 507 299 035
| | - Judyta Mews
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine, Warsaw, Poland,Judyta Mews Klinika Pediatrii Nefrologii i Alergologii Dziecięcej Wojskowy Instytut Medyczny ul. Szaserów 128, 04-141 Warszawa tel. 507 299 035
| | - Katarzyna Królikowska
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine, Warsaw, Poland
| | - Bolesław Kalicki
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine, Warsaw, Poland
| | - Katarzyna Jobs
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
18
|
Flagellin-independent effects of a Toll-like receptor 5 polymorphism in the inflammatory response to Burkholderia pseudomallei. PLoS Negl Trop Dis 2019; 13:e0007354. [PMID: 31067234 PMCID: PMC6527242 DOI: 10.1371/journal.pntd.0007354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/20/2019] [Accepted: 04/02/2019] [Indexed: 01/07/2023] Open
Abstract
Background Toll-like receptors (TLRs) are sentinel receptors of the innate immune system. TLR4 detects bacterial lipopolysaccharide (LPS) and TLR5 detects bacterial flagellin. A common human nonsense polymorphism, TLR5:c.1174C>T, results in a non-functional TLR5 protein. Individuals carrying this variant have decreased mortality from melioidosis, infection caused by the flagellated Gram-negative bacterium Burkholderia pseudomallei. Although impaired flagellin-dependent signaling in carriers of TLR5:c.1174C>T is well established, this study tested the hypothesis that a functional effect of TLR5:c.1174C>T is flagellin-independent and involves LPS-TLR4 pathways. Methodology/Principal findings Whole blood from two independent cohorts of individuals genotyped at TLR5:c.1174C>T was stimulated with wild type or aflagellated B. pseudomallei or purified bacterial motifs followed by plasma cytokine measurements. Blood from individuals carrying the TLR5:c.1174C>T variant produced less IL-6 and IL-10 in response to an aflagellated B. pseudomallei mutant and less IL-8 in response to purified B. pseudomallei LPS than blood from individuals without the variant. TLR5 expression in THP1 cells was silenced using siRNA; these cells were stimulated with LPS before cytokine levels in cell supernatants were quantified by ELISA. In these cells following LPS stimulation, silencing of TLR5 with siRNA reduced both TNF-α and IL-8 levels. These effects were not explained by differences in TLR4 mRNA expression or NF-κB or IRF activation. Conclusions/Significance The effects of the common nonsense TLR5:c.1174C>T polymorphism on the host inflammatory response to B. pseudomallei may not be restricted to flagellin-driven pathways. Moreover, TLR5 may modulate TLR4-dependent cytokine production. While these results may have broader implications for the role of TLR5 in the innate immune response in melioidosis and other conditions, further studies of the mechanisms underlying these observations are required. Toll-like receptors (TLRs) are important receptors of the innate immune system. TLR4 detects bacterial lipopolysaccharide (LPS) and TLR5 detects bacterial flagellin. A common human polymorphism in TLR5 encodes a shortened protein and blunts the immune response to flagellin. Individuals carrying this variant have decreased mortality from melioidosis, infection caused by the flagellated Gram-negative bacterium Burkholderia pseudomallei. The mechanism of protection is not known. We tested the hypothesis that the observed effect of the polymorphism is independent of flagellin and involves LPS-TLR4 pathways. We found that blood from individuals carrying the polymorphism produced lower levels of cytokines IL-6 and IL-10 in response to an aflagellated B. pseudomallei mutant and less IL-8 in response to purified B. pseudomallei LPS than blood from individuals without the variant. We further observed that in THP1 cells stimulated with LPS, silencing of TLR5 with siRNA reduced levels of both TNF-α and IL-8. These effects were not explained by differences in TLR4 mRNA expression. We conclude that the effects of the TLR5 polymorphism on the host inflammatory response to B. pseudomallei may not be restricted to flagellin-driven pathways. These results provide insights into the role of TLR5 in the innate immune response in melioidosis and other conditions.
Collapse
|
19
|
Chen Y, Hu Y, Song Z. The association between interleukin-6 gene -174G/C single nucleotide polymorphism and sepsis: an updated meta-analysis with trial sequential analysis. BMC MEDICAL GENETICS 2019; 20:35. [PMID: 30782124 PMCID: PMC6379942 DOI: 10.1186/s12881-019-0766-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
Background This article intends to explore the association between interleukin-6 gene (IL-6) -174 G/C single nucleotide polymorphism (SNP) and the risk and mortality of sepsis by conducting this updated meta-analysis with trial sequential analysis. Methods References were made to PubMed, Web of Science, China National Knowledge Infrastructure for studies available by September 2018. Each publication was screened for its eligibility and data accessible. Statistical analysis was conducted on Stata 14.1 and TSA software 0.9.5.10 Beta Results Twenty studies (including 3282 cases and 4926 controls) and eight studies (including 610 cases and 1856 controls) were respectively enrolled in the analysis on the association between IL-6-174 G/C polymorphism and the risk and mortality of sepsis. The results did not present any association between IL-6-174 G/C polymorphism and the risk and mortality of sepsis. An exception was that IL-6-174 G/C polymorphism was correlated with worse outcome in non-adults in recessive model, co-dominant model (CC vs. GG) and allelic model, while trial sequential analysis revealed it could be a false positive result nevertheless. Conclusions IL-6-174 G/C polymorphism is not associated with the risk and mortality of sepsis. Trial sequential analysis showed that a large sample size was needed to get a more reliable result of the association between IL-6-174 G/C polymorphism and sepsis in non-adults. Electronic supplementary material The online version of this article (10.1186/s12881-019-0766-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yao Chen
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yanyan Hu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhenju Song
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
20
|
From traditional biochemical signals to molecular markers for detection of sepsis after burn injuries. Burns 2019; 45:16-31. [DOI: 10.1016/j.burns.2018.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/28/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
|
21
|
An Enrichment Strategy Yields Seven Novel Single Nucleotide Polymorphisms Associated With Mortality and Altered Th17 Responses Following Blunt Trauma. Shock 2019; 49:259-268. [PMID: 28930911 DOI: 10.1097/shk.0000000000000987] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trauma is the leading cause of death worldwide for individuals under the age of 55. Interpatient genomic differences, in the form of candidate single-nucleotide polymorphisms (SNPs), have been associated previously with adverse outcomes after trauma. However, the utility of these SNPs to predict outcomes based on a meaningful endpoint such as survival is as yet undefined. We hypothesized that specific SNP haplotypes could segregate trauma survivors from non-survivors. Genomic DNA samples were obtained from 453 blunt trauma patients, for whom complete daily clinical and biomarker data were available for 397. Of these, 13 patients were non-survivors and the remaining 384 were survivors. All 397 DNA samples were amplified, fragmented, and examined for 551,839 SNPs using the Illumina Infinium CoreExome-24 v1.1 BeadChip (Illumina). To enrich for likely important SNPs, we initially compared SNPs of the 13 non-survivors versus 13 matched survivors, who were matched algorithmically for injury severity score (ISS), age, and gender ratio. This initial enrichment yielded 126 SNPs; a further comparison to the haplotypes of the remaining 371 survivors yielded a final total of 7 SNPs that distinguished survivors from non-survivors. Furthermore, severely injured survivors with the same seven SNPs as non-survivor exhibited distinct inflammatory responses from similarly injured survivors without those SNPs, and specifically had evidence of altered Th17 cell phenotypes based on computational modeling. These studies suggest an interaction among genetic polymorphism, injury severity, and initial inflammatory responses in driving trauma outcomes.
