1
|
Gallo‐Terán J, Salomón‐Felechosa C, González‐Aguado R, Onecha E, Fontalba A, del Castillo I, Morales‐Angulo C. Sensorineural Hearing Loss in Patients With the m.1555A>G Mutation in the MTRNR1 Gene. Laryngoscope 2025; 135:901-907. [PMID: 39323315 PMCID: PMC11725701 DOI: 10.1002/lary.31796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/11/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Mutations in the MTRNR1 gene of mitochondrial DNA are associated with non-syndromic hearing loss and increased susceptibility to aminoglycoside ototoxicity. The aim of our study was to determine the clinical characteristics of sensorineural hearing loss caused by the m.1555A>G mutation in MTRNR1. METHODS An observational retrospective study of the m.1555A>G mutation was conducted in patients with suspected hereditary bilateral sensorineural hearing loss in the Department of Otolaryngology of the Marqués de Valdecilla University Hospital (Cantabria, Spain) and in 100 controls with normal hearing. RESULTS The m.1555A>G mutation was found in 82 individuals from 20 different families and in none of the controls. Variable degrees of hearing loss were observed, ranging from normal hearing to profound deafness. Patients with a history of streptomycin administration exhibited significantly more pronounced hearing loss. The onset of hearing loss occurred from childhood to adulthood, with progression or stability over the years. No associated vestibular alterations or other clinical manifestations outside the ear were found. Two cochlear implant recipients showed significant improvement in speech comprehension. CONCLUSIONS Patients with the m.1555A>G mutation in the MTRNR1 gene often develop bilateral, symmetric sensorineural hearing loss, predominantly affecting high frequencies, worsened by streptomycin administration. This mutation does not affect the vestibular function. The variability in the severity of hearing loss, the heterogeneity of phenotypic expression, and the presence of carrier individuals with normal hearing may indicate the existence of modifying factors, both environmental and genetic. Cochlear implantees showed a good response in terms of speech intelligibility. Genetic testing for this mutation is recommended in patients with a family history of hearing loss to prevent the use of aminoglycosides if the mutation is found. LEVEL OF EVIDENCE 4 Laryngoscope, 135:901-907, 2025.
Collapse
Affiliation(s)
- Jaime Gallo‐Terán
- Department of RadiologyMarqués de Valdecilla University HospitalSantanderSpain
| | | | | | - Esther Onecha
- Department of GeneticsMarqués de Valdecilla University HospitalSantanderSpain
| | - Ana Fontalba
- Department of GeneticsMarqués de Valdecilla University HospitalSantanderSpain
| | - Ignacio del Castillo
- Servicio de GenéticaHospital Universitario Ramón y Cajal, IRYCISMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER‐ISCIII)MadridSpain
| | - Carmelo Morales‐Angulo
- Head of the Department of Otolaryngology and Head and Neck SurgeryMarqués de Valdecilla University HospitalSantanderSpain
- University of CantabriaSantanderSpain
- Cell cycle, Stem Cell Fate and Cancer LaboratoryInstitute for Research Marqués de Valdecilla (IDIVAL)SantanderSpain
| |
Collapse
|
2
|
Lebreton L, Hennart B, Baklouti S, Trimouille A, Boyer JC, Becquemont L, Dhaenens CM, Picard N. [Pharmacogenetics of aminoglycoside ototoxicity: State of knowledge and practices - Recommendations of the Francophone Network of Pharmacogenetics (RNPGx)]. Therapie 2024; 79:709-717. [PMID: 38876950 DOI: 10.1016/j.therap.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
The administration of aminoglycosides can induce nephrotoxicity or ototoxicity, which can be monitored through pharmacological therapeutic drug monitoring. However, there are cases of genetic predisposition to ototoxicity related to the MT-RNR1 gene, which may occur from the first administrations. Pharmacogenetic analysis recommendations have recently been proposed by the Clinical Pharmacogenetics Implementation Consortium (CPIC). The Francophone Pharmacogenetics Network (RNPGx) provides a bibliographic synthesis of this genetic predisposition, as well as professional recommendations. The MT-RNR1 gene codes for mitochondrial 12S rRNA, which constitutes the small subunit of the mitochondrial ribosome. Three variants can be identified: the variants m.1555A>G and m.1494C>T of the MT-RNR1 gene have a 'high' level of evidence regarding the risk of ototoxicity. The variant m.1095T>C has a 'moderate' level of evidence. The search for these variants can be performed in the laboratory if the administration of aminoglycosides can be delayed after obtaining the result. However, if the treatment is urgent, there is currently no rapid test available in France (a 'point-of-care' test is authorized in Great Britain). RNPGx considers: (1) the search for the m.1555A>G, m.1494C>T variants as 'highly recommended' and the m.1095T>C variant as 'moderately recommended' before the administration of an aminoglycoside (if compatible with the medical context). It should be noted that the level of heteroplasmy detected does not modify the recommendation; (2) pharmacogenetic analysis is currently not feasible in situations of short-term aminoglycoside administration, in the absence of an available analytical solution (rapid test to be evaluated in France); (3) the retrospective analysis in case of aminoglycoside-induced ototoxicity is 'recommended'; (4) analysis of relatives is 'recommended'. Through this summary, RNPGx proposes an updated review of the MT-RNR1-aminoglycoside gene-drug pair to serve as a basis for adapting practices regarding pharmacogenetic analysis related to aminoglycoside treatment.
Collapse
Affiliation(s)
- Louis Lebreton
- Département de biochimie, hôpital Pellegrin, centre hospitalier universitaire de Bordeaux, 33000 Bordeaux, France.
| | - Benjamin Hennart
- Unité fonctionnelle de toxicologie, CHU de Lille, 59037 Lille, France
| | - Sarah Baklouti
- Laboratoire de pharmacocinétique et toxicologie, institut fédératif de biologie, CHU de Toulouse, 31300 Toulouse, France; INTHERES, Inrae, ENVT, université de Toulouse, 31300 Toulouse, France
| | - Aurélien Trimouille
- Inserm U1211, Rare Diseases: Genetics and Metabolism (MRGM), Bordeaux University, Bordeaux, France; Reference Centre: Maladies Mitochondriales de l'Enfant à l'Adulte (CARAMMEL), University Hospital of Bordeaux, Bordeaux, France; Pathology Department, University Hospital of Bordeaux, 33000 Bordeaux, France
| | | | - Laurent Becquemont
- Inserm UMR 1018, CESP, MOODS Team, faculté de médecine, université Paris-Saclay, 94275 Le Kremlin-Bicêtre, France; Centre de recherche clinique, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - Claire-Marie Dhaenens
- Inserm, U1172 - LilNCog - Lille Neuroscience & Cognition, University of Lille, CHU de Lille, 59000 Lille, France
| | - Nicolas Picard
- Service de pharmacologie, toxicologie et pharmacovigilance, centre de biologie et de recherche en santé (CBRS), CHU de Limoges, 87042 Limoges, France
| |
Collapse
|
3
|
Shabaninejad H, Kenny RP, Robinson T, Stoniute A, O'Keefe H, Still M, Thornton C, Pearson F, Beyer F, Meader N. Genedrive kit for detecting single nucleotide polymorphism m.1555A>G in neonates and their mothers: a systematic review and cost-effectiveness analysis. Health Technol Assess 2024; 28:1-75. [PMID: 39487741 PMCID: PMC11590116 DOI: 10.3310/tgac4201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024] Open
Abstract
Background Neonates with suspected sepsis are commonly treated with gentamicin, an aminoglycoside. These antibiotics are associated with high risk of ototoxicity, including profound bilateral deafness, in people with the m.1555A>G mitochondrial genetic variant. Objective This early value assessment summarised and critically assessed the clinical effectiveness and cost-effectiveness of the Genedrive MT-RNR1 ID Kit for identifying the gene m.1555A>G variant in neonates and mothers of neonates needing antibiotics or anticipated to need antibiotics. Following feedback from the scoping workshop and specialist assessment subgroup meeting, we also considered the Genedrive MT-RNR1 ID Kit for identifying the m.1555A>G variant in mothers prior to giving birth. Data sources For clinical effectiveness, we searched three major databases in October 2022: MEDLINE, EMBASE and CINAHL (Cumulative Index to Nursing and Allied Health Literature). For cost-effectiveness, in addition to the three mentioned databases we searched Cochrane and RePEc-IDEAS. Study selection Study selection and risk-of-bias assessment were conducted by two independent reviewers (Ryan PW Kenny and Akvile Stoniute for clinical effectiveness and Hosein Shabaninejad and Tomos Robinson for cost-effectiveness). Any differences were resolved through discussion, or by a third reviewer (Nick Meader). Study appraisal Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies-2. One study (n = 751 neonates recruited) was included in the clinical effectiveness review and no studies were included in the cost-effectiveness review. All except one outcome (test failure rate: low risk of bias) were rated as being at moderate risk of bias. The study reported accuracy of the test (sensitivity 100%, 95% confidence interval 29.2% to 100%; specificity 99.2%, 95% confidence interval 98% to 99.7%), number of neonates successfully tested (n = 424/526 admissions), test failure rate (17.1%, although this was reduced to 5.7%), impact on antibiotic use (all those with a m.1555A>G genotype avoided aminoglycosides), time taken to obtain a sample (6 minutes), time to genotyping (26 minutes), time to antibiotic treatment (55.18 minutes) and the number of neonates with m.1555A>G (n = 3). Limitations The economic component of this work identified key evidence gaps for which further data are required before a robust economic evaluation can be conducted. These include the sensitivity of the Genedrive MT-RNR1 ID Kit for identifying the gene m.1555A>G variant in neonates, the magnitude of risk for aminoglycoside-induced hearing loss in neonates with m.1555A>G, and the prevalence of the m.1555A>G variant. Other potentially important gaps include how data regarding maternal inheritance may potentially be used in the clinical pathway. Conclusions This early value assessment suggests that the Genedrive MT-RNR1 ID Kit has the potential to identify the m.1555A>G variant and to be cost-effective. The Genedrive MT-RNR1 ID Kit dominates the current standard of care over the lifetime, as it is less costly and more effective. For a 50-year time horizon, the Genedrive MT-RNR1 ID Kit was also the dominant strategy. For a 10-year time horizon, the incremental cost-effectiveness ratio was estimated to be £103 per quality-adjusted life-year gained. Nevertheless, as anticipated, there is insufficient evidence to conduct a full diagnostic assessment of the clinical effectiveness and cost-effectiveness of the Genedrive MT-RNR1 ID Kit in neonates directly or in their mothers. This report includes a list of research priorities to reduce the uncertainty around this early value assessment and to provide the additional data needed to inform a full diagnostic assessment, including cost-effectiveness modelling. Study registration This study is registered as PROSPERO (CRD42022364770). Funding This award was funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme (NIHR award ref: NIHR135636) and is published in full in Health Technology Assessment; Vol. 28, No. 75. See the NIHR Funding and Awards website for further award information.
