1
|
Greene CS, Gignoux CR, Subirana-Granés M, Pividori M, Hicks SC, Ackert-Bicknell CL. Can AI reveal the next generation of high-impact bone genomics targets? Bone Rep 2025; 25:101839. [PMID: 40225702 PMCID: PMC11986539 DOI: 10.1016/j.bonr.2025.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/15/2025] Open
Abstract
Genetic studies have revealed hundreds of loci associated with bone-related phenotypes, including bone mineral density (BMD) and fracture risk. However, translating discovered loci into effective new therapies remains challenging. We review success stories including PCSK9-related drugs in cardiovascular disease and evidence supporting the use of human genetics to guide drug discovery, while highlighting advances in artificial intelligence and machine learning with the potential to improve target discovery in skeletal biology. These strategies are poised to improve how we integrate diverse data types, from genetic and electronic health records data to single-cell profiles and knowledge graphs. Such emerging computational methods can position bone genomics for a future of more precise, effective treatments, ultimately improving the outcomes for patients with common and rare skeletal disorders.
Collapse
Affiliation(s)
- Casey S. Greene
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher R. Gignoux
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marc Subirana-Granés
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Milton Pividori
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Cheryl L. Ackert-Bicknell
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
2
|
Dreyer TJ, Keen JAC, Wells LM, Hopkinson M, Orriss IR, Holdsworth G, Pitsillides AA, Roberts SJ. Porcupine inhibition is a promising pharmacological treatment for severe sclerosteosis pathologies. Bone Res 2025; 13:44. [PMID: 40189599 PMCID: PMC11973224 DOI: 10.1038/s41413-025-00406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 04/09/2025] Open
Abstract
Sclerosteosis, an ultra-rare disorder characterised by high bone mass (HBM) and skeletal overgrowth, leads to facial paralysis, hearing loss and raised intracranial pressure, which is currently managed only through high-risk surgery. Sclerosteosis is caused by SOST mutations and loss of functional sclerostin, a protein that suppresses osteogenesis by antagonising Wnt/β-catenin signalling. Herein, using in vitro and in vivo approaches, we explore whether LGK974, another potent Wnt inhibitor that targets porcupine (PORCN, Wnt-specific acyltransferase), is a promising sclerosteosis therapeutic. In vitro assays showed that 100 nmol/L LGK974 significantly reduced osteoblast alkaline phosphatase (ALP) activity/mineralisation, decreased Wnt/osteoblast marker (Axin2, Runx2 and Ocn) expression, and downregulated ossification and the Wnt signalling pathway, without affecting osteoclast numbers/resorption. To assess in vivo effects, 6-week-old male and female Sost deficient (Sost-/-) mice received LGK974 for 4 weeks and right hindlimbs were subjected to 20 N peak loading to assess mechanoadaptive interactions. µCT revealed significant reductions in vertebral trabecular number and lower cortical bone volume in loaded and non-loaded tibiae in male and female LGK974-treated Sost-/- mice. Interestingly, the target engagement biomarker Axin2 was only significantly reduced in male vertebrae, which may indicate differences in male and female response to LGK974. This study also shows that PORCN inhibition may effectively limit characteristic HBM and skeletal overgrowth in sclerosteosis patients at sites with severe pathology.
Collapse
Affiliation(s)
- Timothy J Dreyer
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Jacob A C Keen
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Leah M Wells
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Mark Hopkinson
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Isabel R Orriss
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | | | - Andrew A Pitsillides
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Scott J Roberts
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK.
| |
Collapse
|
3
|
Appelman-Dijkstra NM, Avci TM, Schoeb M, Winter EM, van Lierop A, Papapoulos SE. Long-term clinical and bone mineral density changes of adult patients with sclerostin deficiency due to van Buchem disease: a follow-up study. JBMR Plus 2025; 9:ziae170. [PMID: 40092460 PMCID: PMC11910894 DOI: 10.1093/jbmrpl/ziae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 03/19/2025] Open
Abstract
Van Buchem disease (VBD) is an inherited rare sclerosing bone disorder, due to defective synthesis of sclerostin, a negative regulator of bone formation. Our earlier cross-sectional studies of patients with VBD and the closely related sclerosteosis suggested that the accrual of bone mass does not continue after puberty but longitudinal studies of patients with sclerostin deficiency are not available. The aim, therefore, of the present study was the long-term assessment of adult patients with VBD. Fifteen previously evaluated patients with genetically confirmed VBD were invited to participate in the study and 11 (4 women) consented. Mean follow-up time was 8.9 ± 1.1 yr and median age at follow-up was 47 yr (range 20-60). Seven patients developed permanent facial paresis, 9 had progressing hearing loss, and 2 developed had increased intracranial pressure requiring cranial surgery. Dental problems were common, and 3 patients developed osteoarthritis during follow-up. None experienced a cardiovascular event. BMD did not change at the LS or the left FN; Z-scores were 10.2 ± 1.3 SD vs 9.4 ± 2.3 SD, p=.62, and 8.9 ± 2.2 SD vs 7.7 ± 2.2 SD, p=.15, respectively. The variability of the clinical expression and progression of the disease, despite the stabilization of BMD but with progressive cranial nerve compression, requires continuous monitoring of these patients for whom no disease-specific therapy is currently available.
Collapse
Affiliation(s)
- Natasha M Appelman-Dijkstra
- Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Division Endocrinology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Telli Merve Avci
- Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| | - Manuela Schoeb
- Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| | - Elizabeth M Winter
- Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Division Endocrinology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Antoon van Lierop
- Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Flevoziekenhuis, Flevoziekenhuis Hospitaalweg 1, 1315 RA Almere, the Netherlands
| | | |
Collapse
|
4
|
Anastasilakis AD, Tsourdi E. Τhe story of sclerostin inhibition: the past, the present, and the future. Hormones (Athens) 2025; 24:41-58. [PMID: 38170438 DOI: 10.1007/s42000-023-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Sclerostin inhibits osteoblast activity by hampering activation of the canonical Wnt signaling pathway and simultaneously stimulates osteoclastogenesis through upregulation of the receptor activator of NFκB ligand (RANKL). Thus, antibodies against sclerostin (Scl-Abs), besides promoting bone formation, suppress bone resorption and dissociate bone formation from resorption. This dual action results in remarkable increases of bone mineral density which are of a greater magnitude compared to the other antiosteoporotic treatments and are accompanied by decreases of fracture risk at all skeletal sites. The anabolic effect subsides after the first few months of treatment and a predominantly antiresorptive effect remains after this period, limiting its use to 12 months. Furthermore, these effects are largely reversible upon discontinuation; therefore, subsequent treatment with antiresorptives is indicated to maintain or further increase the bone gains achieved. Romosozumab is currently the only Scl-Ab approved for the treatment of severe postmenopausal osteoporosis. Indications for use in other populations, such as males, premenopausal women, and patients with glucocorticoid-induced osteoporosis, are pending. Additionally, the efficacy of Scl-Abs in other bone diseases, such as osteogenesis imperfecta, hypophosphatasia, X-linked hypophosphatemia, and bone loss associated with malignancies, is under thorough investigation. Cardiovascular safety concerns currently exclude patients at high cardiovascular risk from this treatment.
Collapse
Affiliation(s)
- Athanasios D Anastasilakis
- Department of Endocrinology, 424 Military General Hospital, Ring Road, 564 29 N. Efkarpia, Thessaloniki, Greece.
| | - Elena Tsourdi
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Miyamoto T. Osteoporosis and Rheumatoid Arthritis: Mechanisms Underlying Osteoclast Differentiation and Activation or Factors Associated with Hip Fractures. J Clin Med 2025; 14:1138. [PMID: 40004668 PMCID: PMC11856638 DOI: 10.3390/jcm14041138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Osteoporosis is defined as a condition of increased risk of fracture due to decreased bone strength. In developed countries, the number of patients with osteoporosis and fragility fractures has been increasing in recent years due to the growing elderly population, posing a social challenge not only to fracture patients and their families but also to the social healthcare economy. Osteoporosis can be divided into two categories: primary osteoporosis caused by aging or menopause and secondary osteoporosis caused by metabolic or inflammatory diseases or drugs such as glucocorticoids. The majority of patients have primary osteoporosis, and the pathogenesis of postmenopausal osteoporosis and factors associated with fragility fractures in the elderly have been elucidated. On the other hand, rheumatoid arthritis (RA) is one of the causes of secondary osteoporosis. RA is a chronic inflammatory disease characterized by joint swelling and destruction. Most often, treatment focuses on suppressing these symptoms. However, physicians should be aware of the risk of osteoporosis in RA patients, because (1) RA is a chronic inflammatory disease, which itself can be a risk factor for osteoporosis; (2) glucocorticoids, which are sometimes administered to treat RA, can be a risk factor for osteoporosis; and (3) patients with RA are becoming older, and aging is an osteoporosis risk factor. A comprehensive understanding of the pathogenesis of osteoporosis and its fragility fractures requires elucidating the mechanisms underlying osteoclast activation, which drives their development. Furthermore, identifying the factors associated with fragility fractures is essential. This review summarizes the pathogenesis of osteoporosis, the factors associated with fragility fractures, and the associations between RA and osteoporosis development.
Collapse
Affiliation(s)
- Takeshi Miyamoto
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
6
|
Katchkovsky S, Meiri R, Lacham‐Hartman S, Orenstein Y, Levaot N, Papo N. Mapping the sclerostin-LRP4 binding interface identifies critical interaction hotspots in loops 1 and 3 of sclerostin. FEBS Lett 2025; 599:316-329. [PMID: 39443289 PMCID: PMC11808424 DOI: 10.1002/1873-3468.15033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
The interaction of sclerostin (Scl) with the low-density lipoprotein receptor-related protein 4 (LRP4) leads to a marked reduction in bone formation by inhibiting the Wnt/β-catenin pathway. To characterize the Scl-LRP4 binding interface, we sorted a combinatorial library of Scl variants and isolated variants with reduced affinity to LRP4. We identified Scl single-mutation variants enriched during the sorting process and verified their reduction in affinity toward LRP4-a reduction that was not a result of changes in the variants' secondary structure or stability. We found that Scl positions K75 (loop 1) and V136 (loop 3) are critical hotspots for binding to LRP4. Our findings establish the foundation for targeting these hotspots for developing novel therapeutic strategies to promote bone formation.
