1
|
Olesen MA, Villavicencio-Tejo F, Cuevas-Espinoza V, Quintanilla RA. Unknown roles of tau pathology in neurological disorders. Challenges and new perspectives. Ageing Res Rev 2025; 103:102594. [PMID: 39577774 DOI: 10.1016/j.arr.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Aging presents progressive changes that increase the susceptibility of the central nervous system (CNS) to suffer neurological disorders (NDs). Several studies have reported that an aged brain suffering from NDs shows the presence of pathological forms of tau protein, a microtubule accessory protein (MAP) critical for neuronal function. In this context, accumulative evidence has shown a pivotal contribution of pathological forms of tau to Alzheimer's disease (AD) and tauopathies. However, current investigations have implicated tau toxicity in other NDs that affect the central nervous system (CNS), including Parkinson's disease (PD), Huntington's disease (HD), Traumatic brain injury (TBI), Multiple sclerosis (MS), and Amyotrophic lateral sclerosis (ALS). These diseases are long-term acquired, affecting essential functions such as motor movement, cognition, hearing, and vision. Previous evidence indicated that toxic forms of tau do not have a critical contribution to the genesis or progression of these diseases. However, recent studies have shown that these tau forms contribute to neuronal dysfunction, inflammation, oxidative damage, and mitochondrial impairment events that contribute to the pathogenesis of these NDs. Recent studies have suggested that these neuropathologies could be associated with a prion-like behavior of tau, which induces a pathological dissemination of these toxic protein forms to different brain areas. Moreover, it has been suggested that this toxic propagation of tau from neurons into neighboring cells impairs the function of glial cells, oligodendrocytes, and endothelial cells by affecting metabolic function and mitochondrial health and inducing oxidative damage by tau pathology. Therefore, in this review, we will discuss current evidence demonstrating the critical role of toxic tau forms on NDs not related to AD and how its propagation and induced-bioenergetics failure may contribute to the pathogenic mechanism present in these NDs.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Víctor Cuevas-Espinoza
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile.
| |
Collapse
|
2
|
Nascimento F, Özyurt MG, Halablab K, Bhumbra GS, Caron G, Bączyk M, Zytnicki D, Manuel M, Roselli F, Brownstone R, Beato M. Spinal microcircuits go through multiphasic homeostatic compensations in a mouse model of motoneuron degeneration. Cell Rep 2024; 43:115046. [PMID: 39656589 DOI: 10.1016/j.celrep.2024.115046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/04/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
In many neurological conditions, early-stage neural circuit adaptation preserves relatively normal behavior. In some diseases, spinal motoneurons progressively degenerate yet movement remains initially preserved. This study investigates whether these neurons and associated microcircuits adapt in a mouse model of progressive motoneuron degeneration. Using a combination of in vitro and in vivo electrophysiology and super-resolution microscopy, we find that, early in the disease, neurotransmission in a key pre-motor circuit, the recurrent inhibition mediated by Renshaw cells, is reduced by half due to impaired quantal size associated with decreased glycine receptor density. This impairment is specific and not a widespread feature of spinal inhibitory circuits. Furthermore, it recovers at later stages of disease. Additionally, an increased probability of release from proprioceptive afferents leads to increased monosynaptic excitation of motoneurons. We reveal that, in this motoneuron degenerative condition, spinal microcircuits undergo specific multiphasic homeostatic compensations that may contribute to preservation of force output.
Collapse
Affiliation(s)
- Filipe Nascimento
- Department of Neuroscience Physiology and Pharmacology (NPP), University College London, Gower Street, WC1E 6BT London, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK.
| | - M Görkem Özyurt
- Department of Neuroscience Physiology and Pharmacology (NPP), University College London, Gower Street, WC1E 6BT London, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Kareen Halablab
- Department of Neurology, Ulm University, Ulm, Germany; German Centre for Neurodegenerative Diseases-Ulm (DZNE-Ulm), Ulm, Germany
| | - Gardave Singh Bhumbra
- Department of Neuroscience Physiology and Pharmacology (NPP), University College London, Gower Street, WC1E 6BT London, UK
| | - Guillaume Caron
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Daniel Zytnicki
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Marin Manuel
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany; German Centre for Neurodegenerative Diseases-Ulm (DZNE-Ulm), Ulm, Germany
| | - Rob Brownstone
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Marco Beato
- Department of Neuroscience Physiology and Pharmacology (NPP), University College London, Gower Street, WC1E 6BT London, UK.
