1
|
Mahendran G, Breger K, McCown PJ, Hulewicz JP, Bhandari T, Addepalli B, Brown JA. Multi-Omics Approach Reveals Genes and Pathways Affected in Miller-Dieker Syndrome. Mol Neurobiol 2025; 62:5073-5094. [PMID: 39508990 PMCID: PMC11880102 DOI: 10.1007/s12035-024-04532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 10/04/2024] [Indexed: 11/15/2024]
Abstract
Miller-Dieker syndrome (MDS) is a rare neurogenetic disorder resulting from a heterozygous deletion of 26 genes in the MDS locus on human chromosome 17. MDS patients often die in utero and only 10% of those who are born reach 10 years of age. Current treatments mostly prevent complications and control seizures. A detailed understanding of the pathogenesis of MDS through gene expression studies would be useful in developing precise medical approaches toward MDS. To better understand MDS at the molecular level, we performed RNA sequencing on RNA and mass spectrometry on total protein isolated from BJ (non-MDS) cells and GM06097 (MDS) cells, which were derived from a healthy individual and an MDS patient, respectively. Differentially expressed genes (DEGs) at the RNA and protein levels involved genes associated with phenotypic features reported in MDS patients (CACNG4, ADD2, SPTAN1, SHANK2), signaling pathways (GABBR2, CAMK2B, TRAM-1), and nervous system development (CAMK2B, BEX1, ARSA). Functional assays validated enhanced calcium signaling, downregulated protein translation, and cell migration defects in MDS. Interestingly, overexpression of methyltransferase-like protein 16 (METTL16), a protein encoded in the MDS locus, restored defects in protein translation, phosphor states of mTOR (mammalian target of rapamycin) pathway regulators, and cell migration in MDS cells. Although DNA- and RNA-modifying enzymes were among the DEGs and the intracellular SAM/SAH ratio was eightfold lower in MDS cells, global nucleoside modifications remained unchanged. Thus, this study identified specific genes and pathways responsible for the gene expression changes, which could lead to better therapeutics for MDS patients.
Collapse
Affiliation(s)
- Gowthami Mahendran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kurtis Breger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Phillip J McCown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Internal Medicine, Division of Nephrology, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob P Hulewicz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tulsi Bhandari
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | | | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Choo BKM, Barnes S, Sive H. A Hypothesis: Metabolic Contributions to 16p11.2 Deletion Syndrome. Bioessays 2025; 47:e202400177. [PMID: 39988938 PMCID: PMC11848116 DOI: 10.1002/bies.202400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 02/25/2025]
Abstract
16p11.2 deletion syndrome is a severe genetic disorder associated with the deletion of 27 genes from a Copy Number Variant region on human chromosome 16. Symptoms associated include cognitive impairment, language and motor delay, epilepsy or seizures, psychiatric disorders, autism spectrum disorder (ASD), changes in head size and body weight, and dysmorphic features, with a crucial need to define genes and mechanisms responsible for symptomatology. In this review, we analyze the clinical associations and biological pathways of 16p11.2 locus genes and identify that a majority of 16p11.2 genes relate to metabolic processes. We present a hypothesis in which changes in the dosage of 16p11.2 metabolic genes contribute to pathology through direct or indirect alterations in pathways that include amino acids or proteins, DNA, RNA, catabolism, lipid, energy (carbohydrate). This hypothesis suggests that research into the specific roles of each metabolic gene will help identify useful therapeutic targets.
Collapse
Affiliation(s)
| | - Sarah Barnes
- Department of BiologyNortheastern UniversityBostonMassachusettsUSA
- Health Sciences DepartmentSargent College of Health and Rehabilitation SciencesBoston UniversityBostonMassachusettsUSA
| | - Hazel Sive
- Department of BiologyNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
3
|
Perović D, Barzegar P, Damnjanović T, Jekić B, Grk M, Dušanović Pjević M, Cvetković D, Đuranović Uklein A, Stojanovski N, Rašić M, Novaković I, Elhayani B, Maksimović N. Chromosomal Microarray in Children Born Small for Gestational Age - Single Center Experience. Balkan J Med Genet 2024; 27:13-21. [PMID: 40070860 PMCID: PMC11892935 DOI: 10.2478/bjmg-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
The association between small for gestational age birth and chromosomal abnormalities identified through karyotyping is well-established. Notably, advancements in cytogenetic techniques have shifted from routine karyotyping to the recommended use of microarray technology. This transition allows higher resolution and the detection of sub-microscopic copy number variants (CNVs). Our study included 49 patients born small for gestational age, 27 males and 22 females. Clinical data were gathered from reports by clinical genetic specialists, and a questionnaire was included in the referral list to our laboratory. All participants were of pediatric age, ranging from neonatal to 12 years old. Chromosomal microarray testing was conducted by the Agilent SurePrint G3 Human CGH Microarray 8×60K. The application of molecular karyotyping yielded clinically significant results in 16 cases (32.65%), which included 13 deletions and 6 duplications. Three patients presented with two clinically significant CNVs (csCNVs). In ten cases, we identified recurrent microdeletion or microduplication syndromes well-documented in the literature: Williams syndrome as the most commonly identified (three patients), and others like Koolen de Vries, Prader-Willi, Miller-Dieker, Dryer, DiGeorge syndrome, 7q11.23 microduplication, 16p13.11 microdeletion, and 1q21.1 microdeletion syndrome. Six patients had rare non-recurrent pathological CNVs. There was no statistically significant difference between patients with csCNVs and those without regarding the presence of intellectual disabilities, central nervous system, cardiac or skeletal malformations. Chromosomal microarray proves to be a useful diagnostic tool in the etiology diagnosis of children born small for gestational age.
Collapse
Affiliation(s)
- D Perović
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Serbia
| | - P Barzegar
- Faculty of Medicine, University of Belgrade, Serbia
| | - T Damnjanović
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Serbia
| | - B Jekić
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Serbia
| | - M Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Serbia
| | - M Dušanović Pjević
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Serbia
| | - D Cvetković
- Faculty of Biology, University of Belgrade, Serbia
| | - A Đuranović Uklein
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Serbia
| | - N Stojanovski
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Serbia
| | - M Rašić
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Serbia
| | - I Novaković
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Serbia
| | - B Elhayani
- Faculty of Medicine, University of Belgrade, Serbia
| | - N Maksimović
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Serbia
| |
Collapse
|
4
|
Yan RE, Chae JK, Dahmane N, Ciaramitaro P, Greenfield JP. The Genetics of Chiari 1 Malformation. J Clin Med 2024; 13:6157. [PMID: 39458107 PMCID: PMC11508843 DOI: 10.3390/jcm13206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Chiari malformation type 1 (CM1) is a structural defect that involves the herniation of the cerebellar tonsils through the foramen magnum, causing mild to severe neurological symptoms. Little is known about the molecular and developmental mechanisms leading to its pathogenesis, prompting current efforts to elucidate genetic drivers. Inherited genetic disorders are reported in 2-3% of CM1 patients; however, CM1, including familial forms, is predominantly non-syndromic. Recent work has focused on identifying CM1-asscoiated variants through the study of both familial cases and de novo mutations using exome sequencing. This article aims to review the current understanding of the genetics of CM1. We discuss three broad classes of CM1 based on anatomy and link them with genetic lesions, including posterior fossa-linked, macrocephaly-linked, and connective tissue disorder-linked CM1. Although the genetics of CM1 are only beginning to be understood, we anticipate that additional studies with diverse patient populations, tissue types, and profiling technologies will reveal new insights in the coming years.
Collapse
Affiliation(s)
- Rachel E. Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - John K. Chae
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - Nadia Dahmane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - Palma Ciaramitaro
- Neuroscience Department, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy;
| | - Jeffrey P. Greenfield
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| |
Collapse
|
5
|
Chen B, Du C, Wang M, Guo J, Liu X. Organoids as preclinical models of human disease: progress and applications. MEDICAL REVIEW (2021) 2024; 4:129-153. [PMID: 38680680 PMCID: PMC11046574 DOI: 10.1515/mr-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
In the field of biomedical research, organoids represent a remarkable advancement that has the potential to revolutionize our approach to studying human diseases even before clinical trials. Organoids are essentially miniature 3D models of specific organs or tissues, enabling scientists to investigate the causes of diseases, test new drugs, and explore personalized medicine within a controlled laboratory setting. Over the past decade, organoid technology has made substantial progress, allowing researchers to create highly detailed environments that closely mimic the human body. These organoids can be generated from various sources, including pluripotent stem cells, specialized tissue cells, and tumor tissue cells. This versatility enables scientists to replicate a wide range of diseases affecting different organ systems, effectively creating disease replicas in a laboratory dish. This exciting capability has provided us with unprecedented insights into the progression of diseases and how we can develop improved treatments. In this paper, we will provide an overview of the progress made in utilizing organoids as preclinical models, aiding our understanding and providing a more effective approach to addressing various human diseases.
Collapse
Affiliation(s)
- Baodan Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cijie Du
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengfei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Guo
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
6
|
Kushwaha S, Stinnett V, Zou YS, Murry JB. Live-born autosomal ring chromosomes at the Johns Hopkins Hospital Cytogenomics Laboratory: Case series-Spanning 52 years of experience in a single center. Am J Med Genet A 2024; 194:253-267. [PMID: 37807876 DOI: 10.1002/ajmg.a.63429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Ring chromosomes (RCs) are a structural aberration that can be tolerated better in acrocentric or gonosomal chromosomes. Complete RCs arise from telomere-telomere fusions. Alternatively, genomic imbalances corresponding to the ends of the chromosomal arms can be seen with RC formation. RCs are unstable in mitosis, result in mosaicism, and are associated with a "ring syndrome," which presents with growth and development phenotypes and differs from those features more frequently observed with pure terminal copy number changes. Due to variability in mosaicism, size, and genomic content, clear genotype-phenotype correlations may not always be possible. Given the rarity of RCs, this historical data is invaluable. We performed a retrospective review of individuals bearing RCs to investigate the incidence in our laboratory. This work details the methods and features seen in association with twenty-three autosomal RCs. In decreasing order, the most frequently seen autosomal RCs were 18, 22, 4, 13, 17, and 9. The additional cases detail clinical and cytogenomic events similar to those reported in RCs. As methodologies advance, insights may be gleaned from following up on these cases to improve genotype-phenotype correlations and understand the cryptic differences or other predisposing factors that lead to ring formation and development.