Collapse
Affiliation(s)
- Svetlana Katchkovsky
- Department of Physiology and Cell Biology, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Reut Meiri
- Department of Computer ScienceBar‐Ilan UniversityRamat GanIsrael
| | - Shiran Lacham‐Hartman
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Yaron Orenstein
- Department of Computer ScienceBar‐Ilan UniversityRamat GanIsrael
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Niv Papo
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
7
|
Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: Insights from Cre/loxP-based cell lineage tracing studies. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:109-119. [PMID: 38406212 PMCID: PMC10885318 DOI: 10.1016/j.jdsr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Bone tissue provides structural support for our bodies, with the inner bone marrow (BM) acting as a hematopoietic organ. Within the BM tissue, two types of stem cells play crucial roles: mesenchymal stem cells (MSCs) (or skeletal stem cells) and hematopoietic stem cells (HSCs). These stem cells are intricately connected, where BM-MSCs give rise to bone-forming osteoblasts and serve as essential components in the BM microenvironment for sustaining HSCs. Despite the mid-20th century proposal of BM-MSCs, their in vivo identification remained elusive owing to a lack of tools for analyzing stemness, specifically self-renewal and multipotency. To address this challenge, Cre/loxP-based cell lineage tracing analyses are being employed. This technology facilitated the in vivo labeling of specific cells, enabling the tracking of their lineage, determining their stemness, and providing a deeper understanding of the in vivo dynamics governing stem cell populations responsible for maintaining hard tissues. This review delves into cell lineage tracing studies conducted using commonly employed genetically modified mice expressing Cre under the influence of LepR, Gli1, and Axin2 genes. These studies focus on research fields spanning long bones and oral/maxillofacial hard tissues, offering insights into the in vivo dynamics of stem cell populations crucial for hard tissue homeostasis.
Collapse
|
8
|
Abhishek Shah A, Chand D, Ahamad S, Porwal K, Chourasia MK, Mohanan K, Srivastava KR, Chattopadhyay N. Therapeutic targeting of Wnt antagonists by small molecules for treatment of osteoporosis. Biochem Pharmacol 2024; 230:116587. [PMID: 39447984 DOI: 10.1016/j.bcp.2024.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Wnt signaling is one of the key regulators of bone development and homeostasis. Wnt signaling regulates key biological events, including stem cell fate and osteoblast and osteoclast activity, leading to the maintenance of bone mass and strength. Wnt ligands are secreted glycoproteins that bind to Frizzled (FZD) receptors and their coreceptors, lipoprotein receptor-related proteins-5/6 (LRP5/6). Binding of Wnts to FZD triggers canonical (β-catenin-dependent) and noncanonical (β-catenin-independent) pathways. In canonical Wnt signaling, stabilized β-catenin translocates to the nucleus, where it promotes osteoblast differentiation by activating target genes, including Runx2 and Osterix. The negative regulators of Wnt or so-called Wnt antagonists, including CXXC5, sFRP, sclerostin, DKK1, and Notum, compete for Fzd binding, attenuating Wnt signaling. The critical roles of Wnt signaling in bone homeostasis have been established by various bone diseases caused by mutations in Wnt signaling pathways. Loss-of-function mutations in the LRP5 gene cause osteoporosis-pseudoglioma syndrome, whereas gain-of-function mutations are linked to osteopetrosis characterized by high bone density. Sclerosteosis and Van Buchem disease are caused by mutations affecting the SOST gene, which encodes sclerostin, a natural inhibitor of Wnt signalling. Loss-of-function mutations in SOST result in excessive bone growth, markedly increased bone density, and other skeletal abnormalities due to uncontrolled Wnt activity. Considering the clinical relevance of Wnt signaling, targeting Wnt inhibitors is being intensely pursued using small molecules that act by inhibiting endogenous Wnt agonists. We used a computational biology approach to review current data on pharmacophores of Wnt antagonists, assessing their potential as therapeutic candidates for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Aarti Abhishek Shah
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Diwan Chand
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakir Ahamad
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Konica Porwal
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets for Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kishor Mohanan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kinshuk R Srivastava
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets for Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Song F, Marmo T, Song C, Liao X, Long F. Wnt7b overexpression in osteoblasts stimulates bone formation and reduces obesity in mice on a high-fat diet. JBMR Plus 2024; 8:ziae122. [PMID: 39434845 PMCID: PMC11491285 DOI: 10.1093/jbmrpl/ziae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Previous studies have shown that Wnt7b potently stimulates bone formation by promoting osteoblast differentiation and activity. As high-fat feeding leads to obesity and systemic metabolic dysregulation, here we investigate the potential benefit of Wnt7b overexpression in osteoblasts on both bone and whole-body metabolism in mice fed with a high-fat diet (HFD). Wnt7b overexpression elicited massive overgrowth of trabecular and cortical bone but seemed to ameliorate body fat accumulation in mice with prolonged HFD feeding. In addition, Wnt7b overexpression modestly improved glucose tolerance in male mice on HFD. Collectively, the results indicate that targeted overexpression of Wnt7b in osteoblasts not only stimulates bone formation but also improves certain aspects of global metabolism in overnourished mice.
Collapse
Affiliation(s)
- Fangfang Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Tyler Marmo
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Chao Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Xueyang Liao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| |
Collapse
|
10
|
Schembri M, Formosa MM. Identification of osteoporosis genes using family studies. Front Endocrinol (Lausanne) 2024; 15:1455689. [PMID: 39502568 PMCID: PMC11534825 DOI: 10.3389/fendo.2024.1455689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/29/2024] [Indexed: 11/08/2024] Open
Abstract
Osteoporosis is a multifactorial bone disease characterised by reduced bone mass and increased fracture risk. Family studies have made significant contribution in unravelling the genetics of osteoporosis. Yet, most of the underlying molecular and biological mechanisms remain unknown prompting the need for further studies. This review outlines the proper phenotyping and advanced genetic techniques in the form of high-throughput DNA sequencing used to identify genetic factors underlying monogenic osteoporosis in a family-based setting. The steps related to variant filtering prioritisation and curation are also described. From an evolutionary perspective, deleterious risk variants with higher penetrance tend to be rare as a result of negative selection. High-throughput sequencing (HTS) can identify rare variants with large effect sizes which are likely to be missed by candidate gene analysis or genome-wide association studies (GWAS) wherein common variants with small to moderate effect sizes are identified. We also describe the importance of replicating implicated genes, and possibly variants, identified following HTS to confirm their causality. Replication of the gene in other families, singletons or independent cohorts confirms that the shortlisted genes and/or variants are indeed causal. Furthermore, novel genes and/or variants implicated in monogenic osteoporosis require a thorough validation by means of in vitro and in vivo assessment. Therefore, analyses of families can continue to elucidate the genetic architecture of osteoporosis, paving the way for improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Marichela Schembri
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
11
|
Huang J, Ma T, Wang C, Wang Z, Wang X, Hua B, Jiang C, Yan Z. SOST/Sclerostin impairs the osteogenesis and angiogesis in glucocorticoid-associated osteonecrosis of femoral head. Mol Med 2024; 30:167. [PMID: 39342093 PMCID: PMC11439244 DOI: 10.1186/s10020-024-00933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Glucocorticoid-associated osteonecrosis of the femoral head (GA-ONFH) is a progressive bone disorder which frequently results in femoral head collapse and hip joint dysfunction. Sclerostin (SOST) is principally secreted by osteocytes in bone and plays an important role in bone homeostasis and homeostasis of skeletal integrity. Our previous study reported that short-term use of glucocorticoid increased serum sclerostin levels. Here this study is aimed to identify whether sclerostin played an essential role in the occurrence and development of GA-ONFH. METHODS Glucocorticoid-induced osteonecrosis of femoral head (ARCO stage II) samples were collected and sclerostin staining was conducted. Osteocyte cell line Ocy454, MC3T3-E1 and endothelial cells was used. MC3T3-E1 or endothelial cells were co-cultured with Ocy454 or SOST-silencing Ocy454 in presence of dexamethasone to mimic the crosstalk of various cells in the bone niche. GA-ONFH rat model and SOST knockout model was built to better understand the phenomenon in vivo. RESULTS Sclerostin was highly concentrated in osteonecrosis patient sample in the necrotic area. Co-culture with osteocytes aggravated the inhibition of dexamethasone on MC3T3-E1 and endothelial cells. Sclerostin derived from osteocytes impaired osteogenesis and angiogenesis via inhibiting the Wnt pathway. In GA-ONFH rat model, SOST knockout ameliorated the incidence of osteonecrosis and improved bone metabolism compared with the wild type group through histological, immunohistochemical and bone metabolic analyses. CONCLUSION Sclerostin contribute to pathologic process of GA-ONFH by impairing osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Junming Huang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China
| | - Tianle Ma
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China
| | - Chenzhong Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China
| | - Zhe Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China
| | - Xinyuan Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China
| | - Bingxuan Hua
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China
| | - Chang Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China.
| | - Zuoqin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
12
|
Hansdah K, Lui JC. Emerging Insights into the Endocrine Regulation of Bone Homeostasis by Gut Microbiome. J Endocr Soc 2024; 8:bvae117. [PMID: 38957653 PMCID: PMC11215793 DOI: 10.1210/jendso/bvae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/04/2024] Open
Abstract
Gut microbiota plays an important role in the regulation of bone homeostasis and bone health. Recent studies showed that these effects could be mediated through microbial metabolites released by the microbiota like short-chain fatty acids, metabolism of endogenous molecules such as bile acids, or a complex interplay between microbiota, the endocrine system, and the immune system. Importantly, some studies showed a reciprocal relationship between the endocrine system and gut microbiota. For instance, postmenopausal estrogen deficiency could lead to dysbiosis of the gut microbiota, which could in turn affect various immune response and bone remodeling. In addition, evidence showed that shift in the indigenous gut microbiota caused by antibiotics treatment may also impact normal skeletal growth and maturation. In this mini-review, we describe recent findings on the role of microbiome in bone homeostasis, with a particular focus on molecular mechanisms and their interactions with the endocrine and immune system. We will also discuss the recent findings on estrogen deficiency and microbiota dysbiosis, and the clinical implications for the development of new therapeutic strategies for osteoporosis and other bone disorders.