| |
Collapse
|
3
|
Nascimento F, Özyurt MG, Halablab K, Bhumbra GS, Caron G, Bączyk M, Zytnicki D, Manuel M, Roselli F, Brownstone R, Beato M. Spinal microcircuits go through multiphasic homeostatic compensations in a mouse model of motoneuron degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588918. [PMID: 38645210 PMCID: PMC11030447 DOI: 10.1101/2024.04.10.588918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
In many neurological conditions, early-stage neural circuit adaption can preserve relatively normal behaviour. In some diseases, spinal motoneurons progressively degenerate yet movement is initially preserved. We therefore investigated whether these neurons and associated microcircuits adapt in a mouse model of progressive motoneuron degeneration. Using a combination of in vitro and in vivo electrophysiology and super-resolution microscopy, we found that, early in the disease, neurotransmission in a key pre-motor circuit, the recurrent inhibition mediated by Renshaw cells, is reduced by half due to impaired quantal size associated with decreased glycine receptor density. This impairment is specific, and not a widespread feature of spinal inhibitory circuits. Furthermore, it recovers at later stages of disease. Additionally, an increased probability of release from proprioceptive afferents leads to increased monosynaptic excitation of motoneurons. We reveal that in motoneuron degenerative conditions, spinal microcircuits undergo specific multiphasic homeostatic compensations that may contribute to preservation of force output.
Collapse
Affiliation(s)
- Filipe Nascimento
- Department of Neuroscience Physiology and Pharmacology (NPP), Gower Street, University College London, WC1E 6BT, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - M. Görkem Özyurt
- Department of Neuroscience Physiology and Pharmacology (NPP), Gower Street, University College London, WC1E 6BT, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Kareen Halablab
- Department of Neurology, Ulm University, Ulm, Germany
- German Centre for Neurodegenerative Diseases-Ulm (DZNE-Ulm), Ulm, Germany
| | - Gardave Singh Bhumbra
- Department of Neuroscience Physiology and Pharmacology (NPP), Gower Street, University College London, WC1E 6BT, UK
| | - Guillaume Caron
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Daniel Zytnicki
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Marin Manuel
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Centre for Neurodegenerative Diseases-Ulm (DZNE-Ulm), Ulm, Germany
| | - Rob Brownstone
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Marco Beato
- Department of Neuroscience Physiology and Pharmacology (NPP), Gower Street, University College London, WC1E 6BT, UK
| |
Collapse
|
4
|
Ambrosini A, Dalla Bella E, Ravasi M, Melazzini M, Lauria G. New clinical insight in amyotrophic lateral sclerosis and innovative clinical development from the non-profit repurposing trial of the old drug guanabenz. Front Med (Lausanne) 2024; 11:1407912. [PMID: 38915767 PMCID: PMC11194437 DOI: 10.3389/fmed.2024.1407912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Drug repurposing is considered a valid approach to accelerate therapeutic solutions for rare diseases. However, it is not as widely applied as it could be, due to several barriers that discourage both industry and academic institutions from pursuing this path. Herein we present the case of an academic multicentre study that considered the repurposing of the old drug guanabenz as a therapeutic strategy in amyotrophic lateral sclerosis. The difficulties encountered are discussed as an example of the barriers that academics involved in this type of study may face. Although further development of the drug for this target population was hampered for several reasons, the study was successful in many ways. Firstly, because the hypothesis tested was confirmed in a sub-population, leading to alternative innovative solutions that are now under clinical investigation. In addition, the study was informative and provided new insights into the disease, which are now giving new impetus to laboratory research. The message from this example is that even a repurposing study with an old product has the potential to generate innovation and interest from industry partners, provided it is based on a sound rationale, the study design is adequate to ensure meaningful results, and the investigators keep the full clinical development picture in mind.