Collapse
Affiliation(s)
- Shivani Kushwaha
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Victoria Stinnett
- Johns Hopkins Genomics, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cytogenetics Laboratory, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Ying S Zou
- Johns Hopkins Genomics, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cytogenetics Laboratory, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Jaclyn B Murry
- Johns Hopkins Genomics, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cytogenetics Laboratory, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Schaffrath R, Brinkmann U. Diphthamide - a conserved modification of eEF2 with clinical relevance. Trends Mol Med 2024; 30:164-177. [PMID: 38097404 DOI: 10.1016/j.molmed.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 02/17/2024]
Abstract
Diphthamide, a complex modification on eukaryotic translation elongation factor 2 (eEF2), assures reading-frame fidelity during translation. Diphthamide and enzymes for its synthesis are conserved in eukaryotes and archaea. Originally identified as target for diphtheria toxin (DT) in humans, its clinical relevance now proves to be broader than the link to pathogenic bacteria. Diphthamide synthesis enzymes (DPH1 and DPH3) are associated with cancer, and DPH gene mutations can cause diphthamide deficiency syndrome (DDS). Finally, new analyses provide evidence that diphthamide may restrict propagation of viruses including SARS-CoV-2 and HIV-1, and that DPH enzymes are targeted by viruses for degradation to overcome this restriction. This review describes how diphthamide is synthesized and functions in translation, and covers its clinical relevance in human development, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Raffael Schaffrath
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
8
|
Zhang Y, Yan M, Yu Y, Wang J, Jiao Y, Zheng M, Zhang S. 14-3-3ε: a protein with complex physiology function but promising therapeutic potential in cancer. Cell Commun Signal 2024; 22:72. [PMID: 38279176 PMCID: PMC10811864 DOI: 10.1186/s12964-023-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/02/2023] [Indexed: 01/28/2024] Open
Abstract
Over the past decade, the role of the 14-3-3 protein has received increasing interest. Seven subtypes of 14-3-3 proteins exhibit high homology; however, each subtype maintains its specificity. The 14-3-3ε protein is involved in various physiological processes, including signal transduction, cell proliferation, apoptosis, autophagy, cell cycle regulation, repolarization of cardiac action, cardiac development, intracellular electrolyte homeostasis, neurodevelopment, and innate immunity. It also plays a significant role in the development and progression of various diseases, such as cardiovascular diseases, inflammatory diseases, neurodegenerative disorders, and cancer. These immense and various involvements of 14-3-3ε in diverse processes makes it a promising target for drug development. Although extensive research has been conducted on 14-3-3 dimers, studies on 14-3-3 monomers are limited. This review aimed to provide an overview of recent reports on the molecular mechanisms involved in the regulation of binding partners by 14-3-3ε, focusing on issues that could help advance the frontiers of this field. Video Abstract.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Man Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jiangping Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuqi Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
9
|
Costa FV, Zabegalov KN, Kolesnikova TO, de Abreu MS, Kotova MM, Petersen EV, Kalueff AV. Experimental models of human cortical malformations: from mammals to 'acortical' zebrafish. Neurosci Biobehav Rev 2023; 155:105429. [PMID: 37863278 DOI: 10.1016/j.neubiorev.2023.105429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Human neocortex controls and integrates cognition, emotions, perception and complex behaviors. Aberrant cortical development can be triggered by multiple genetic and environmental factors, causing cortical malformations. Animal models, especially rodents, are a valuable tool to probe molecular and physiological mechanisms of cortical malformations. Complementing rodent studies, the zebrafish (Danio rerio) is an important model organism in biomedicine. Although the zebrafish (like other fishes) lacks neocortex, here we argue that this species can still be used to model various aspects and brain phenomena related to human cortical malformations. We also discuss novel perspectives in this field, covering both advantages and limitations of using mammalian and zebrafish models in cortical malformation research. Summarizing mounting evidence, we also highlight the importance of translationally-relevant insights into the pathogenesis of cortical malformations from animal models, and discuss future strategies of research in the field.
Collapse
Affiliation(s)
- Fabiano V Costa
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Konstantin N Zabegalov
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Tatiana O Kolesnikova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Maria M Kotova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Allan V Kalueff
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Ural Federal University, Yekaterinburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia.
| |
Collapse
|
10
|
Wu B, Wu B, Benkaci S, Shi L, Lu P, Park T, Morrow BE, Wang Y, Zhou B. Crk and Crkl Are Required in the Endocardial Lineage for Heart Valve Development. J Am Heart Assoc 2023; 12:e029683. [PMID: 37702066 PMCID: PMC10547300 DOI: 10.1161/jaha.123.029683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023]
Abstract
Background Endocardial cells are a major progenitor population that gives rise to heart valves through endocardial cushion formation by endocardial to mesenchymal transformation and the subsequent endocardial cushion remodeling. Genetic variants that affect these developmental processes can lead to congenital heart valve defects. Crk and Crkl are ubiquitously expressed genes encoding cytoplasmic adaptors essential for cell signaling. This study aims to explore the specific role of Crk and Crkl in the endocardial lineage during heart valve development. Methods and Results We deleted Crk and Crkl specifically in the endocardial lineage. The resultant heart valve morphology was evaluated by histological analysis, and the underlying cellular and molecular mechanisms were investigated by immunostaining and quantitative reverse transcription polymerase chain reaction. We found that the targeted deletion of Crk and Crkl impeded the remodeling of endocardial cushions at the atrioventricular canal into the atrioventricular valves. We showed that apoptosis was temporally increased in the remodeling atrioventricular endocardial cushions, and this developmentally upregulated apoptosis was repressed by deletion of Crk and Crkl. Loss of Crk and Crkl also resulted in altered extracellular matrix production and organization in the remodeling atrioventricular endocardial cushions. These morphogenic defects were associated with altered expression of genes in BMP (bone morphogenetic protein), connective tissue growth factor, and WNT signaling pathways, and reduced extracellular signal-regulated kinase signaling activities. Conclusions Our findings support that Crk and Crkl have shared functions in the endocardial lineage that critically regulate atrioventricular valve development; together, they likely coordinate the morphogenic signals involved in the remodeling of the atrioventricular endocardial cushions.
Collapse
Affiliation(s)
- Bingruo Wu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Brian Wu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Sonia Benkaci
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Lijie Shi
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Pengfei Lu
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| | - Taeju Park
- Children’s Mercy Research Institute, Children’s Mercy Kansas City and Department of Pediatrics, University of Missouri‐Kansas City School of MedicineKansas CityMO
| | | | - Yidong Wang
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
- Cardiovascular Research Center, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Bin Zhou
- Department of GeneticsAlbert Einstein College of MedicineBronxNY
| |
Collapse
|
11
|
Shi L, Song H, Zhou B, Morrow BE. Crk/Crkl regulates early angiogenesis in mouse embryos by accelerating endothelial cell maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548782. [PMID: 37503032 PMCID: PMC10369973 DOI: 10.1101/2023.07.12.548782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Rationale Ubiquitously expressed cytoplasmic adaptors CRK and CRKL mediate multiple signaling pathways in mammalian embryogenesis. They are also associated with cardiovascular defects occurring in Miller-Dieker syndrome and 22q11.2 deletion syndrome, respectively. The embryonic mesoderm contributes to the formation of the cardiovascular system, yet the roles that Crk and Crkl play there are not understood on a single cell level. Objectives To determine functions of Crk and Crkl in the embryonic mesoderm during early mouse vascular development. Secondly, we will examine the molecular mechanisms responsible for early embryonic endothelial cell (EC) defects by performing single cell RNA-sequencing (scRNA-seq) and in vivo validation experiments. Methods and Results Inactivation of both Crk and Crkl together using Mesp1 Cre resulted embryonic lethality with severe vascular defects. Although vasculogenesis appeared normal, angiogenesis was disrupted both in the yolk sac and embryo proper, leading to disorganized vascular networks. We performed scRNA-seq of the Mesp1 Cre mesodermal lineage and found that there was upregulation of a great number of angiogenesis and cell migration related genes in ECs in the mutants, including NOTCH signaling genes such as Dll4 and Hey1 . Further bioinformatic analysis of EC subpopulations identified a relative increase in the number of more differentiated angiogenic ECs and decrease in EC progenitors. Consistent with this, we identified an expansion of Dll4 expressing cells within abnormal arteries, in vivo . Also, our bioinformatic data indicates that there is dysregulated expression of lineage genes that promote EC differentiation causing accelerated cell fate progression during EC differentiation. Conclusions Our results show that Crk and Crkl are crucial for regulating early embryonic angiogenesis. Combined inactivation of Crk/Crkl caused precocious EC maturation with an increase of atypical differentiated angiogenic ECs and failed vascular remodeling. This is in part due to increased NOTCH signaling and altered expression of cell migration genes.
Collapse
|
12
|
Denommé-Pichon AS, Collins SC, Bruel AL, Mikhaleva A, Wagner C, Vancollie VE, Thomas Q, Chevarin M, Weber M, Prada CE, Overs A, Palomares-Bralo M, Santos-Simarro F, Pacio-Míguez M, Busa T, Legius E, Bacino CA, Rosenfeld JA, Le Guyader G, Egloff M, Le Guillou X, Mencarelli MA, Renieri A, Grosso S, Levy J, Dozières B, Desguerre I, Vitobello A, Duffourd Y, Lelliott CJ, Thauvin-Robinet C, Philippe C, Faivre L, Yalcin B. YWHAE loss of function causes a rare neurodevelopmental disease with brain abnormalities in human and mouse. Genet Med 2023; 25:100835. [PMID: 36999555 DOI: 10.1016/j.gim.2023.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE Miller-Dieker syndrome is caused by a multiple gene deletion, including PAFAH1B1 and YWHAE. Although deletion of PAFAH1B1 causes lissencephaly unambiguously, deletion of YWHAE alone has not clearly been linked to a human disorder. METHODS Cases with YWHAE variants were collected through international data sharing networks. To address the specific impact of YWHAE loss of function, we phenotyped a mouse knockout of Ywhae. RESULTS We report a series of 10 individuals with heterozygous loss-of-function YWHAE variants (3 single-nucleotide variants and 7 deletions <1 Mb encompassing YWHAE but not PAFAH1B1), including 8 new cases and 2 follow-ups, added with 5 cases (copy number variants) from literature review. Although, until now, only 1 intragenic deletion has been described in YWHAE, we report 4 new variants specifically in YWHAE (3 splice variants and 1 intragenic deletion). The most frequent manifestations are developmental delay, delayed speech, seizures, and brain malformations, including corpus callosum hypoplasia, delayed myelination, and ventricular dilatation. Individuals with variants affecting YWHAE alone have milder features than those with larger deletions. Neuroanatomical studies in Ywhae-/- mice revealed brain structural defects, including thin cerebral cortex, corpus callosum dysgenesis, and hydrocephalus paralleling those seen in humans. CONCLUSION This study further demonstrates that YWHAE loss-of-function variants cause a neurodevelopmental disease with brain abnormalities.