Collapse
Affiliation(s)
- Kirtal Hansdah
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Basir H, Altunoren O, Erken E, Kilinc M, Sarisik FN, Isiktas S, Gungor O. Relationship Between Osteoporosis and Serum Sclerostin Levels in Kidney Transplant Recipients. EXP CLIN TRANSPLANT 2024; 22:514-521. [PMID: 31526333 DOI: 10.6002/ect.2019.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Sclerostin, a peptide secreted primarily by osteocytes, suppresses osteoblast maturation, thus reducing bone formation. Here, we evaluated the relationship between sclerostin levels and osteoporosis in kidney transplant recipients. MATERIALS AND METHODS This cross-sectional study included 78 kidney transplantrecipients > 18 years old and at least 6 months posttransplant. In our center, unrelated living-donor kidney transplants are not performed. Patients with parathyroid adenoma or parathyroidectomy history were excluded. Lumbar and femoral neck bone mineral densities andT and Z scores were obtained by dual-energy X-ray absorptiometry; results were used to divide patients into osteoporotic and nonosteoporotic groups. Serum sclerostin was measured by enzyme-linked immunosorbent assay. RESULTS Of total patients, 43% had osteoporosis, mean age was 40.8 years, and 70% were male. Groups had similar ages, male-female distribution, time posttransplant, cumulative corticosteroid dose, estimated glomerular filtration rates, and 25-hydroxyvitamin D2 levels (P > .05). The osteoporotic group had lower sclerostin (405.9 ± 234.9 vs 521.7 ± 233.5 ng/dL; P = .035) and higherintact parathyroid hormone levels (110.9 ± 68.0 vs 84.8 ± 41.4 pg/mL; P = .04) than the nonosteoporotic group. Sclerostin levels were not correlated with cumulative corticosteroid dose, intact parathyroid hormone, bone mineral density, and T scores at any site but were weakly negatively correlated with age (P = .04, r = -0.25). In multiple regression analyses, only intact parathyroid hormone had negative effects on lumbar bone mineral density (P = .02) andT scores (P = .036). Serum sclerostin levels, age, and cumulative corticosteroid dose did not affect lumbar or hip bone mineral density and T scores (P > .05). CONCLUSIONS Sclerostin levels were low in our osteoporotic patients;therefore, sclerostin may not be a contributing factor to osteoporosis development. Because sclerostin is an osteocyte-derived peptide, its serum levels only reflect total osteocyte number and bone mass.
Collapse
Affiliation(s)
- Hasan Basir
- >From the Internal Medicine Department, Kahramanmaras Sutcu Imam University Faculty of Medicine, Kahramanmaras, Turkey
| | | | | | | | | | | | | |
Collapse
|
14
|
Feng J, Zhang Q, Pu F, Zhu Z, Lu K, Lu WW, Tong L, Yu H, Chen D. Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif 2024; 57:e13600. [PMID: 38199244 PMCID: PMC11150147 DOI: 10.1111/cpr.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent disorder of synovial joint affecting multiple joints. In the past decade, we have witnessed conceptual switch of OA pathogenesis from a 'wear and tear' disease to a disease affecting entire joint. Extensive studies have been conducted to understand the underlying mechanisms of OA using genetic mouse models and ex vivo joint tissues derived from individuals with OA. These studies revealed that multiple signalling pathways are involved in OA development, including the canonical Wnt/β-catenin signalling and its interaction with other signalling pathways, such as transforming growth factor β (TGF-β), bone morphogenic protein (BMP), Indian Hedgehog (Ihh), nuclear factor κB (NF-κB), fibroblast growth factor (FGF), and Notch. The identification of signalling interaction and underlying mechanisms are currently underway and the specific molecule(s) and key signalling pathway(s) playing a decisive role in OA development need to be evaluated. This review will focus on recent progresses in understanding of the critical role of Wnt/β-catenin signalling in OA pathogenesis and interaction of β-catenin with other pathways, such as TGF-β, BMP, Notch, Ihh, NF-κB, and FGF. Understanding of these novel insights into the interaction of β-catenin with other pathways and its integration into a complex gene regulatory network during OA development will help us identify the key signalling pathway of OA pathogenesis leading to the discovery of novel therapeutic strategies for OA intervention.
Collapse
Affiliation(s)
- Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Qing Zhang
- Department of EmergencyRenmin Hospital, Wuhan UniversityWuhanHubeiChina
| | - Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Zhenglin Zhu
- Department of Orthopedic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ke Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - William W. Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Liping Tong
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Huan Yu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Di Chen
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
15
|
Liu L, Guo J, Tong X, Zhang M, Chen X, Huang M, Zhu C, Bennett S, Xu J, Zou J. Mechanical strain regulates osteogenesis via Antxr1/LncRNA H19/Wnt/β-catenin axis. J Cell Physiol 2024; 239:e31214. [PMID: 38358001 DOI: 10.1002/jcp.31214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Alleviating bone loss is an essential way to prevent osteoporotic fractures. Proper exercise improves bone density without the side effects of long-term medications, but the mechanism is unclear. Our study explored the role of Antxr1/LncRNA H19/Wnt/β-catenin axis in the process of exercise-mediated alleviation of bone loss. Here we discovered that moderate-intensity treadmill exercise alleviates bone loss caused by ovariectomy and ameliorates bone strength accompanied by an increased lncRNA H19 expression. Concomitantly, Antxr1, a mechanosensitive protein was found downregulated by exercise but upregulated by ovariectomy. Interestingly, knockdown expression of Antxr1 increased lncRNA H19 expression and Wnt/β-catenin signaling pathway in bone marrow mesenchymal stem cells, whereas overexpression of Antxr1 decreased lncRNA H19 expression and Wnt/β-catenin signaling pathway. Hence, our study demonstrates the regulation of Antxr1/LncRNA H19/Wnt/β-catenin axis in the process of mechanical strain-induced osteogenic differentiation, which provides further mechanistic insight into the role of mechanical regulation in bone metabolism.
Collapse
Affiliation(s)
- Lifei Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, China
| | - Jianmin Guo
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Guangzhou, China
| | - Xiaoyang Tong
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- College of Physical Education, Qingdao University of Science and Technology, Qingdao, China
| | - Miao Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- College of Physical Education, Yanshan University, Qinhuangdao, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Mei Huang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Samuel Bennett
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
16
|
Patel MA, Fraser DD, Daley M, Cepinskas G, Veraldi N, Grazioli S. The plasma proteome differentiates the multisystem inflammatory syndrome in children (MIS-C) from children with SARS-CoV-2 negative sepsis. Mol Med 2024; 30:51. [PMID: 38632526 PMCID: PMC11022403 DOI: 10.1186/s10020-024-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The Multi-System Inflammatory Syndrome in Children (MIS-C) can develop several weeks after SARS-CoV-2 infection and requires a distinct treatment protocol. Distinguishing MIS-C from SARS-CoV-2 negative sepsis (SCNS) patients is important to quickly institute the correct therapies. We performed targeted proteomics and machine learning analysis to identify novel plasma proteins of MIS-C for early disease recognition. METHODS A case-control study comparing the expression of 2,870 unique blood proteins in MIS-C versus SCNS patients, measured using proximity extension assays. The 2,870 proteins were reduced in number with either feature selection alone or with a prior COMBAT-Seq batch effect adjustment. The leading proteins were correlated with demographic and clinical variables. Organ system and cell type expression patterns were analyzed with Natural Language Processing (NLP). RESULTS The cohorts were well-balanced for age and sex. Of the 2,870 unique blood proteins, 58 proteins were identified with feature selection (FDR-adjusted P < 0.005, P < 0.0001; accuracy = 0.96, AUC = 1.00, F1 = 0.95), and 15 proteins were identified with a COMBAT-Seq batch effect adjusted feature selection (FDR-adjusted P < 0.05, P < 0.0001; accuracy = 0.92, AUC = 1.00, F1 = 0.89). All of the latter 15 proteins were present in the former 58-protein model. Several proteins were correlated with illness severity scores, length of stay, and interventions (LTA4H, PTN, PPBP, and EGF; P < 0.001). NLP analysis highlighted the multi-system nature of MIS-C, with the 58-protein set expressed in all organ systems; the highest levels of expression were found in the digestive system. The cell types most involved included leukocytes not yet determined, lymphocytes, macrophages, and platelets. CONCLUSIONS The plasma proteome of MIS-C patients was distinct from that of SCNS. The key proteins demonstrated expression in all organ systems and most cell types. The unique proteomic signature identified in MIS-C patients could aid future diagnostic and therapeutic advancements, as well as predict hospital length of stays, interventions, and mortality risks.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, N6A 3K7, London, ON, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, N6C 2R5, London, ON, Canada.
- Children's Health Research Institute, N6C 4V3, London, ON, Canada.
- Pediatrics, Western University, N6A 3K7, London, ON, Canada.
- Clinical Neurological Sciences, Western University, N6A 3K7, London, ON, Canada.
- Physiology & Pharmacology, Western University, N6A 3K7, London, ON, Canada.
- London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, N6A 5W9, London, ON, Canada.
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, N6A 3K7, London, ON, Canada
- Computer Science, Western University, N6A 3K7, London, ON, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, N6C 2R5, London, ON, Canada
- Medical Biophysics, Western University, N6A 3K7, London, ON, Canada
| | - Noemi Veraldi
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Grazioli
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Neonatal and Pediatric Intensive Care, Department of Child, Woman, and Adolescent Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
17
|
Henning P, Kassem A, Westerlund A, Lundberg P, Engdahl C, Lionikaite V, Wikström P, Wu J, Li L, Lindholm C, de Souza PPC, Movérare-Skrtic S, Lerner UH. Toll-like receptor-2 induced inflammation causes local bone formation and activates canonical Wnt signaling. Front Immunol 2024; 15:1383113. [PMID: 38646530 PMCID: PMC11026618 DOI: 10.3389/fimmu.2024.1383113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects of inflammatory processes on bone formation are less studied. Therefore, we investigated the effect of locally induced inflammation on bone formation. Toll-like receptor (TLR) 2 agonists LPS from Porphyromonas gingivalis and PAM2 were injected once subcutaneously above mouse calvarial bones. After five days, both agonists induced bone formation mainly at endocranial surfaces. The injection resulted in progressively increased calvarial thickness during 21 days. Excessive new bone formation was mainly observed separated from bone resorption cavities. Anti-RANKL did not affect the increase of bone formation. Inflammation caused increased bone formation rate due to increased mineralizing surfaces as assessed by dynamic histomorphometry. In areas close to new bone formation, an abundance of proliferating cells was observed as well as cells robustly stained for Runx2 and alkaline phosphatase. PAM2 increased the mRNA expression of Lrp5, Lrp6 and Wnt7b, and decreased the expression of Sost and Dkk1. In situ hybridization demonstrated decreased Sost mRNA expression in osteocytes present in old bone. An abundance of cells expressed Wnt7b in Runx2-positive osteoblasts and ß-catenin in areas with new bone formation. These data demonstrate that inflammation, not only induces osteoclastogenesis, but also locally activates canonical WNT signaling and stimulates new bone formation independent on bone resorption.