Collapse
|
4
|
Borisova TV, Cherdonova AM, Pshennikova VG, Teryutin FM, Morozov IV, Bondar AA, Baturina OA, Kabilov MR, Romanov GP, Solovyev AV, Fedorova SA, Barashkov NA. High prevalence of m.1555A > G in patients with hearing loss in the Baikal Lake region of Russia as a result of founder effect. Sci Rep 2024; 14:15342. [PMID: 38961196 PMCID: PMC11222474 DOI: 10.1038/s41598-024-66254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Mitochondrial forms account approximately 1-2% of all nonsyndromic cases of hearing loss (HL). One of the most common causative variants of mtDNA is the m.1555A > G variant of the MT-RNR1 gene (OMIM 561000). Currently the detection of the m.1555A > G variant of the MT-RNR1 gene is not included in all research protocols. In this study this variant was screened among 165 patients with HL from the Republic of Buryatia, located in the Baikal Lake region of Russia. In our study, the total contribution of the m.1555A > G variant to the etiology of HL was 12.7% (21/165), while the update global prevalence of this variant is 1.8% (863/47,328). The m.1555A > G variant was notably more prevalent in Buryat (20.2%) than in Russian patients (1.3%). Mitogenome analysis in 14 unrelated Buryat families carrying the m.1555A > G variant revealed a predominant lineage: in 13 families, a cluster affiliated with sub-haplogroup A5b (92.9%) was identified, while one family had the D5a2a1 lineage (7.1%). In a Russian family with the m.1555A > G variant the lineage affiliated with sub-haplogroup F1a1d was found. Considering that more than 90% of Buryat families with the m.1555A > G variant belong to the single maternal lineage cluster we conclude that high prevalence of this variant in patients with HL in the Baikal Lake region can be attributed to a founder effect.
Collapse
Affiliation(s)
- Tuyara V Borisova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Aleksandra M Cherdonova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Vera G Pshennikova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia
| | - Fedor M Teryutin
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia
| | - Igor V Morozov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
- Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Alexander A Bondar
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
| | - Olga A Baturina
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
| | - Marsel R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 8, 630090, Novosibirsk, Russia
| | - Georgii P Romanov
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Aisen V Solovyev
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
| | - Sardana A Fedorova
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia
| | - Nikolay A Barashkov
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Kulakovskogo 46, 677013, Yakutsk, Russia.
- Laboratory of Molecular Genetics, Yakut Science Centre of Complex Medical Problems, Yaroslavskogo 6/3, 677000, Yakutsk, Russia.
| |
Collapse
|
5
|
Abstract
The approval of mRNA-containing lipid nanoparticles (LNPs) for use in a vaccine against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the clinical utility of RNA-loaded nanocapsules has stimulated a rapid acceleration in research in this area. The development of mRNA-containing LNP vaccines has been rapid, not only because of regulatory adjustments, but also to the advances made in nucleic acid delivery as the result of efforts by many basic researchers. RNA functions, not only in the nucleus and cytoplasm, but also in mitochondria, which have their own genomic apparatus. Mitochondrial diseases caused by mutations or defects in the mitochondrial genome, mitochondrial DNA (mtDNA) are intractable and are mainly treated symptomatically, but gene therapy as a fundamental treatment is expected to soon be a reality. To realize this therapy, a drug delivery system (DDS) that delivers nucleic acids including RNA to mitochondria is required, but efforts in this area have been limited compared to research targeting the nucleus and cytoplasm. This contribution provides an overview of mitochondria-targeted gene therapy strategies and discusses studies that have attempted to validate mitochondria-targeted RNA delivery therapies. We also present the results of 'RNA delivery to mitochondria' based on the use of our mitochondria-targeted DDS (MITO-Porter) that was developed in our laboratory.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Japan Science and Technology Agency (JST) Fusion Oriented Research for Disruptive Science and Technology (FOREST) Program, Kawaguchi, Japan.
| | | |
Collapse
|
6
|
Joo SY, Jang SH, Kim JA, Kim SJ, Kim B, Kim HY, Choi JY, Gee HY, Jung J. Prevalence and Clinical Characteristics of Mitochondrial DNA Mutations in Korean Patients With Sensorineural Hearing Loss. J Korean Med Sci 2023; 38:e355. [PMID: 38084023 PMCID: PMC10713439 DOI: 10.3346/jkms.2023.38.e355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/12/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Mutations in mitochondrial DNA (mtDNA) are associated with several genetic disorders, including sensorineural hearing loss. However, the prevalence of mtDNA mutations in a large cohort of Korean patients with hearing loss has not yet been investigated. Thus, this study aimed to investigate the frequency of mtDNA mutations in a cohort of with pre- or post-lingual hearing loss of varying severity. METHODS A total of 711 Korean families involving 1,099 individuals were evaluated. Six mitochondrial variants associated with deafness (MTRNR1 m.1555A>G, MTTL1 m.3243A>G, MTCO1 m.7444G>A and m.7445A>G, and MTTS1 m.7471dupC and m.7511T>C) were screened using restriction fragment length polymorphism. The prevalence of the six variants was also analyzed in a large control dataset using whole-genome sequencing data from 4,534 Korean individuals with unknown hearing phenotype. RESULTS Overall, 12 of the 711 (1.7%) patients with hearing loss had mtDNA variants, with 10 patients from independent families positive for the MTRNR1 m.1555A>G mutation and 2 patients positive for the MTCO1 m.7444G>A mutation. The clinical characteristics of patients with the mtDNA variants were characterized by post-lingual progressive hearing loss due to the m.1555A>G variant (9 of 472; 1.9%). In addition, 18/4,534 (0.4%) of the Korean population have mitochondrial variants associated with hearing loss, predominantly the m.1555A>G variant. CONCLUSION A significant proportion of Korean patients with hearing loss is affected by the mtDNA variants, with the m.1555A>G variant being the most prevalent. These results clarify the genetic basis of hearing loss in the Korean population and emphasize the need for genetic testing for mtDNA variants.
Collapse
Affiliation(s)
- Sun Young Joo
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
| | - Seung Hyun Jang
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
| | - Se Jin Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
| | - Bonggi Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
| | - Jae Young Choi
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea.
| | - Jinsei Jung
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Yamada Y, Ishizuka S, Arai M, Maruyama M, Harashima H. Recent advances in delivering RNA-based therapeutics to mitochondria. Expert Opin Biol Ther 2022; 22:1209-1219. [PMID: 35543589 DOI: 10.1080/14712598.2022.2070427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION After the emergence of lipid nanoparticles (LNP) containing therapeutic mRNA as vaccines for use against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the clinical usefulness of nucleic acid-encapsulated LNPs is now a fact. In addition to the nucleus and cytoplasm, mitochondria, which have their own genome, are a site where nucleic acids function in the cell. Gene therapies targeting mitochondria are expected to pave the way for the next generation of therapies. AREAS COVERED Methods for delivering nucleic acids to mitochondria are needed in order to realize such innovative therapies. However, only a few reports on delivery systems targeting mitochondria have appeared. In this review, we summarize the current state of research on RNA-based therapeutics targeted to mitochondria, with emphasis on mitochondrial RNA delivery therapies and on therapies that involve the use of mitochondrial genome editing devices. EXPERT OPINION We hope that this review article will focus our attention to this area of research, stimulate more interest in this field of research, and lead to the development of mitochondria-targeted nucleic acid medicine. It has the potential to become a major weapon against urgent and unknown diseases, including SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Fusion Oriented Research for Disruptive Science and Technology (FOREST) Program, Japan Science and Technology Agency (JST), Japan
| | - Sen Ishizuka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Manae Arai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Minako Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
8
|
McDermott JH, Wolf J, Hoshitsuki K, Huddart R, Caudle KE, Whirl-Carrillo M, Steyger PS, Smith RJH, Cody N, Rodriguez-Antona C, Klein TE, Newman WG. Clinical Pharmacogenetics Implementation Consortium Guideline for the Use of Aminoglycosides Based on MT-RNR1 Genotype. Clin Pharmacol Ther 2022; 111:366-372. [PMID: 34032273 PMCID: PMC8613315 DOI: 10.1002/cpt.2309] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/17/2021] [Indexed: 02/03/2023]
Abstract
Aminoglycosides are widely used antibiotics with notable side effects, such as nephrotoxicity, vestibulotoxicity, and sensorineural hearing loss (cochleotoxicity). MT-RNR1 is a gene that encodes the 12s rRNA subunit and is the mitochondrial homologue of the prokaryotic 16s rRNA. Some MT-RNR1 variants (i.e., m.1095T>C; m.1494C>T; m.1555A>G) more closely resemble the bacterial 16s rRNA subunit and result in increased risk of aminoglycoside-induced hearing loss. Use of aminoglycosides should be avoided in individuals with an MT-RNR1 variant associated with an increased risk of aminoglycoside-induced hearing loss unless the high risk of permanent hearing loss is outweighed by the severity of infection and safe or effective alternative therapies are not available. We summarize evidence from the literature supporting this association and provide therapeutic recommendations for the use of aminoglycosides based on MT-RNR1 genotype (updates at https://cpicpgx.org/guidelines/ and www.pharmgkb.org).
Collapse
Affiliation(s)
- John Henry McDermott
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Keito Hoshitsuki
- School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachel Huddart
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Kelly E. Caudle
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Peter S. Steyger
- Translational Hearing Center, Biomedical Sciences, Creighton University, National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, USA
| | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, Internal Medicine (Nephrology), Pediatrics and Molecular Physiology & Biophysics, University of Iowa, Iowa City, Iowa, USA
| | - Neal Cody
- Department of Genetics and Genomic Sciences, Ichan School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, Stamford, Connecticut, USA
| | - Cristina Rodriguez-Antona
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Department of Medicine, Stanford University, Stanford, California, USA
| | - William G. Newman
- Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Genetic etiology of non-syndromic hearing loss in Europe. Hum Genet 2022; 141:683-696. [PMID: 35044523 DOI: 10.1007/s00439-021-02425-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
Hearing impairment not etiologically associated with clinical signs in other organs (non-syndromic) is genetically heterogeneous, so that over 120 genes are currently known to be involved. The frequency of mutations in each gene and the most frequent mutations vary throughout populations. Here we review the genetic etiology of non-syndromic hearing impairment (NSHI) in Europe. Over the years, epidemiological data were scarce because of the large number of involved genes, whose screening was not cost-effective until implementation of massively parallel DNA sequencing. In Europe, the most common form of autosomal recessive NSHI is DFNB1, which accounts for 11-57% of the cases. Mutations in STRC account for 16% of the recessive cases, and only a few more (MYO15A, MYO7A, LOXHD1, USH2A, TMPRSS3, CDH23, TMC1, OTOF, OTOA, SLC26A4, ADGRV1 and TECTA) have contributions higher than 2%. As regards autosomal-dominant NSHI, DFNA22 (MYO6) and DFNA8/12 (TECTA) represent the most common forms, accounting for 21% and 18% of elucidated cases, respectively. The contribution of ACTG1 and WFS1 drops to 9% in both cases, followed by POU4F3 (6.5%), MYO7A (5%), MYH14 and COL11A2 (4% each). Four additional genes contribute 2.5% each one (MITF, KCNQ4, EYA4, SOX10) and the remaining are residually represented. X-linked hearing loss and maternally-inherited NSHI have minor contributions in most countries. Further knowledge on the genetic epidemiology of NSHI in Europe needs a standardization of the experimental approaches and a stratification of the results according to clinical features, familial history and patterns of inheritance, to facilitate comparison between studies.