Collapse
Affiliation(s)
- Anne-Sophie Denommé-Pichon
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France; European Reference Network, ERN-ITHACA.
| | - Stephan C Collins
- UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Ange-Line Bruel
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Anna Mikhaleva
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | - Quentin Thomas
- UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Neurology, Dijon Bourgogne University Hospital, Dijon, France
| | - Martin Chevarin
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Mathys Weber
- UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France
| | - Carlos E Prada
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Alexis Overs
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - María Palomares-Bralo
- European Reference Network, ERN-ITHACA; Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Autonomous University of Madrid, IdiPAZ, Madrid, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), Carlos III Institute, Madrid, Spain
| | - Fernando Santos-Simarro
- European Reference Network, ERN-ITHACA; Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Autonomous University of Madrid, IdiPAZ, Madrid, Spain; Rare Diseases Networking Biomedical Research Centre (CIBERER), Carlos III Institute, Madrid, Spain
| | - Marta Pacio-Míguez
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Carlos III Institute, Madrid, Spain
| | - Tiffany Busa
- Department of Medical Genetics, CHU Timone Enfants, AP-HM, Marseille, France
| | - Eric Legius
- Laboratory for Neurofibromatosis Research, Department of Human Genetics, KU Leuven University Hospital, Belgium
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Baylor Genetics Laboratories, Houston, TX
| | - Gwenaël Le Guyader
- Genetics Department, Poitiers University Hospital, Poitiers, France; University of Poitiers, Poitiers, France
| | - Matthieu Egloff
- Genetics Department, Poitiers University Hospital, Poitiers, France; University of Poitiers, Poitiers, France; Experimental and Clinical Neurosciences Laboratory, INSERM, University of Poitiers, Poitiers, France
| | - Xavier Le Guillou
- Genetics Department, Poitiers University Hospital, Poitiers, France; University of Poitiers, Poitiers, France
| | | | - Alessandra Renieri
- Medical Genetics, Azienda Ospedaliero-Universitaria Senese, Siena, Italy; Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; U.O.C. Pediatria, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Jonathan Levy
- Genetics Department, Robert-Debré University Hospital, APHP, Paris, France
| | - Blandine Dozières
- Department of Pediatric Neurology and Metabolic Diseases, Robert Debré University Hospital, APHP, Paris, France
| | - Isabelle Desguerre
- Departments of Pediatric Neurology and Medical Genetics, Hôpital Necker-Enfants Malades, Université Paris Cité, Paris, France
| | - Antonio Vitobello
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France; European Reference Network, ERN-ITHACA
| | - Yannis Duffourd
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France
| | | | - Christel Thauvin-Robinet
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France
| | - Christophe Philippe
- Functional Unit for Diagnostic Innovation in Rare Diseases, FHU-TRANSLAD, Dijon Bourgogne University Hospital, Dijon, France; UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France
| | - Laurence Faivre
- UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France; European Reference Network, ERN-ITHACA; Department of Genetics and Reference Center for Development Disorders and Intellectual Disabilities, FHU-TRANSLAD and GIMI Institute, Dijon Bourgogne University Hospital, Dijon, France
| | - Binnaz Yalcin
- UMR1231 GAD "Génétique des Anomalies du Développement", INSERM, FHU-TRANSLAD, University of Burgundy, Dijon, France.
| |
Collapse
|
13
|
Baker EK, Brewer CJ, Ferreira L, Schapiro M, Tenney J, Wied HM, Kline-Fath BM, Smolarek TA, Weaver KN, Hopkin RJ. Further expansion and confirmation of phenotype in rare loss of YWHAE gene distinct from Miller-Dieker syndrome. Am J Med Genet A 2023; 191:526-539. [PMID: 36433683 PMCID: PMC10099970 DOI: 10.1002/ajmg.a.63057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/21/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022]
Abstract
Deletion of 17p13.3 has varying degrees of severity on brain development based on precise location and size of the deletion. The most severe phenotype is Miller-Dieker syndrome (MDS) which is characterized by lissencephaly, dysmorphic facial features, growth failure, developmental disability, and often early death. Haploinsufficiency of PAFAH1B1 is responsible for the characteristic lissencephaly in MDS. The precise role of YWHAE haploinsufficiency in MDS is unclear. Case reports are beginning to elucidate the phenotypes of individuals with 17p13.3 deletions that have deletion of YWHAE but do not include deletion of PAFAH1B1. Through our clinical genetics practice, we identified four individuals with 17p13.3 deletion that include YWHAE but not PAFAH1B1. These patients have a similar phenotype of dysmorphic facial features, developmental delay, and leukoencephalopathy. In a review of the literature, we identified 19 patients with 17p13.3 microdeletion sparing PAFAH1B1 but deleting YWHAE. Haploinsufficiency of YWHAE is associated with brain abnormalities including cystic changes. These individuals have high frequency of epilepsy, intellectual disability, and dysmorphic facial features including prominent forehead, epicanthal folds, and broad nasal root. We conclude that deletion of 17p13.3 excluding PAFAH1B1 but including YWHAE is associated with a consistent phenotype and should be considered a distinct condition from MDS.
Collapse
Affiliation(s)
- Elizabeth K Baker
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Casey J Brewer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Leonardo Ferreira
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mark Schapiro
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Neurology, Cincinnati Children's Hospital Medicine, Cincinnati, Ohio, USA
| | - Jeffrey Tenney
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Neurology, Cincinnati Children's Hospital Medicine, Cincinnati, Ohio, USA
| | - Heather M Wied
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Neurology, Cincinnati Children's Hospital Medicine, Cincinnati, Ohio, USA
| | - Beth M Kline-Fath
- Division of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Teresa A Smolarek
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
14
|
Bahmad HF, Ramesar L, Nosti C, Anthonio G, Brathwaite C, Vincentelli C, Castellano-Sánchez AA, Poppiti R. Histopathologic Findings Associated with Miller-Dieker Syndrome: An Autopsy Report. Diseases 2022; 10:95. [PMID: 36412589 PMCID: PMC9680264 DOI: 10.3390/diseases10040095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Miller-Dieker syndrome (MDS) is a rare genetic disorder characterized by congenital lissencephaly (absent or diminished cerebral gyri), facial dysmorphisms, neurodevelopmental retardation, intrauterine fetal demise, and death in early infancy or childhood. We present a case of a 4-year-old girl with MDS (17p13.3p13.2 deletion) who was admitted to the hospital due to fever and increased secretions from her nose, mouth, and tracheostomy tube (as she had been on a ventilator and G-tube dependent since birth). During the course of hospitalization, she developed multiorgan failure, third spacing, and significant lactic acidosis. The patient had a cardiorespiratory arrest and expired after 4 months and 8 days of hospitalization. We provide a synopsis of the main autopsy findings, with a focus on the neuropathologic anomalies.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (C.V.); (A.A.C.-S.); (R.P.)
| | - Lauren Ramesar
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (L.R.); (C.N.); (G.A.)
| | - Cecilia Nosti
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (L.R.); (C.N.); (G.A.)
| | - Gameli Anthonio
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (L.R.); (C.N.); (G.A.)
| | - Carole Brathwaite
- Department of Pathology, Nicklaus Children’s Hospital, Miami, FL 33155, USA;
| | - Cristina Vincentelli
- Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (C.V.); (A.A.C.-S.); (R.P.)
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (L.R.); (C.N.); (G.A.)
| | - Amilcar A. Castellano-Sánchez
- Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (C.V.); (A.A.C.-S.); (R.P.)
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (L.R.); (C.N.); (G.A.)
| | - Robert Poppiti
- Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (C.V.); (A.A.C.-S.); (R.P.)
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (L.R.); (C.N.); (G.A.)
| |
Collapse
|
15
|
Lengyel A, Pinti É, Pikó H, Kristóf Á, Abonyi T, Némethi Z, Fekete G, Haltrich I. Clinical evaluation of rare copy number variations identified by chromosomal microarray in a Hungarian neurodevelopmental disorder patient cohort. Mol Cytogenet 2022; 15:47. [PMID: 36320065 PMCID: PMC9623912 DOI: 10.1186/s13039-022-00623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders are genetically heterogeneous pediatric conditions. The first tier diagnostic method for uncovering copy number variations (CNVs), one of the most common genetic etiologies in affected individuals, is chromosomal microarray (CMA). However, this methodology is not yet a routine molecular cytogenetic test in many parts of the world, including Hungary. Here we report clinical and genetic data of the first, relatively large Hungarian cohort of patients whose genetic testing included CMA. METHODS Clinical data were retrospectively collected for 78 children who were analyzed using various CMA platforms. Phenotypes of patients with disease-causing variants were compared to patients with negative results using the chi squared/Fisher exact tests. RESULTS A total of 30 pathogenic CNVs were identified in 29 patients (37.2%). Postnatal growth delay (p = 0.05564), pectus excavatum (p = 0.07484), brain imaging abnormalities (p = 0.07848), global developmental delay (p = 0.08070) and macrocephaly (p = 0.08919) were more likely to be associated with disease-causing CNVs. CONCLUSION Our results allow phenotypic expansion of 14q11.2 microdeletions encompassing SUPT16H and CHD8 genes. Variants of unknown significance (n = 24) were found in 17 patients. We provide detailed phenotypic and genetic data of these individuals to facilitate future classification efforts, and spotlight two patients with potentially pathogenic alterations. Our results contribute to unraveling the diagnostic value of rare CNVs.
Collapse
Affiliation(s)
- Anna Lengyel
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Éva Pinti
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Henriett Pikó
- grid.11804.3c0000 0001 0942 9821Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Árvai Kristóf
- grid.11804.3c0000 0001 0942 9821Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Tünde Abonyi
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Zaránd Némethi
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Fekete
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- grid.11804.3c0000 0001 0942 9821II. Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
16
|
Deodati A, Inzaghi E, Germani D, Fausti F, Cianfarani S. Crk Haploinsufficiency Is Associated with Intrauterine Growth Retardation and Severe Postnatal Growth Failure. Horm Res Paediatr 2022; 94:456-466. [PMID: 35086092 DOI: 10.1159/000521629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Children with 17p13.3 microdeletions including the YWHAE gene show intrauterine growth restriction, craniofacial dysmorphisms, postnatal growth failure, and cognitive impairment. This region is characterized by genomic instability and has been associated with isolated lissencephaly sequence and Miller-Dieker syndrome characterized by facial dysmorphisms, microcephaly, short stature, seizures, cardiac malformations, and agyria. Whilst brain abnormalities are secondary to YWHAE deficiency, the cause of pre- and postnatal growth failure has not been identified yet. CASE PRESENTATION We describe 2 patients (patient 1 15 years and patient 2 11 years and 10 months) referred to our Center of Pediatric Endocrinology for intrauterine growth retardation with de novo 17p13.3 deletion. In vitro assays showed a defect in CRK expression and GH/IGF1 signaling. rhGH therapy was effective in partially reducing the deficit in height in patient 1 and induced catch-up growth in patient 2. CONCLUSION Our results suggest that 17p13.3 microdeletion involving CRK affects both GH and IGF1 signaling ultimately leading to pre- and postnatal growth retardation, secondary to partial insensitivity to GH/IGF1. rhGH therapy may be considered to reduce the height deficit in these patients, though data on adult height are lacking.