Collapse
Affiliation(s)
- Petra Henning
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ali Kassem
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Anna Westerlund
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Lundberg
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| | - Cecilia Engdahl
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vikte Lionikaite
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Section of Pathology, Umeå University, Umeå, Sweden
| | - Jianyao Wu
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lei Li
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Catharina Lindholm
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pedro P. C. de Souza
- Innovation in Biomaterials Laboratory, Federal University of Goiás, Goiania, Brazil
| | - Sofia Movérare-Skrtic
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ulf H. Lerner
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Periodontology, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Bienvenu JG, Chouinard L, Felx M, Boyce RW, Monticello TM. Inhibition of both sclerostin and DKK1 results in novel skull findings in the rat and non-human primate that is not observed with inhibition of sclerostin alone. Bone 2024; 179:116985. [PMID: 38052372 DOI: 10.1016/j.bone.2023.116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Sclerostin is an extracellular inhibitor of canonical Wnt signaling that inhibits bone formation and stimulates bone resorption. Anti-sclerostin antibodies (Scl-Ab) have been developed as bone-building agents. DKK1, another extracellular inhibitor of the pathway, is upregulated in osteocytes in response to sclerostin inhibition. To further enhance bone-forming effects, a bispecific antibody inhibiting both sclerostin and DKK1 was created (AMG 147). In nonclinical safety studies, AMG 147 resulted in novel skull findings. In the rat, there was increased thickness of skull bones of neural crest origin due to increased subperiosteal compact lamellar and intramembranous woven bone. Externally, subperiosteal fibroblastic/osteoblastic stromal cell proliferation with woven bone and hemorrhage was also observed. Scl-Ab alone resulted in increased skull thickness in the rat, like AMG 147, but without the stromal cell proliferation/woven bone formation. In contrast to embryonic flat bone development, intramembranous bone formed similar to plexiform bone. In the monkey, AMG 147 resulted in macroscopic skull thickening due to a diffuse increase in appositional lamellar bone and increased intramembranous bone on both periosteal surfaces of all skull bones. These data demonstrate that dual inhibition of sclerostin and DDK1 results in unique effects on the skull not observed with sclerostin inhibition alone.
Collapse
Affiliation(s)
- Jean Guy Bienvenu
- Charles River Laboratories Montreal ULC, Senneville, QC H9X 3R3, Canada
| | - Luc Chouinard
- Charles River Laboratories Montreal ULC, Senneville, QC H9X 3R3, Canada
| | - Melanie Felx
- Charles River Laboratories Montreal ULC, Senneville, QC H9X 3R3, Canada
| | - Rogely Waite Boyce
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Thomas M Monticello
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
19
|
REN P, WANG Q, BAI W, SUN M, LIU Z, GAO M, WANG L, PENG B, XU L. Identifying the effective combination of acupuncture and traditional Chinese medicinal herbs for postmenopausal osteoporosis therapy through studies of their molecular regulation of bone homeostasis. J TRADIT CHIN MED 2024; 44:212-219. [PMID: 38213257 PMCID: PMC10774716 DOI: 10.19852/j.cnki.jtcm.20230904.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/08/2023] [Indexed: 01/13/2024]
Abstract
Worldwide, as the population age, osteoporosis is becoming increasingly common, and osteoporotic fractures have a significant economic burden. Postmenopausal women are the most susceptible to developing osteoporosis and the most critical time to prevent it is during the perimenopausal and early menopausal years. In this regard, we hypothesize rational combination of acupuncture and Traditional Chinese Medicine (TCM) in the form of herbal extract could prevent osteoporosis in women. Estrogen deficiency during menopause causes low-level inflammation that stimulates the formation of osteoclasts, the bone-resorbing cells, and simultaneously inhibits the viability and function of osteoblasts, the bone-forming cells. The most potent inflammatory cytokine in skeletal homeostasis is the receptor activator of nuclear factor kappa B ligand (RANKL) that stimulates osteoclast function. Conversely, the canonical Wnt pathway is essential for osteoblastogenesis and bone formation, and estrogen deficiency leads to diminished functioning of this pathway. TCM and acupuncture could target the RANKL and the Wnt pathway in favorable ways to prevent the accelerated bone loss experienced during the early menopausal stage and promote the gain in bone mass in postmenopausal women. In this review, we propose a rational combination of specific TCM and acupuncture targeting those signaling molecules/pathways by the drugs that are in clinical use for the treatment of postmenopausal osteoporosis. Our rational approach revealed that Danshen (Radix Salviae Miltiorrhizae) could exert a synergistic effect with acupuncture. We then propose a translational path for developing the putative combination in women with postmenopausal osteoporosis to curtail the risk of osteoporotic fractures.
Collapse
Affiliation(s)
- Ping REN
- 1 Department of Health Management, the Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130117, China
| | - Quanwu WANG
- 2 Department of Dirty Tuina, the affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| | - Wei BAI
- 3 Department of Acupuncture, the affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| | - Miao SUN
- 4 Department of Rehabilitation Medicine, the 924th Hospital of the PLA Joint Logistic Support Force, Foshan 528226, China
| | - Zheling LIU
- 5 Department of College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ming GAO
- 5 Department of College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Liang WANG
- 5 Department of College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Bo PENG
- 5 Department of College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Liguang XU
- 3 Department of Acupuncture, the affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
20
|
Wu D, Li L, Wen Z, Wang G. Romosozumab in osteoporosis: yesterday, today and tomorrow. J Transl Med 2023; 21:668. [PMID: 37759285 PMCID: PMC10523692 DOI: 10.1186/s12967-023-04563-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoporosis is a systemic bone disease characterized by low bone mass, microarchitectural deterioration, increased bone fragility, and fracture susceptibility. It commonly occurs in older people, especially postmenopausal women. As global ageing increases, osteoporosis has become a global burden. There are a number of medications available for the treatment of osteoporosis, categorized as anabolic and anti-resorptive. Unfortunately, there is no drugs which have dual influence on bone, while all drugs have limitations and adverse events. Some serious adverse events include jaw osteonecrosis and atypical femoral fracture. Recently, a novel medication has appeared that challenges this pattern. Romosozumab is a novel drug monoclonal antibody to sclerostin encoded by the SOST gene. It has been used in Japan since 2019 and has achieved promising results in treating osteoporosis. However, it is also accompanied by some controversy. While it promotes rapid bone growth, it may cause serious adverse events such as cardiovascular diseases. There has been scepticism about the drug since its inception. Therefore, the present review comprehensively covered romosozumab from its inception to its clinical application, from animal studies to human studies, and from safety to cost. We hope to provide a better understanding of romosozumab for its clinical application.
Collapse
Affiliation(s)
- Dong Wu
- Department of Orthopeadics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Lei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhun Wen
- Department of Orthopaedics, Zhuanghe Central Hospital, Zhuanghe City, 116499, Liaoning Province, China.
| | - Guangbin Wang
- Department of Orthopeadics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
21
|
Arai M, Ochi H, Sunamura S, Ito N, Nangaku M, Takeda S, Sato S. A Novel Long Noncoding RNA in Osteocytes Regulates Bone Formation through the Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2023; 24:13633. [PMID: 37686441 PMCID: PMC10488071 DOI: 10.3390/ijms241713633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The vast majority of transcribed RNAs are noncoding RNAs. Among noncoding RNAs, long noncoding RNAs (lncRNAs), which contain hundreds to thousands of bases, have received attention in many fields. The vast majority of the constituent cells in bone tissue are osteocytes, but their regulatory mechanisms are incompletely understood. Considering the wide range of potential contributions of lncRNAs to physiological processes and pathological conditions, we hypothesized that lncRNAs in osteocytes, which have not been reported, could be involved in bone metabolism. Here, we first isolated osteocytes from femurs of mice with osteocyte-specific GFP expression. Then, through RNA-sequencing, we identified osteocyte-specific lncRNAs and focused on a novel lncRNA, 9530026P05Rik (lncRNA953Rik), which strongly suppressed osteogenic differentiation. In the IDG-SW3 osteocyte line with lncRNA953Rik overexpression, the expression of Osterix and its downstream genes was reduced. RNA pull-down and subsequent LC-MS/MS analysis revealed that lncRNA953Rik bound the nuclear protein CCAR2. We demonstrated that CCAR2 promoted Wnt/β-catenin signaling and that lncRNA953Rik inhibited this pathway. lncRNA953Rik sequestered CCAR2 from HDAC1, leading to deacetylation of H3K27 in the Osterix promoter and consequent transcriptional downregulation of Osterix. This research is the first to clarify the role of a lncRNA in osteocytes. Our findings can pave the way for novel therapeutic options targeting lncRNAs in osteocytes to treat bone metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Makoto Arai
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| | - Satoko Sunamura
- Department of Orthopaedic Surgery, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, Tokyo 105-8470, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
22
|
Diegel CR, Kramer I, Moes C, Foxa GE, McDonald MJ, Madaj ZB, Guth S, Liu J, Harris JL, Kneissel M, Williams BO. Inhibiting WNT secretion reduces high bone mass caused by Sost loss-of-function or gain-of-function mutations in Lrp5. Bone Res 2023; 11:47. [PMID: 37612291 PMCID: PMC10447437 DOI: 10.1038/s41413-023-00278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/09/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023] Open
Abstract
Proper regulation of Wnt signaling is critical for normal bone development and homeostasis. Mutations in several Wnt signaling components, which increase the activity of the pathway in the skeleton, cause high bone mass in human subjects and mouse models. Increased bone mass is often accompanied by severe headaches from increased intracranial pressure, which can lead to fatality and loss of vision or hearing due to the entrapment of cranial nerves. In addition, progressive forehead bossing and mandibular overgrowth occur in almost all subjects. Treatments that would provide symptomatic relief in these subjects are limited. Porcupine-mediated palmitoylation is necessary for Wnt secretion and binding to the frizzled receptor. Chemical inhibition of porcupine is a highly selective method of Wnt signaling inhibition. We treated three different mouse models of high bone mass caused by aberrant Wnt signaling, including homozygosity for loss-of-function in Sost, which models sclerosteosis, and two strains of mice carrying different point mutations in Lrp5 (equivalent to human G171V and A214V), at 3 months of age with porcupine inhibitors for 5-6 weeks. Treatment significantly reduced both trabecular and cortical bone mass in all three models. This demonstrates that porcupine inhibition is potentially therapeutic for symptomatic relief in subjects who suffer from these disorders and further establishes that the continued production of Wnts is necessary for sustaining high bone mass in these models.