Collapse
|
10
|
Hu H, Zhou P, Wu J, Lei W, Wang Y, Yang Y, Liu H. Genetic testing involving 100 common mutations for antenatal diagnosis of hereditary hearing loss in Chongqing, China. Medicine (Baltimore) 2021; 100:e25647. [PMID: 33907123 PMCID: PMC8084083 DOI: 10.1097/md.0000000000025647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT To understand the possible carrier status of genes associated with hereditary hearing loss (HHL) in the general population among local residents and to give genetic counseling for pregnant women.A total of 3541 subjects were recruited. We used multiplex PCR technology combined with next-generation sequencing technology to detect 100 hotspot mutations in 18 common deafness-related genes. The homozygous mutation screening results were verified using Sanger sequencing.Of the 3541 participants, 37 alleles of 8 deafness genes were detected. A total of 145 (4.09%) were found to be GJB2 gene mutation carriers, and the hotspot mutation was c.235delC (1.54%). Twenty three (0.65%) were found to be GJB3 gene mutation carriers. A total of 132 (3.37%) were found to be SLC26A4 gene mutation carriers, and the hotspot mutation was c.919-2A > G (0.49%). Forty four (1.24%) were found to be mitochondrial DNA mutation carriers. Sanger sequencing results verified that 2 cases were homozygous for the c.235delC mutation and that 1 case was homozygous for the c.754T > C mutation.Genetic testing for pregnant women and their partners allows early identification of the molecular etiology of hearing loss (HL). On the one hand, it could give genetic counseling for pregnant women, such as early diagnosis of delayed deafness and drug-susceptible deafness. On the other hand, it could be used to assess hearing conditions during pregnancy, leading to prevention and timely intervention for newborns.
Collapse
Affiliation(s)
- Hua Hu
- Second Affiliated Hospital, Army Military Medical University, Chongqing
| | - Peng Zhou
- Second Affiliated Hospital, Army Military Medical University, Chongqing
| | - Jiayan Wu
- Second Affiliated Hospital, Army Military Medical University, Chongqing
| | - Wei Lei
- CapitalBio Genomics Co., Ltd., Dongguan, China
| | - Yang Wang
- CapitalBio Genomics Co., Ltd., Dongguan, China
| | - Ying Yang
- Second Affiliated Hospital, Army Military Medical University, Chongqing
| | | |
Collapse
|
11
|
Isaka Y, Nishio SY, Hishinuma E, Hiratsuka M, Usami SI. Improvement of a Rapid and Highly Sensitive Method for the Diagnosis of the Mitochondrial m.1555A>G Mutation Based on a Single-Stranded Tag Hybridization Chromatographic Printed-Array Strip. Genet Test Mol Biomarkers 2021; 25:79-83. [PMID: 33372830 PMCID: PMC7821431 DOI: 10.1089/gtmb.2020.0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: Pathogenic variants in mitochondrial DNA are known to be associated with sensorineural hearing loss (SNHL) and aminoglycoside-induced HL. Among them, the m.1555A>G mutation is the most common. Thus, a rapid and easy companion diagnostic method for this mutation would be desirable to prevent HL caused by aminoglycoside therapy. In this study, we report an improved protocol for the single-stranded tag hybridization chromatographic printed-array strip (STH-PAS) method for identifying the m.1555A>G mutation. Methods: To evaluate the accuracy of a novel diagnostic for the m.1555A>G mutation we analyzed 378 DNA samples with or without the m.1555A>G mutation, as determined by Invader assay, and calculated the sensitivity, specificity, and false negative and false positive ratios of this new method. Results: The newly developed protocol was robust; we, obtained the same results using multiple DNA concentrations, differing annealing temperatures, and different polymerase chain reaction thermal cyclers. The diagnostic sensitivity based on the STH-PAS method was 0.99, and the specificity was 1.00. The false negative and false positive ratios were 0 and 0.01, respectively. Conclusion: We improved the genotyping method for m.1555A>G mutations. This assays will be useful as a rapid companion diagnostic before aminoglycoside use.
Collapse
Affiliation(s)
- Yuichi Isaka
- Department of Hearing Implant Sciences and Shinshu University School of Medicine, Matsumoto, Japan
| | - Shin-ya Nishio
- Department of Hearing Implant Sciences and Shinshu University School of Medicine, Matsumoto, Japan
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eiji Hishinuma
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku University, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shin-ichi Usami
- Department of Hearing Implant Sciences and Shinshu University School of Medicine, Matsumoto, Japan
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
12
|
The use of a MITO-Porter to deliver exogenous therapeutic RNA to a mitochondrial disease's cell with a A1555G mutation in the mitochondrial 12S rRNA gene results in an increase in mitochondrial respiratory activity. Mitochondrion 2020; 55:134-144. [PMID: 33035688 DOI: 10.1016/j.mito.2020.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023]
Abstract
We report on validating a mitochondrial gene therapeutic strategy using fibroblasts derived from patients with an A1555G point mutation in mitochondrial DNA coding 12S ribosomal RNA (rRNA (12S)). Wild-type rRNA (12S) as a therapeutic RNA was encapsulated in a mitochondrial targeting liposome, a MITO-Porter (rRNA-MITO-Porter), and an attempt was made to deliver the MITO-Porter to mitochondria of the diseased cells. It was confirmed that the rRNA-MITO-Porter treatment significantly decreased the ratio of the mutant rRNA content. Moreover, it was shown that the mitochondrial respiratory activities of the diseased cells were improved as the result of the mitochondrial transfection of the rRNA-MITO-Porter.
Collapse
|
13
|
Yamada Y, Hibino M, Sasaki D, Abe J, Harashima H. Power of mitochondrial drug delivery systems to produce innovative nanomedicines. Adv Drug Deliv Rev 2020; 154-155:187-209. [PMID: 32987095 DOI: 10.1016/j.addr.2020.09.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Mitochondria carry out various essential functions including ATP production, the regulation of apoptosis and possess their own genome (mtDNA). Delivering target molecules to this organelle, it would make it possible to control the functions of cells and living organisms and would allow us to develop a better understanding of life. Given the fact that mitochondrial dysfunction has been implicated in a variety of human disorders, delivering therapeutic molecules to mitochondria for the treatment of these diseases is an important issue. To date, several mitochondrial drug delivery system (DDS) developments have been reported, but a generalized DDS leading to therapy that exclusively targets mitochondria has not been established. This review focuses on mitochondria-targeted therapeutic strategies including antioxidant therapy, cancer therapy, mitochondrial gene therapy and cell transplantation therapy based on mitochondrial DDS. A particular focus is on nanocarriers for mitochondrial delivery with the goal of achieving mitochondria-targeting therapy. We hope that this review will stimulate the accelerated development of mitochondrial DDS.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Biological Drug Development Based on DDS Technology, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Mitsue Hibino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Daisuke Sasaki
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Jiro Abe
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Biological Drug Development Based on DDS Technology, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
14
|
Aaron KA, Kim GS, Cheng AG. Advances in Inner Ear Therapeutics for Hearing Loss in Children. CURRENT OTORHINOLARYNGOLOGY REPORTS 2020; 8:285-294. [PMID: 36090148 PMCID: PMC9455742 DOI: 10.1007/s40136-020-00300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose of review Hearing loss is a common congenital sensory disorder with various underlying causes. Here, we review and focus on genetic, infectious, and ototoxic causes and recent advances in inner ear therapeutics. Recent findings While hearing aids and cochlear implantation are the mainstay of treatment for pediatric hearing loss, novel biological therapeutics are being explored. Recent preclinical studies report positive results in viral-mediated gene transfer techniques and surgical approaches to the inner ear for genetic hearing loss. Novel pharmacologic agents, on the other hand, show promising results in reducing aminoglycoside and cisplatin ototoxicity. Clinical trials are underway to evaluate the efficacy of antivirals for cytomegalovirus-related hearing loss, and its pathogenesis and other potential therapeutics are currently under investigation. Summary Individualized therapies for genetic and infectious causes of sensorineural hearing loss in animal models as well as pediatric patients show promising results, with their potential efficacy being active areas of research.
Collapse
Affiliation(s)
- Ksenia A. Aaron
- Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Grace S. Kim
- Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Alan G. Cheng
- Department of Otolaryngology – Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| |
Collapse
|
15
|
Lanillos J, Santos M, Carcajona M, Roldan-Romero JM, Martinez AM, Calsina B, Monteagudo M, Leandro-García LJ, Montero-Conde C, Cascón A, Maietta P, Alvarez S, Robledo M, Rodriguez-Antona C. A Novel Approach for the Identification of Pharmacogenetic Variants in MT-RNR1 through Next-Generation Sequencing Off-Target Data. J Clin Med 2020; 9:jcm9072082. [PMID: 32630724 PMCID: PMC7408883 DOI: 10.3390/jcm9072082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
Specific genetic variants in the mitochondrially encoded 12S ribosomal RNA gene (MT-RNR1) cause aminoglycoside-induced irreversible hearing loss. Mitochondrial DNA is usually not included in targeted sequencing experiments; however, off-target data may deliver this information. Here, we extract MT-RNR1 genetic variation, including the most relevant ototoxicity variant m.1555A>G, using the off-target reads of 473 research samples, sequenced through a capture-based, custom-targeted panel and whole exome sequencing (WES), and of 1245 diagnostic samples with clinical WES. Sanger sequencing and fluorescence-based genotyping were used for genotype validation. There was a correlation between off-target reads and mitochondrial coverage (rcustomPanel = 0.39, p = 2 × 10−13 and rWES = 0.67, p = 7 × 10−21). The median read depth of MT-RNR1 m.1555 was similar to the average mitochondrial genome coverage, with saliva and blood samples giving comparable results. The genotypes from 415 samples, including three m.1555G carriers, were concordant with fluorescence-based genotyping data. In clinical WES, median MT-RNR1 coverage was 56×, with 90% of samples having ≥20 reads at m.1555 position, and one m.1494T and three m.1555G carriers were identified with no evidence for heteroplasmy. Altogether, this study shows that obtaining MT-RNR1 genotypes through off-target reads is an efficient strategy that can impulse preemptive pharmacogenetic screening of this mitochondrial gene.
Collapse
Affiliation(s)
- Javier Lanillos
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - María Santos
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | | | - Juan María Roldan-Romero
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - Angel M. Martinez
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - María Monteagudo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - Luis Javier Leandro-García
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
| | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Paolo Maietta
- Nimgenetics, 28049 Madrid, Spain; (M.C.); (P.M.); (S.A.)
| | - Sara Alvarez
- Nimgenetics, 28049 Madrid, Spain; (M.C.); (P.M.); (S.A.)
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Cristina Rodriguez-Antona
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (J.L.); (M.S.); (J.M.R.-R.); (A.M.M.); (B.C.); (M.M.); (L.J.L.-G.); (C.M.-C.); (A.C.); (M.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-732-8000 (ext. 3321)
| |
Collapse
|
16
|
Moassass F, Al-Halabi B, Nweder MS, Al-Achkar W. Investigation of the mtDNA mutations in Syrian families with non-syndromic sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2018; 113:110-114. [PMID: 30173967 DOI: 10.1016/j.ijporl.2018.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Hearing loss is a common sensory disorder, and at least 50% of cases are due to a genetic etiology. Several mitochondrial DNA mutations (mtDNA) have been reported to be associated with nonsyndromic hearing loss (NSHL) in different population. However, There is no previous available data about the frequency of mtDNA mutations as etiology for deafness in Syrian. The aim of present study is to investigate the incidence of common mt DNA mutations in our families with congenital hearing loss and not related to the ototoxicity or aminoglycosides. METHODS A total of 50 deaf families were enrolled in the present study. Direct sequencing and PCR-RFLP methods were employed to detect seven mt DNA mutations, including A1555G, A3243G, C1494T, G3316A, T7510C, A7445G, and 7472insC. RESULTS Our results revealed a high prevalence of mt DNA mutation (10%) in deaf families (5/50). In surprising, the unexpected mutations were observed. The G3316A mutation was found in 2 families as homoplasmic genotype. Also, we found the homoplasmic and heteroplasmic genotype for the C1494T mutation in two families. In one family the heteroplasmic genotype for T7510C mutation was observed; this family harbor 35delG mutation in GJB2 gene. None of the common mtDNA mutations (A1555G, A3243G) and other mutations (A7445G, 7472insC) were detected here. CONCLUSION Our findings indicate to significant contribution of the mt DNA mutations in our families with NSHL. The presented data is the first report about mt DNA and it will improve the genetic counseling of hearing impaired in Syrian families.