Collapse
Affiliation(s)
- Annalisa Deodati
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy
| | - Elena Inzaghi
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy
| | - Daniela Germani
- Dipartimento di Medicina dei sistemi, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Fausti
- Dipartimento di Medicina dei sistemi, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy.,Dipartimento di Medicina dei sistemi, University of Rome Tor Vergata, Rome, Italy.,Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Shi L, Racedo SE, Diacou A, Park T, Zhou B, Morrow BE. Crk and Crkl have shared functions in neural crest cells for cardiac outflow tract septation and vascular smooth muscle differentiation. Hum Mol Genet 2021; 31:1197-1215. [PMID: 34686881 PMCID: PMC9029238 DOI: 10.1093/hmg/ddab313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
CRK and CRKL encode cytoplasmic adaptors that contribute to the etiology of congenital heart disease. Neural crest cells (NCCs) are required for cardiac outflow tract (OFT) septation and aortic arch formation. The roles of Crk/Crkl in NCCs during mouse cardiovascular development remains unknown. To test this, we inactivated Crk and/or Crkl in NCCs. We found that the loss of Crk, rather than Crkl, in NCCs resulted in double outlet right ventricle, while loss of both Crk/Crkl in NCCs resulted in severe defects with earlier lethality due to failed OFT septation and severe dilation of the pharyngeal arch arteries (PAAs). We found that these defects are due to altered cell morphology resulting in reduced localization of NCCs to the OFT and failed integrity of the PAAs, along with reduced expression of Integrin signaling genes. Further, molecular studies identified reduced differentiation of vascular smooth muscle cells that may in part be due to altered Notch signaling. Additionally, there is increased cellular stress that leads to modest increase in apoptosis. Overall, this explains the mechanism for the Crk/Crkl phenotype.
Collapse
Affiliation(s)
- Lijie Shi
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Silvia E Racedo
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Alexander Diacou
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Taeju Park
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Bin Zhou
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein college of Medicine, Bronx, NY, USA
| |
Collapse
|
18
|
Farra C, Abdouni L, Hani A, Dirani L, Hamdar L, Souaid M, Awwad J. 17p13.3 Microduplication Syndrome: Further Delineating the Clinical Spectrum. J Pediatr Genet 2021; 10:239-244. [PMID: 34504729 DOI: 10.1055/s-0040-1713673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/05/2020] [Indexed: 10/23/2022]
Abstract
17p13.3 microduplication syndrome has been associated with a clinical spectrum of phenotypes, and depending on the genes involved in the microduplication, it is categorized into two classes (Class I and Class II). We herein, describe two patients diagnosed with Class I 17p13.3 microduplication by BACs-on-Beads (BoBs) assay and further confirmed by fluorescence in situ hybridization (FISH). Our patients (Patient 1: 4-year-old male; Patient 2: 2-year-old male) presented with developmental delay, intellectual disability, and dysmorphic facial features. When compared with the literature, our patients manifested distinctive features (Patient 1: primary hypothyroidism; Patient 2: bilateral cryptorchidism) that were not previously described in the duplication 17p13.3 spectrum.
Collapse
Affiliation(s)
- Chantal Farra
- Department of Pathology and Laboratory Medicine, Division of Medical Genetics, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lina Abdouni
- Department of Pathology and Laboratory Medicine, Division of Medical Genetics, American University of Beirut Medical Center, Beirut, Lebanon
| | - Abeer Hani
- Department of Pediatrics and Internal Medicine, Lebanese American University, Beirut, Lebanon
| | - Leyla Dirani
- Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon
| | - Layal Hamdar
- Department of Obstetrics and Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mirna Souaid
- Department of Pathology and Laboratory Medicine, Division of Medical Genetics, American University of Beirut Medical Center, Beirut, Lebanon
| | - Johnny Awwad
- Department of Obstetrics and Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
19
|
Blazejewski SM, Bennison SA, Ha NT, Liu X, Smith TH, Dougherty KJ, Toyo-Oka K. Rpsa Signaling Regulates Cortical Neuronal Morphogenesis via Its Ligand, PEDF, and Plasma Membrane Interaction Partner, Itga6. Cereb Cortex 2021; 32:770-795. [PMID: 34347028 DOI: 10.1093/cercor/bhab242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/25/2022] Open
Abstract
Neuromorphological defects underlie neurodevelopmental disorders and functional defects. We identified a function for Rpsa in regulating neuromorphogenesis using in utero electroporation to knockdown Rpsa, resulting in apical dendrite misorientation, fewer/shorter extensions, and decreased spine density with altered spine morphology in upper neuronal layers and decreased arborization in upper/lower cortical layers. Rpsa knockdown disrupts multiple aspects of cortical development, including radial glial cell fiber morphology and neuronal layering. We investigated Rpsa's ligand, PEDF, and interacting partner on the plasma membrane, Itga6. Rpsa, PEDF, and Itga6 knockdown cause similar phenotypes, with Rpsa and Itga6 overexpression rescuing morphological defects in PEDF-deficient neurons in vivo. Additionally, Itga6 overexpression increases and stabilizes Rpsa expression on the plasma membrane. GCaMP6s was used to functionally analyze Rpsa knockdown via ex vivo calcium imaging. Rpsa-deficient neurons showed less fluctuation in fluorescence intensity, suggesting defective subthreshold calcium signaling. The Serpinf1 gene coding for PEDF is localized at chromosome 17p13.3, which is deleted in patients with the neurodevelopmental disorder Miller-Dieker syndrome. Our study identifies a role for Rpsa in early cortical development and for PEDF-Rpsa-Itga6 signaling in neuromorphogenesis, thus implicating these molecules in the etiology of neurodevelopmental disorders like Miller-Dieker syndrome and identifying them as potential therapeutics.
Collapse
Affiliation(s)
- Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Ngoc T Ha
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Xiaonan Liu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Trevor H Smith
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Kimberly J Dougherty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
20
|
Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 2020; 121:201-219. [PMID: 33370574 DOI: 10.1016/j.neubiorev.2020.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The pathological alterations that manifest during the early embryonic development due to inherited and acquired factors trigger various neurodevelopmental disorders (NDDs). Besides major NDDs, there are several rare NDDs, exhibiting specific characteristics and varying levels of severity triggered due to genetic and epigenetic anomalies. The rarity of subjects, paucity of neural tissues for detailed analysis, and the unavailability of disease-specific animal models have hampered detailed comprehension of rare NDDs, imposing heightened challenge to the medical and scientific community until a decade ago. The generation of functional neurons and glia through directed differentiation protocols for patient-derived iPSCs, CRISPR/Cas9 technology, and 3D brain organoid models have provided an excellent opportunity and vibrant resource for decoding the etiology of brain development for rare NDDs caused due to monogenic as well as polygenic disorders. The present review identifies cellular and molecular phenotypes demonstrated from patient-derived iPSCs and possible therapeutic opportunities identified for these disorders. New insights to reinforce the existing knowledge of the pathophysiology of these disorders and prospective therapeutic applications are discussed.
Collapse
Affiliation(s)
- K R Sabitha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
21
|
Forbes BE, Blyth AJ, Wit JM. Disorders of IGFs and IGF-1R signaling pathways. Mol Cell Endocrinol 2020; 518:111035. [PMID: 32941924 DOI: 10.1016/j.mce.2020.111035] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
The insulin-like growth factor (IGF) system comprises two ligands, IGF-I and IGF-II, that regulate multiple physiological processes, including mammalian development, metabolism and growth, through the type 1 IGF receptor (IGF-1R). The growth hormone (GH)-IGF-I axis is the major regulator of longitudinal growth. IGF-II is expressed in many tissues, notably the placenta, to regulate human pre- and post-natal growth and development. This review provides a brief introduction to the IGF system and summarizes findings from reports arising from recent larger genomic sequencing studies of human genetic mutations in IGF1 and IGF2 and genes of proteins regulating IGF action, namely the IGF-1R, IGF-1R signaling pathway components and the IGF binding proteins (IGFBPs). A perspective on the effect of homozygous mutations on structure and function of the IGFs and IGF-1R is also given and this is related to the effects on growth.
Collapse
Affiliation(s)
- Briony E Forbes
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Australia.
| | - Andrew J Blyth
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Australia
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Uchiyama Y, Yamaguchi D, Iwama K, Miyatake S, Hamanaka K, Tsuchida N, Aoi H, Azuma Y, Itai T, Saida K, Fukuda H, Sekiguchi F, Sakaguchi T, Lei M, Ohori S, Sakamoto M, Kato M, Koike T, Takahashi Y, Tanda K, Hyodo Y, Honjo RS, Bertola DR, Kim CA, Goto M, Okazaki T, Yamada H, Maegaki Y, Osaka H, Ngu LH, Siew CG, Teik KW, Akasaka M, Doi H, Tanaka F, Goto T, Guo L, Ikegawa S, Haginoya K, Haniffa M, Hiraishi N, Hiraki Y, Ikemoto S, Daida A, Hamano SI, Miura M, Ishiyama A, Kawano O, Kondo A, Matsumoto H, Okamoto N, Okanishi T, Oyoshi Y, Takeshita E, Suzuki T, Ogawa Y, Handa H, Miyazono Y, Koshimizu E, Fujita A, Takata A, Miyake N, Mizuguchi T, Matsumoto N. Efficient detection of copy-number variations using exome data: Batch- and sex-based analyses. Hum Mutat 2020; 42:50-65. [PMID: 33131168 DOI: 10.1002/humu.24129] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.