Collapse
|
22
|
Correlation of the expression of inflammatory factors with expression of apoptosis-related genes Bax and Bcl-2, in burned rats. Exp Ther Med 2018; 17:1790-1796. [PMID: 30783451 PMCID: PMC6364214 DOI: 10.3892/etm.2018.7118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/03/2018] [Indexed: 12/25/2022] Open
Abstract
Correlation of the expression of inflammatory factors with expression of apoptosis-related genes, B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X protein (Bax), in burned rats was investigated. Forty healthy Sprague-Dawley rats were selected and randomly divided into SHAM group (n=10), I° burn group (n=10), II° burn group (n=10) and III° burn group (n=10). Changes in tumor necrosis factor-α (TNF-α), Bax messenger ribonucleic acid (mRNA), Bcl-2 mRNA, Bax protein and Bcl-2 protein expression levels were detected. The correlation of TNF-α, Bax and Bcl-2 with the degree of burn in rats was observed, and the correlation of TNF-α with Bax and Bcl-2 was also analyzed. Moreover, Bax mRNA and Bcl-2 mRNA were detected via reverse transcription-quantitative polymerase chain reaction, and TNF-α, Bax protein and Bcl-2 protein were detected via enzyme-linked immunosorbent assay. In burn groups, TNF-α, Bax mRNA and Bax protein levels were significantly increased at each time point compared with those at the previous time point (P<0.05), but Bcl-2 mRNA and protein levels were significantly decreased compared with those at the previous time point (P<0.05). At the same time point, TNF-α, Bax mRNA, Bcl-2 mRNA, Bax protein and Bcl-2 protein expression levels had statistically significant differences between any given two groups (P<0.05). The TNF-α expression level was positively correlated with Bax expression levels and negatively correlated with Bcl-2 expression levels. Additionally, TNF-α, Bax mRNA and Bax protein had positive correlations with the degree of burn and time after burn, while Bcl-2 mRNA and Bcl-2 protein had negative correlations with the degree of burn and time after burn. Continuous monitoring of changes in the TNF-α level can be used as a means to evaluate the degree of burn and apoptosis, and to prevent the deepening of burn wounds, thus facilitating the early clinical evaluation of prognosis.
Collapse
|
23
|
Evangelatos N, Bauer P, Reumann M, Satyamoorthy K, Lehrach H, Brand A. Metabolomics in Sepsis and Its Impact on Public Health. Public Health Genomics 2018; 20:274-285. [PMID: 29353273 DOI: 10.1159/000486362] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/16/2017] [Indexed: 12/11/2022] Open
Abstract
Sepsis, with its often devastating consequences for patients and their families, remains a major public health concern that poses an increasing financial burden. Early resuscitation together with the elucidation of the biological pathways and pathophysiological mechanisms with the use of "-omics" technologies have started changing the clinical and research landscape in sepsis. Metabolomics (i.e., the study of the metabolome), an "-omics" technology further down in the "-omics" cascade between the genome and the phenome, could be particularly fruitful in sepsis research with the potential to alter the clinical practice. Apart from its benefit for the individual patient, metabolomics has an impact on public health that extends beyond its applications in medicine. In this review, we present recent developments in metabolomics research in sepsis, with a focus on pneumonia, and we discuss the impact of metabolomics on public health, with a focus on free/libre open source software.
Collapse
Affiliation(s)
- Nikolaos Evangelatos
- Intensive Care Medicine Unit, Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, Nuremberg, Germany.,UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Maastricht, the Netherlands
| | - Pia Bauer
- Intensive Care Medicine Unit, Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Matthias Reumann
- UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Maastricht, the Netherlands.,IBM Research - Zurich, Rueschlikon, Switzerland
| | | | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Angela Brand
- UNU-MERIT (Maastricht Economic and Social Research Institute on Innovation and Technology), Maastricht University, Maastricht, the Netherlands.,Public Health Genomics, Department of International Health, Maastricht University, Maastricht, the Netherlands.,Manipal University, Madhav Nagar, Manipal, India
| |
Collapse
|
24
|
Zhang Y, Cui X, Ning L, Wei D. The effects of tumor necrosis factor-α (TNF-α) rs1800629 and rs361525 polymorphisms on sepsis risk. Oncotarget 2017; 8:111456-111469. [PMID: 29340067 PMCID: PMC5762335 DOI: 10.18632/oncotarget.22824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/13/2017] [Indexed: 01/20/2023] Open
Abstract
This meta-analysis of 23 eligible articles comprehensively and quantitatively evaluated the effects of tumor necrosis factor-α (TNF-α) rs1800629 and rs361525 polymorphisms on sepsis risk. We found that TNF-α rs1800629 was associated with increased sepsis risk in the overall population in four genetic models, including A vs. G (P<0.001, odds ratio (OR)=1.32), GA vs. GG (P<0.001, OR=1.46), GA+AA vs. GG (P<0.001, OR=1.46), and carrier A vs. carrier G (P<0.001, OR=1.32). Subgroup analyses showed a similar result for Asian patients (all P<0.05, OR>1). TNF-α rs361525 was also associated with increased sepsis risk in Asian patients in the four genetic models (all P<0.05, OR>1). Begg's and Egger's tests excluded large publication bias, and sensitivity analysis indicated stable results. Our results suggest that the G/A genotype of TNF-α rs1800629 and rs361525 increases sepsis risk in an Asian population.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin 300211, PR China.,School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, PR China
| | - Xiaoteng Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Li Ning
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin 300211, PR China
| | - Dianjun Wei
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin 300211, PR China
| |
Collapse
|
25
|
Tumor necrosis factor-α -308 G/A polymorphism and risk of sepsis, septic shock, and mortality: an updated meta-analysis. Oncotarget 2017; 8:94910-94919. [PMID: 29212277 PMCID: PMC5706923 DOI: 10.18632/oncotarget.20862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/27/2017] [Indexed: 02/05/2023] Open
Abstract
Background The -308G/A polymorphism in the gene encoding tumor necrosis factor-α (TNF-α) has been implicated in sepsis risk in many studies but with variable results. This study aimed to comprehensively assess the evidence of association between this polymorphism and risk of sepsis and sepsis-related mortality. Materials and Methods PubMed, EMBASE and other databases were searched to identify relevant studies, and data were analyzed using Review Manager 5.0 and STATA 12.0. Results Data from 34 publications involving 12,284 subjects were meta-analyzed. Combined analysis revealed an association between TNF-α -308G/A gene polymorphism and risk of sepsis (AA+GA vs. GG, OR 1.35, 95% CI 1.10–1.67, P = 0.005). This association was observed in the Caucasian subgroup (OR 1.50, 95% CI 1.13–2.00, P = 0.006), but not in the Asian subgroup. Across the entire study population, the polymorphism was also significantly related to septic shock risk (OR 1.52, 95% CI 1.18–1.95, P = 0.001) but not to sepsis-related mortality (OR 0.99, 95% CI 0.71–1.40, P = 0.97). Conclusions This meta-analysis suggests that the -308G/A gene polymorphism in the TNF-α gene may contribute to risk of sepsis and septic shock, but not risk of mortality.