Collapse
Affiliation(s)
- Faten Moassass
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission, Damascus, Syria
| | - Bassel Al-Halabi
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission, Damascus, Syria
| | - Mohamad Sayah Nweder
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission, Damascus, Syria
| | - Walid Al-Achkar
- Human Genetics Division, Molecular Biology and Biotechnology Department, Atomic Energy Commission, Damascus, Syria.
| |
Collapse
|
17
|
Y D, B-H X, Y-S T, G-C Z, J-H L. The Mitochondrial COI/tRNA SER(UCN) G7444A Mutation may be Associated with Hearing Impairment in a Han Chinese Family. Balkan J Med Genet 2018; 20:43-50. [PMID: 29876232 PMCID: PMC5972502 DOI: 10.1515/bjmg-2017-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Variations in mitochondrial genome have been found to be associated with hearing loss. Of these, the mitochondrial 12S rRNA and tRNASer(UCN) are the hot-spots for pathogenic variants associated with deafness. To understand the putative role of mitochondrial DNA (mtDNA) variants in hearing loss, we recently screened the variants in mitochondrial genomes in patients with deafness from the Hangzhou area of Zhejiang Province, People’s Republic of China (PRC). In this study, we describe a maternally-inherited Han Chinese family with high penetrance of hearing loss, notably, the penetrance of hearing loss in this family were 80.0 and 40.0%, when the aminoglycoside was included or excluded. Three matrilineal relatives in this pedigree exhibited different levels of hearing loss with different age at onset. In addition, sequence analysis of the complete mitochondrial genome showed the presence of the well-known C1494T pathogenic variant in the 12S rRNA gene and the G7444A pathogenic variant in the COI/ tRNASer(UCN). The C1494T anomaly had been reported to be a pathogenic mutation associated with aminoglycoside-induced and nonsyndromic hearing loss (AINHL), while the G7444A was considered as a secondary mutation associated with deafness. However, the lack of functional variants in GJB2 and TRMU genes suggested that nuclear modified genes may not play important roles in deafness expression. Thus, the combination of G7444A and C1494T pathogenic variants in the mitochondrial genome may account for the high penetrance of hearing loss in this Chinese family.
Collapse
Affiliation(s)
- Ding Y
- Central Laboratory, Hangzhou First People's Hospital, Hangzhou, People's Republic of China.,Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, People's Republic of China
| | - Xia B-H
- Department of Pharmacy, Hunan Chinese Medical University, Changsha, People's Republic of China
| | - Teng Y-S
- Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, People's Republic of China.,Department of Otolaryngology, Hangzhou First People's Hospital, Hangzhou, People's Republic of China
| | - Zhuo G-C
- Central Laboratory, Hangzhou First People's Hospital, Hangzhou, People's Republic of China.,Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, People's Republic of China
| | - Leng J-H
- Central Laboratory, Hangzhou First People's Hospital, Hangzhou, People's Republic of China.,Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
18
|
Wang L, Wang X, Cai X, Qiang R. Study of mitochondrial DNA A1555G and C1494T mutations in a large cohort of women individuals. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:222-225. [PMID: 29790807 DOI: 10.1080/24701394.2018.1475477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Mammalian mitochondrial A1555G and C1494T mutations are the most common causes of aminoglycoside-induced and non-syndromic hearing loss. However, these two mutations always are studied in the subject of pedigrees analysis. In the present study, we aimed to investigate the genetic characteristic of the A1555G and C1494T mutations on the population-level sampling, and to study the A1555G pattern of maternal transmission in three heteroplasmic families. Four thousand two hundred and ten unrelated women with normal hearing were enrolled as subjects. We used a mutation detection kit to screen the prevalence of these two mutations and used denaturing high performance liquid chromatography (DHPLC) and DNA sequencing to detect three A1555G heteroplasmic pedigrees. The carrier rate of A1555G was 0.33%, and the carrier rate of C1494T was 0.02% in our cohort, but the rate of heteroplasmy in A1555G mutant carriers reached 21.4%. Mitochondrial A1555G mutation rate was significantly decreased during maternal transmission of the mutant. Strong purifying selection may determine the fate of mtDNA A1555G in the transmission of human population.
Collapse
Affiliation(s)
- Lin Wang
- a Northwest Women's and Children's Hospital , Xi'an , PR China
| | - Xiaobin Wang
- a Northwest Women's and Children's Hospital , Xi'an , PR China
| | - Xiaolong Cai
- b Shaanxi Provincial People's Hospital , Xi'an , PR China
| | - Rong Qiang
- a Northwest Women's and Children's Hospital , Xi'an , PR China
| |
Collapse
|
19
|
|
20
|
Large scale newborn deafness genetic screening of 142,417 neonates in Wuhan, China. PLoS One 2018; 13:e0195740. [PMID: 29634755 PMCID: PMC5892933 DOI: 10.1371/journal.pone.0195740] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/28/2018] [Indexed: 11/19/2022] Open
Abstract
Almost one third of the three million people in China suffering severe deafness are children, and 50% of these cases are believed to have genetic components to their etiology. Newborn hearing genetic screening can complement Universal Neonatal Hearing Screening for the diagnosis of congenital hearing loss as well as identifying children at risk for late-onset and progressive hearing impairment. The aim of this joint academic and Ministry of Health project was to prototype a cost effective newborn genetic screen in a community health setting on a city-wide level, and to ascertain the prevalence of variation at loci that have been associated with non-syndromic hearing loss. With the participation of 143 local hospitals in the city of Wuhan, China we screened 142,417 neonates born between May 2014 and Dec. 2015. The variants GJB2 c.235delC, SLC26A4 c.919-2A>G, and mitochondrial variants m.1555A>G and m.1494C>T were assayed using real time PCR. Newborns found to carry a variant were re-assayed by sequencing in duplicate. Within a subset of 707 newborns we assayed using real-time PCR and ARMS-PCR to compare cost, sensitivity and operating procedure. The most frequent hearing loss associated allele detected in this population was the 235delC variant in GJB2 gene. In total, 4289 (3.01%) newborns were found to carry at least one allele of either GJB2 c.235delC, SLC26A4 c.919-2A>G or two assayed MT-RNR1 variants. There was complete accordance between the real-time PCR and the ARMS PCR, though the real-time PCR had a much lower failure rate. Real-time PCR had a lower cost and operating time than ARMS PCR. Ongoing collaboration with the participating hospitals will determine the specificity and sensitivity of the association of the variants with hearing loss at birth and arising in early childhood, allowing an estimation of the benefits of newborn hearing genetic screening in a large-scale community setting.
Collapse
|
21
|
|
22
|
Meng F, He Z, Tang X, Zheng J, Jin X, Zhu Y, Ren X, Zhou M, Wang M, Gong S, Mo JQ, Shu Q, Guan MX. Contribution of the tRNA Ile 4317A→G mutation to the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA 1555A→G mutation. J Biol Chem 2018; 293:3321-3334. [PMID: 29348176 DOI: 10.1074/jbc.ra117.000530] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/14/2018] [Indexed: 12/28/2022] Open
Abstract
The 1555A→G mutation in mitochondrial 12S rRNA has been associated with aminoglycoside-induced and non-syndromic deafness in many individuals worldwide. Mitochondrial genetic modifiers are proposed to influence the phenotypic expression of m.1555A→G mutation. Here, we report that a deafness-susceptibility allele (m.4317A→G) in the tRNAIle gene modulates the phenotype expression of m.1555A→G mutation. Strikingly, a large Han Chinese pedigree carrying both m.4317A→G and m.1555A→G mutations exhibited much higher penetrance of deafness than those carrying only the m.1555A→G mutation. The m.4317A→G mutation affected a highly conserved adenine at position 59 in the T-loop of tRNAIle We therefore hypothesized that the m.4317A→G mutation alters both structure and function of tRNAIle Using lymphoblastoid cell lines derived from members of Chinese families (three carrying both m.1555A→G and m.4317A→G mutations, three harboring only m.1555A→G mutation, and three controls lacking these mutations), we found that the cell lines bearing both m.4317A→G and m.1555A→G mutations exhibited more severe mitochondrial dysfunctions than those carrying only the m.1555A→G mutation. We also found that the m.4317A→G mutation perturbed the conformation, stability, and aminoacylation efficiency of tRNAIle These m.4317A→G mutation-induced alterations in tRNAIle structure and function aggravated the defective mitochondrial translation and respiratory phenotypes associated with the m.1555A→G mutation. Furthermore, mutant cell lines bearing both m.4317A→G and m.1555A→G mutations exhibited greater reductions in the mitochondrial ATP levels and membrane potentials and increasing production of reactive oxygen species than those carrying only the m.1555A→G mutation. Our findings provide new insights into the pathophysiology of maternally inherited deafness arising from the synergy between mitochondrial 12S rRNA and tRNA mutations.
Collapse
Affiliation(s)
- Feilong Meng
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China.,the Institute of Genetics
| | - Zheyun He
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, and.,the Institute of Liver Diseases, Ningbo Secondary Hospital, Ningbo, Zhejiang 315010, China
| | - Xiaowen Tang
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, and
| | - Jing Zheng
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China.,the Institute of Genetics
| | | | - Yi Zhu
- Department of Otolaryngology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoyan Ren
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, and
| | - Mi Zhou
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China.,the Institute of Genetics
| | - Meng Wang
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China.,the Institute of Genetics
| | - Shasha Gong
- the Institute of Genetics.,the School of Medicine, Taizhou College, Taizhou, Zhejiang 318000, China, and
| | - Jun Qin Mo
- the Department of Pathology, Rady Children's Hospital, University of California at San Diego, San Diego, California 92123
| | - Qiang Shu
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China,
| | - Min-Xin Guan
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, China, .,the Institute of Genetics.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
23
|
Ding Y, Xia BH, Teng YS, Zhuo GC, Leng JH. Mitochondrial COI/tRNA Ser(UCN) G7444A mutation may be associated with hearing impairment in a Han Chinese family. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9496-9502. [PMID: 31966824 PMCID: PMC6965970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/17/2017] [Indexed: 06/10/2023]
Abstract
Mutations in mitochondrial genome have been found to be associated with hearing loss. Of these, the mitochondrial 12S rRNA and tRNASer(UCN) are the hot spots for pathogenic mutations associated with deafness. To understand the putative role of mitochondrial DNA (mtDNA) mutations in hearing loss, we recently initiated a mutational screening for the mtDNA mutations in Hangzhou area from Zhejiang Province. In this study, we described a maternally inherited Han Chinese family with high penetrance of hearing loss, notably, the penetrances of hearing loss in this family were 80% and 40%, when the aminoglycoside was included or excluded. Three matrilineal relatives in this pedigree exhibited different levels of hearing loss with different age at onset. In addition, sequence analysis of the complete mitochondrial genome showed the presence of the well-known C1494T mutation in 12S rRNA gene and the G7444A mutation in the COI/tRNASer(UCN). The C1494T mutation had been reported to be a pathogenic mutation associated with aminoglycoside-induced and non-syndromic hearing loss. While the G7444A mutation was considered as a secondary mutation associated with deafness. However, the lack of functional variants in GJB2 and TRMU genes suggested that nuclear modified genes may not play important roles in deafness expression. Thus, the combination of G7444A and C1494T mutations in mitochondrial genome may account for the high penetrance of hearing loss in this Chinese family.