Collapse
Affiliation(s)
- Yuri Uchiyama
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan.,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Aoi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Obstetrics and Gynecology, Faculty of Medicine Juntendo University, Tokyo, Japan
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromi Fukuda
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Futoshi Sekiguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiro Sakaguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ming Lei
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masamune Sakamoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Takayoshi Koike
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Yukitoshi Takahashi
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Koichi Tanda
- Department of Pediatrics, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Yuki Hyodo
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Rachel S Honjo
- Unidade de Genetica do Instituto da Crianca do Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Debora Romeo Bertola
- Unidade de Genetica do Instituto da Crianca do Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Chong Ae Kim
- Unidade de Genetica do Instituto da Crianca do Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Masahide Goto
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Tetsuya Okazaki
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroyuki Yamada
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshihiro Maegaki
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Lock-Hock Ngu
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Ch'ng G Siew
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Keng W Teik
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Manami Akasaka
- Department of Pediatrics, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohide Goto
- Division of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Muzhirah Haniffa
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Nozomi Hiraishi
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoko Hiraki
- Hiroshima Municipal Center for Child Health and Development, Hiroshima, Japan
| | - Satoru Ikemoto
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Atsuro Daida
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Shin-Ichiro Hamano
- Division of Neurology, Saitama Children's Medical Center, Saitama, Japan
| | - Masaki Miura
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Pediatrics, Nagaoka Red Cross Hospital, Nagaoka, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Osamu Kawano
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Akane Kondo
- Clinical Genetics Center, Shikoku Medical Center for Children and Adults, National Hospital Organization, Kagawa, Japan
| | - Hiroshi Matsumoto
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Tohru Okanishi
- Department of Brain and Neurosciences, Division of Child Neurology, Faculty of Medicine, Tottori University, Yonago, Japan.,Department of Child Neurology, Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
| | - Yukimi Oyoshi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Toshifumi Suzuki
- Department of Obstetrics and Gynecology, Faculty of Medicine Juntendo University, Tokyo, Japan
| | - Yoshiyuki Ogawa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yayoi Miyazono
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
23
|
Gadgil RY, Romer EJ, Goodman CC, Rider SD, Damewood FJ, Barthelemy JR, Shin-Ya K, Hanenberg H, Leffak M. Replication stress at microsatellites causes DNA double-strand breaks and break-induced replication. J Biol Chem 2020; 295:15378-15397. [PMID: 32873711 DOI: 10.1074/jbc.ra120.013495] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
Short tandemly repeated DNA sequences, termed microsatellites, are abundant in the human genome. These microsatellites exhibit length instability and susceptibility to DNA double-strand breaks (DSBs) due to their tendency to form stable non-B DNA structures. Replication-dependent microsatellite DSBs are linked to genome instability signatures in human developmental diseases and cancers. To probe the causes and consequences of microsatellite DSBs, we designed a dual-fluorescence reporter system to detect DSBs at expanded (CTG/CAG) n and polypurine/polypyrimidine (Pu/Py) mirror repeat structures alongside the c-myc replication origin integrated at a single ectopic chromosomal site. Restriction cleavage near the (CTG/CAG)100 microsatellite leads to homology-directed single-strand annealing between flanking AluY elements and reporter gene deletion that can be detected by flow cytometry. However, in the absence of restriction cleavage, endogenous and exogenous replication stressors induce DSBs at the (CTG/CAG)100 and Pu/Py microsatellites. DSBs map to a narrow region at the downstream edge of the (CTG)100 lagging-strand template. (CTG/CAG) n chromosome fragility is repeat length-dependent, whereas instability at the (Pu/Py) microsatellites depends on replication polarity. Strikingly, restriction-generated DSBs and replication-dependent DSBs are not repaired by the same mechanism. Knockdown of DNA damage response proteins increases (Rad18, polymerase (Pol) η, Pol κ) or decreases (Mus81) the sensitivity of the (CTG/CAG)100 microsatellites to replication stress. Replication stress and DSBs at the ectopic (CTG/CAG)100 microsatellite lead to break-induced replication and high-frequency mutagenesis at a flanking thymidine kinase gene. Our results show that non-B structure-prone microsatellites are susceptible to replication-dependent DSBs that cause genome instability.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Eric J Romer
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Caitlin C Goodman
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - French J Damewood
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Joanna R Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Kazuo Shin-Ya
- Biomedical Information Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany; Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| |
Collapse
|
24
|
Nam KH, Yi SA, Jang HJ, Han JW, Lee J. In vitro modeling for inherited neurological diseases using induced pluripotent stem cells: from 2D to organoid. Arch Pharm Res 2020; 43:877-889. [PMID: 32761309 DOI: 10.1007/s12272-020-01260-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Stem cells are characterized by self-renewal and by their ability to differentiate into cells of various organs. With massive progress in 2D and 3D cell culture techniques, in vitro generation of various types of such organoids from patient-derived stem cells is now possible. As in vitro differentiation protocols are usually made to resemble human developmental processes, organogenesis of patient-derived stem cells can provide key information regarding a range of developmental diseases. Human stem cell-based in vitro modeling as opposed to using animal models can particularly benefit the evaluation of neurological diseases because of significant differences in structure and developmental processes between the human and the animal brain. This review focuses on stem cell-based in vitro modeling of neurodevelopmental disorders, more specifically, the fundamentals and technical advancements in monolayer neuron and brain organoid cultures. Furthermore, we discuss the drawbacks of the conventional culture method and explore the advanced, cutting edge 3D organoid models for several neurodevelopmental diseases, including genetic diseases such as Down syndrome, Rett syndrome, and Miller-Dieker syndrome, as well as brain malformations like macrocephaly and microcephaly. Finally, we discuss the limitations of the current organoid techniques and some potential solutions that pave the way for accurate modeling of neurological disorders in a dish.
Collapse
Affiliation(s)
- Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Ji Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea. .,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea. .,Imnewrun Biosciences Inc., Suwon, 16419, Republic of Korea.
| |
Collapse
|
25
|
Torrico B, Antón-Galindo E, Fernàndez-Castillo N, Rojo-Francàs E, Ghorbani S, Pineda-Cirera L, Hervás A, Rueda I, Moreno E, Fullerton JM, Casadó V, Buitelaar JK, Rommelse N, Franke B, Reif A, Chiocchetti AG, Freitag C, Kleppe R, Haavik J, Toma C, Cormand B. Involvement of the 14-3-3 Gene Family in Autism Spectrum Disorder and Schizophrenia: Genetics, Transcriptomics and Functional Analyses. J Clin Med 2020; 9:E1851. [PMID: 32545830 PMCID: PMC7356291 DOI: 10.3390/jcm9061851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The 14-3-3 protein family are molecular chaperones involved in several biological functions and neurological diseases. We previously pinpointed YWHAZ (encoding 14-3-3ζ) as a candidate gene for autism spectrum disorder (ASD) through a whole-exome sequencing study, which identified a frameshift variant within the gene (c.659-660insT, p.L220Ffs*18). Here, we explored the contribution of the seven human 14-3-3 family members in ASD and other psychiatric disorders by investigating the: (i) functional impact of the 14-3-3ζ mutation p.L220Ffs*18 by assessing solubility, target binding and dimerization; (ii) contribution of common risk variants in 14-3-3 genes to ASD and additional psychiatric disorders; (iii) burden of rare variants in ASD and schizophrenia; and iv) 14-3-3 gene expression using ASD and schizophrenia transcriptomic data. We found that the mutant 14-3-3ζ protein had decreased solubility and lost its ability to form heterodimers and bind to its target tyrosine hydroxylase. Gene-based analyses using publicly available datasets revealed that common variants in YWHAE contribute to schizophrenia (p = 6.6 × 10-7), whereas ultra-rare variants were found enriched in ASD across the 14-3-3 genes (p = 0.017) and in schizophrenia for YWHAZ (meta-p = 0.017). Furthermore, expression of 14-3-3 genes was altered in post-mortem brains of ASD and schizophrenia patients. Our study supports a role for the 14-3-3 family in ASD and schizophrenia.
Collapse
Affiliation(s)
- Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Eva Rojo-Francàs
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Sadaf Ghorbani
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
| | - Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Amaia Hervás
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, 08221 Terrassa, Spain; (A.H.); (I.R.)
- IGAIN, Global Institute of Integral Attention to Neurodevelopment, 08007 Barcelona, Spain
| | - Isabel Rueda
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, 08221 Terrassa, Spain; (A.H.); (I.R.)
| | - Estefanía Moreno
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Janice M. Fullerton
- Neuroscience Research Australia, Sydney, NSW 2031, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vicent Casadó
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
- Karakter Child and Adolescent Psychiatry University Centre, 6525 GC Nijmegen, The Netherlands;
| | - Nanda Rommelse
- Karakter Child and Adolescent Psychiatry University Centre, 6525 GC Nijmegen, The Netherlands;
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University, 60323 Frankfurt am Main, Germany; (A.G.C.); (C.F.)
| | - Christine Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University, 60323 Frankfurt am Main, Germany; (A.G.C.); (C.F.)
| | - Rune Kleppe
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Haavik
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
| | - Claudio Toma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Neuroscience Research Australia, Sydney, NSW 2031, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid/CSIC, C/Nicolás Cabrera, 1, Campus UAM, 28049 Madrid, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
26
|
Romano C, Ferranti S, Mencarelli MA, Longo I, Renieri A, Grosso S. 17p13.3 microdeletion including YWHAE and CRK genes: towards a clinical characterization. Neurol Sci 2020; 41:2259-2262. [PMID: 32323081 DOI: 10.1007/s10072-020-04424-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/13/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The short arm of chromosome 17 is characterized by a high density of low copy repeats, creating the opportunity for non-allelic homologous recombination to occur. Microdeletions of the 17p13.3 region are responsible for neuronal migration disorders including isolated lissencephaly sequence and Miller-Dieker syndrome. CASE REPORT We describe the case of a 4-year and 2-month-old female with peculiar somatic traits and neurodevelopmental delay. At the age of 6 months, she started to present with infantile spasms syndrome; therefore, we administered vigabatrin followed by two cycles of adrenocorticotropic hormone, with good response. The coexistence of epileptic activity, neuropsychological delay, brain imaging abnormalities, and peculiar somatic features oriented us towards the hypothesis of a genetic etiology that could explain her clinical picture. Array CGH identified a 730 Kb deletion in the p13.3 region of the short arm of chromosome 17 including eleven genes, among these are YWHAE and CRK. DISCUSSION Microdeletions of the 17p13.3 region involving only YWHAE and CRK, sparing PAFAH1B1, result in neurodevelopmental delay, growth retardation, craniofacial dysmorphisms, and mild structural brain abnormalities. Differently from the previously described patients carrying YWHAE and CRK deletions, the main complaint of our patient was represented by seizures. The absence of clear neuronal migration defects and mutations of the PAFAH1B1 gene in our patient underlines the central role of additional genes located in the 17p13.3 chromosomal region in the pathogenesis of epilepsy and helps to expand the phenotype of 17p13.3 microdeletion syndrome.