Collapse
Affiliation(s)
- Cassandra R Diegel
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Ina Kramer
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | - Charles Moes
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | - Gabrielle E Foxa
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Mitchell J McDonald
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Zachary B Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Sabine Guth
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | - Jun Liu
- Oncology, Novartis Institutes for Biomedical Research, San Diego, CA, 92121, USA
| | - Jennifer L Harris
- Oncology, Novartis Institutes for Biomedical Research, San Diego, CA, 92121, USA
| | - Michaela Kneissel
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
23
|
Trajanoska K, Bhérer C, Taliun D, Zhou S, Richards JB, Mooser V. From target discovery to clinical drug development with human genetics. Nature 2023; 620:737-745. [PMID: 37612393 DOI: 10.1038/s41586-023-06388-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/29/2023] [Indexed: 08/25/2023]
Abstract
The substantial investments in human genetics and genomics made over the past three decades were anticipated to result in many innovative therapies. Here we investigate the extent to which these expectations have been met, excluding cancer treatments. In our search, we identified 40 germline genetic observations that led directly to new targets and subsequently to novel approved therapies for 36 rare and 4 common conditions. The median time between genetic target discovery and drug approval was 25 years. Most of the genetically driven therapies for rare diseases compensate for disease-causing loss-of-function mutations. The therapies approved for common conditions are all inhibitors designed to pharmacologically mimic the natural, disease-protective effects of rare loss-of-function variants. Large biobank-based genetic studies have the power to identify and validate a large number of new drug targets. Genetics can also assist in the clinical development phase of drugs-for example, by selecting individuals who are most likely to respond to investigational therapies. This approach to drug development requires investments into large, diverse cohorts of deeply phenotyped individuals with appropriate consent for genetically assisted trials. A robust framework that facilitates responsible, sustainable benefit sharing will be required to capture the full potential of human genetics and genomics and bring effective and safe innovative therapies to patients quickly.
Collapse
Affiliation(s)
- Katerina Trajanoska
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Claude Bhérer
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Daniel Taliun
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Sirui Zhou
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology and Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Vincent Mooser
- Canada Excellence Research Chair in Genomic Medicine, Department of Human Genetics, Faculty of Medicine and Health Sciences, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Urbano F, Farella I, Brunetti G, Faienza MF. Pediatric Type 1 Diabetes: Mechanisms and Impact of Technologies on Comorbidities and Life Expectancy. Int J Mol Sci 2023; 24:11980. [PMID: 37569354 PMCID: PMC10418611 DOI: 10.3390/ijms241511980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Type 1 diabetes (T1D) is one of the most common chronic diseases in childhood, with a progressively increasing incidence. T1D management requires lifelong insulin treatment and ongoing health care support. The main goal of treatment is to maintain blood glucose levels as close to the physiological range as possible, particularly to avoid blood glucose fluctuations, which have been linked to morbidity and mortality in patients with T1D. Indeed, the guidelines of the International Society for Pediatric and Adolescent Diabetes (ISPAD) recommend a glycated hemoglobin (HbA1c) level < 53 mmol/mol (<7.0%) for young people with T1D to avoid comorbidities. Moreover, diabetic disease strongly influences the quality of life of young patients who must undergo continuous monitoring of glycemic values and the administration of subcutaneous insulin. In recent decades, the development of automated insulin delivery (AID) systems improved the metabolic control and the quality of life of T1D patients. Continuous subcutaneous insulin infusion (CSII) combined with continuous glucose monitoring (CGM) devices connected to smartphones represent a good therapeutic option, especially in young children. In this literature review, we revised the mechanisms of the currently available technologies for T1D in pediatric age and explored their effect on short- and long-term diabetes-related comorbidities, quality of life, and life expectation.
Collapse
Affiliation(s)
- Flavia Urbano
- Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy;
| | - Ilaria Farella
- Clinica Medica “A. Murri”, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
25
|
Kim SP, Seward AH, Garcia-Diaz J, Alekos N, Gould NR, Aja S, Stains JP, Wolfgang MJ, Riddle RC. Peroxisome proliferator activated receptor-γ in osteoblasts controls bone formation and fat mass by regulating sclerostin expression. iScience 2023; 26:106999. [PMID: 37534168 PMCID: PMC10391670 DOI: 10.1016/j.isci.2023.106999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/25/2023] [Indexed: 08/04/2023] Open
Abstract
The nuclear receptor peroxisome proliferator activated receptor-γ (PPARγ) is a key contributor to metabolic function via its adipogenic and insulin-sensitizing functions, but it has negative effects on skeletal homeostasis. Here, we questioned whether the skeletal and metabolic actions of PPARγ are linked. Ablating Pparg expression in osteoblasts and osteocytes produced a high bone mass phenotype, secondary to increased osteoblast activity, and a reduction in subcutaneous fat mass because of reduced fatty acid synthesis and increased fat oxidation. The skeletal and metabolic phenotypes in Pparg mutants proceed from the regulation of sclerostin production by PPARγ. Mutants exhibited reductions in skeletal Sost expression and serum sclerostin levels while increasing production normalized both phenotypes. Importantly, disrupting the production of sclerostin synergized with the insulin-sensitizing actions of a PPARγ agonist while preventing bone loss. These data suggest that modulating sclerostin action may prevent bone loss associated with anti-diabetic therapies and augment their metabolic actions.
Collapse
Affiliation(s)
- Soohyun P. Kim
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Avery H. Seward
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jean Garcia-Diaz
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathalie Alekos
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicole R. Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph P. Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael J. Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Kitase Y, Prideaux M. Regulation of the Osteocyte Secretome with Aging and Disease. Calcif Tissue Int 2023; 113:48-67. [PMID: 37148298 DOI: 10.1007/s00223-023-01089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.
Collapse
Affiliation(s)
- Yukiko Kitase
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
27
|
Ewendt F, Lehmann A, Wodak MF, Stangl GI. All- trans Retinoic Acid and Beta-Carotene Increase Sclerostin Production in C2C12 Myotubes. Biomedicines 2023; 11:1432. [PMID: 37239103 PMCID: PMC10216713 DOI: 10.3390/biomedicines11051432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sclerostin is a protein secreted by osteocytes whose encoding gene SOST is regulated by mechanical stimuli, cytokines, and all-trans retinoic acid (ATRA) and mediates antianabolic effects on bone formation as an inhibitor of the canonical Wnt/β-catenin pathway. Interestingly, skeletal muscle has recently been identified as another source of sclerostin, suggesting that the musculature may play an important role in maintaining bone mass. However, regulators of muscular SOST expression are virtually unknown. This study investigates the influence of ATRA and the provitamin A derivative beta-carotene (β-C) on sclerostin synthesis in muscle cells. The impact of ATRA, its synthetic analog TTNPB, and β-C on Sost transcription was analyzed by qRT-PCR in C2C12 myotubes and the secreted sclerostin protein by ELISA. ATRA strongly increases the sclerostin synthesis in C2C12 myotubes in a dose-dependent manner. The stimulating effect of ATRA and TTNPB on Sost is largely reduced in the presence of the retinoic acid receptor inhibitor AGN193109. β-C also increases the Sost expression, but this effect vanishes when β-C is coincubated with beta-carotene 15,15'-monooxygenase 1 (BCMO1)-specific siRNA. Thus, ATRA is a potent stimulator of sclerostin release in muscle cells. β-C can also increase Sost mRNA abundance, but this effect depends on the conversion to a retinoid.
Collapse
Affiliation(s)
- Franz Ewendt
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Anne Lehmann
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Maximilian F. Wodak
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Gabriele I. Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
- NutriCARD Competence Cluster for Nutrition and Cardiovascular Health, Dornburger Str. 25, 07743 Jena, Germany
| |
Collapse
|
28
|
Knowles HJ, Chanalaris A, Koutsikouni A, Cribbs AP, Grover LM, Hulley PA. Mature primary human osteocytes in mini organotypic cultures secrete FGF23 and PTH1-34-regulated sclerostin. Front Endocrinol (Lausanne) 2023; 14:1167734. [PMID: 37223031 PMCID: PMC10200954 DOI: 10.3389/fendo.2023.1167734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction For decades, functional primary human osteocyte cultures have been crucially needed for understanding their role in bone anabolic processes and in endocrine phosphate regulation via the bone-kidney axis. Mature osteocyte proteins (sclerostin, DMP1, Phex and FGF23) play a key role in various systemic diseases and are targeted by successful bone anabolic drugs (anti-sclerostin antibody and teriparatide (PTH1-34)). However, cell lines available to study osteocytes produce very little sclerostin and low levels of mature osteocyte markers. We have developed a primary human 3D organotypic culture system that replicates the formation of mature osteocytes in bone. Methods Primary human osteoblasts were seeded in a fibrinogen / thrombin gel around 3D-printed hanging posts. Following contraction of the gel around the posts, cells were cultured in osteogenic media and conditioned media was collected for analysis of secreted markers of osteocyte formation. Results The organoids were viable for at least 6 months, allowing co-culture with different cell types and testing of bone anabolic drugs. Bulk RNAseq data displayed the developing marker trajectory of ossification and human primary osteocyte formation in vitro over an initial 8- week period. Vitamin D3 supplementation increased mineralization and sclerostin secretion, while hypoxia and PTH1-34 modulated sclerostin. Our culture system also secreted FGF23, enabling the future development of a bone-kidney-parathyroid-vascular multi-organoid or organ-on-a-chip system to study disease processes and drug effects using purely human cells. Discussion This 3D organotypic culture system provides a stable, long-lived, and regulated population of mature human primary osteocytes for a variety of research applications.