Collapse
|
26
|
Nunez Lopez O, Cambiaso-Daniel J, Branski LK, Norbury WB, Herndon DN. Predicting and managing sepsis in burn patients: current perspectives. Ther Clin Risk Manag 2017; 13:1107-1117. [PMID: 28894374 PMCID: PMC5584891 DOI: 10.2147/tcrm.s119938] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Modern burn care has led to unprecedented survival rates in burn patients whose injuries were fatal a few decades ago. Along with improved survival, new challenges have emerged in the management of burn patients. Infections top the list of the most common complication after burns, and sepsis is the leading cause of death in both adult and pediatric burn patients. The diagnosis and management of sepsis in burns is complex as a tremendous hypermetabolic response secondary to burn injury can be superimposed on systemic infection, leading to organ dysfunction. The management of a septic burn patient represents a challenging scenario that is commonly encountered by providers caring for burn patients despite preventive efforts. Here, we discuss the current perspectives in the diagnosis and treatment of sepsis and septic shock in burn patients.
Collapse
Affiliation(s)
- Omar Nunez Lopez
- Department of Surgery, University of Texas Medical Branch.,Shriners Hospitals for Children, Galveston, TX, USA
| | - Janos Cambiaso-Daniel
- Department of Surgery, University of Texas Medical Branch.,Shriners Hospitals for Children, Galveston, TX, USA.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Ludwik K Branski
- Department of Surgery, University of Texas Medical Branch.,Shriners Hospitals for Children, Galveston, TX, USA
| | - William B Norbury
- Department of Surgery, University of Texas Medical Branch.,Shriners Hospitals for Children, Galveston, TX, USA
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch.,Shriners Hospitals for Children, Galveston, TX, USA.,Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
27
|
Acar L, Atalan N, Karagedik EH, Ergen A. Tumour Necrosis Factor-alpha and Nuclear Factor-kappa B Gene Variants in Sepsis. Balkan Med J 2017; 35:30-35. [PMID: 28840846 PMCID: PMC5820445 DOI: 10.4274/balkanmedj.2017.0246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: The humoral system is activated and various cytokines are released due to infections in tissues and traumatic damage. Nuclear factor-kappa B dimers are encoded by nuclear factor-kappa B genes and regulate transcription of several crucial proteins of inflammation such as tumour necrosis factor-alpha. Aims: To investigate the possible effect of polymorphisms on tumour necrosis factor-alpha serum levels with clinical and prognostic parameters of sepsis by determining the nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A) gene polymorphisms and tumour necrosis factor-alpha serum levels. Study Design: Case-control study. Methods: Seventy-two patients with sepsis and 104 healthy controls were included in the study. In order to determine the polymorphisms of nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A), polymerase chain reaction–restriction fragment length polymorphism analysis was performed and serum tumour necrosis factor-alpha levels were determined using an enzyme-linked immunosorbent assay. Results: We observed no significant differences in tumour necrosis factor-alpha serum levels between the study groups. In the patient group, an increase in the tumour necrosis factor-alpha serum levels in patients carrying the tumour necrosis factor-alpha (-308 G/A) A allele compared to those without the A allele was found to be statistically significant. Additionally, an increase in the tumour necrosis factor-alpha serum levels in patients carrying tumour necrosis factor-alpha (-308 G/A) AA genotype compared with patients carrying the AG or GG genotypes was statistically significant. No significant differences were found in these 2 polymorphisms between the patient and control groups (p>0.05). Conclusion: Our results showed the AA genotype and the A allele of the tumour necrosis factor-alpha (-308 G/A) polymorphism may be used as a predictor of elevated tumour necrosis factor-alpha levels in patients with sepsis.
Collapse
Affiliation(s)
- Leyla Acar
- Department of Molecular Medicine, İstanbul University Institute of Experimental Medicine, İstanbul, Turkey
| | - Nazan Atalan
- Clinic of Anesthesia and Reanimation, Siyami Ersek Thoracic Cardiovascular Surgery Training and Research Hospital, İstanbul, Turkey
| | - E Hande Karagedik
- Department of Molecular Medicine, İstanbul University Institute of Experimental Medicine, İstanbul, Turkey
| | - Arzu Ergen
- Department of Molecular Medicine, İstanbul University Institute of Experimental Medicine, İstanbul, Turkey
| |
Collapse
|
28
|
Iampietro M, Younan P, Nishida A, Dutta M, Lubaki NM, Santos RI, Koup RA, Katze MG, Bukreyev A. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathog 2017; 13:e1006397. [PMID: 28542576 PMCID: PMC5456411 DOI: 10.1371/journal.ppat.1006397] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/02/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022] Open
Abstract
Fatal outcomes of Ebola virus (EBOV) infections are typically preceded by a 'sepsis-like' syndrome and lymphopenia despite T cells being resistant to Ebola infection. The mechanisms that lead to T lymphocytes death remain largely unknown; however, the degree of lymphopenia is highly correlative with fatalities. Here we investigated whether the addition of EBOV or its envelope glycoprotein (GP) to isolated primary human CD4+ T cells induced cell death. We observed a significant decrease in cell viability in a GP-dependent manner, which is suggestive of a direct role of GP in T cell death. Using immunoprecipitation assays and flow cytometry, we demonstrate that EBOV directly binds to CD4+ T cells through interaction of GP with TLR4. Transcriptome analysis revealed that the addition of EBOV to CD4+ T cells results in the significant upregulation of pathways associated with interferon signaling, pattern recognition receptors and intracellular activation of NFκB signaling pathway. Both transcriptome analysis and specific inhibitors allowed identification of apoptosis and necrosis as mechanisms associated with the observed T cell death following exposure to EBOV. The addition of the TLR4 inhibitor CLI-095 significantly reduced CD4+ T cell death induced by GP. EBOV stimulation of primary CD4+ T cells resulted in a significant increase in secreted TNFα; inhibition of TNFα-mediated signaling events significantly reduced T cell death while inhibitors of both necrosis and apoptosis similarly reduced EBOV-induced T cell death. Lastly, we show that stimulation with EBOV or GP augments monocyte maturation as determined by an overall increase in expression levels of markers of differentiation. Subsequently, the increased rates of cellular differentiation resulted in higher rates of infection further contributing to T cell death. These results demonstrate that GP directly subverts the host's immune response by increasing the susceptibility of monocytes to EBOV infection and triggering lymphopenia through direct and indirect mechanisms.