Collapse
Affiliation(s)
- Anna Ambrosini
- Fondazione AriSLA ETS, Milan, Italy
- Fondazione Telethon ETS, Milan, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit and ALS Centre, IRCCS 'Carlo Besta' Neurological Institute, Milan, Italy
| | | | | | - Giuseppe Lauria
- IRCCS 'Carlo Besta' Neurological Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Wendebourg MJ, Weigel M, Weidensteiner C, Sander L, Kesenheimer E, Naumann N, Haas T, Madoerin P, Braun N, Neuwirth C, Weber M, Jahn K, Kappos L, Granziera C, Schweikert K, Sinnreich M, Bieri O, Schlaeger R. Cervical and thoracic spinal cord gray matter atrophy is associated with disability in patients with amyotrophic lateral sclerosis. Eur J Neurol 2024; 31:e16268. [PMID: 38465478 PMCID: PMC11235652 DOI: 10.1111/ene.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND AND PURPOSE In amyotrophic lateral sclerosis (ALS), there is an unmet need for more precise patient characterization through quantitative, ideally operator-independent, assessments of disease extent and severity. Radially sampled averaged magnetization inversion recovery acquisitions (rAMIRA) magnetic resonance imaging enables gray matter (GM) and white matter (WM) area quantitation in the cervical and thoracic spinal cord (SC) with optimized contrast. We aimed to investigate rAMIRA-derived SC GM and SC WM areas and their association with clinical phenotype and disability in ALS. METHODS A total of 36 patients with ALS (mean [SD] age 61.7 [12.6] years, 14 women) and 36 healthy, age- and sex-matched controls (HCs; mean [SD] age 63.1 [12.1] years, 14 women) underwent two-dimensional axial rAMIRA imaging at the inter-vertebral disc levels C2/3-C5/C6 and the lumbar enlargement level Tmax. ALS Functional Rating Scale-revised (ALSFRS-R) score, muscle strength, and sniff nasal inspiratory pressure (SNIP) were assessed. RESULTS Compared to HCs, GM and WM areas were reduced in patients at all cervical levels (p < 0.0001). GM area (p = 0.0001), but not WM area, was reduced at Tmax. Patients with King's Stage 3 showed significant GM atrophy at all levels, while patients with King's Stage 1 showed significant GM atrophy selectively at Tmax. SC GM area was significantly associated with muscle force at corresponding myotomes. GM area at C3/C4 was associated with ALSFRS-R (p < 0.001) and SNIP (p = 0.0016). CONCLUSION Patients with ALS assessed by rAMIRA imaging show significant cervical and thoracic SC GM and SC WM atrophy. SC GM area correlates with muscle strength and clinical disability. GM area reduction at Tmax may be an early disease sign. Longitudinal studies are warranted.
Collapse
Affiliation(s)
- Maria Janina Wendebourg
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
| | - Matthias Weigel
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
- Division of Radiological Physics, Department of RadiologyUniversity Hospital BaselBaselSwitzerland
- Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - Claudia Weidensteiner
- Division of Radiological Physics, Department of RadiologyUniversity Hospital BaselBaselSwitzerland
- Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - Laura Sander
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
| | - Eva Kesenheimer
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
| | - Nicole Naumann
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
| | - Tanja Haas
- Division of Radiological Physics, Department of RadiologyUniversity Hospital BaselBaselSwitzerland
| | - Philipp Madoerin
- Division of Radiological Physics, Department of RadiologyUniversity Hospital BaselBaselSwitzerland
| | - Nathalie Braun
- Neuromuscular Diseases Unit/ALS ClinicKantonsspital Sankt GallenSt. GallenSwitzerland
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS ClinicKantonsspital Sankt GallenSt. GallenSwitzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS ClinicKantonsspital Sankt GallenSt. GallenSwitzerland
| | - Kathleen Jahn
- Clinics of Respiratory MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
| | - Ludwig Kappos
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
| | - Cristina Granziera
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
| | - Kathi Schweikert
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
| | - Michael Sinnreich
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Biomedicine (DBE)University of BaselBaselSwitzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of RadiologyUniversity Hospital BaselBaselSwitzerland
- Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - Regina Schlaeger
- Department of NeurologyUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
- Department of Biomedical Engineering, Translational Imaging in Neurology (ThINk)University of BaselBaselSwitzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University of BaselBaselSwitzerland
| |
Collapse
|
6
|
Bashir S, Aiman A, Shahid M, Chaudhary AA, Sami N, Basir SF, Hassan I, Islam A. Amyloid-induced neurodegeneration: A comprehensive review through aggregomics perception of proteins in health and pathology. Ageing Res Rev 2024; 96:102276. [PMID: 38499161 DOI: 10.1016/j.arr.2024.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Amyloidosis of protein caused by fibrillation and aggregation are some of the most exciting new edges not only in protein sciences but also in molecular medicines. The present review discusses recent advancements in the field of neurodegenerative diseases and therapeutic applications with ongoing clinical trials, featuring new areas of protein misfolding resulting in aggregation. The endogenous accretion of protein fibrils having fibrillar morphology symbolizes the beginning of neuro-disorders. Prognostic amyloidosis is prominent in numerous degenerative infections such as Alzheimer's and Parkinson's disease, Amyotrophic lateral sclerosis (ALS), etc. However, the molecular basis determining the intracellular or extracellular evidence of aggregates, playing a significant role as a causative factor in neurodegeneration is still unclear. Structural conversions and protein self-assembly resulting in the formation of amyloid oligomers and fibrils are important events in the pathophysiology of the disease. This comprehensive review sheds light on the evolving landscape of potential treatment modalities, highlighting the ongoing clinical trials and the potential socio-economic impact of novel therapeutic interventions in the realm of neurodegenerative diseases. Furthermore, many drugs are undergoing different levels of clinical trials that would certainly help in treating these disorders and will surely improve the socio-impact of human life.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