Collapse
Affiliation(s)
- Helen J. Knowles
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anastasios Chanalaris
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Argyro Koutsikouni
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Adam P. Cribbs
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, Botnar Institute for Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Liam M. Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Philippa A. Hulley
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Hassan N, Gregson CL, Tang H, van der Kamp M, Leo P, McInerney‐Leo AM, Zheng J, Brandi ML, Tang JCY, Fraser W, Stone MD, Grundberg E, Brown MA, Duncan EL, Tobias JH. Rare and Common Variants in GALNT3 May Affect Bone Mass Independently of Phosphate Metabolism. J Bone Miner Res 2023; 38:678-691. [PMID: 36824040 PMCID: PMC10729283 DOI: 10.1002/jbmr.4795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Anabolic treatment options for osteoporosis remain limited. One approach to discovering novel anabolic drug targets is to identify genetic causes of extreme high bone mass (HBM). We investigated a pedigree with unexplained HBM within the UK HBM study, a national cohort of probands with HBM and their relatives. Whole exome sequencing (WES) in a family with HBM identified a rare heterozygous missense variant (NM_004482.4:c.1657C > T, p.Arg553Trp) in GALNT3, segregating appropriately. Interrogation of data from the UK HBM study and the Anglo-Australasian Osteoporosis Genetics Consortium (AOGC) revealed an unrelated individual with HBM with another rare heterozygous variant (NM_004482.4:c.831 T > A, p.Asp277Glu) within the same gene. In silico protein modeling predicted that p.Arg553Trp would disrupt salt-bridge interactions, causing instability of GALNT3, and that p.Asp277Glu would disrupt manganese binding and consequently GALNT3 catalytic function. Bi-allelic loss-of-function GALNT3 mutations alter FGF23 metabolism, resulting in hyperphosphatemia and causing familial tumoral calcinosis (FTC). However, bone mineral density (BMD) in FTC cases, when reported, has been either normal or low. Common variants in the GALNT3 locus show genome-wide significant associations with lumbar, femoral neck, and total body BMD. However, no significant associations with BMD are observed at loci coding for FGF23, its receptor FGFR1, or coreceptor klotho. Mendelian randomization analysis, using expression quantitative trait loci (eQTL) data from primary human osteoblasts and genome-wide association studies data from UK Biobank, suggested increased expression of GALNT3 reduces total body, lumbar spine, and femoral neck BMD but has no effect on phosphate concentrations. In conclusion, rare heterozygous loss-of-function variants in GALNT3 may cause HBM without altering phosphate concentration. These findings suggest that GALNT3 may affect BMD through pathways other than FGF23 regulation, the identification of which may yield novel anabolic drug targets for osteoporosis. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Neelam Hassan
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Celia L. Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- MRC Integrated Epidemiology Unit, Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Haotian Tang
- MRC Integrated Epidemiology Unit, Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | | | - Paul Leo
- Faculty of Health, Translational Genomics Group, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Aideen M. McInerney‐Leo
- The Faculty of Medicine, Frazer InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Jie Zheng
- MRC Integrated Epidemiology Unit, Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | | | - Jonathan C. Y. Tang
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
- Clinical Biochemistry, Departments of Laboratory MedicineNorfolk and Norwich University Hospital NHS Foundation TrustNorwichUK
| | - William Fraser
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
- Department of Diabetes, Endocrinology and Clinical BiochemistryNorfolk and Norwich University Hospital NHS Foundation TrustNorwichUK
| | - Michael D. Stone
- University Hospital LlandoughCardiff & Vale University Health BoardCardiffUK
| | - Elin Grundberg
- Genomic Medicine CenterChildren's Mercy Kansas CityKansas CityMissouriUSA
| | | | | | - Emma L. Duncan
- Department of Twin Research and Genetic Epidemiology, School of Life Course & Population Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Jonathan H. Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- MRC Integrated Epidemiology Unit, Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| |
Collapse
|
30
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
31
|
Immune microenvironment: novel perspectives on bone regeneration disorder in osteoradionecrosis of the jaws. Cell Tissue Res 2023; 392:413-430. [PMID: 36737519 DOI: 10.1007/s00441-023-03743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Osteoradionecrosis of the jaws (ORNJ) is a severe complication that occurs after radiotherapy of head and neck malignancies. Clinically, conservative treatments and surgeries for ORNJ exhibited certain therapeutic effects, whereas the regenerative disorder of the post-radiation jaw remains a pending problem to be solved. In recent years, the recognition of the role of the immune microenvironment has led to a shift from an osteoblasts (OBs) or bone marrow mesenchymal stromal cells (BMSCs)-centered view of bone regeneration to the concept of a complicated microecosystem that supports bone regeneration. Current advances in osteoimmunology have uncovered novel targets within the immune microenvironment to help improve various regeneration therapies, notably therapies potentiating the interaction between BMSCs and immune cells. However, these researches lack a thorough understanding of the immune microenvironment and the interaction network of immune cells in the course of bone regeneration, especially for the post-operative defect of ORNJ. This review summarized the composition of the immune microenvironment during bone regeneration, how the immune microenvironment interacts with the skeletal system, and discussed existing and potential strategies aimed at targeting cellular and molecular immune microenvironment components.
Collapse
|
32
|
Bergen DJM, Maurizi A, Formosa MM, McDonald GLK, El-Gazzar A, Hassan N, Brandi ML, Riancho JA, Rivadeneira F, Ntzani E, Duncan EL, Gregson CL, Kiel DP, Zillikens MC, Sangiorgi L, Högler W, Duran I, Mäkitie O, Van Hul W, Hendrickx G. High Bone Mass Disorders: New Insights From Connecting the Clinic and the Bench. J Bone Miner Res 2023; 38:229-247. [PMID: 36161343 PMCID: PMC10092806 DOI: 10.1002/jbmr.4715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Monogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology. This classification system may aid in hypothesis generation, for both wet lab experimental design and clinical genetic screening strategies. We discuss how functional genomics can shape discovery of novel HBM genes and/or mechanisms in the future, through implementation of omics assessments in existing and future model systems. Finally, we address strategies to improve gene identification in unsolved HBM cases and highlight the importance for cross-laboratory collaborations encompassing multidisciplinary efforts to transfer knowledge generated at the bench to the clinic. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Dylan J M Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK.,Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta.,Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Georgina L K McDonald
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Ahmed El-Gazzar
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Neelam Hassan
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | | | - José A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece.,Center for Evidence Synthesis in Health, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, USA.,Institute of Biosciences, University Research Center of loannina, University of Ioannina, Ioannina, Greece
| | - Emma L Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Douglas P Kiel
- Marcus Institute for Aging Research, Hebrew SeniorLife and Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Luca Sangiorgi
- Department of Rare Skeletal Diseases, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
33
|
Hendrickx G, Boudin E, Steenackers E, Collet C, Mortier GR, Geneviève D, Van Hul W. A recessive form of craniodiaphyseal dysplasia caused by a homozygous missense variant in SP7/Osterix. Bone 2023; 167:116633. [PMID: 36436818 DOI: 10.1016/j.bone.2022.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Gretl Hendrickx
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium; Laboratory for Skeletal Dysplasia Research, Department of Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Eveline Boudin
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium
| | - Ellen Steenackers
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium
| | - Corinne Collet
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Robert Debré, F-75010 Paris, France
| | - Geert R Mortier
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium; Laboratory for Skeletal Dysplasia Research, Department of Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - David Geneviève
- Montpellier University and INSERM U1183, Montpellier, France; Competence Center for Bone Diseases, Clinical Genetics Unit, Montpellier University Hospital, Montpellier, France
| | - Wim Van Hul
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium.
| |
Collapse
|
34
|
Riddle RC. Endocrine Functions of Sclerostin. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2023; 28:10.1016/j.coemr.2022.100433. [PMID: 36713826 PMCID: PMC9881182 DOI: 10.1016/j.coemr.2022.100433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sclerostin, the product of the SOST gene has primarily been studied for its profound impact on bone mass. By interacting with LRP5 and LRP6, the glycoprotein suppresses the propagation of Wnt signals to β-catenin and thereby suppresses new bone formation. In this review, we discuss emerging data which suggest that sclerostin also acts outside the skeleton to influence metabolism. In humans, serum sclerostin levels are associated with body mass index and indices of metabolic function. Likewise, genetic mouse models of Sost gene deficiency indicate sclerostin influences adipocyte development and insulin signaling. These data raise the possibility that sclerostin neutralization may be effective at treating two epidemic conditions: osteoporosis and obesity.