Collapse
Affiliation(s)
- Mathieu Iampietro
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Patrick Younan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Andrew Nishida
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Mukta Dutta
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Ndongala Michel Lubaki
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rodrigo I. Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Wu Q, Xu X, Ren J, Liu S, Liao X, Wu X, Hu D, Wang G, Gu G, Kang Y, Li J. Association between the -159C/T polymorphism in the promoter region of the CD14 gene and sepsis: a meta-analysis. BMC Anesthesiol 2017; 17:11. [PMID: 28122493 PMCID: PMC5264438 DOI: 10.1186/s12871-017-0303-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/16/2017] [Indexed: 02/05/2023] Open
Abstract
Background The association between CD14-159C/T polymorphism and sepsis has been assessed but results of current studies appeared conflicting and inconstant. This analysis was aimed to determine whether the CD14-159C/T polymorphism confers susceptibility to sepsis or is associated with increased risk of death from sepsis. Method The authors conducted a comprehensive search of PubMed, EMBASE, ISI Web of Science, Cochrane library, ScienceDirect, Wiley Online Library and CNKI databases according to a prespecified protocol. Language limits were restricted to English and Chinese. Two reviewers independently selected the articles and extracted relevant data onto standardized forms. Disagreements were settled by discussion and suggestions from senior consultants. The strength of association were evaluated by odds ratio (OR) and 95% confidence interval (CI). Studies failed to fit the Hardy-Weinberg-Equilibrium were excluded. Results The research identified a total of 2317 full-text articles of which 14 articles met the predefined inclusion criteria. Meta-analysis was performed for allele frequency of C versus T, as well as genotypes CC + CT versus TT (dominant model), CC versus TT + CT (recessive model), CT versus TT and CC versus TT (additive model). All control samples were in Hardy-Weinberg proportion. No significant association between CD14-159C/T polymorphism and sepsis susceptibility or mortality were detected in the overall population. Nonetheless, subgroup analysis of Asian ethnicity revealed significant association between the CD14-159C/T polymorphism and susceptibility to sepsis in additive model (CC versus TT: OR = 0.52, 95% CI 0.29–0.92, p = 0.03) and recessive model (CC versus CT + TT: OR = 0.50, 95% CI 0.30–0.84, p = 0.009). Of note, three out of the five papers included in the subgroup focused exclusively on burn ICU patients. Conclusions This meta-analysis demonstrated that CD14-159C/T polymorphism is likely to be associated with susceptibility to sepsis in Asian population, especially for the TT genotype. However, bias may rise for etiologic reasons because the majority of subjects in the subgroup came from burn ICU. CD14-159C/T polymorphism is not relevant to sepsis mortality in any genetic models, regardless of the ethnicities. Due to the exploratory nature of the study, no adjustment for multiple testing was adopted, and therefore the results should be interpreted with precaution. Well-designed studies with larger sample size and more ethnic groups are required to further validate the results. Electronic supplementary material The online version of this article (doi:10.1186/s12871-017-0303-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qin Wu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhong Shan Road, Nanjing, 210002, China.,Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomeng Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhong Shan Road, Nanjing, 210002, China
| | - Jianan Ren
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhong Shan Road, Nanjing, 210002, China.
| | - Song Liu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhong Shan Road, Nanjing, 210002, China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiuwen Wu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhong Shan Road, Nanjing, 210002, China
| | - Dong Hu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhong Shan Road, Nanjing, 210002, China
| | - Gefei Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhong Shan Road, Nanjing, 210002, China
| | - Guosheng Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhong Shan Road, Nanjing, 210002, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhong Shan Road, Nanjing, 210002, China
| |
Collapse
|
30
|
Research Advances in Biomarker for Sepsis. ADVANCED TRAUMA AND SURGERY 2017. [PMCID: PMC7120075 DOI: 10.1007/978-981-10-2425-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sepsis is one of the most common causes of death in severely injured patients worldwide. The early detection of sepsis still has to be solved in clinical practice. The delayed diagnosis often contributes to inappropriate antimicrobial treatment and subsequent high mortality. Sepsis biomarkers are produced during the host response to infection. Traditional biomarkers are polypeptides and/or proteins derived from this response. Omics-based biomarkers are screening out from all kinds of molecules of host response while high-throughout omics technologies are emerging. This review describes traditional and potential omics-based sepsis biomarkers from currently available literatures. The combination of these biomarkers would refine the identification of sepsis for further clinical and experimental sepsis studies.
Collapse
|
31
|
The relationship between toll like receptor 4 gene rs4986790 and rs4986791 polymorphisms and sepsis susceptibility: A meta-analysis. Sci Rep 2016; 6:38947. [PMID: 27958344 PMCID: PMC5154189 DOI: 10.1038/srep38947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidences have demonstrated that lipopolysaccharide (LPS) represents the important etiologic factor for sepsis. Some previous studies have reported the relationship between common polymorphisms rs4986790 and rs4986791 in the coding gene for this receptor and the susceptibility to sepsis, but there were distinct divergences between those findings. We therefore designed this meta-analysis incorporated 28 published articles containing 6,537 sepsis patients and 8,832 controls for a more comprehensive conclusion on this matter. Odds ratios (ORs) and 95% confidence interval (95% CIs) were calculated to evaluate the association of toll like receptor 4 gene polymorphisms rs4986790 and rs4986791 with sepsis risk. Heterogeneity between included studies was inspected using Q test, and sensitivity analysis was implemented via sequential deletion of each included study to investigate the stability of overall estimates. Funnel plot and Egger’s test were adopted to examine publication bias across selected studies. We found no significant association for either the polymorphism rs4986790 or rs4986791 with sepsis susceptibility in total analysis under any genetic models. Neither did we after combining these two polymorphisms. The results of this meta-analysis suggest that the rs4986790 and rs4986791 polymorphisms in toll like receptor 4 gene may have no statistically significant influence on sepsis susceptibility.
Collapse
|
32
|
Early Prediction of Sepsis Incidence in Critically Ill Patients Using Specific Genetic Polymorphisms. Biochem Genet 2016; 55:193-203. [PMID: 27943002 DOI: 10.1007/s10528-016-9785-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/02/2016] [Indexed: 01/13/2023]
Abstract
Several diagnostic methods for the evaluation and monitoring were used to find out the pro-inflammatory status, as well as incidence of sepsis in critically ill patients. One such recent method is based on investigating the genetic polymorphisms and determining the molecular and genetic links between them, as well as other sepsis-associated pathophysiologies. Identification of genetic polymorphisms in critical patients with sepsis can become a revolutionary method for evaluating and monitoring these patients. Similarly, the complications, as well as the high costs associated with the management of patients with sepsis, can be significantly reduced by early initiation of intensive care.