7
|
Zhou Z, Kim J, Huang AY, Nolan M, Park J, Doan R, Shin T, Miller MB, Chhouk B, Morillo K, Yeh RC, Kenny C, Neil JE, Lee CZ, Ohkubo T, Ravits J, Ansorge O, Ostrow LW, Lagier-Tourenne C, Lee EA, Walsh CA. Somatic Mosaicism in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Reveals Widespread Degeneration from Focal Mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569436. [PMID: 38077003 PMCID: PMC10705414 DOI: 10.1101/2023.11.30.569436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Although mutations in dozens of genes have been implicated in familial forms of amyotrophic lateral sclerosis (fALS) and frontotemporal degeneration (fFTD), most cases of these conditions are sporadic (sALS and sFTD), with no family history, and their etiology remains obscure. We tested the hypothesis that somatic mosaic mutations, present in some but not all cells, might contribute in these cases, by performing ultra-deep, targeted sequencing of 88 genes associated with neurodegenerative diseases in postmortem brain and spinal cord samples from 404 individuals with sALS or sFTD and 144 controls. Known pathogenic germline mutations were found in 20.6% of ALS, and 26.5% of FTD cases. Predicted pathogenic somatic mutations in ALS/FTD genes were observed in 2.7% of sALS and sFTD cases that did not carry known pathogenic or novel germline mutations. Somatic mutations showed low variant allele fraction (typically <2%) and were often restricted to the region of initial discovery, preventing detection through genetic screening in peripheral tissues. Damaging somatic mutations were preferentially enriched in primary motor cortex of sALS and prefrontal cortex of sFTD, mirroring regions most severely affected in each disease. Somatic mutation analysis of bulk RNA-seq data from brain and spinal cord from an additional 143 sALS cases and 23 controls confirmed an overall enrichment of somatic mutations in sALS. Two adult sALS cases were identified bearing pathogenic somatic mutations in DYNC1H1 and LMNA, two genes associated with pediatric motor neuron degeneration. Our study suggests that somatic mutations in fALS/fFTD genes, and in genes associated with more severe diseases in the germline state, contribute to sALS and sFTD, and that mosaic mutations in a small fraction of cells in focal regions of the nervous system can ultimately result in widespread degeneration.
Collapse
Affiliation(s)
- Zinan Zhou
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Junho Kim
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - August Yue Huang
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew Nolan
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Junseok Park
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ryan Doan
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Taehwan Shin
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael B. Miller
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Chhouk
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Katherine Morillo
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rebecca C. Yeh
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jennifer E. Neil
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Chao-Zong Lee
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Takuya Ohkubo
- Department of Neurology, Yokohama City Minato Red Cross Hospital, Yokohama, Kanagawa, Japan
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Lyle W. Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Bede P, Pradat PF. Editorial: The gap between academic advances and therapy development in motor neuron disease. Curr Opin Neurol 2023; 36:335-337. [PMID: 37462047 DOI: 10.1097/wco.0000000000001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, School of Medicine, Trinity College
- Department of Neurology, St James's Hospital, Dublin, Ireland
- Department of Neurology, Pitié-Salpêtrière University Hospital
| | - Pierre-Francois Pradat
- Department of Neurology, Pitié-Salpêtrière University Hospital
- Laboratoire d'Imagerie Biomédicale, Sorbonne University, CNRS, INSERM, Paris, France
| |
Collapse
|
9
|
Acosta-Galeana I, Hernández-Martínez R, Reyes-Cruz T, Chiquete E, Aceves-Buendia JDJ. RNA-binding proteins as a common ground for neurodegeneration and inflammation in amyotrophic lateral sclerosis and multiple sclerosis. Front Mol Neurosci 2023; 16:1193636. [PMID: 37475885 PMCID: PMC10355071 DOI: 10.3389/fnmol.2023.1193636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
The neurodegenerative and inflammatory illnesses of amyotrophic lateral sclerosis and multiple sclerosis were once thought to be completely distinct entities that did not share any remarkable features, but new research is beginning to reveal more information about their similarities and differences. Here, we review some of the pathophysiological features of both diseases and their experimental models: RNA-binding proteins, energy balance, protein transportation, and protein degradation at the molecular level. We make a thorough analysis on TDP-43 and hnRNP A1 dysfunction, as a possible common ground in both pathologies, establishing a potential link between neurodegeneration and pathological immunity. Furthermore, we highlight the putative variations that diverge from a common ground in an atemporal course that proposes three phases for all relevant molecular events.