Collapse
Affiliation(s)
- Yu Ding
- Central Laboratory, Hangzhou First People’s HospitalHangzhou, China
- Affiliated Hangzhou Hospital, Nanjing Medical UniversityHangzhou, China
| | - Bo-Hou Xia
- Department of Pharmacy, Hunan Chinese Medical UniversityChangsha, China
| | - Yao-Shu Teng
- Department of Otolaryngology, Hangzhou First People’s HospitalHangzhou, China
- Affiliated Hangzhou Hospital, Nanjing Medical UniversityHangzhou, China
| | - Guang-Chao Zhuo
- Central Laboratory, Hangzhou First People’s HospitalHangzhou, China
- Affiliated Hangzhou Hospital, Nanjing Medical UniversityHangzhou, China
| | - Jian-Hang Leng
- Central Laboratory, Hangzhou First People’s HospitalHangzhou, China
- Affiliated Hangzhou Hospital, Nanjing Medical UniversityHangzhou, China
| |
Collapse
|
24
|
Subathra M, Ramesh A, Selvakumari M, Karthikeyen NP, Srisailapathy CRS. Genetic Epidemiology of Mitochondrial Pathogenic Variants Causing Nonsyndromic Hearing Loss in a Large Cohort of South Indian Hearing Impaired Individuals. Ann Hum Genet 2017; 80:257-73. [PMID: 27530448 DOI: 10.1111/ahg.12161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/16/2016] [Indexed: 01/28/2023]
Abstract
Mitochondria play a critical role in the generation of metabolic energy in the form of ATP. Tissues and organs that are highly dependent on aerobic metabolism are involved in mitochondrial disorders including nonsyndromic hearing loss (NSHL). Seven pathogenic variants leading to NSHL have so far been reported on two mitochondrial genes: MT-RNR1 encoding 12SrRNA and MT-TS1 encoding tRNA for Ser((UCN)) . We screened 729 prelingual NSHL subjects to determine the prevalence of MT-RNR1 variants at position m.961, m.1555A>G and m.1494C>T, and MT-TS1 m.7445A>G, m.7472insC m.7510T>C and m.7511T>C variants. Mitochondrial pathogenic variants were found in eight probands (1.1%). Five of them were found to have the m.1555A>G variant, two others had m.7472insC and one proband had m.7444G>A. The extended relatives of these probands showed variable degrees of hearing loss and age at onset. This study shows that mitochondrial pathogenic alleles contribute to about 1% prelingual hearing loss. This study will henceforth provide the reference for the prevalence of mitochondrial pathogenic alleles in the South Indian population, which to date has not been estimated. The m.1555A>G variant is a primary predisposing genetic factor for the development of hearing loss. Our study strongly suggests that mitochondrial genotyping should be considered for all hearing impaired individuals and particularly in families where transmission is compatible with maternal inheritance, after ruling out the most common variants.
Collapse
Affiliation(s)
- Mahalingam Subathra
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Arabandi Ramesh
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Mathiyalagan Selvakumari
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - N P Karthikeyen
- DOAST (Doctrine Oriented Art of Symbiotic Treatment) Hearing Care Center and Integrated Therapy Center for Autism, Anna Nagar West, Chennai, India
| | - C R Srikumari Srisailapathy
- Department of Genetics, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| |
Collapse
|
25
|
Mutai H, Watabe T, Kosaki K, Ogawa K, Matsunaga T. Mitochondrial mutations in maternally inherited hearing loss. BMC MEDICAL GENETICS 2017; 18:32. [PMID: 28320335 PMCID: PMC5359870 DOI: 10.1186/s12881-017-0389-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/02/2017] [Indexed: 11/18/2022]
Abstract
Background Although the mitochondrial DNA (mtDNA) mutations m.1555A > G and m.3243A > G are the primary causes of maternally inherited sensorineural hearing loss (SNHL), several other mtDNA mutations are also reported to be associated with SNHL. Methods Screening of m.1555A > G and m.3243A > G mutations was performed for 145 probands. Nine probands fulfilled the following criteria: 1) bilateral and symmetric SNHL, 2) ≥ 4 family members with SNHL with a maternal trait of inheritance in ≥ 2 generations, 3) onset of SNHL before the age of 40 years, 4) high-frequency SNHL, and 5) no record of environmental factors related to SNHL. Sequencing of additional mtDNA regions was performed for five subjects meeting the clinical criteria, but the screening results were negative. Results Among the nine cases meeting the five clinical criteria detailed above, three had the m.1555A > G mutation in MTRNR1, one had a m.3243A > G mutation in MTTL1, and one case had a m.7511T > C mutation in MTTS1. In the family with the m.7511T > C mutation, penetrance of SNHL among maternally related subjects was 9/17 (53%). The age at onset varied from birth (congenital) to adulthood. Hearing levels varied from normal to moderately impaired, unlike previously reported subjects with this mutation, where some maternal family members presented with profound SNHL. Family members with the m.7511T > C mutation and SNHL did not exhibit any specific clinical characteristics distinct from those of other individuals with SNHL and different mtDNA mutations. Among the 136 probands who did not meet the criteria detailed above, one case had the m.1555A > G mutation, and three cases had the m.3243A > G mutation. Conclusions Since five of nine probands with the clinical criteria used in this study had mtDNA mutations, these criteria may be helpful for identification of candidate patients likely to have mtDNA mutations. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0389-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hideki Mutai
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo, 152-8902, Japan
| | - Takahisa Watabe
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kaoru Ogawa
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro, Tokyo, 152-8902, Japan.
| |
Collapse
|
26
|
Gao Z, Chen Y, Guan MX. Mitochondrial DNA mutations associated with aminoglycoside induced ototoxicity. J Otol 2017; 12:1-8. [PMID: 29937831 PMCID: PMC6011804 DOI: 10.1016/j.joto.2017.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/25/2022] Open
Abstract
Aminoglycosides (AmAn) are widely used for their great efficiency against gram-negative bacterial infections. However, they can also induce ototoxic hearing loss, which has affected millions of people around the world. As previously reported, individuals bearing mitochondrial DNA mutations in the 12S rRNA gene, such as m.1555A>G and m.1494C>T, are more prone to AmAn-induced ototoxicity. These mutations cause human mitochondrial ribosomes to more closely resemble bacterial ribosomes and enable a stronger aminoglycoside interaction. Consequently, exposure to AmAn can induce or worsen hearing loss in these individuals. Furthermore, a wide range of severity and penetrance of hearing loss was observed among families carrying these mutations. Studies have revealed that these mitochondria mutations are the primary molecular mechanism of genetic susceptibility to AmAn ototoxicity, though nuclear modifier genes and mitochondrial haplotypes are known to modulate the phenotypic manifestation.
Collapse
Affiliation(s)
- Zewen Gao
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Chen
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
27
|
Chaiyasap P, Srichomthong C, Tongkobpetch S, Suphapeetiporn K, Shotelersuk V. Identification of a mitochondrial 12S rRNA A1555G mutation causing aminoglycoside-induced deafness in a large Thai family. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.0902.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background
Hearing loss is among the most frequent sensory disorders. Preventable causes include medications given to genetically susceptible individuals. Several families around the world with an A1555G mitochondrial mutation who became profoundly deaf after receiving aminoglycosides have been described. However, none has been reported in Thailand.
Objectives
To identify the cause of hearing loss of a large Thai family with 11 members who reportedly turned deaf after receiving antibiotics.
Methods
We obtained blood samples from 5 members; 4 of whom had hearing loss. Mutation analyses were performed using molecular techniques including polymerase chain reaction, Sanger sequencing, and restriction fragment length polymorphism.
Results
All 4 affected members were found to harbor the same A1555G mitochondrial mutation, while the unaffected had only the wild-type A.
Conclusions
We have identified the mitochondrial mutation leading to aminoglycoside-induced hearing loss in a Thai population. Raising awareness for medical practitioners of this genetic susceptibility in Thailand is warranted. Avoidance of certain medications in these individuals would prevent this acquired permanent hearing loss.
Collapse
Affiliation(s)
- Pongsathorn Chaiyasap
- Interdepartment of Biomedical Sciences , Faculty of Graduate School , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genetics , Department of Pediatrics, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 , Thailand
- Excellence Center for Medical Genetics , King Chulalongkorn Memorial Hospital, the Thai Red Cross , Bangkok 10330 , Thailand
| | - Siraprapa Tongkobpetch
- Center of Excellence for Medical Genetics , Department of Pediatrics, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 , Thailand
- Excellence Center for Medical Genetics , King Chulalongkorn Memorial Hospital, the Thai Red Cross , Bangkok 10330 , Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genetics , Department of Pediatrics, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 , Thailand
- Excellence Center for Medical Genetics , King Chulalongkorn Memorial Hospital, the Thai Red Cross , Bangkok 10330 , Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genetics , Department of Pediatrics, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 , Thailand
- Excellence Center for Medical Genetics , King Chulalongkorn Memorial Hospital, the Thai Red Cross , Bangkok 10330 , Thailand
| |
Collapse
|
28
|
Jiang H, Chen J, Li Y, Lin PF, He JG, Yang BB. Prevalence of mitochondrial DNA mutations in sporadic patients with nonsyndromic sensorineural hearing loss. Braz J Otorhinolaryngol 2016; 82:391-6. [PMID: 26873147 PMCID: PMC9449052 DOI: 10.1016/j.bjorl.2015.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/16/2015] [Accepted: 06/06/2015] [Indexed: 10/28/2022] Open
|
29
|
Foster J, Tekin M. Aminoglycoside induced ototoxicity associated with mitochondrial DNA mutations. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2016.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Liu Q, Liu P, Ding Y, Dong XJ, Wang ZX, Qian YE, Wang Q, Yang GC. Mitochondrial COI/tRNASer(UCN) G7444A mutation may be associated with aminoglycoside-induced and non-syndromic hearing impairment. Mol Med Rep 2015; 12:8176-8. [PMID: 26497601 DOI: 10.3892/mmr.2015.4484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 10/06/2015] [Indexed: 11/06/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) have been reported to have important roles in aminoglycoside-induced hearing impairment; however, the underlying molecular mechanisms have remained largely elusive. The current study presented a case of a Chinese patient with maternally inherited aminoglycoside-induced hearing impairment. A profound hearing impairment was identified by clinical evaluation; furthermore, analysis of the mitochondrial genome sequence of the patient revealed the presence of an A1555G mutation in the 12S rRNA as well as a G7444A mutation in the COI/tRNASer(UCN) gene. As the G7444A mutation is highly conserved between various species, it may be a modifying factor with regard to the pathological effects of the A1555G mutation.