Collapse
|
33
|
Lorente L, Martín MM, Pérez-Cejas A, Barrios Y, Solé-Violán J, Ferreres J, Labarta L, Díaz C, Jiménez A. Association between Interleukin-6 Promoter Polymorphism (-174 G/C), Serum Interleukin-6 Levels and Mortality in Severe Septic Patients. Int J Mol Sci 2016; 17:ijms17111861. [PMID: 27834822 PMCID: PMC5133861 DOI: 10.3390/ijms17111861] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 12/29/2022] Open
Abstract
The association between interleukin (IL)-6 promoter polymorphism (-174 G/C), circulating IL-6 levels and mortality in septic patients has scarcely been addressed, and then only in studies of small sample size, and a direct association among them has not been previously reported. Therefore, the purpose of our study was to determine whether this association exists. An observational, prospective and multicenter study including severe septic patients was undertaken and serum IL-6 levels at severe sepsis diagnosis and IL-6 promoter polymorphism (-174 G/C) were determined. The end-point of the study was 30-day mortality. The study included 263 patients with the following genotypes of IL-6 promoter polymorphism (-174 G/C): 123 (46.8%) GG, 110 (41.8%) GC and 30 (11.4%) CC. CC homozygous patients showed lower sepsis-related organ failure assessment (SOFA) score, serum IL-6 levels and mortality at 30 days compared to those with other genotypes (GC or GG). On regression analysis, CC homozygous patients showed lower 30-day mortality than those with genotype GG (odds ratio = 0.21; 95% CI = 0.053−0.838; p = 0.03) or GC (hazard ratio = 0.28; 95% CI = 0.074−1.037; p = 0.06). The most important results of our study were that CC might be a favorable genotype in septic patients showing lower serum IL-6 levels and lower risk of death within 30 days.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320 Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Crta Rosario s/n, 38010 Santa Cruz de Tenerife, Spain.
| | - Antonia Pérez-Cejas
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320 Santa Cruz de Tenerife, Spain.
| | - Ysamar Barrios
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320 Santa Cruz de Tenerife, Spain.
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, 35010 Las Palmas de Gran Canaria, Spain.
| | - José Ferreres
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda, Blasco Ibáñez nº17, 46004 Valencia, Spain.
| | - Lorenzo Labarta
- Intensive Care Unit, Hospital San Jorge de Huesca, Avenida Martínez de Velasco nº36, 22004 Huesca, Spain.
| | - César Díaz
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria, Spain.
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna-38320, 38320 Santa Cruz de Tenerife, Spain.
| |
Collapse
|
34
|
Khan A, Khan Z, Warnakulasuriya S. Cancer-associated toll-like receptor modulation and insinuation in infection susceptibility: association or coincidence? Ann Oncol 2016; 27:984-997. [DOI: 10.1093/annonc/mdw053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
|
35
|
Jaeger M, Stappers MHT, Joosten LAB, Gyssens IC, Netea MG. Genetic variation in pattern recognition receptors: functional consequences and susceptibility to infectious disease. Future Microbiol 2016; 10:989-1008. [PMID: 26059622 DOI: 10.2217/fmb.15.37] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cells of the innate immune system are equipped with surface and cytoplasmic receptors for microorganisms called pattern recognition receptors (PRRs). PRRs recognize specific pathogen-associated molecular patterns and as such are crucial for the activation of the immune system. Currently, five different classes of PRRs have been described: Toll-like receptors, C-type lectin receptors, nucleotide-binding oligomerization domain-like receptors, retinoic acid-inducible gene I-like receptors and absent in melanoma 2-like receptors. Following their discovery, many sequence variants in PRR genes have been uncovered and shown to be implicated in human infectious diseases. In this review, we will discuss the effect of genetic variation in PRRs and their signaling pathways on susceptibility to infectious diseases in humans.
Collapse
Affiliation(s)
- Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Mark H T Stappers
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Medical Microbiology & Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Faculty of Medicine, Research group of Immunology & Biochemistry, Hasselt University, Hasselt, Belgium
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Inge C Gyssens
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Medical Microbiology & Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Faculty of Medicine, Research group of Immunology & Biochemistry, Hasselt University, Hasselt, Belgium
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
36
|
Feng B, Mao ZR, Pang K, Zhang SL, Li L. Association of tumor necrosis factor α -308G/A and interleukin-6 -174G/C gene polymorphism with pneumonia-induced sepsis. J Crit Care 2015; 30:920-3. [PMID: 26025100 DOI: 10.1016/j.jcrc.2015.04.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/03/2023]
Abstract
PURPOSE Sepsis is a lethal outcome of the inflammation and coagulation process. Human interleukin (IL)-6 and tumor necrosis factor (TNF) α are well-known inflammation factors closely associated with sepsis. In the present study, we aim to investigate the association of promoter-region polymorphisms IL-6 (-174G/C) rs1800795 and TNF-α (-308G/A) rs1800629 with pneumonia-induced sepsis. MATERIALS AND METHODS A total of 277 Chinese patients with severe pneumonia-induced sepsis were recruited into this study. All study participants were admitted to the intensive care unit until discharge or death in the First Affiliated Hospital of Zhengzhou University from July 2010 to July 2014. The patients were classified as severely septic, septic shock, and mortality. Clinical data and demographic information were recorded. TaqMan genotyping was performed to detect single nucleotide polymorphism distribution. RESULTS The genotype results demonstrated that carriers of the TNF-α rs1800629 A allele had a 4.28-fold higher risk for septic shock (adjusted odds ratio [OR], 4.28; 95% confidence interval [CI], 2.24-8.18; P < .01) compared with severe sepsis, and carriers of the IL-6 rs1800795 C allele had a 2.42-fold higher risk for septic shock (OR, 2.42; 95% CI, 1.08-5.45; P < .01) compared with severe sepsis. No significant difference of SNP distribution was found between the survivors and the nonsurvivors. After the results were adjusted for age and the outcomes of blood cultures, a multivariate logistic regression analysis showed similar results. Individuals with the TNF-α 308 rs1800629 A allele (adjusted OR, 2.96; 95% CI, 1.30-7.87) or the IL-6 rs1800795 C allele (adjusted OR, 1.87; 95% CI, 1.03-3.61) had a higher prevalence of septic shock. However, these SNP distribution differences were not associated with mortality. CONCLUSIONS In intensive care unit patients, the TNF-α -308A allele and the IL-6 rs1800795 allele variants were susceptibility risk factors for septic shock induced by pneumonia.