Collapse
Affiliation(s)
- Ryan C. Riddle
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA.,Address Correspondence to: Ryan C. Riddle, Ph.D., Department of Orthopaedics, University of Maryland School of Medicine, 660 W. Redwood Street, Room 592, Baltimore, MD 21201, USA, , Ph: 410-706-0422
| |
Collapse
|
35
|
Michigami T. Paracrine and endocrine functions of osteocytes. Clin Pediatr Endocrinol 2023; 32:1-10. [PMID: 36761497 PMCID: PMC9887291 DOI: 10.1297/cpe.2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/30/2022] [Indexed: 11/04/2022] Open
Abstract
Osteocytes are dendritic-shaped cells embedded in the bone matrix and are terminally differentiated from osteoblasts. Inaccessibility due to their location has hindered the understanding of the molecular functions of osteocytes. However, scientific advances in the past few decades have revealed that osteocytes play critical roles in bone and mineral metabolism through their paracrine and endocrine functions. Sclerostin produced by osteocytes regulates bone formation and resorption by inhibiting Wnt/β-catenin signaling in osteoblast-lineage cells. Receptor activator of nuclear factor κ B ligand (RANKL) derived from osteocytes is essential for osteoclastogenesis and osteoclast activation during postnatal life. Osteocytes also secrete fibroblast growth factor 23 (FGF23), an endocrine FGF that regulates phosphate metabolism mainly by increasing phosphate excretion and decreasing 1, 25-dihydroxyvitamin D production in the kidneys. The regulation of FGF23 production in osteocytes is complex and multifactorial, involving many local and systemic regulators. Antibodies against sclerostin, RANKL, and FGF23 have emerged as new strategies for the treatment of metabolic bone diseases. Improved undrstanding of the paracrine and endocrine functions of osteocytes will provide insight into future therapeutic options.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute,
Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Osaka,
Japan
| |
Collapse
|
36
|
Babu LK, Ghosh D. Looking at Mountains: Role of Sustained Hypoxia in Regulating Bone Mineral Homeostasis in Relation to Wnt Pathway and Estrogen. Clin Rev Bone Miner Metab 2022. [DOI: 10.1007/s12018-022-09283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Saranya I, Akshaya R, Selvamurugan N. Regulation of Wnt signaling by non-coding RNAs during osteoblast differentiation. Differentiation 2022; 128:57-66. [DOI: 10.1016/j.diff.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
|
38
|
Joll JE, Riley LA, Bersi MR, Nyman JS, Merryman WD. Sclerostin ablation prevents aortic valve stenosis in mice. Am J Physiol Heart Circ Physiol 2022; 323:H1037-H1047. [PMID: 36240434 PMCID: PMC9662798 DOI: 10.1152/ajpheart.00355.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
The objective of this study was to test the hypothesis that targeting sclerostin would accelerate the progression of aortic valve stenosis. Sclerostin (mouse gene, Sost) is a secreted glycoprotein that acts as a potent regulator of bone remodeling. Antibody therapy targeting sclerostin is approved for osteoporosis but results from a stage III clinical trial showed multiple off-target cardiovascular effects. Wild-type (WT, Sost+/+) and Sost-gene knockout-expression (Null, Sost-/-) mice were generated and maintained to 12 mo of age on a high-cholesterol diet to induce aortic valve stenosis. Mice were examined by echocardiography, histology, and RNAseq. Immortalized valve interstitial cells were developed from each genotype for in vitro studies. Null mice developed a bone overgrowth phenotype, similar to patients with sclerosteosis. Surprisingly, however, WT mice developed hemodynamic signs of aortic valve stenosis, whereas Null mice were unchanged. WT mice had thicker aortic valve leaflets and higher amounts of α-smooth muscle actin, a marker myofibroblast activation and dystrophic calcification, with very little evidence of Runx2 expression, a marker of osteogenic calcification. RNAseq analysis of aortic roots indicated the HOX family of transcription factors was significantly upregulated in Null mice, and valve interstitial cells from Null animals were enriched with Hoxa1, Hoxb2, and Hoxd3 subtypes with downregulated Hoxa7. In addition, Null valve interstitial cells were shown to be less contractile than their WT counterparts. Contrary to our hypothesis, sclerostin targeting prevented hallmarks of aortic valve stenosis and indicates that targeted antibody treatments for osteoporosis may be beneficial for these patients regarding aortic stenosis.NEW & NOTEWORTHY We have found that genetic ablation of the Sost gene (protein: sclerostin) prevents aortic valve stenosis in aged, Western diet mice. This is a new role for sclerostin in the cardiovascular system. To the knowledge of the authors, this is one of the first studies directly manipulating sclerostin in a cardiovascular disease model and the first to specifically study the aortic valve. We also provide a potential new role for Hox genes in cardiovascular disease, noting pan-Hox upregulation in the aortic roots of sclerostin genetic knockouts. The role of Hox genes in postnatal cardiovascular health and disease is another burgeoning field of study to which this article contributes.
Collapse
Affiliation(s)
- J Ethan Joll
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Lance A Riley
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Matthew R Bersi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Jeffry S Nyman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
39
|
Abstract
Bone science has over the last decades unraveled many important pathways in bone and mineral metabolism and the interplay between genetic factors and the environment. Some of these discoveries have led to the development of pharmacological treatments of osteoporosis and rare bone diseases. Other scientific avenues have uncovered a role for the gut microbiome in regulating bone mass, which have led to investigations on the possible therapeutic role of probiotics in the prevention of osteoporosis. Huge advances have been made in identifying the genes that cause rare bone diseases, which in some cases have led to therapeutic interventions. Advances have also been made in understanding the genetic basis of the more common polygenic bone diseases, including osteoporosis and Paget's disease of bone (PDB). Polygenic profiles are used for establishing genetic risk scores aiming at early diagnosis and intervention, but also in Mendelian randomization (MR) studies to investigate both desired and undesired effects of targets for drug design.
Collapse
Affiliation(s)
- Bente L Langdahl
- Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark; Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - André G Uitterlinden
- Laboratory for Population Genomics, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
40
|
Kim JM, Yang YS, Xie J, Lee O, Kim J, Hong J, Boldyreff B, Filhol O, Chun H, Greenblatt MB, Gao G, Shim JH. Regulation of sclerostin by the SIRT1 stabilization pathway in osteocytes. Cell Death Differ 2022; 29:1625-1638. [PMID: 35169297 PMCID: PMC9345882 DOI: 10.1038/s41418-022-00952-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Osteocytes play a critical role in bone remodeling through the secretion of paracrine factors regulating the differentiation and activity of osteoblasts and osteoclasts. Sclerostin is a key osteocyte-derived factor that suppresses bone formation and promotes bone resorption, therefore regulators of sclerostin secretion are a likely source of new therapeutic strategies for treatment of skeletal disorders. Here, we demonstrate that protein kinase CK2 (casein kinase 2) controls sclerostin expression in osteocytes via the deubiquitinase ubiquitin-specific peptidase 4 (USP4)-mediated stabilization of Sirtuin1 (SIRT1). Deletion of CK2 regulatory subunit, Csnk2b, in osteocytes (Csnk2bDmp1) results in low bone mass due to elevated levels of sclerostin. This phenotype in Csnk2bDmp1 mice was partly reversed when sclerostin expression was downregulated by a single intravenous injection with bone-targeting adeno-associated virus 9 (AAV9) carrying an artificial-microRNA that targets Sost. Mechanistically, CK2-induced phosphorylation of USP4 is important for stabilization of SIRT1 by suppressing ubiquitin-dependent proteasomal degradation. Upregulated expression of SIRT1 inhibits sclerostin transcription in osteocytes. Collectively, the CK2-USP4-SIRT1 pathway is crucial for the regulation of sclerostin expression in osteocytes to maintain bone homeostasis.
Collapse
Affiliation(s)
- Jung-Min Kim
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yeon-Suk Yang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Oksun Lee
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - JiHea Kim
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jaehyoung Hong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | | | - Odile Filhol
- Interdisciplinary Research Institute of Grenoble, IRIG-Biosanté, University Grenoble Alpes, CEA, UMR 1292, F-38000, Grenoble, France
| | - Hyonho Chun
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
- Hospital for Special Surgery, New York, NY, 10021, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
41
|
Liao C, Liang S, Wang Y, Zhong T, Liu X. Sclerostin is a promising therapeutic target for oral inflammation and regenerative dentistry. J Transl Med 2022; 20:221. [PMID: 35562828 PMCID: PMC9102262 DOI: 10.1186/s12967-022-03417-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Sclerostin is the protein product of the SOST gene and is known for its inhibitory effects on bone formation. The monoclonal antibody against sclerostin has been approved as a novel treatment method for osteoporosis. Oral health is one of the essential aspects of general human health. Hereditary bone dysplasia syndrome caused by sclerostin deficiency is often accompanied by some dental malformations, inspiring the therapeutic exploration of sclerostin in the oral and dental fields. Recent studies have found that sclerostin is expressed in several functional cell types in oral tissues, and the expression level of sclerostin is altered in pathological conditions. Sclerostin not only exerts similar negative outcomes on the formation of alveolar bone and bone-like tissues, including dentin and cementum, but also participates in the development of oral inflammatory diseases such as periodontitis, pulpitis, and peri-implantitis. This review aims to highlight related research progress of sclerostin in oral cavity, propose necessary further research in this field, and discuss its potential as a therapeutic target for dental indications and regenerative dentistry.
Collapse
Affiliation(s)
- Chufang Liao
- School of Stomatology, Jinan University, Guangzhou, China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China.,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shanshan Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Zhong
- School of Stomatology, Jinan University, Guangzhou, China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China.,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China. .,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China. .,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
42
|
Iwamoto R, Koide M, Udagawa N, Kobayashi Y. Positive and Negative Regulators of Sclerostin Expression. Int J Mol Sci 2022; 23:ijms23094895. [PMID: 35563281 PMCID: PMC9102037 DOI: 10.3390/ijms23094895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Sclerostin is secreted from osteocytes, binds to the Wnt co-receptor Lrp5/6, and affects the interaction between Wnt ligands and Lrp5/6, which inhibits Wnt/β-catenin signals and suppresses bone formation. Sclerostin plays an important role in the preservation of bone mass by functioning as a negative regulator of bone formation. A sclerostin deficiency causes sclerosteosis, which is characterized by an excess bone mass with enhanced bone formation in humans and mice. The expression of sclerostin is positively and negatively regulated by many factors, which also govern bone metabolism. Positive and negative regulators of sclerostin expression and their effects are introduced and discussed herein based on recent and previous findings, including our research.
Collapse
Affiliation(s)
- Rina Iwamoto
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan;
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
- Correspondence: ; Tel.: +81-263-51-2238
| |
Collapse
|
43
|
Sclerostin: From Molecule to Clinical Biomarker. Int J Mol Sci 2022; 23:ijms23094751. [PMID: 35563144 PMCID: PMC9104784 DOI: 10.3390/ijms23094751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
Sclerostin, a glycoprotein encoded by the SOST gene, is mainly produced by mature osteocytes and is a critical regulator of bone formation through its inhibitory effect on Wnt signaling. Osteocytes are differentiated osteoblasts that form a vast and highly complex communication network and orchestrate osteogenesis in response to both mechanical and hormonal cues. The three most commonly described pathways of SOST gene regulation are mechanotransduction, Wnt/β-catenin, and steroid signaling. Downregulation of SOST and thereby upregulation of local Wnt signaling is required for the osteogenic response to mechanical loading. This review covers recent findings concerning the identification of SOST, in vitro regulation of SOST gene expression, structural and functional properties of sclerostin, pathophysiology, biological variability, and recent assay developments for measuring circulating sclerostin. The three-dimensional structure of human sclerostin was generated with the AlphaFold Protein Structure Database applying a novel deep learning algorithm based on the amino acid sequence. The functional properties of the 3-loop conformation within the tertiary structure of sclerostin and molecular interaction with low-density lipoprotein receptor-related protein 6 (LRP6) are also reviewed. Second-generation immunoassays for intact/biointact sclerostin have recently been developed, which might overcome some of the reported methodological obstacles. Sclerostin assay standardization would be a long-term objective to overcome some of the problems with assay discrepancies. Besides the use of age- and sex-specific reference intervals for sclerostin, it is also pivotal to use assay-specific reference intervals since available immunoassays vary widely in their methodological characteristics.