Collapse
Affiliation(s)
- Qi Liu
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Ping Liu
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Xue-Jun Dong
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Zong-Xin Wang
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Yan-Er Qian
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Qing Wang
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Guo-Can Yang
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
31
|
Zhu J, Cao Q, Zhang N, Ge J, Sun D, Feng Q. A study of deafness-related genetic mutations as a basis for strategies to prevent hereditary hearing loss in Hebei, China. Intractable Rare Dis Res 2015; 4:131-8. [PMID: 26361564 PMCID: PMC4561242 DOI: 10.5582/irdr.2015.01018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/26/2015] [Accepted: 08/05/2015] [Indexed: 11/05/2022] Open
Abstract
Hearing loss is the most common sensory disorder, and at least 50% of cases are due to a genetic etiology. Two-thirds of individuals with congenital deafness are nonsyndromic. Among the nonsyndromic forms, the large majority are monogenic autosomal recessive traits. The current work summarizes mutations in the GJB2, SLC26A4, 12SrRNA, and GJB3 and their prevalence in 318 students with autosomal recessive nonsyndromic hearing loss at schools for the deaf or special needs schools in 9 cities in Hebei Province, China. Deafness gene mutations were identified in 137 students via a gene chip, time-of-flight mass spectrometry, fluorescence quantitative PCR, and gene sequencing. Mutations were detected at a rate of 43.08%. A homozygous mutation of the GJB2 gene was found in 16 students (5.03%), a heterozygous mutation of that gene was found in 38 (11.95%), a homozygous mutation of the SLC26A4 gene was found in 22 (6.92%), a heterozygous mutation of that gene was found in 59 (18.55%), and a heterozygous mutation of the mitochondrial 12SrRNA gene was found in 2 (0.63%). In addition, there were 15 families in which a student's parents had normal hearing. Compound heterozygous mutations of the GJB2 gene were found in 3 families (20%) and mutations of the SLC26A4 gene were found in 9 (60%). Thus, this study has provided a molecular diagnostic basis for the causes of deafness, and this study has also provided a scientific basis for the early prevention of and intervention in deafness.
Collapse
Affiliation(s)
- Junzhen Zhu
- Center for Exceptional Care in 3 Areas, The People's Hospital of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Qinying Cao
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Ning Zhang
- Center for Exceptional Care in 3 Areas, The People's Hospital of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Jun Ge
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Donglan Sun
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, China
| | - Qingqi Feng
- Xinji Maternal and Child Health Hospital, Xinji, Hebei Province, China
| |
Collapse
|
32
|
Ibekwe TS, Bhimrao SK, Westerberg BD, Kozak FK. A meta-analysis and systematic review of the prevalence of mitochondrially encoded 12S RNA in the general population: Is there a role for screening neonates requiring aminoglycosides? Afr J Paediatr Surg 2015; 12:105-13. [PMID: 26168747 PMCID: PMC4955414 DOI: 10.4103/0189-6725.160342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND This was a meta-analysis and systematic review to determine the global prevalence of the mitochondrially encoded 12S RNA (MT-RNR1) genetic mutation in order to assess the need for neonatal screening prior to aminoglycoside therapy. MATERIALS AND METHODS A comprehensive search of MEDLINE, EMBASE, Ovid, Database of Abstracts of Reviews of Effect, Cochrane Library, Clinical Evidence and Cochrane Central Register of Trials was performed including cross-referencing independently by 2 assessors. Selections were restricted to human studies in English. Meta-analysis was done with MetaXL 2013. RESULTS Forty-five papers out of 295 met the criteria. Pooled prevalence in the general population for MT-RNR1 gene mutations (A1555G, C1494T, A7445G) was 2% (1-4%) at 99%. CONCLUSION Routine screening for MT-RNR1 mutations in the general population prior to treatment with aminoglycosides appear desirable but poorly supported by the weak level of evidence available in the literature. Routine screening in high-risk (Chinese and Spanish) populations appear justified.
Collapse
Affiliation(s)
- Titus S Ibekwe
- Department of ENT, University of Abuja Teaching Hospital and College of Health Sciences, University of Abuja, Abuja, Nigeria
| | | | | | | |
Collapse
|
33
|
Iwanicka-Pronicka K, Pollak A, Skórka A, Lechowicz U, Korniszewski L, Westfal P, Skarżyński H, Płoski R. Audio profiles in mitochondrial deafness m.1555A>G and m.3243A>G show distinct differences. Med Sci Monit 2015; 21:694-700. [PMID: 25744662 PMCID: PMC4360812 DOI: 10.12659/msm.890965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hearing loss is one of the most common symptoms of mitochondrial disorders. However, audiological phenotypes associated with different molecular defects in mtDNA are not yet well characterized. MATERIAL AND METHODS A large cohort of 1499 nonconsanguineous patients aged 5-40 years with hearing loss of unknown etiology was screened for mutations in mtDNA. For further analysis, patients harboring m.1555A>G and m.3243A>G were selected. Hearing status of the patients was assessed by pure tone audiometry. Patterns of audiograms (hearing threshold levels at each examined frequency) were statistically compared among the carriers of the m.1555A>G and the m.3243A>G mutations. RESULTS We identified 20 patients positive for m.1555A>G mutation and 16 patients positive for m.3243A>G change. The frequency of the above transitions was calculated in our cohort as 1.33% and 1.06%, respectively. Seventeen affected family members carrying the mutations were included into the study. Typical shape of the audiograms in patients with m.1555A>G mutation presented a ski-slope pattern, whereas the audiometric curves among the m.3243A>G individuals had a pantonal shape (a flat curve) with slight downward sloping at the higher frequencies. The differences were statistically significant. The onset of hearing loss was noted earlier among m.1555A>G than m.3243A>G patients (12.5 and 26 years, respectively). Aminoglycoside administration was declared in both groups in 11 and 4 cases respectively, and caused abrupt hearing deterioration in all cases. CONCLUSIONS A pattern of audiogram in patients with mitochondrial deafness may suggest a localization of mtDNA mutation. The pathogenesis of the audiometric differences needs further study.
Collapse
Affiliation(s)
| | - Agnieszka Pollak
- Department of Genetics, Institut of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Agata Skórka
- Department of Pediatrics, Warsaw Medical University, Warsaw, Poland
| | - Urszula Lechowicz
- Department of Genetics, Institut of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Lech Korniszewski
- Department of Genetics, Institut of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Przemysław Westfal
- Department of Administration, Children's Memorial Health Institute, Warsaw, Poland
| | - Henryk Skarżyński
- Department of Otorhinolaryngology, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
34
|
Park MK, Sagong B, Lee JD, Bae SH, Lee B, Choi KS, Choo YS, Lee KY, Kim UK. A1555G homoplasmic mutation from A1555G heteroplasmic mother with Pendred syndrome. Int J Pediatr Otorhinolaryngol 2014; 78:1996-9. [PMID: 25223473 DOI: 10.1016/j.ijporl.2014.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/09/2014] [Accepted: 08/09/2014] [Indexed: 11/15/2022]
Abstract
Hearing loss (HL) is genetically heterogeneous and can be caused by mutations in multiple gene lesions. Pendred syndrome, caused by mutation of SLC26A4, is one of the common causes of recessive syndromic profound HL. Mitochondrial mutation is another rare cause of genetic HL, resulting in late onset sensorineural HL. Recently, we evaluated a young woman representing bilateral progressive moderate HL with delayed language development, along with her family. Hearing test, temporal bone computed tomography, and genetic evaluation of GJB2, MT-RNR1, SLC26A4 gene mutations were performed on each family member. Her mother was prelingually deaf and displayed enlarged vestibular aqueduct (EVA) along with goiter. Interestingly, subject's mother showed both SLC26A4 mutation and mitochondrial A1555G heteroplasmic mutation at the same time. The sisters did not display EVA or goiter. Although the subject's older sister showed both prelingual deafness and mitochondrial A1555G heteroplasmy, her younger sister showed only A1555G homoplasmy, which suggests A1555G homoplasmy as the genetic cause of hearing loss. This is the first report of HL caused by mitochondrial A1555G homoplasmy from a mother with Pendred syndrome coexistent with A1555G heteroplasmy in the Korean population.
Collapse
Affiliation(s)
- Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Seoul National University, Seoul, South Korea
| | - Borum Sagong
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, South Korea
| | - Jong Dae Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Seoul, South Korea
| | - Seung-Hyun Bae
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, South Korea
| | - Byeonghyeon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, South Korea
| | - Kwang Shik Choi
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Yeon-Sik Choo
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, South Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 plus project), Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
35
|
Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A 2014; 111:15474-9. [PMID: 25313049 DOI: 10.1073/pnas.1409328111] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis. For deleterious heteroplasmies, a severe bottleneck may abruptly transform a benign (low) frequency in a mother into a disease-causing (high) frequency in her child. Here we present a high-resolution study of heteroplasmy transmission conducted on blood and buccal mtDNA of 39 healthy mother-child pairs of European ancestry (a total of 156 samples, each sequenced at ∼20,000× per site). On average, each individual carried one heteroplasmy, and one in eight individuals carried a disease-associated heteroplasmy, with minor allele frequency ≥1%. We observed frequent drastic heteroplasmy frequency shifts between generations and estimated the effective size of the germ-line mtDNA bottleneck at only ∼30-35 (interquartile range from 9 to 141). Accounting for heteroplasmies, we estimated the mtDNA germ-line mutation rate at 1.3 × 10(-8) (interquartile range from 4.2 × 10(-9) to 4.1 × 10(-8)) mutations per site per year, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome.
Collapse
|
36
|
Zhu Y, Huang S, Kang D, Han M, Wang G, Yuan Y, Su Y, Yuan H, Zhai S, Dai P. Analysis of the heteroplasmy level and transmitted features in hearing-loss pedigrees with mitochondrial 12S rRNA A1555G mutation. BMC Genet 2014; 15:26. [PMID: 24533451 PMCID: PMC3933286 DOI: 10.1186/1471-2156-15-26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial cytopathies are characterized by a large variability of clinical phenotypes and severity. The amount of mutant mitochondrial DNA (mtDNA) in a cell, called the heteroplasmy level, is an important determinant of the degree of mitochondrial dysfunction and therefore disease severity. Understanding the distribution of heteroplasmy levels across a group of offspring is an important step in understanding the inheritance of diseases. Recently, the mtDNA A1555G mutation was found to be associated with non-syndromic and drug-induced hearing loss. RESULTS Here, we report five pedigrees with multiple members having the A1555G mutation and showing diverse clinical manifestations and different heteroplasmy levels. Clinical evaluations revealed that the hearing impairment phenotypes varied with respect to the severity of hearing loss, age of onset of hearing loss, and pattern of audiometric configuration. These five Chinese pedigrees had different penetrance of hearing loss, ranging from 10-52%. A molecular study showed that the average heteroplasmy rates of the five pedigrees were 31.98% (0-91.35%), 78.28% (32.8-96.08%), 87.99% (82.32-94.65%), 93.34% (91.02-95.05%), and 93.57% (91.38-94.24%). There was no gradual tendency of heteroplasmy to increase or decrease along with transmission. A study of the relationship between clinical features and genetic background found that the percentage of deafness was 0 when the heteroplasmy level was less than 50%, 25% when the heteroplasmy level was 50-80%, 47.06% when the heteroplasmy level was 80-90%, and 57.58% when the heteroplasmy level exceeded 90%. The risk of deafness rose with the heteroplasmy level. CONCLUSIONS The results suggest that there are large random shifts in the heteroplasmy level between mothers and offspring with the A1555G mutation; heteroplasmy could disappear randomly when the heteroplasmy level of the pedigree was low enough, and no regular pattern was found. The heteroplasmy level may be one of the factors influencing the penetrance of deafness caused by the mtDNA A1555G mutation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Suoqiang Zhai
- Department of Otorhinolaryngology, Head and Neck Surgery, PLA General Hospital, 28# Fuxing Road, Beijing 100853, P, R, China.
| | | |
Collapse
|
37
|
Taneja MK. Preimplantation genetic diagnosis: its role in prevention of deafness. Indian J Otolaryngol Head Neck Surg 2014; 66:1-3. [PMID: 24605291 PMCID: PMC3938703 DOI: 10.1007/s12070-014-0711-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 11/29/2022] Open
Abstract
Deafness is a global problem. In India deafness ranges from 4 % in urban to 11 % in rural and slum areas, out of which 50 % is conductive hearing loss hence curable. Genetic transmission accounts for 50 % of the cases of congenital deafness, and of these, around 30 % are syndromic and 70 % are non-syndromic. Genetic counseling is going to make aware the parents of all appropriate treatments. Preimplantation genetic diagnosis can help to have a baby free from genetic deafness. Procedure is almost safe, harmless, non-invasive and ethically acceptable. While Amniocentesis is a non-invasive method, prenatal genetic testing through Chorionic villous sampling is invasive. The connexin 26 (CX26W 24X) mutations are the most common cause of non-syndromic hearing loss and easy to identify by polymerase chain reaction. There is always co-morbidity after cochlear implantation and the person remains handicapped while baby after PGD shall be having healthy normal life and person prone to environmental factors may be counseled and guided to prevent deafness in next generation. Public must be made aware of noise pollution, tobacco toxicity and consanguinity. The Obstetrician and Pediatrician apart from ENT surgeon should be involved to prevent antenatal or neonatal deafness.