Collapse
Affiliation(s)
- Chiara Romano
- Dipartimento di Medicina Molecolare e dello Sviluppo, Universita' degli Studi di Siena, viale Bracci 16, 53100, Siena, Italy
| | - Silvia Ferranti
- Dipartimento di Medicina Molecolare e dello Sviluppo, Universita' degli Studi di Siena, viale Bracci 16, 53100, Siena, Italy.
| | | | - Ilaria Longo
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, viale Bracci 2, 53100, Siena, Italy
| | - Alessandra Renieri
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, viale Bracci 2, 53100, Siena, Italy
- Medical Genetics, University of Siena, viale Bracci 2, 53100, Siena, Italy
| | - Salvatore Grosso
- Dipartimento di Medicina Molecolare e dello Sviluppo, Universita' degli Studi di Siena, viale Bracci 16, 53100, Siena, Italy
- U.O.C. Pediatria, Azienda Ospedaliera Universitaria Senese, viale Bracci 16, 53100, Siena, Italy
| |
Collapse
|
27
|
Candelo E, Caicedo G, Mejia L, Pachajoa H. Chromosome 17p13.3 microdeletion syndrome with unaltered PAFAH1B1 gene. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2018.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Niu W, Parent JM. Modeling genetic epilepsies in a dish. Dev Dyn 2019; 249:56-75. [DOI: 10.1002/dvdy.79] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wei Niu
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| | - Jack M. Parent
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| |
Collapse
|
29
|
Emrick LT, Rosenfeld JA, Lalani SR, Jain M, Desai NK, Larson A, Kripps K, Vanderver A, Taft RJ, Bluske K, Perry D, Nagakura H, Immken LL, Burrage LC, Bacino CA, Belmont JW, Network UD, Lee B. Microdeletions excluding YWHAE and PAFAH1B1 cause a unique leukoencephalopathy: further delineation of the 17p13.3 microdeletion spectrum. Genet Med 2019; 21:1652-1656. [PMID: 30568308 PMCID: PMC6586530 DOI: 10.1038/s41436-018-0358-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/30/2018] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Brain malformations caused by 17p13.3 deletions include lissencephaly with deletions of the larger Miller-Dieker syndrome region or smaller deletions of only PAFAH1B1, white matter changes, and a distinct syndrome due to deletions including YWHAE and CRK but sparing PAFAH1B1. We sought to understand the significance of 17p13.3 deletions between the YWHAE/CRK and PAFAH1B1 loci. METHODS We analyzed the clinical features of six individuals from five families with 17p13.3 deletions between and not including YWHAE/CRK and PAFAH1B1 identified among individuals undergoing clinical chromosomal microarray testing or research genome sequencing. RESULTS Five individuals from four families had multifocal white matter lesions while a sixth had a normal magnetic resonance image. A combination of our individuals and a review of those in the literature with white matter changes and deletions in this chromosomal region narrows the overlapping region for this brain phenotype to ~345 kb, including 11 RefSeq genes, with RTN4RL1 haploinsufficiency as the best candidate for causing this phenotype. CONCLUSION While previous literature has hypothesized dysmorphic features and white matter changes related to YWHAE, our cohort contributes evidence to the presence of additional genetic changes within 17p13.3 required for proper brain development.
Collapse
Affiliation(s)
- Lisa T Emrick
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Jill A Rosenfeld
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Seema R Lalani
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Mahim Jain
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Nilesh K Desai
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Austin Larson
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kimberly Kripps
- Section of Genetics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | - Honey Nagakura
- Dell Children's Medical Center, Austin, TX, USA
- LabCorp, Austin, TX, USA
| | | | - Lindsay C Burrage
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Carlos A Bacino
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - John W Belmont
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Illumina, Houston, TX, USA
| | | | - Brendan Lee
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
30
|
Integrated FISH, Karyotyping and aCGH Analyses for Effective Prenatal Diagnosis of Common Aneuploidies and Other Cytogenomic Abnormalities. Med Sci (Basel) 2019; 7:medsci7020016. [PMID: 30678103 PMCID: PMC6410168 DOI: 10.3390/medsci7020016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 01/18/2023] Open
Abstract
Current prenatal genetic evaluation showed a significantly increase in non-invasive screening and the reduction of invasive diagnostic procedures. To evaluate the diagnostic efficacy on detecting common aneuploidies, structural chromosomal rearrangements, and pathogenic copy number variants (pCNV), we performed a retrospective analysis on a case series initially analyzed by aneuvysion fluorescence in situ hybridization (FISH) and karyotyping then followed by array comparative genomic hybridization (aCGH). Of the 386 cases retrieved from the past decade, common aneuploidies were detected in 137 cases (35.5%), other chromosomal structural rearrangements were detected in four cases (1%), and pCNV were detected in five cases (1.3%). The relative frequencies for common aneuploidies suggested an under detection of sex chromosome aneuploidies. Approximately 9.5% of cases with common aneuploidies showed a mosaic pattern. Inconsistent results between FISH and karyotyping were noted in cases with pseudo-mosaicism introduced by culture artifact or variable cellular proliferation from cells with mosaic karyotypic complements under in vitro cell culture. Based on findings from this case series, cell-based FISH and karyotyping should be performed to detect common aneuploidies, structural chromosomal abnormalities, and mosaic pattern. DNA-based aCGH and reflex FISH should be performed to detect and confirm genomic imbalances and pCNV. Practice points to ensure the diagnostic accuracy and efficacy were summarized.
Collapse
|
31
|
Human Pluripotent Stem Cells: Applications and Challenges for Regenerative Medicine and Disease Modeling. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:189-224. [PMID: 31740987 DOI: 10.1007/10_2019_117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, human pluripotent stem (hPS) cells have started to emerge as a potential tool with application in fields such as regenerative medicine, disease modeling, and drug screening. In particular, the ability to differentiate human-induced pluripotent stem (hiPS) cells into different cell types and to mimic structures and functions of a specific target organ, resourcing to organoid technology, has introduced novel model systems for disease recapitulation while offering a powerful tool to provide a faster and reproducible approach in the process of drug discovery. All these technologies are expected to improve the overall quality of life of the humankind. Here, we highlight the main applications of hiPS cells and the main challenges associated with the translation of hPS cell derivatives into clinical settings and other biomedical applications, such as the costs of the process and the ability to mimic the complexity of the in vivo systems. Moreover, we focus on the bioprocessing approaches that can be applied towards the production of high numbers of cells as well as their efficient differentiation into the final product and further purification.
Collapse
|
32
|
Array comparative genomic hybridization characterization of a 3.3-Mb 17p13.3-p13.2 deletion encompassing YWHAE, CRK, HIC1 and PAFAH1B1 in an 8-year-old girl with Miller-Dieker lissencephaly syndrome, congenital heart defects, growth restriction and developmental delay. Taiwan J Obstet Gynecol 2018; 57:765-768. [DOI: 10.1016/j.tjog.2018.08.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 11/19/2022] Open
|
33
|
Tan AP, Chong WK, Mankad K. Comprehensive genotype-phenotype correlation in lissencephaly. Quant Imaging Med Surg 2018; 8:673-693. [PMID: 30211035 DOI: 10.21037/qims.2018.08.08] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malformations of cortical development (MCD) are a heterogenous group of disorders with diverse genotypic and phenotypic variations. Lissencephaly is a subtype of MCD caused by defect in neuronal migration, which occurs between 12 and 24 weeks of gestation. The continuous advancement in the field of molecular genetics in the last decade has led to identification of at least 19 lissencephaly-related genes, most of which are related to microtubule structural proteins (tubulin) or microtubule-associated proteins (MAPs). The aim of this review article is to bring together current knowledge of gene mutations associated with lissencephaly and to provide a comprehensive genotype-phenotype correlation. Illustrative cases will be presented to facilitate the understanding of the described genotype-phenotype correlation.
Collapse
Affiliation(s)
- Ai Peng Tan
- Department of Diagnostic Imaging, National University Health System, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Wui Khean Chong
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
34
|
Wang H. Modeling Neurological Diseases With Human Brain Organoids. Front Synaptic Neurosci 2018; 10:15. [PMID: 29937727 PMCID: PMC6002496 DOI: 10.3389/fnsyn.2018.00015] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
The complexity and delicacy of human brain make it challenging to recapitulate its development, function and disorders. Brain organoids derived from human pluripotent stem cells (PSCs) provide a new tool to model both normal and pathological human brain, and greatly enhance our ability to study brain biology and diseases. Currently, human brain organoids are increasingly used in modeling neurological disorders and relative therapeutic discovery. This review article focuses on recent advances in human brain organoid system and its application in disease modeling. It also discusses the limitations and future perspective of human brain organoids in modeling neurological diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Blazejewski SM, Bennison SA, Smith TH, Toyo-Oka K. Neurodevelopmental Genetic Diseases Associated With Microdeletions and Microduplications of Chromosome 17p13.3. Front Genet 2018; 9:80. [PMID: 29628935 PMCID: PMC5876250 DOI: 10.3389/fgene.2018.00080] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/24/2023] Open
Abstract
Chromosome 17p13.3 is a region of genomic instability that is linked to different rare neurodevelopmental genetic diseases, depending on whether a deletion or duplication of the region has occurred. Chromosome microdeletions within 17p13.3 can result in either isolated lissencephaly sequence (ILS) or Miller-Dieker syndrome (MDS). Both conditions are associated with a smooth cerebral cortex, or lissencephaly, which leads to developmental delay, intellectual disability, and seizures. However, patients with MDS have larger deletions than patients with ILS, resulting in additional symptoms such as poor muscle tone, congenital anomalies, abnormal spasticity, and craniofacial dysmorphisms. In contrast to microdeletions in 17p13.3, recent studies have attracted considerable attention to a condition known as a 17p13.3 microduplication syndrome. Depending on the genes involved in their microduplication, patients with 17p13.3 microduplication syndrome may be categorized into either class I or class II. Individuals in class I have microduplications of the YWHAE gene encoding 14-3-3ε, as well as other genes in the region. However, the PAFAH1B1 gene encoding LIS1 is never duplicated in these patients. Class I microduplications generally result in learning disabilities, autism, and developmental delays, among other disorders. Individuals in class II always have microduplications of the PAFAH1B1 gene, which may include YWHAE and other genetic microduplications. Class II microduplications generally result in smaller body size, developmental delays, microcephaly, and other brain malformations. Here, we review the phenotypes associated with copy number variations (CNVs) of chromosome 17p13.3 and detail their developmental connection to particular microdeletions or microduplications. We also focus on existing single and double knockout mouse models that have been used to study human phenotypes, since the highly limited number of patients makes a study of these conditions difficult in humans. These models are also crucial for the study of brain development at a mechanistic level since this cannot be accomplished in humans. Finally, we emphasize the usefulness of the CRISPR/Cas9 system and next generation sequencing in the study of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Trevor H Smith
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
36
|
Chen CP, Ko TM, Wang LK, Chern SR, Wu PS, Chen SW, Lai ST, Chuang TY, Yang CW, Lee CC, Wang W. Prenatal diagnosis of a 0.7-Mb 17p13.3 microdeletion encompassing YWHAE and CRK but not PAFAH1B1 in a fetus without ultrasound abnormalities. Taiwan J Obstet Gynecol 2018; 57:128-132. [DOI: 10.1016/j.tjog.2017.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 01/20/2023] Open
|
37
|
Perez-Lanzon M, Kroemer G, Maiuri MC. Organoids for Modeling Genetic Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 337:49-81. [DOI: 10.1016/bs.ircmb.2017.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Noor A, Bogatan S, Watkins N, Meschino WS, Stavropoulos DJ. Disruption of YWHAE gene at 17p13.3 causes learning disabilities and brain abnormalities. Clin Genet 2017; 93:365-367. [PMID: 28542865 DOI: 10.1111/cge.13056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022]
Abstract
There is a broad phenotypic spectrum of patients with 17p13.3 deletions. One of the most prominent feature is lissencephaly caused by haploinsufficiency of the gene PAFAH1B1. The deletion of this gene and those distal to it, results in Miller-Dieker syndrome, however there have been many reports of patients with haploinsufficiency of the distal genes alone. The deletions of these genes including YWHAE CRK and TUSC5 have been studied extensively and YWHAE has been postulated to be the cause of neurological abnormalities. The patients with deletions of the Miller-Dieker syndrome distal region present with variable clinical features including brain abnormalities, growth retardation, developmental delay, facial dysmorphisms and seizures. While there have been many patients reported to have deletions involving the YWHAE gene along with other genes, here we present the first detailed clinical description of a patient with deletion of YWHAE alone, allowing a more accurate characterization of the pathogenicity of YWHAE haploinsufficiency. The patient reported here demonstrated brain abnormalities, learning disabilities, and seizures supporting the role of YWHAE in these features. We review the literature and use this case report to better characterize and further confirm the genotype-phenotype relationship of the genes within the critical region of Miller-Dieker Syndrome.