Collapse
Affiliation(s)
- Bo Feng
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Department of Intensive Care Unit, The First Affiliated Hospital of Henan University of TCM, Zhengzhou, PR China
| | - Zheng-rong Mao
- Department of Intensive Care Unit, The First Affiliated Hospital of Henan University of TCM, Zhengzhou, PR China
| | - Kai Pang
- Department of Intensive Care Unit, The First Affiliated Hospital of Henan University of TCM, Zhengzhou, PR China
| | - Shao-lei Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Henan University of TCM, Zhengzhou, PR China
| | - Li Li
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
37
|
Gao JW, Zhang AQ, Pan W, Yue CL, Zeng L, Gu W, Jiang J. Association between IL-6-174G/C polymorphism and the risk of sepsis and mortality: a systematic review and meta-analysis. PLoS One 2015; 10:e0118843. [PMID: 25734339 PMCID: PMC4348480 DOI: 10.1371/journal.pone.0118843] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/14/2015] [Indexed: 12/23/2022] Open
Abstract
Background Recent studies have reported the association between IL-6-174G/C polymorphism and sepsis. However, the results are inconclusive and conflicting. To better understand the role of IL-6-174G/C polymorphism in sepsis, we conducted a comprehensive meta-analysis. Methodology Literature search was conducted through PubMed, Embase, Web of Knowledge databases until July 29, 2013. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using fixed- or random-effect model based on heterogeneity test in total and subgroup analyses. Results Twenty studies on the risk of sepsis and seven studies on sepsis mortality were included. None of the results showed evidence of a significant association between IL-6-174G/C polymorphism and sepsis risk in overall analysis or subgroup analyses based on sepsis type, ethnicity, source of control and age under any genetic model (the allele comparison, the codominant, the recessive or the dominant model). Although there was a statistically significant association between IL-6-174 G/C polymorphism and sepsis-related mortality under the recessive model, the significance did not exist after Bonferroni’s correction. Conclusions Current evidence does not support a direct effect of IL-6-174 G/C polymorphism on the risk of sepsis. In addition, there was no association between IL-6-174 G/C polymorphism and sepsis mortality after Bonferroni’s correction. Further analyses of gene-environment interactions and more studies based on larger sample size and homogeneous sepsis patients are required.
Collapse
Affiliation(s)
- Jun-wei Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - An-qiang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Wei Pan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Cai-li Yue
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Wei Gu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- * E-mail:
| |
Collapse
|
38
|
Sinsimer D, Esseghir A, Tang M, Laouar A. The common prophylactic therapy for bowel surgery is ineffective for clearing Bacteroidetes, the primary inducers of systemic inflammation, and causes faster death in response to intestinal barrier damage in mice. BMJ Open Gastroenterol 2015; 1:e000009. [PMID: 26462264 PMCID: PMC4533325 DOI: 10.1136/bmjgast-2014-000009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction and objective The role of secreted gut microbial components in the initiation of systemic inflammation and consequences of antibiotic therapies on this inflammatory process are poorly elucidated. We investigate whether peripheral innate cells mount an inflammatory response to gut microbial components, the immune cells that are the primary drivers of systemic inflammation, the bacterial populations that are predominantly responsible, and whether perioperative antibiotics affect these processes. Method and experimental design Conditioned supernatants from gut microbes were used to stimulate murine innate cell types in vitro and in vivo, and proinflammatory responses were characterised. Effects of antibiotic therapies on these responses were investigated using a model of experimental intestinal barrier damage induced by dextran sodium sulfate. Results Proinflammatory responses in the periphery are generated by components of anaerobes from the Bacteroidetes phylotype and these responses are primarily produced by myeloid dendritic cells. We found that the common prophylactic therapy for sepsis (oral neomycin and metronidazole administered to patients the day prior to surgery) is ineffective for clearing Bacteroidetes from the murine intestine. A point of critical consequence of this result is the increased systemic inflammation and premature death observed in treated mice, and these outcomes appear to be independent of gut bacterial spread in the initial phase of intestinal barrier damage. Importantly, spillage of gut microbial products, rather than dissemination of gut microbes, may underlay the initiation of systemic inflammation leading to death. Conclusions Our data further affirm the importance of a balanced gut microflora biodiversity in host immune homeostasis and reinforce the notion that inadequate antibiotic therapy can have detrimental effects on overall immune system.
Collapse
Affiliation(s)
- Daniel Sinsimer
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University , New Brunswick, New Jersey , USA
| | - Amira Esseghir
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University , New Brunswick, New Jersey , USA
| | - May Tang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University , New Brunswick, New Jersey , USA
| | - Amale Laouar
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University , New Brunswick, New Jersey , USA
| |
Collapse
|
39
|
Ren X, MacKichan JK. Disease-associated Neisseria meningitidis isolates inhibit wound repair in respiratory epithelial cells in a type IV pilus-independent manner. Infect Immun 2014; 82:5023-34. [PMID: 25225250 PMCID: PMC4249276 DOI: 10.1128/iai.02001-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/12/2014] [Indexed: 12/28/2022] Open
Abstract
Neisseria meningitidis is the causative agent of meningococcal disease. Onset of meningococcal disease can be extremely rapid and can kill within a matter of hours. However, although a much-feared pathogen, Neisseria meningitidis is frequently found in the nasopharyngeal mucosae of healthy carriers. The bacterial factors that distinguish disease- from carriage-associated meningococci are incompletely understood. Evidence suggesting that disruptions to the nasopharynx may increase the risk of acquiring meningococcal disease led us to evaluate the ability of disease- and carriage-associated meningococcal isolates to inhibit cell migration, using an in vitro assay for wound repair. We found that disease-associated isolates in our collection inhibited wound closure, while carriage-associated isolates were more variable, with many isolates not inhibiting wound repair at all. For isolates selected for further study, we found that actin morphology, such as presence of lamellipodia, correlated with cell migration. We demonstrated that multiple meningococcal virulence factors, including the type IV pili, are dispensable for inhibition of wound repair. Inhibition of wound repair was also shown to be an active process, i.e., requiring live bacteria undergoing active protein synthesis.
Collapse
Affiliation(s)
- Xiaoyun Ren
- Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, New Zealand School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Joanna K MacKichan
- Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, New Zealand School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
40
|
Huang G, Liang B, Liu G, Liu K, Ding Z. Low dose of glucocorticoid decreases the incidence of complications in severely burned patients by attenuating systemic inflammation. J Crit Care 2014; 30:436.e7-11. [PMID: 25307976 DOI: 10.1016/j.jcrc.2014.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/10/2014] [Accepted: 09/14/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Excessive systemic inflammatory response remains as a major problem underlying severe burns. This study aimed to assess the effect of low-dose glucocorticoid treatment in downregulating systemic inflammation in severely burned patients. METHODS A prospective study from 2001 to 2014 at our hospital was conducted to compare the patients who received low-dose glucocorticoid during the acute phase with those who did not. Patients with burns 70% or greater of their total body surface area were included, and their plasma levels of inflammatory cytokines and clinical outcomes were compared. RESULTS A total of 69 patients were included in this study, with 31 patients receiving glucocorticoid treatment and the others not. Patient demographics including age, burn size, and incidence of inhalation injury were similar in both groups. The incidence of pulmonary infection and stress ulcer (and/or hemorrhage) was 24.2% and 3.0% in the treatment group, respectively, significantly lower than 47.8% and 19.6% of the control group (P < .05). Length of hospital stay was almost 13 days shorter in the treatment group (P < .05), whereas there was no significant difference in the overall mortality, duration of mechanical ventilation, and incidence of sepsis between the 2 groups. The enzyme-linked immunosorbent assay results confirmed that the plasma levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-8 were significantly lower in the treatment group (P < .05). CONCLUSION Low dose of glucocorticoid treatment during the acute phase could reduce the levels of proinflammatory cytokines in severely burned patients and subsequently decrease the incidence of pulmonary infection and stress ulcer, as well as the length of hospital stay.