Collapse
|
38
|
Guaran V, Astolfi L, Castiglione A, Simoni E, Olivetto E, Galasso M, Trevisi P, Busi M, Volinia S, Martini A. Association between idiopathic hearing loss and mitochondrial DNA mutations: a study on 169 hearing-impaired subjects. Int J Mol Med 2013; 32:785-94. [PMID: 23969527 PMCID: PMC3812239 DOI: 10.3892/ijmm.2013.1470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/24/2013] [Indexed: 11/16/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) have been shown to be an important cause of sensorineural hearing loss (SNHL). In this study, we performed a clinical and genetic analysis of 169 hearing-impaired patients and some of their relatives suffering from idiopathic SNHL, both familial and sporadic. The analysis of four fragments of their mtDNA identified several polymorphisms, the well known pathogenic mutation, A1555G, and some novel mutations in different genes, implying changes in the aminoacidic sequence. A novel sporadic mutation in 12S rRNA (MT-RNR1), not previously reported in the literature, was found in a case of possible aminoglycoside-induced progressive deafness.
Collapse
Affiliation(s)
- Valeria Guaran
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, I-35129 Padua, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wei Q, Wang S, Yao J, Lu Y, Chen Z, Xing G, Cao X. Genetic mutations of GJB2 and mitochondrial 12S rRNA in nonsyndromic hearing loss in Jiangsu Province of China. J Transl Med 2013; 11:163. [PMID: 23826813 PMCID: PMC3706284 DOI: 10.1186/1479-5876-11-163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/01/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Hearing loss is caused by several environmental and genetic factors and the proportion attributed to inherited causes is assumed at 50 ~ 60% . Mutations in GJB2 and mitochondrial DNA (mtDNA) 12S rRNA are the most common molecular etiology for nonsyndromic sensorineural hearing loss (NSHL). The mutation spectra of these genes vary among different ethnic groups. METHODS To add the molecular etiologic information of hearing loss in the Chinese population, a total of 658 unrelated patients with NSHL from Jiangsu Province of China were selected for mutational screening including GJB2 and mtDNA 12S rRNA genes using PCR and DNA sequencing technology. As for controls, 462 normal-hearing individuals were collected. RESULTS A total of 9 pathogenic mutations in the GJB2 and 7 pathogenic mutations in the 12S rRNA gene were identified. Of all patients, 70 had monoallelic GJB2 coding region mutation in the heterozygous state, 94 carried two confirmed pathogenic mutations including 79 homozygotes and 15 compound heterozygotes. The 235delC appears to be the most common deafness-causing GJB2 mutation (102/658, 15.50% ). No mutations or variants in the GJB2 exon1 and basal promoter region were found. In these patients, 4 subjects carried the m.1494C > T mutation (0.61% ) and 39 subjects harbored the m.1555A > G mutation (5.93% ) in mtDNA 12S rRNA gene. A novel sequence variant at m.1222A > G in the 12S rRNA gene was identified, which could alter the secondary structure of the 12S rRNA. CONCLUSION The mutation spectrum and prevalence of GJB2 and mtDNA 12S rRNA genes in Jiangsu population are similar to other areas of China. There are in total 31.46% of the patients with NSHL carry deafness-causing mutation in GJB2 or mtDNA 12S rRNA genes. Mutation in GJB2 gene is the most common factor, mtDNA 12S rRNA also plays an important part in the pathogenesis of hearing loss in Jiangsu Province areas. The m.1222A > G was found to be a new candidate mutation associated with hearing loss. Our results indicated the necessity of genetic screening for mutations of these genes in Jiangsu patients with NSHL.
Collapse
Affiliation(s)
- Qinjun Wei
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Hanzhong Road No.140, Nanjing 210029, P.R. China
| | - Shuai Wang
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Hanzhong Road No.140, Nanjing 210029, P.R. China
| | - Jun Yao
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Hanzhong Road No.140, Nanjing 210029, P.R. China
| | - Yajie Lu
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Hanzhong Road No.140, Nanjing 210029, P.R. China
| | - Zhibin Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road No.300, Nanjing 210029, P.R. China
| | - Guangqian Xing
- Department of Otorhinolaryngology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road No.300, Nanjing 210029, P.R. China
| | - Xin Cao
- Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Hanzhong Road No.140, Nanjing 210029, P.R. China
| |
Collapse
|
40
|
Manzoli GN, Abe-Sandes K, Bittles AH, da Silva DSD, Fernandes LDC, Paulon RMC, de Castro ICS, Padovani CMCA, Acosta AX. Non-syndromic hearing impairment in a multi-ethnic population of Northeastern Brazil. Int J Pediatr Otorhinolaryngol 2013; 77:1077-82. [PMID: 23684175 DOI: 10.1016/j.ijporl.2013.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 01/28/2023]
Abstract
OBJECTIVE There are many hearing impaired individuals in Monte Santo, a rural municipality in the state of Bahia, Brazil, including multiple familial cases strongly suggestive of a genetic aetiology. METHODS The present study investigated 81 subjects with hearing impairment (HI) recruited from 36 families. Mutations often associated with HI, i.e. the DFNB1 mutations c.35delG in GJB2, deletions del(GJB6-D13S1830) and del(GJB6-D13S1854), and A1555G in the mitochondrial gene MTRNR1 were initially analyzed, with additional mutations in GJB2 identified by sequencing the coding region of the gene. RESULTS Seven different mutations were present in GJB2 with mutations c.35delG and p.Arg75Gln, which are known to be pathogenic, identified in 37.0% of the subjects. Individuals homozygous for the c.35delG mutation were diagnosed in eight families, corresponding to 24.7% of unrelated individuals with nonsyndromic hearing impairment (NSHI), and an additional heterozygote for this mutation was present in a single family. Ten individuals (12.4%) in another family were heterozygous for the mutation p.Arg75Gln. CONCLUSIONS Significant heterogeneity was observed in the alleles and patterns of NSHI inheritance among the subjects studied, probably due to the extensive inter-ethnic admixture that characterizes the peoples of Brazil, together with a high prevalence of community endogamy and consanguineous marriage.
Collapse
Affiliation(s)
- Gabrielle N Manzoli
- Advanced Laboratory of Public Health/Gonçalo Moniz Research Center (CPqGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vele O, Schrijver I. Inherited hearing loss: molecular genetics and diagnostic testing. ACTA ACUST UNITED AC 2013; 2:231-48. [PMID: 23495655 DOI: 10.1517/17530059.2.3.231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Hearing loss is a clinically and genetically heterogeneous condition with major medical and social consequences. It affects up to 8% of the general population. OBJECTIVE This review recapitulates the principles of auditory physiology and the molecular basis of hearing loss, outlines the main types of non-syndromic and syndromic deafness by mode of inheritance, and provides an overview of current clinically available genetic testing. METHODS This paper reviews the literature on auditory physiology and on genes, associated with hearing loss, for which genetic testing is presently offered. RESULTS/CONCLUSION The advent of molecular diagnostic assays for hereditary hearing loss permits earlier detection of the underlying causes, facilitates appropriate interventions, and is expected to generate the data necessary for more specific genotype-phenotype correlations.
Collapse
Affiliation(s)
- Oana Vele
- Stanford University School of Medicine, Department of Pathology and Pediatrics, L235, 300 Pasteur Drive, Stanford, CA 94305, USA +1 650 724 2403 ; +1 650 724 1567 ;
| | | |
Collapse
|
42
|
Borgione E, Lo Giudice M, Castello F, Musumeci SA, Di Blasi FD, Savio M, Elia M, Rizzo B, Barbarino G, Romano S, Calabrese G, Di Benedetto D, Scuderi C. The 9-bp deletion in region V of mtDNA: a risk factor of hearing loss and encephalomyopathy in Caucasian populations? Neurol Sci 2013; 34:1223-6. [PMID: 23354605 DOI: 10.1007/s10072-013-1297-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/07/2013] [Indexed: 11/28/2022]
Abstract
A deletion of one of the two copies of the 9-bp tandem repeat sequence (CCCCCTCTA), in the small non-coding/untranslated segment located between the cytochrome oxidase II and lysine tRNA genes of mitochondrial DNA (mtDNA), has previously been used as a polymorphic anthropological marker (MIC9D) for people of Africa and Asia, but it has been rarely reported in Europe. 32 Sicilian patients with syndromic hearing loss, negative for mutations in GJB2 and GJB6 genes, were tested for mtDNA known point mutations associated with syndromic or non-syndromic hearing loss by RFLP and/or direct sequencing. We identified the presence of the MIC9D in homoplasmy in lymphocytes and muscle of three subjects with sensorineural hearing loss and encephalomyopathy, two of these also presented moderate mental retardation. This deletion was absent in 300 Caucasian controls. Although further studies are warranted, our results suggest that the MIC9D polymorphism could have a susceptibility role in Caucasus, such as Sicily population.
Collapse
Affiliation(s)
- Eugenia Borgione
- Unità Operativa di Malattie Neuromuscolari, IRCCS Oasi Maria SS, V. Conte Ruggero 73, 94018 Troina, EN, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Biaggio EPV, Azevedo MFD, Iório MCM, Svidnicki MCCM, Satorato EL. Association between phenotype, performance with hearing aids, and genotype of childhood hearing loss in children with and without genetic alteration. ACTA ACUST UNITED AC 2013; 24:327-34. [PMID: 23306682 DOI: 10.1590/s2179-64912012000400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 06/12/2012] [Indexed: 11/21/2022]
Abstract
PURPOSE To establish the frequency of genetic mutations related to sensorineural hearing loss (SNHL); to verify if there is association between the degree of SNHL and the presence of genetic alteration; and to verify if the Minimal Response Levels (MRL) with hearing aids vary according to the genetic alteration. METHODS Thirty hearing aids users with ages between 8 and 111 months were evaluated. The evaluation procedures used were: pure-tone audiometry; the auditory steady state response (ASSR) on sound field, with and without hearing aids; and genetic study of the hearing loss. RESULTS Three genetic mutations were diagnosed: 35delG, A1555G and A827G, and the children with these mutations showed higher degree of SNHL. There was no difference between the genetic patterns regarding the degree of SNHL, except for patients with A827G mitochondrial mutation, because all subjects with this mutation had profound SNHL. The difference between the MRL obtained with and without amplification, considering the presence of mutation and the degree of SNHL, was higher in children with moderate SNHL without genetic alterations, both in behavioral and electrophysiological evaluations. CONCLUSION Genetic mutations were found in 36.7% of the sample, justifying the importance of genetic tracking in the hearing habilitation process. Children with genetic mutations showed higher degrees of hearing loss. The different mutation patterns do not directly determine the degree of hearing loss. The best thresholds with amplification were found in children with moderate hearing loss without genetic alterations.