Collapse
Affiliation(s)
| | | | - Tania Reyes-Cruz
- Laboratorio de Biología Molecular, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Erwin Chiquete
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jose de Jesus Aceves-Buendia
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
10
|
Iida S, Kanouchi T, Hattori T, Kanai K, Nakazato T, Hattori N, Yokota T. Verification of propagation hypothesis in patients with sporadic hand onset amyotrophic lateral sclerosis. Acta Neurol Belg 2023:10.1007/s13760-023-02297-9. [PMID: 37273142 DOI: 10.1007/s13760-023-02297-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVE If lesions in sporadic amyotrophic lateral sclerosis (ALS) originate from a single focal onset site and spread contiguously by prion-like cell-to-cell propagation at a constant speed, the lesion spread time should be proportional to the anatomical distance. We verify this model in the patients. METHODS In 29 sporadic ALS patients with hand onset followed by spread to shoulder and leg, we retrospectively evaluated the inter/intra-regional spread time ratio: time interval of symptoms from hand-to-leg divided by that from hand-to-shoulder. We also obtained the corresponding inter-/intra-regional distance ratios of spinal cord from magnetic resonance imaging of 12 patients, and those of primary motor cortex from coordinates using neuroimaging software. RESULTS Inter-/intra-regional spread time ratios ranged from 0.29 to 6.00 (median 1.20). Distance ratios ranged from 1.85 to 2.86 in primary motor cortex and from 5.79 to 8.67 in spinal cord. Taken together with clinical manifestations, of 27 patients with the requisite information available, lesion spreading was consistent with the model in primary motor cortex in 4 (14.8%) patients, and in spinal cord in only 1 (3.7%) patient. However, in more patients (12 of 29 patients: 41.4%), the inter-regional spread times in a long anatomical distance of hand-to-leg were shorter than or equal to the intra-regional spread times in a short anatomical distance of hand-to-shoulder. CONCLUSION Contiguous cell-to-cell propagation at a constant speed might not play a major role at least in distant lesion spreading of ALS. Several mechanisms can be responsible for progression in ALS.
Collapse
Affiliation(s)
- Shintaro Iida
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, Japan.