Collapse
Affiliation(s)
- Guofeng Huang
- Center for Orthopedics and Burns, 175th Hospital of People's Liberation Army, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China, 363000
| | - Bowei Liang
- Center for Orthopedics and Burns, 175th Hospital of People's Liberation Army, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China, 363000
| | - Guojun Liu
- Center for Orthopedics and Burns, 175th Hospital of People's Liberation Army, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China, 363000
| | - Kuisheng Liu
- Center for Orthopedics and Burns, 175th Hospital of People's Liberation Army, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China, 363000
| | - Zhenqi Ding
- Center for Orthopedics and Burns, 175th Hospital of People's Liberation Army, Affiliated Southeast Hospital of Xiamen University, Zhangzhou, PR China, 363000.
| |
Collapse
|
41
|
Christaki E, Giamarellos-Bourboulis EJ. The beginning of personalized medicine in sepsis: small steps to a bright future. Clin Genet 2014; 86:56-61. [PMID: 24579691 DOI: 10.1111/cge.12368] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 02/04/2023]
Abstract
There is a growing recognition that there is a need for a more personalized approach towards sepsis care. In most clinical trials investigating novel therapeutic interventions against sepsis, patients have been considered a rather homogeneous population. However, there is probably more individual variability between septic patients than previously considered. The pathophysiology of sepsis is a complex and dynamic process that originates from the host immune response to infection and varies according to the genetic predisposition, immune status and co-morbid conditions of the host, the type of pathogen and the site and extent of infection. Until now, efforts to stratify septic patients according to their immune profile were hampered by the lack of specific biomarkers. Recent advances in molecular medicine have made it possible to develop tools that will facilitate a faster and more precise diagnosis of infection. Individual variability between each patient's responses to infection can assist in tailoring therapeutic interventions to the individual's disease profile and monitoring treatment response. In this review, we describe those recent advances in genomics and theragnostics, which are slowly entering clinical practice and which will make possible a more personalized approach to each septic patient in the next decade.
Collapse
Affiliation(s)
- E Christaki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece; Infectious Diseases Division, Alpert School of Medicine of Brown University, Providence, RI, USA
| | | |
Collapse
|
42
|
Relevance of single-nucleotide polymorphisms in human TLR genes to infectious and inflammatory diseases and cancer. Genes Immun 2014; 15:199-209. [DOI: 10.1038/gene.2014.10] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 02/07/2023]
|
43
|
Lee KH, Rah H, Green T, Lee YK, Lim D, Nemzek J, Wahl W, Greenhalgh D, Cho K. Divergent and dynamic activity of endogenous retroviruses in burn patients and their inflammatory potential. Exp Mol Pathol 2014; 96:178-87. [PMID: 24509167 DOI: 10.1016/j.yexmp.2014.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/02/2014] [Indexed: 10/25/2022]
Abstract
Genes constitute ~3% of the human genome, whereas human endogenous retroviruses (HERVs) represent ~8%. We examined post-burn HERV expression in patients' blood cells, and the inflammatory potentials of the burn-associated HERVs were evaluated. Buffy coat cells, collected at various time points from 11 patients, were screened for the expression of eight HERV families, and we identified their divergent expression profiles depending on patient, HERV, and time point. The population of expressed HERV sequences was patient-specific, suggesting HERVs' inherent genomic polymorphisms and/or differential expression potentials depending on characteristics of patients and courses of injury response. Some HERVs were shared among the patients, while the others were divergent. Interestingly, one burn-associated HERV gag gene from a patient's genome induced IL-6, IL-1β, Ptgs-2, and iNOS. These findings demonstrate that injury stressors initiate divergent HERV responses depending on patient, HERV, and disease course and implicate HERVs as genetic elements contributing to polymorphic injury pathophysiology.
Collapse
Affiliation(s)
- Kang-Hoon Lee
- Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; Department of Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - HyungChul Rah
- Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; Department of Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Tajia Green
- Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Young-Kwan Lee
- Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; Department of Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Debora Lim
- Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; Department of Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Jean Nemzek
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI 48109-0614, USA
| | - Wendy Wahl
- Department of Surgery, Saint Joseph Mercy Health System, Ann Arbor, MI 48106, USA
| | - David Greenhalgh
- Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; Department of Surgery, University of California, Davis, Sacramento, CA 95817, USA
| | - Kiho Cho
- Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA; Department of Surgery, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
44
|
Abstract
Sepsis is a common cause of death in hospitalized patients worldwide. The early detection of sepsis remains a great challenge for clinicians, and delayed diagnosis frequently undermines treatment efforts, thereby contributing to high mortality. Omics technologies allow high-throughput screening of sepsis biomarkers. This review describes currently available and novel sepsis biomarkers in the context of genomics, transcriptomics, proteomics, and metabolomics. The combination of these technologies can help refine the diagnosis of sepsis. This review paper serves as a reference for future studies that employ an integrated, multi-omics approach to disease identification.
Collapse
|
45
|
Zhang AQ, Pan W, Gao JW, Yue CL, Zeng L, Gu W, Jiang JX. Associations between interleukin-1 gene polymorphisms and sepsis risk: a meta-analysis. BMC MEDICAL GENETICS 2014; 15:8. [PMID: 24428862 PMCID: PMC3901334 DOI: 10.1186/1471-2350-15-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/12/2014] [Indexed: 01/12/2023]
Abstract
Background Previous epidemiological studies have presented conflicting evidence regarding associations between interleukin-1 (IL-1) polymorphisms and sepsis susceptibility. We have performed a meta-analysis to evaluate possible associations between IL-1 polymorphisms and sepsis risk. Methods Eligible literature was retrieved from PubMed, Embase and Web of Knowledge databases until Jun 15, 2013. The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using random-effects model in the overall and subgroup analysis based on ethnicity, sepsis severity and quality score. Results Eighteen studies addressing five IL-1 polymorphisms were included in this meta-analysis. For IL-1A-889 (rs1800587) polymorphism, significant association was observed in overall comparison for allelic effect (OR = 1.47, 95% CI = 1.01-2.13, P = 0.04). There were no significant associations between either IL-1B-511 (rs16944) or IL-1B-31 (rs1143627) and sepsis susceptibility in overall or subgroup analyses. For IL-1B + 3594 (rs143634) polymorphism, genotype TT decreased sepsis risk in overall analysis (OR = 0.59, 95% CI = 0.36-0.97, P = 0.04), as well as in Caucasian (OR = 0.57, 95% CI = 0.34-0.95, P = 0.03) and sepsis (OR = 0.55, 95% CI = 0.31-0.97, P = 0.04) subgroup analysis. For IL-1RN VNTR polymorphism, significant association was observed in overall comparison for allelic effect (OR = 1.40, 95% CI = 1.01-1.95, P = 0.04). Furthermore, the effect sizes of IL-1RN VNTR on sepsis risk increased with disease severity (septic shock OR > severe sepsis OR > sepsis OR). Conclusions Our meta-analysis indicated that IL-1A-889, IL-1B + 3954 and IL-1RN VNTR might be associated with sepsis susceptibility. However, further studies with larger sample sizes and from homogenous populations would be necessary to validate these findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
46
|
Thompson CM, Holden TD, Gail RR, Laxmanan B, Black RA, O’Keefe GE, Wurfel MM. Toll-like receptor 1 polymorphisms and associated outcomes in sepsis after traumatic injury: a candidate gene association study. Ann Surg 2014; 259:179-85. [PMID: 23478521 PMCID: PMC3686843 DOI: 10.1097/sla.0b013e31828538e8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To determine whether single nucleotide polymorphisms (SNPs) in TLR1 are associated with mortality, specifically sepsis-associated mortality, in a traumatically injured population. BACKGROUND Innate immune responses mediated by toll-like receptors (TLRs) induce early inflammatory responses to pathogen and damage-associated molecular patterns. Genetic variation in TLRs has been associated with susceptibility and outcomes in a number of infectious and noninfectious disease states. METHODS Patients admitted to the trauma intensive care unit at a level 1 trauma center serving 4 states were enrolled and followed for development of infection, sepsis, and death. Genomic DNA was genotyped and logistic regression analysis was performed to determine associations between TLR1 SNPs and mortality. We further examined for associations between TLR1 SNPs and mortality in subgroups on the basis of the presence of sepsis and the type of sepsis-associated organism. RESULTS We enrolled 1961 patients. TLR1-7202G (rs5743551) was associated with increased mortality after traumatic injury and this association was primarily observed in the subset of patients who developed sepsis [adjusted odds ratio (OR): 3.16; 95% confidence interval (CI): 1.43-6.97, P=0.004]. This association persisted after further restriction to gram-positive sepsis. TLR1(742A/G(Asn248Ser)) (rs4833095), a coding SNP in LD with TLR1-7202G, was also associated with mortality in gram-positive sepsis (adjusted OR: 4.16; 95% CI: 1.22-14.19, P=0.023). CONCLUSIONS Genetic variation in TLR1 is associated with increased mortality in patients with sepsis after traumatic injury and may represent a novel marker of risk for death in critically injured patients.