Collapse
Affiliation(s)
- Eliara Pinto Vieira Biaggio
- Department of Speech-Language Pathology and Audiology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | | | | | | | | |
Collapse
|
44
|
Mkaouar-Rebai E, Chamkha I, Mezghani N, Ben Ayed I, Fakhfakh F. Screening of mitochondrial mutations in Tunisian patients with mitochondrial disorders: an overview study. ACTA ACUST UNITED AC 2013; 24:163-78. [PMID: 23301511 DOI: 10.3109/19401736.2012.748045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate the spectrum of common mitochondrial mutations in Tunisia during the years of 2002-2012, 226 patients with mitochondrial disorders were clinically diagnosed with hearing loss, Leigh syndrome (LS), diabetes, cardiomyopathy, Kearns-Sayre syndrome (KSS), Pearson syndrome (PS), myopathy, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS) and Wolfram syndrome. Restriction fragment length polymorphism (PCR-RFLP), radioactive PCR, single specific primer-PCR (SSP-PCR) analysis and PCR-sequencing methods were used to identify the mutations. Two cases with m.1555A>G mutation and two families with the novel 12S rRNA m.735A>G transition were detected in patients with hearing loss. Three cases with m.8993T>G mutation, two patients with the novel m.5523T>G and m.5559A>G mutations in the tRNA(Trp) gene, and two individuals with the undescribed m.9478T>C mutation in the cytochrome c oxidase subunit III (COXIII) gene were found with LS. In addition, one case with hypertrophic cardiomyopathy and deafness presented the ND1 m.3395A>G mutation and the tRNA(Ile) m.4316A>G variation. Besides, multiple mitochondrial deletions were detected in patients with KSS, PS, and Wolfram syndrome. The m.14709T>C mutation in the tRNA(Glu) was reported in four maternally inherited diabetes and deafness patients and a novel tRNA(Val) m.1640A>G mutation was detected in a MELAS patient.
Collapse
Affiliation(s)
- Emna Mkaouar-Rebai
- Human Molecular Genetic Laboratory, Faculty of Medicine of Sfax, Avenue Magida Boulila, 3029 Sfax, Tunisia.
| | | | | | | | | |
Collapse
|
45
|
Pearce S, Nezich CL, Spinazzola A. Mitochondrial diseases: translation matters. Mol Cell Neurosci 2012; 55:1-12. [PMID: 22986124 DOI: 10.1016/j.mcn.2012.08.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/22/2012] [Accepted: 08/25/2012] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial diseases comprise a heterogeneous group of disorders characterized by compromised energy production. Since the early days of mitochondrial medical genetics, it has been known that these can be caused by defects in mitochondrial protein synthesis. However, only in recent years have we begun to develop a broader picture of the array of proteins required for mitochondrial translation. With this new knowledge has come the realization that there are many more neurological and other, diseases attributable to impaired mitochondrial translation than previously thought. Perturbation of any part of this intricate machinery, from the primary sequence of transfer or ribosomal RNAs, to the proteolytic processing of ribosomal proteins, can cause mitochondrial dysfunction and disease. In this review we discuss the current understanding of the mechanisms and factors involved in mammalian mitochondrial translation, and the diverse pathologies resulting when it malfunctions. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Sarah Pearce
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road Cambridge, CB2 0XY, UK
| | | | | |
Collapse
|
46
|
Molecular and clinical characterization of the variable phenotype in Korean families with hearing loss associated with the mitochondrial A1555G mutation. PLoS One 2012; 7:e42463. [PMID: 22879993 PMCID: PMC3412860 DOI: 10.1371/journal.pone.0042463] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Hearing loss, which is genetically heterogeneous, can be caused by mutations in the mitochondrial DNA (mtDNA). The A1555G mutation of the 12S ribosomal RNA (rRNA) gene in the mtDNA has been associated with both aminoglycoside-induced and non-syndromic hearing loss in many ethnic populations. Here, we report for the first time the clinical and genetic characterization of nine Korean pedigrees with aminoglycoside-induced and non-syndromic hearing loss. These Korean families carry in the A1555G mutation of 12S rRNA gene and exhibit variable penetrance and expressivity of hearing loss. Specifically, the penetrance of hearing loss in these families ranged between 28.6% and 75%, with an average of 60.8%. These results were higher than the 29.8% penetrance that was previously reported in a Chinese population but similar to the 65.4% and 54.1% penetrance observed in a large Arab-Israeli population and nineteen Spanish pedigrees, respectively. The mutational analysis of the complete mtDNA genome in these families showed that the haplogroups of the Korean population, which belongs to the eastern Asian population, were similar to those of the Chinese population but different from the Spanish population, which belongs to the European-Caucasian population. The mtDNA variants that may act as modifier factors were also found to be similar to the Chinese population. Although the mtDNA haplogroups and variants were similar to the eastern Asian population, we did find some differing phenotypes, although some subjects had the same variants. This result suggests that both the ethnic background and environmental factors lead to a variable phenotype of the A1555G mutation.
Collapse
|
47
|
Shen SS, Liu C, Xu ZY, Hu YH, Gao GF, Wang SY. Heteroplasmy levels of mtDNA1555A>G mutation is positively associated with diverse phenotypes and mutation transmission in a Chinese family. Biochem Biophys Res Commun 2012; 420:907-12. [PMID: 22475488 DOI: 10.1016/j.bbrc.2012.03.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 11/28/2022]
Abstract
The mtDNA 1555A>G mutation was considered to be one of the most common causes of aminoglycoside-induced and non-syndromic hearing loss. However, this mutation was always found in homoplasmy with high phenotypic heterogeneity. Recently this mutation in heteroplasmy has been reported in several studies. In the present study, we have collected a large Chinese family harboring heteroplasmic mtDNA 1555A>G mutation with diverse clinical phenotypes. To investigate the relationship between the mutation load and the severity of hearing loss under Eastern Asian background, we performed clinical, molecular, genetic and phylogenic analysis. This pedigree was characterized by coexistence of eight subjects with homoplasmic mutation and ten subjects with various degrees of heteroplasmy, and the results suggested that there was a strong correlation between the mutation load and the severity/age-onset of hearing loss (r=0.758, p<0.001). We noticed that the mutation level of offspring was associated with their mothers' in this pedigree, which indicated that maybe exist a regular pattern during the process of the heteroplasmic transmission. In addition, analysis of the complete mtDNA genome of this family revealed that it belonged to Eastern Asian haplogroup B4C1. In addition, a rare homoplasmic mtDNA 9128T>C variant was identified, it located at a strictly conserved site of mtDNA ATP6 gene.
Collapse
Affiliation(s)
- Shan-Shan Shen
- Shenzhen People's Hospital, Clinical Medical College of Jinan University, Dongmen North Rd. 1017, Shenzhen 518020, PR China
| | | | | | | | | | | |
Collapse
|
48
|
Mutai H, Kouike H, Teruya E, Takahashi-Kodomari I, Kakishima H, Taiji H, Usami SI, Okuyama T, Matsunaga T. Systematic analysis of mitochondrial genes associated with hearing loss in the Japanese population: dHPLC reveals a new candidate mutation. BMC MEDICAL GENETICS 2011; 12:135. [PMID: 21989059 PMCID: PMC3207971 DOI: 10.1186/1471-2350-12-135] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/12/2011] [Indexed: 11/17/2022]
Abstract
Background Variants of mitochondrial DNA (mtDNA) have been evaluated for their association with hearing loss. Although ethnic background affects the spectrum of mtDNA variants, systematic mutational analysis of mtDNA in Japanese patients with hearing loss has not been reported. Methods Using denaturing high-performance liquid chromatography combined with direct sequencing and cloning-sequencing, Japanese patients with prelingual (N = 54) or postlingual (N = 80) sensorineural hearing loss not having pathogenic mutations of m.1555A > G and m.3243A > G nor GJB2 were subjected to mutational analysis of mtDNA genes (12S rRNA, tRNALeu(UUR), tRNASer(UCN), tRNALys, tRNAHis, tRNASer(AGY), and tRNAGlu). Results We discovered 15 variants in 12S rRNA and one homoplasmic m.7501A > G variant in tRNASer(UCN); no variants were detected in the other genes. Two criteria, namely the low frequency in the controls and the high conservation among animals, selected the m.904C > T and the m.1105T > C variants in 12S rRNA as candidate pathogenic mutations. Alterations in the secondary structures of the two variant transcripts as well as that of m.7501A > G in tRNASer(UCN) were predicted. Conclusions The m.904C > T variant was found to be a new candidate mutation associated with hearing loss. The m.1105T > C variant is unlikely to be pathogenic. The pathogenicity of the homoplasmic m.7501T > A variant awaits further study.
Collapse
Affiliation(s)
- Hideki Mutai
- Laboratory of Auditory Disorders, Division of Hearing and Balance Research, National Institute of Sensory Organs, National Tokyo Medical Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rötig A. Human diseases with impaired mitochondrial protein synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1198-205. [DOI: 10.1016/j.bbabio.2011.06.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
50
|
Kabahuma RI, Ouyang X, Du LL, Yan D, Hutchin T, Ramsay M, Penn C, Liu XZ. Absence of GJB2 gene mutations, the GJB6 deletion (GJB6-D13S1830) and four common mitochondrial mutations in nonsyndromic genetic hearing loss in a South African population. Int J Pediatr Otorhinolaryngol 2011; 75:611-7. [PMID: 21392827 PMCID: PMC4303037 DOI: 10.1016/j.ijporl.2011.01.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the prevalence of mutations in the GJB2 gene, the GJB6-D13S1830 deletion and the four common mitochondrial mutations (A1555G, A3243G, A7511C and A7445G) in a South African population. METHODS Using single-strand conformation polymorphism and direct sequencing for screening GJB2 mutation; Multiplex PCR Amplification for GJB6-D13S1830 deletion and Restriction Fragment-Length Polymorphism (PCR-RFLP) analysis for the four common mtDNA mutations. We screened 182 hearing impaired students to determine the frequency of these mutations in the population. RESULTS None of the reported disease causing mutations in GJB2 nor any novel pathogenic mutations in the coding region were detected, in contrast to the findings among Caucasians. The GJB6-D13S1830 deletion and the mitochondrial mutations were not observed in this group. CONCLUSION These results suggest that GJB2 may not be a significant deafness gene among sub-Saharan Africans, pointing to other unidentified genes as responsible for nonsyndromic hearing loss in these populations.
Collapse
Affiliation(s)
- Rosemary I. Kabahuma
- Department of Speech Pathology and Audiology, University of Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, University of Witwatersrand, Johannesburg, South Africa
- Department of Otorhinolaryngology, Polokwane/Mankweng Hospital Complex, Polokwane, Limpopo Province, South Africa
| | - Xiaomei Ouyang
- Department of Otolaryngology, University of Miami, Miami, FL, USA
| | - Li Lin Du
- Department of Otolaryngology, University of Miami, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami, Miami, FL, USA
| | - Tim Hutchin
- Birmingham Children’s Hospital, Birmingham, UK
| | - Michele Ramsay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, University of Witwatersrand, Johannesburg, South Africa
| | - Claire Penn
- Department of Speech Pathology and Audiology, University of Witwatersrand, Johannesburg, South Africa
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami, Miami, FL, USA
| |
Collapse
|