| | - Tadashi Kanouchi
- Department of Laboratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takaaki Hattori
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, Japan
| | - Kazuaki Kanai
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Tomoko Nakazato
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, Japan
| |
Collapse
|
11
|
Gulino R. Synaptic Dysfunction and Plasticity in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:ijms24054613. [PMID: 36902042 PMCID: PMC10003601 DOI: 10.3390/ijms24054613] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent evidence has supported the hypothesis that amyotrophic lateral sclerosis (ALS) is a multi-step disease, as the onset of symptoms occurs after sequential exposure to a defined number of risk factors. Despite the lack of precise identification of these disease determinants, it is known that genetic mutations may contribute to one or more of the steps leading to ALS onset, the remaining being linked to environmental factors and lifestyle. It also appears evident that compensatory plastic changes taking place at all levels of the nervous system during ALS etiopathogenesis may likely counteract the functional effects of neurodegeneration and affect the timing of disease onset and progression. Functional and structural events of synaptic plasticity probably represent the main mechanisms underlying this adaptive capability, causing a significant, although partial and transient, resiliency of the nervous system affected by a neurodegenerative disease. On the other hand, the failure of synaptic functions and plasticity may be part of the pathological process. The aim of this review was to summarize what it is known today about the controversial involvement of synapses in ALS etiopathogenesis, and an analysis of the literature, although not exhaustive, confirmed that synaptic dysfunction is an early pathogenetic process in ALS. Moreover, it appears that adequate modulation of structural and functional synaptic plasticity may likely support function sparing and delay disease progression.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| |
Collapse
|
12
|
McCluskey G, Morrison KE, Donaghy C, Rene F, Duddy W, Duguez S. Extracellular Vesicles in Amyotrophic Lateral Sclerosis. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010121. [PMID: 36676070 PMCID: PMC9867379 DOI: 10.3390/life13010121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease and is the most common adult motor neuron disease. The disease pathogenesis is complex with the perturbation of multiple pathways proposed, including mitochondrial dysfunction, RNA processing, glutamate excitotoxicity, endoplasmic reticulum stress, protein homeostasis and endosomal transport/extracellular vesicle (EV) secretion. EVs are nanoscopic membrane-bound particles that are released from cells, involved in the intercellular communication of proteins, lipids and genetic material, and there is increasing evidence of their role in ALS. After discussing the biogenesis of EVs, we review their roles in the propagation of pathological proteins in ALS, such as TDP-43, SOD1 and FUS, and their contribution to disease pathology. We also discuss the ALS related genes which are involved in EV formation and vesicular trafficking, before considering the EV protein and RNA dysregulation found in ALS and how these have been investigated as potential biomarkers. Finally, we highlight the potential use of EVs as therapeutic agents in ALS, in particular EVs derived from mesenchymal stem cells and EVs as drug delivery vectors for potential treatment strategies.
Collapse
Affiliation(s)
- Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence: (G.M.); (S.D.)
| | - Karen E. Morrison
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Faculty of Medicine, Health & Life Sciences, Queen’s University, Belfast BT9 6AG, UK
| | - Colette Donaghy
- Department of Neurology, Altnagelvin Hospital, Derry BT47 6SB, UK
| | - Frederique Rene
- INSERM U1118, Centre de Recherche en Biomédecine de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Derry BT47 6SB, UK
- Correspondence: (G.M.); (S.D.)
| |
Collapse
|
13
|
Del Tredici K, Braak H. Neuropathology and neuroanatomy of TDP-43 amyotrophic lateral sclerosis. Curr Opin Neurol 2022; 35:660-671. [PMID: 36069419 DOI: 10.1097/wco.0000000000001098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Intracellular inclusions consisting of the abnormal TDP-43 protein and its nucleocytoplasmic mislocalization in selected cell types are hallmark pathological features of sALS. Descriptive (histological, morphological), anatomical, and molecular studies all have improved our understanding of the neuropathology of sporadic amyotrophic lateral sclerosis (sALS). This review highlights some of the latest developments in the field. RECENT FINDINGS Increasing evidence exists from experimental models for the prion-like nature of abnormal TDP-43, including a strain-effect, and with the help of neuroimaging-based studies, for spreading of disease along corticofugal connectivities in sALS. Progress has also been made with respect to finding and establishing reliable biomarkers (neurofilament levels, diffusor tensor imaging). SUMMARY The latest findings may help to elucidate the preclinical phase of sALS and to define possible mechanisms for delaying or halting disease development and progression.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | | |
Collapse
|
14
|
Yang T, Wei Q, Li C, Cao B, Ou R, Hou Y, Zhang L, Gu X, Liu K, Lin J, Cheng Y, Jiang Z, Yang J, Kang S, Zhang M, Xiao Y, Zhao B, Chen Y, Chen X, Shang H. Spatial-temporal pattern of propagation in amyotrophic lateral sclerosis and effect on survival: a cohort study. Eur J Neurol 2022; 29:3177-3186. [PMID: 35996987 DOI: 10.1111/ene.15527] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Clarification of propagation patterns in amyotrophic lateral sclerosis (ALS) is challenging, but implicational for individual prognostication and clinical trials design. However, systematic knowledge lacks. Therefore, we aim to characterize the spatial and temporal features of propagation patterns in ALS, and to evaluate the association between propagation patterns and survival. METHODS A cohort of 833 patients with ALS were diagnosed between January 2018 and December 2019, and followed to August 2021. Spatial and temporal features of propagation patterns were determined based on the involved functional regions (bulbar, cervical, thoracic/respiratory and lumbar) in time order. The final propagation pattern was identified in patients with at least 3 functional regions involved. Kaplan-Meier analysis and Cox regression analysis were performed. RESULTS During a median follow-up of 21.2 months, 19 final propagation patterns were identified in 657 (78.9%) patients. In survival analysis, we found that the more forward of respiratory involved, the higher the risk of death (1st: hazard ratio [HR], 3.35; 95% CI, 1.23-9.15; 2nd: HR, 2.45; 95% CI, 1.55-3.87; 3rd: HR, 1.94; 95% CI, 1.52-2.49), adjusting for age, sex, diagnostic delay, the revised ALS Functional Rating Scale score, cognitive impairment and riluzole. Shorter interval time between involved regions was an independent adverse prognostic factor. CONCLUSIONS The propagation patterns of ALS are varied. The position of respiratory involved and interval time between involved functional regions are predictors for prognosis.