Collapse
Affiliation(s)
- A Noor
- Department of Pathology and Laboratory Medicine, Division of Diagnostic Medical Genetics, Mount Sinai Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - S Bogatan
- Department of Pathology and Laboratory Medicine, Division of Diagnostic Medical Genetics, Mount Sinai Hospital, Toronto, Canada
| | - N Watkins
- Department of Pathology and Laboratory Medicine, Division of Diagnostic Medical Genetics, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - W S Meschino
- Genetics Program, North York General Hospital, Toronto, Canada.,Department of Paediatrics, University of Toronto, Toronto, Canada
| | - D J Stavropoulos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
39
|
Wiener P, Sánchez-Molano E, Clements DN, Woolliams JA, Haskell MJ, Blott SC. Genomic data illuminates demography, genetic structure and selection of a popular dog breed. BMC Genomics 2017; 18:609. [PMID: 28806925 PMCID: PMC5557481 DOI: 10.1186/s12864-017-3933-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/09/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Genomic methods have proved to be important tools in the analysis of genetic diversity across the range of species and can be used to reveal processes underlying both short- and long-term evolutionary change. This study applied genomic methods to investigate population structure and inbreeding in a common UK dog breed, the Labrador Retriever. RESULTS We found substantial within-breed genetic differentiation, which was associated with the role of the dog (i.e. working, pet, show) and also with coat colour (i.e. black, yellow, brown). There was little evidence of geographical differentiation. Highly differentiated genomic regions contained genes and markers associated with skull shape, suggesting that at least some of the differentiation is related to human-imposed selection on this trait. We also found that the total length of homozygous segments (runs of homozygosity, ROHs) was highly correlated with inbreeding coefficient. CONCLUSIONS This study demonstrates that high-density genomic data can be used to quantify genetic diversity and to decipher demographic and selection processes. Analysis of genetically differentiated regions in the UK Labrador Retriever population suggests the possibility of human-imposed selection on craniofacial characteristics. The high correlation between estimates of inbreeding from genomic and pedigree data for this breed demonstrates that genomic approaches can be used to quantify inbreeding levels in dogs, which will be particularly useful where pedigree information is missing.
Collapse
Affiliation(s)
- Pamela Wiener
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland UK
| | - Enrique Sánchez-Molano
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland UK
| | - Dylan N. Clements
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland UK
| | - John A. Woolliams
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland UK
| | | | | |
Collapse
|
40
|
Liu J, Zhang HX, Li ZQ, Li T, Li JY, Wang T, Li Y, Feng GY, Shi YY, He L. The YWHAE gene confers risk to major depressive disorder in the male group of Chinese Han population. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:172-177. [PMID: 28414084 DOI: 10.1016/j.pnpbp.2017.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/14/2022]
Abstract
Schizophrenia and major depressive disorder are two major psychiatric illnesses that may share specific genetic risk factors to a certain extent. Increasing evidence suggests that the two disorders might be more closely related than previously considered. To investigate whether YWHAE gene plays a significant role in major depressive disorder in Han Chinese population, we recruited 1135 unrelated major depressive disorder patients (485 males, 650 females) and 989 unrelated controls (296 males, 693 females) of Chinese Han origin. Eleven common SNPs were genotyped using TaqMan® technology. In male-group, the allele and genotype frequencies of rs34041110 differed significantly between patients and control (Pallele=0.036486, OR[95%CI]: 1.249442(1.013988-1.539571); Pgenotype=0.045301). Also in this group, allele and genotype frequencies of rs1532976 differed significantly (Pallele=0.013242, OR[95%CI]: 1.302007(1.056501-1.604563); genotype: P=0.039152). Haplotype-analyses showed that, in male-group, positive association with major depressive disorder was found for the A-A-C-G haplotype of rs3752826-rs2131431-rs1873827-rs12452627 (χ2=20.397, P=6.38E-06, OR[95%CI]: 7.442 [2.691-20.583]), its C-A-C-G haplotype (χ2=19.122, P=1.24E-05, OR and 95%CI: 0.402 [0.264-0.612]), its C-C-T-G haplotype (χ2=9.766, P=0.001785, OR[95%CI]: 5.654 [1.664-19.211]). In female-group, positive association was found for the A-A-C-G haplotype of rs3752826-rs2131431-rs1873827-rs12452627 (χ2=78.628, P=7.94E-19, OR[95%CI]: 50.043 [11.087-225.876]), its A-C-T-G haplotype (χ2=38.806, P=4.83E-10, OR[95%CI]: 0.053 [0.015-0.192]), the C-A-C-G haplotype (χ2=18.930, P=1.37E-05, OR[95%CI]: 0.526 [0.392-0.705]), and the C-C-T-G haplotype (χ2=38.668, P=5.18E-10, OR[95%CI]: 6.130 [3.207-11.716]). Our findings support YWHAE being a risk gene for Major Depressive Disorder in the Han Chinese population.
Collapse
Affiliation(s)
- Jie Liu
- Shanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hong-Xin Zhang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Qiang Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tao Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun-Yan Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ti Wang
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - You Li
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yin Feng
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Yong Shi
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Lin He
- Bio-X Institute, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
41
|
Son AI, Fu X, Suto F, Liu JS, Hashimoto-Torii K, Torii M. Proteome dynamics during postnatal mouse corpus callosum development. Sci Rep 2017; 7:45359. [PMID: 28349996 PMCID: PMC5368975 DOI: 10.1038/srep45359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023] Open
Abstract
Formation of cortical connections requires the precise coordination of numerous discrete phases. This is particularly significant with regard to the corpus callosum, whose development undergoes several dynamic stages including the crossing of axon projections, elimination of exuberant projections, and myelination of established tracts. To comprehensively characterize the molecular events in this dynamic process, we set to determine the distinct temporal expression of proteins regulating the formation of the corpus callosum and their respective developmental functions. Mass spectrometry-based proteomic profiling was performed on early postnatal mouse corpus callosi, for which limited evidence has been obtained previously, using stable isotope of labeled amino acids in mammals (SILAM). The analyzed corpus callosi had distinct proteomic profiles depending on age, indicating rapid progression of specific molecular events during this period. The proteomic profiles were then segregated into five separate clusters, each with distinct trajectories relevant to their intended developmental functions. Our analysis both confirms many previously-identified proteins in aspects of corpus callosum development, and identifies new candidates in understudied areas of development including callosal axon refinement. We present a valuable resource for identifying new proteins integral to corpus callosum development that will provide new insights into the development and diseases afflicting this structure.
Collapse
Affiliation(s)
- Alexander I Son
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Xiaoqin Fu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Fumikazu Suto
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Judy S Liu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA.,Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.,Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA.,Department of Neurobiology and Kavli Institute for Neuroscience, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
42
|
Ma R, Deng L, Xia Y, Wei X, Cao Y, Guo R, Zhang R, Guo J, Liang D, Wu L. A clear bias in parental origin of de novo pathogenic CNVs related to intellectual disability, developmental delay and multiple congenital anomalies. Sci Rep 2017; 7:44446. [PMID: 28322228 PMCID: PMC5359547 DOI: 10.1038/srep44446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/08/2017] [Indexed: 12/28/2022] Open
Abstract
Copy number variation (CNV) is of great significance in human evolution and disorders. Through tracing the parent-of-origin of de novo pathogenic CNVs, we are expected to investigate the relative contributions of germline genomic stability on reproductive health. In our study, short tandem repeat (STR) and single nucleotide polymorphism (SNP) were used to determine the parent-of-origin of 87 de novo pathogenic CNVs found in unrelated patients with intellectual disability (ID), developmental delay (DD) and multiple congenital anomalies (MCA). The results shown that there was a significant difference on the distribution of the parent-of-origin for different CNVs types (Chi-square test, p = 4.914 × 10−3). An apparently paternal bias existed in deletion CNVs and a maternal bias in duplication CNVs, indicating that the relative contribution of paternal germline variations is greater than that of maternal to the origin of deletions, and vice versa to the origin of duplications. By analyzing the sequences flanking the breakpoints, we also confirmed that non-allelic homologous recombination (NAHR) served as the major mechanism for the formation of recurrent CNVs whereas non-SDs-based mechanisms played a part in generating rare non-recurrent CNVs and might relate to the paternal germline bias in deletion CNVs.
Collapse
Affiliation(s)
- Ruiyu Ma
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Linbei Deng
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yan Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xianda Wei
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yingxi Cao
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ruolan Guo
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Rui Zhang
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jing Guo
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
43
|
Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, Kriegstein AR. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell 2017; 20:435-449.e4. [PMID: 28111201 DOI: 10.1016/j.stem.2016.12.007] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/16/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Classical lissencephaly is a genetic neurological disorder associated with mental retardation and intractable epilepsy, and Miller-Dieker syndrome (MDS) is the most severe form of the disease. In this study, to investigate the effects of MDS on human progenitor subtypes that control neuronal output and influence brain topology, we analyzed cerebral organoids derived from control and MDS-induced pluripotent stem cells (iPSCs) using time-lapse imaging, immunostaining, and single-cell RNA sequencing. We saw a cell migration defect that was rescued when we corrected the MDS causative chromosomal deletion and severe apoptosis of the founder neuroepithelial stem cells, accompanied by increased horizontal cell divisions. We also identified a mitotic defect in outer radial glia, a progenitor subtype that is largely absent from lissencephalic rodents but critical for human neocortical expansion. Our study, therefore, deepens our understanding of MDS cellular pathogenesis and highlights the broad utility of cerebral organoids for modeling human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marina Bershteyn
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elizabeth Di Lullo
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aishwarya Nene
- California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony Wynshaw-Boris
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
44
|
Chromosome 17p13.3 microdeletion syndrome with unaltered PAFAH1B1 gene. Neurologia 2016; 34:482-484. [PMID: 27939114 DOI: 10.1016/j.nrl.2016.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 11/23/2022] Open
|
45
|
Barros Fontes MI, Dos Santos AP, Rossi Torres F, Lopes-Cendes I, Cendes F, Appenzeller S, Kawasaki de Araujo T, Lopes Monlleó I, Gil-da-Silva-Lopes VL. 17p13.3 Microdeletion: Insights on Genotype-Phenotype Correlation. Mol Syndromol 2016; 8:36-41. [PMID: 28232781 DOI: 10.1159/000452753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2016] [Indexed: 01/13/2023] Open
Abstract
Microdeletions in the chromosomal region 17p13.3 are associated with neuronal migration disorders, and PAFAB1H1 is the main gene involved. The largest genomic imbalances, including the YWHAE and CRK genes, cause more severe structural abnormalities of the brain and other associated dysmorphic features. Here, we describe a 3-year-old boy with a microdeletion in 17p13.3 presenting with minor facial dysmorphisms, a cleft palate, neurodevelopmental delay, and behavioral disorder with no structural malformation of the brain. The patient was evaluated by a clinician using a standard protocol. Laboratory investigation included GTG-banding, whole-genome AGH, and array-CGH. Whole-genome AGH and array-CGH analysis identified an estimated 2.1-Mb deletion in the 17p13.3 region showing haploinsufficiency of the YWHAE, CRK, H1C1, and OVCA1 genes and no deletion of PAFAH1B1. The complex gene interaction on brain development and function is illustrated in the genotype-phenotype correlation described here. This report reinforces the importance of the 17p13.3 region in developmental abnormalities and highlights the weak implication of the HIC1 and OVCA1 genes in palatogenesis.