Collapse
Affiliation(s)
- Callie M. Thompson
- Department of Surgery, University of Washington, Harborview Medical Center, Seattle, Washington
| | - Tarah D. Holden
- Division of Pulmonary and Critical Care Medicine, University of Washington, Harborview Medical Center, Seattle, Washington
| | - Rona R.N Gail
- Division of Pulmonary and Critical Care Medicine, University of Washington, Harborview Medical Center, Seattle, Washington
| | - Balaji Laxmanan
- Division of Pulmonary and Critical Care Medicine, University of Washington, Harborview Medical Center, Seattle, Washington
| | - R. Anthony Black
- Division of Pulmonary and Critical Care Medicine, University of Washington, Harborview Medical Center, Seattle, Washington
| | - Grant E. O’Keefe
- Department of Surgery, University of Washington, Harborview Medical Center, Seattle, Washington
| | - Mark M. Wurfel
- Division of Pulmonary and Critical Care Medicine, University of Washington, Harborview Medical Center, Seattle, Washington
| |
Collapse
|
47
|
|
48
|
Pothlichet J, Quintana-Murci L. The genetics of innate immunity sensors and human disease. Int Rev Immunol 2013; 32:157-208. [PMID: 23570315 DOI: 10.3109/08830185.2013.777064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since their discovery, innate immunity microbial sensors have been increasingly studied and shown to play a critical role in innate responses to microbes in several experimental in vitro, ex vivo, and animal models. However, their role in the human response to infection in natural conditions has just started to be deciphered, by means of clinical studies of primary immunodeficiencies and epidemiological genetic studies. Here, we summarize the major findings concerning the genetic diversity of the various families of microbial sensors in humans, and of other molecules involved in the signaling pathways they trigger. Specifically, we review the genetic associations, revealed by both clinical and epidemiological genetics studies, of microbial sensors from five different families: Toll-like receptors, C-type lectin receptors, NOD-like receptors, RIG-I-like receptors, and cytosolic DNA sensors. In particular, we consider the relationships between variation at the genes encoding these molecules and susceptibility to and the severity of infectious diseases and other clinical conditions associated with immune dysfunction, including autoimmunity, inflammation, allergy, and cancer. Despite the fact that the genetic links between innate immunity sensors and human disorders remain still limited, human genetics studies are increasingly improving our understanding of the genuine functions of microbial sensors and downstream signaling molecules in the natural setting.
Collapse
Affiliation(s)
- Julien Pothlichet
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris, France
| | | |
Collapse
|
49
|
Zhang AQ, Yue CL, Gu W, Du J, Wang HY, Jiang J. Association between CD14 promoter -159C/T polymorphism and the risk of sepsis and mortality: a systematic review and meta-analysis. PLoS One 2013; 8:e71237. [PMID: 23990939 PMCID: PMC3747171 DOI: 10.1371/journal.pone.0071237] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/27/2013] [Indexed: 01/08/2023] Open
Abstract
Background Recent studies on the association between CD14-159C/T polymorphism and sepsis showed inconclusive results. Accordingly, we conducted a comprehensive literature search and a meta-analysis to determine whether the CD14-159C/T polymorphism conferred susceptibility to sepsis or was associated with increased risk of death from sepsis. Methodology Data were collected from the following electronic databases: PubMed, Embase, Medline, Web of Knowledge, and HuGE Navigator, with the last report up to June 15, 2012. The odds ratio (OR) and 95% confidence interval (CI) were used to assess the strength of association. We summarized the data on the association between CD14-159C/T polymorphism and sepsis in the overall population and subgroup by ethnicity and sepsis subtype. Principal Findings A total of 16 studies on sepsis morbidity (1369 cases and 2382 controls) and 4 studies on sepsis mortality (731 sepsis patients) met the inclusion criteria for meta-analysis. Overall analysis showed no strong evidences of association with sepsis susceptibility under any genetic model. However, slight associations were found in Asian populations (dominant model: OR = 1.38, 95%CI = 0.96–1.98, P = 0.08) and septic shock patients (dominant model: OR = 1.72, 95%CI 1.05–2.83, P = 0.03; allelic model: OR = 1.52, 95%CI 1.09–2.12, P = 0.01) in the stratified analysis. Moreover, there was borderline association between CD14-159C/T and sepsis mortality under the dominant genetic model (OR = 1.44, 95%CI = 0.98–2.11, P = 0.06). Conclusions/Significance This meta-analysis suggests that the CD14-159C/T polymorphism may not be a significant susceptibility factor in the risk of sepsis and mortality. Only weak associations were observed in Asian populations and septic shock patients. More studies based on larger sample sizes and homogeneous sepsis patients are needed to confirm these findings.
Collapse
Affiliation(s)
- An-qiang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Cai-li Yue
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Gu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hai-yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
50
|
Rodriguez-Osorio CA, Lima G, Herrera-Caceres JO, Villegas-Torres BE, Zuñiga J, Ponce-de-Leon S, Llorente L, Sifuentes-Osornio J. Genetic variations in toll-like receptor 4 in Mexican-Mestizo patients with intra-abdominal infection and/or pneumonia. Immunol Lett 2013; 153:41-6. [DOI: 10.1016/j.imlet.2013.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/07/2013] [Accepted: 07/08/2013] [Indexed: 12/29/2022]
|