Collapse
|
44
|
Katchkovsky S, Chatterjee B, Abramovitch-Dahan CV, Papo N, Levaot N. Competitive blocking of LRP4-sclerostin binding interface strongly promotes bone anabolic functions. Cell Mol Life Sci 2022; 79:113. [PMID: 35099616 PMCID: PMC11073160 DOI: 10.1007/s00018-022-04127-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
Induction of bone formation by Wnt ligands is inhibited when sclerostin (Scl), an osteocyte-produced antagonist, binds to its receptors, the low-density lipoprotein receptor-related proteins 5 or 6 (LRP5/6). Recently, it was shown that enhanced inhibition is achieved by Scl binding to the co-receptor LRP4. However, it is not clear if the binding of Scl to LRP4 facilitates Scl binding to LRP5/6 or inhibits the Wnt pathway in an LRP5/6-independent manner. Here, using the yeast display system, we demonstrate that Scl exhibits a stronger binding affinity for LRP4 than for LRP6. Moreover, we found stronger Scl binding to LRP6 in the presence of LRP4. We further show that a Scl mutant (SclN93A), which tightly binds LRP4 but not LRP6, does not inhibit the Wnt pathway on its own. We demonstrate that SclN93A competes with Scl for a common binding site on LRP4 and antagonizes Scl inhibition of the Wnt signaling pathway in osteoblasts in vitro. Finally, we demonstrate that 2 weeks of bi-weekly subcutaneous injections of SclN93A fused to the fragment crystallizable (Fc) domain of immunoglobulin (SclN93AFc), which retains the antagonistic activity of the mutant, significantly increases bone formation rate and enhances trabecular volumetric bone fraction, trabecular number, and bone length in developing mice. Our data show that LRP4 serves as an anchor that facilitates Scl-LRP6 binding and that inhibition of the Wnt pathway by Scl depends on its prior binding to LRP4. We further provide evidence that compounds that inhibit Scl-LRP4 interactions offer a potential strategy to promote anabolic bone functions.
Collapse
Affiliation(s)
- Svetlana Katchkovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Biplab Chatterjee
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Chen-Viki Abramovitch-Dahan
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
45
|
Ekhzaimy AA, Alyusuf EY, Alswailem M, Alzahrani AS. A Novel Mutation in a Gene Causes Sclerosteosis in a Family of Mediterranean Origin. Medicina (B Aires) 2022; 58:medicina58020202. [PMID: 35208525 PMCID: PMC8878747 DOI: 10.3390/medicina58020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: Sclerostin is an SOST gene product that inhibits osteoblast activity and prevents excessive bone formation by antagonizing the Wnt signaling pathway. Sclerosteosis has been linked to loss of function mutations in the SOST gene. It is a rare autosomal recessive disorder characterized by craniotubular hyperostosis and can lead to fatal cerebellar herniation. Our aim is to describe the clinical and radiological features and the new underlying SOST mutation in a patient with sclerosteosis. Case: A 25-year-old female who was referred to the endocrine clinic for suspected excess growth hormone. The patient complained of headaches, progressive blurred vision, hearing disturbances, increased size of feet, proptosis, and protrusion of the chin. She had normal antenatal history except for syndactyly. Images showed diffuse osseous thickening and high bone mineral density. Biochemical and hormonal tests were normal. Due to progressive compressive optic neuropathy, optic nerve fenestration with decompression hemicraniotomy was performed. Sclerosteosis was suspected due to the predominant craniotubular hyperostosis with syndactyly. Using peripheral leucocyte DNA, genomic sequencing of the SOST gene was performed. This identified a novel deletion homozygous mutation in the SOST gene (c.387delG, p.Asp131ThrfsTer116) which disrupts sclerostin function, causing sclerosteosis. Conclusions: Discovery of the molecular basis of sclerosteosis represents an important advance in the diagnosis and management of this fatal disease.
Collapse
Affiliation(s)
- Aishah A. Ekhzaimy
- Division of Endocrinology, Department of Internal Medicine, College of Medicine, King Saud University, Riyadh 11437, Saudi Arabia;
- Correspondence:
| | - Ebtihal Y. Alyusuf
- Division of Endocrinology, Department of Internal Medicine, College of Medicine, King Saud University, Riyadh 11437, Saudi Arabia;
| | - Meshael Alswailem
- Division of Molecular Endocrinology, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11437, Saudi Arabia; (M.A.); (A.S.A.)
| | - Ali S. Alzahrani
- Division of Molecular Endocrinology, Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh 11437, Saudi Arabia; (M.A.); (A.S.A.)
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11437, Saudi Arabia
| |
Collapse
|
46
|
Martínez‐Gil N, Ovejero D, Garcia‐Giralt N, Bruque CD, Mellibovsky L, Nogués X, Rabionet R, Grinberg D, Balcells S. Genetic analysis in a familial case with high bone mineral density suggests additive effects at two
loci. JBMR Plus 2022; 6:e10602. [PMID: 35434450 PMCID: PMC9009133 DOI: 10.1002/jbm4.10602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 12/24/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022] Open
Abstract
Osteoporosis is the most common bone disease, characterized by a low bone mineral density (BMD) and increased risk of fracture. At the other end of the BMD spectrum, some individuals present strong, fracture‐resistant, bones. Both osteoporosis and high BMD are heritable and their genetic architecture encompasses polygenic inheritance of common variants and some cases of monogenic highly penetrant variants in causal genes. We have investigated the genetics of high BMD in a family segregating this trait in an apparently Mendelian dominant pattern. We searched for rare causal variants by whole‐exome sequencing in three affected and three nonaffected family members. Using this approach, we have identified 38 rare coding variants present in the proband and absent in the three individuals with normal BMD. Although we have found four variants shared by the three affected members of the family, we have not been able to relate any of these to the high‐BMD phenotype. In contrast, we have identified missense variants in two genes, VAV3 and ADGRE5, each shared by two of out of three affected members, whose loss of function fits with the phenotype of the family. In particular, the proband, a woman displaying the highest BMD (sum Z‐score = 7), carries both variants, whereas the other two affected members carry one each. VAV3 encodes a guanine‐nucleotide‐exchange factor with an important role in osteoclast activation and function. Although no previous cases of VAV3 mutations have been reported in humans, Vav3 knockout (KO) mice display dense bones, similarly to the high‐BMD phenotype present in our family. The ADGRE5 gene encodes an adhesion G protein‐coupled receptor expressed in osteoclasts whose KO mouse displays increased trabecular bone volume. Combined, these mouse and human data highlight VAV3 and ADGRE5 as novel putative high‐BMD genes with additive effects, and potential therapeutic targets for osteoporosis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Núria Martínez‐Gil
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| | - Diana Ovejero
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Natalia Garcia‐Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Carlos David Bruque
- Unidad de Conocimiento Traslacional Hospitalaria Patagónica, Hospital de Alta Complejidad SAMIC El Calafate Santa Cruz Argentina
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Xavier Nogués
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII Barcelona Spain
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD Barcelona Spain
| |
Collapse
|
47
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
48
|
Rozental TD, Merchan N, Johannesdottir F, Lechtig A, Earp BE, Harper CM, Bouxsein ML. Longitudinal Changes in Serum Markers of Bone Metabolism and Bone Material Strength in Premenopausal Women with Distal Radial Fracture. J Bone Joint Surg Am 2022; 104:15-23. [PMID: 34648480 DOI: 10.2106/jbjs.21.00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Markers of bone metabolism (MBM) play an important role in fracture evaluation, and changes have been associated with increased fracture risk. The purpose of the present study was to describe changes in MBM in premenopausal women with distal radial fractures. METHODS Premenopausal women with distal radial fractures (n = 34) and without fractures (controls) (n = 39) were recruited. Serum MBM in patients with distal radial fractures were obtained at the time of the initial presentation, 6 weeks, and 3, 6, and 12 months. MBM included 25(OH) vitamin D, PTH, osteocalcin, P1NP, BSAP, CTX, sclerostin, DKK1, periostin, and TRAP5b. Areal bone mineral density (aBMD) was assessed with dual x-ray absorptiometry, and the bone material strength index (BMSi) was assessed with microindentation. RESULTS Most MBM reached peak levels at 6 weeks after the injury, including osteocalcin (+17.7%), sclerostin (+23.5%), and DKK1 (12.6%). Sclerostin was lower (-27.4%) and DKK1 was higher (+22.2%) at 1 year after the fracture. CTX declined below baseline levels at 6 and 12 months, whereas TRAP5b, BSAP, and periostin did not significantly change. At 12 months, sclerostin was lower (p = 0.003) and DKK1 was higher (p = 0.03) in the distal radial fracture group than in the control group. Greater fracture severity was associated with greater increases in P1NP and BSAP. aBMD and BMSi were not associated with fracture. CONCLUSIONS Distal radial fractures caused increases in several MBM, which typically peaked at 6 weeks after injury and gradually decreased over 6 months. Sclerostin and DKK1 remained below and above baseline at 1 year, respectively. Increasing fracture severity resulted in larger changes in MBM. aBMD and BMSi did not discriminate between patients with distal radial fractures and controls. Continued efforts to identify markers of skeletal fragility in young women are warranted to mitigate future fracture risk. LEVEL OF EVIDENCE Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Tamara D Rozental
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Nelson Merchan
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Fjola Johannesdottir
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Aron Lechtig
- Harvard Combined Orthopaedic Surgery Residency Program, Boston, Massachusetts
| | - Brandon E Earp
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Carl M Harper
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Mary L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
49
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
50
|
Ye X, Liu X. Wnt16 signaling in bone homeostasis and osteoarthristis. Front Endocrinol (Lausanne) 2022; 13:1095711. [PMID: 36619549 PMCID: PMC9815800 DOI: 10.3389/fendo.2022.1095711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Wnts are secreted cysteine-rich glycoproteins involved in joint development and skeletal homeostasis and have been implicated in the occurrence of osteoarthritis. Over the past decade, Wnt16, a member of the Wnt family, has received widespread attention for its strong association with bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk. In recent years, further studies have shed light on the role of Wnt16 a positive regulator of bone mass and protective regulator of osteoarthritis progression. Transduction mechanisms and crosstalk involving Wnt16 signaling have also been illustrated. More importantly, local Wnt16 treatment has been shown to ease osteoarthritis, inhibit bone resorption, and promote new bone formation in bone defect models. Thus, Wnt16 is now a potential therapeutic target for skeletal diseases and osteoarthritis. This paper reviews our current understanding of the mechanisms by which Wnt16 signaling regulates bone homeostasis and osteoarthritis.
Collapse
|