Collapse
Affiliation(s)
- Marshall I Barros Fontes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil; Department of Medical Genetics Sector, State University of Health Sciences of Alagoas (UNCISAL), Maceió, Brazil
| | - Ana P Dos Santos
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fábio Rossi Torres
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernando Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Simone Appenzeller
- Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Tânia Kawasaki de Araujo
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabella Lopes Monlleó
- Department of Clinical Genetics Service, Faculty of Medicine, University Hospital, Federal University of Alagoas (UFAL), Maceió, Brazil
| | - Vera L Gil-da-Silva-Lopes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
46
|
Jang SW, Jung JK, Kim JM. Replication Protein A (RPA) deficiency activates the Fanconi anemia DNA repair pathway. Cell Cycle 2016; 15:2336-45. [PMID: 27398742 DOI: 10.1080/15384101.2016.1201621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Fanconi anemia (FA) pathway regulates DNA inter-strand crosslink (ICL) repair. Despite our greater understanding of the role of FA in ICL repair, its function in the preventing spontaneous genome instability is not well understood. Here, we show that depletion of replication protein A (RPA) activates the FA pathway. RPA1 deficiency increases chromatin recruitment of FA core complex, leading to FANCD2 monoubiquitination (FANCD2-Ub) and foci formation in the absence of DNA damaging agents. Importantly, ATR depletion, but not ATM, abolished RPA1 depletion-induced FANCD2-Ub, suggesting that ATR activation mediated FANCD2-Ub. Interestingly, we found that depletion of hSSB1/2-INTS3, a single-stranded DNA-binding protein complex, induces FANCD2-Ub, like RPA1 depletion. More interestingly, depletion of either RPA1 or INTS3 caused increased accumulation of DNA damage in FA pathway deficient cell lines. Taken together, these results indicate that RPA deficiency induces activation of the FA pathway in an ATR-dependent manner, which may play a role in the genome maintenance.
Collapse
Affiliation(s)
- Seok-Won Jang
- a Department of Pharmacology , Medical Research Center for Gene Regulation, Chonnam National University Medical School , Gwangju , Korea
| | - Jin Ki Jung
- a Department of Pharmacology , Medical Research Center for Gene Regulation, Chonnam National University Medical School , Gwangju , Korea
| | - Jung Min Kim
- a Department of Pharmacology , Medical Research Center for Gene Regulation, Chonnam National University Medical School , Gwangju , Korea
| |
Collapse
|
47
|
He C, Dong C, Li J, Hu D, Yao L, Wu Y. A Familial 14q32.32q32.33 Duplication/17p13.3 Deletion Syndrome with Facial Anomalies and Moderate Intellectual Disability. Cytogenet Genome Res 2016; 148:262-7. [PMID: 27164845 DOI: 10.1159/000446145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
To our knowledge, a derivative chromosome 17 formed by a subtelomeric translocation involving chromosomes 17 and 14 has not been reported before. Here, we present the clinical and molecular cytogenetic characteristics of 2 family members with a subtelomeric rearrangement involving chromosome regions 14q32.32q32.33 and 17p13.3. The patients had moderate intellectual disability, a high forehead, a broad nasal root, downslanting palpebral fissures, epicanthal folds, retrognathia, hypertelorism, wrinkled skin over the glabella and metopic suture, and mild finger clubbing. Array CGH detected a 2.52-Mb duplication of 14q32.32q32.33 (103,805,680-106,396,479) and a 1.2-Mb deletion of 17p13.3 (87,009-1,298,869) confirmed to be pathogenic by quantitative PCR and loss of heterozygosity analysis of 17p13.3. The derivative chromosome 17 was inherited from a parental balanced translocation. To our knowledge, this cytogenetic aberration has not been described previously. The refinement of the genetic location will improve the knowledge of the genes responsible for this phenotype.
Collapse
Affiliation(s)
- Chunxia He
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, PR China
| | | | | | | | | | | |
Collapse
|
48
|
Jacobsen KK, Kleppe R, Johansson S, Zayats T, Haavik J. Epistatic and gene wide effects in YWHA and aromatic amino hydroxylase genes across ADHD and other common neuropsychiatric disorders: Association with YWHAE. Am J Med Genet B Neuropsychiatr Genet 2015; 168:423-432. [PMID: 26172220 PMCID: PMC5034749 DOI: 10.1002/ajmg.b.32339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/17/2015] [Indexed: 12/19/2022]
Abstract
Monoamines critically modulate neurophysiological functions affected in several neuropsychiatric disorders. We therefore examined genes encoding key enzymes of catecholamine and serotonin biosynthesis (tyrosine and tryptophan hydroxylases-TH and TPH1/2) as well as their regulatory 14-3-3 proteins (encoded by YWHA-genes). Previous studies have focused mainly on the individual genes, but no analysis spanning this regulatory network has been reported. We explored interactions between these genes in Norwegian patients with adult attention deficit hyperactivity disorder (aADHD), followed by gene-complex association tests in four major neuropsychiatric conditions; childhood ADHD (cADHD), bipolar disorder, schizophrenia, and major depressive disorder. For interaction analyses, we evaluated 55 SNPs across these genes in a sample of 583 aADHD patients and 637 controls. For the gene-complex tests, we utilized the data from large-scale studies of The Psychiatric Genomics Consortium (PGC). The four major neuropsychiatric disorders were examined for association with each of the genes individually as well as in three complexes as follows: (1) TPH1 and YWHA-genes; (2) TH, TPH2 and YWHA-genes; and (3) all genes together. The results show suggestive epistasis between YWHAE and two other 14-3-3-genes - YWHAZ, YWHAQ - in aADHD (nominal P-value of 0.0005 and 0.0008, respectively). In PGC data, association between YWHAE and schizophrenia was noted (P = 1.00E-05), whereas the combination of TPH1 and YWHA-genes revealed signs of association in cADHD, schizophrenia, and bipolar disorder. In conclusion, polymorphisms in the YWHA-genes and their targets may exert a cumulative effect in ADHD and related neuropsychiatric conditions, warranting the need for further investigation of these gene-complexes. © 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kaya K Jacobsen
- K.G. Jebsen Center for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rune Kleppe
- K.G. Jebsen Center for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- K.G. Jebsen Center for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tetyana Zayats
- K.G. Jebsen Center for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jan Haavik
- K.G. Jebsen Center for Research on Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
49
|
Hsiao MC, Piotrowski A, Callens T, Fu C, Wimmer K, Claes KBM, Messiaen L. Decoding NF1 Intragenic Copy-Number Variations. Am J Hum Genet 2015; 97:238-49. [PMID: 26189818 DOI: 10.1016/j.ajhg.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022] Open
Abstract
Genomic rearrangements can cause both Mendelian and complex disorders. Currently, several major mechanisms causing genomic rearrangements, such as non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), fork stalling and template switching (FoSTeS), and microhomology-mediated break-induced replication (MMBIR), have been proposed. However, to what extent these mechanisms contribute to gene-specific pathogenic copy-number variations (CNVs) remains understudied. Furthermore, few studies have resolved these pathogenic alterations at the nucleotide-level. Accordingly, our aim was to explore which mechanisms contribute to a large, unique set of locus-specific non-recurrent genomic rearrangements causing the genetic neurocutaneous disorder neurofibromatosis type 1 (NF1). Through breakpoint-spanning PCR as well as array comparative genomic hybridization, we have identified the breakpoints in 85 unrelated individuals carrying an NF1 intragenic CNV. Furthermore, we characterized the likely rearrangement mechanisms of these 85 CNVs, along with those of two additional previously published NF1 intragenic CNVs. Unlike the most typical recurrent rearrangements mediated by flanking low-copy repeats (LCRs), NF1 intragenic rearrangements vary in size, location, and rearrangement mechanisms. We propose the DNA-replication-based mechanisms comprising both FoSTeS and/or MMBIR and serial replication stalling to be the predominant mechanisms leading to NF1 intragenic CNVs. In addition to the loop within a 197-bp palindrome located in intron 40, four Alu elements located in introns 1, 2, 3, and 50 were also identified as intragenic-rearrangement hotspots within NF1.
Collapse
Affiliation(s)
- Meng-Chang Hsiao
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arkadiusz Piotrowski
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Tom Callens
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chuanhua Fu
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Kathleen B M Claes
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan, 185 9000 Gent, Belgium
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
50
|
Yuce-Dursun B, Danis O, Demir S, Ogan A, Onat F. Proteomic changes in the cortex membrane fraction of genetic absence epilepsy rats from Strasbourg. J Integr Neurosci 2015; 13:633-44. [PMID: 25352154 DOI: 10.1142/s021963521450023x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Epilepsy is a serious neurodegenerative disorder with a high incidence and a variety of presentations and causes. Studies on brain from various animal models including chronic models: Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are very useful for understanding the fundamental mechanisms associated with human epilepsy. Individual regions of the brain have different protein composition in different conditions. Therefore, proteomic analyses of the brain compartments are preferred for the development of new therapeutic targets in different pathophysiological conditions like neurodegenerative disorders. In this study, we describe a proteomic profiling of membrane fraction of cortex tissue from epileptic GAERS and non-epileptic Wistar rat brain by two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption/ionization mass spectroscopy. Comparing the optical density of spots between groups, we found that one protein expression was significantly down-regulated (guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1) and one protein expression was significantly up-regulated (14-3-3 protein epsilon isoform) in GAERS group. Our results indicate that these proteins might have played a significant role in epilepsy and may be considered as valuable therapeutic targets in the absence of epilepsy.
Collapse
Affiliation(s)
- Basak Yuce-Dursun
- Marmara University, Faculty of Arts and Sciences, Department of Chemistry, 34722, Istanbul, Turkey
| | | | | | | | | |
Collapse
|