Collapse
Affiliation(s)
- Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojing Gu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Simin Kang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Donatelli G, Costagli M, Cecchi P, Migaleddu G, Bianchi F, Frumento P, Siciliano G, Cosottini M. Motor cortical patterns of upper motor neuron pathology in amyotrophic lateral sclerosis: A 3 T MRI study with iron-sensitive sequences. NEUROIMAGE: CLINICAL 2022; 35:103138. [PMID: 36002961 PMCID: PMC9421531 DOI: 10.1016/j.nicl.2022.103138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
M1 regions associated with the body site of onset are frequently affected at MRI. The simultaneous involvement of both homologous M1 regions is frequent. The T2* hypointensity in non-contiguous M1 regions seems rare.
Background Patterns of initiation and propagation of disease in Amyotrophic Lateral Sclerosis (ALS) are still partly unknown. Single or multiple foci of neurodegeneration followed by disease diffusion to contiguous or connected regions have been proposed as mechanisms underlying symptom occurrence. Here, we investigated cortical patterns of upper motor neuron (UMN) pathology in ALS using iron-sensitive MR imaging. Methods Signal intensity and magnetic susceptibility of the primary motor cortex (M1), which are associated with clinical UMN burden and neuroinflammation, were assessed in 78 ALS patients using respectively T2*-weighted images and Quantitative Susceptibility Maps. The signal intensity of the whole M1 and each of its functional regions was rated as normal or reduced, and the magnetic susceptibility of each M1 region was measured. Results The highest frequencies of T2* hypointensity were found in M1 regions associated with the body sites of symptom onset. Homologous M1 regions were both hypointense in 80–93 % of patients with cortical abnormalities, and magnetic susceptibility values measured in homologous M1 regions were strongly correlated with each other (ρ = 0.88; p < 0.0001). In some cases, the T2* hypointensity was detectable in two non-contiguous M1 regions but spared the cortex in between. Conclusions M1 regions associated with the body site of onset are frequently affected at imaging. The simultaneous involvement of both homologous M1 regions is frequent, followed by that of adjacent regions; the affection of non-contiguous regions, instead, seems rare. This type of cortical involvement suggests the interhemispheric connections as one of the preferential paths for the UMN pathology diffusion in ALS.
Collapse
|
16
|
Riva N, Quattrini A. Hemiplegic-type ALS shows a strong correlation between upper, lower motor neuron degeneration and pTDP-43 pathology. J Neurol Neurosurg Psychiatry 2021; 92:917. [PMID: 33883201 DOI: 10.1136/jnnp-2021-326512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Nilo Riva
- Department of Neurology, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Hospital Institute of Experimental Neurology, Milano, Lombardia, Italy
| | - Angelo Quattrini
- Department of Neurology, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Hospital Institute of Experimental Neurology, Milano, Lombardia, Italy
| |
Collapse
|
17
|
Blood-spinal cord barrier leakage is independent of motor neuron pathology in ALS. Acta Neuropathol Commun 2021; 9:144. [PMID: 34446086 PMCID: PMC8393479 DOI: 10.1186/s40478-021-01244-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving progressive degeneration of upper and lower motor neurons. The pattern of lower motor neuron loss along the spinal cord follows the pattern of deposition of phosphorylated TDP-43 aggregates. The blood-spinal cord barrier (BSCB) restricts entry into the spinal cord parenchyma of blood components that can promote motor neuron degeneration, but in ALS there is evidence for barrier breakdown. Here we sought to quantify BSCB breakdown along the spinal cord axis, to determine whether BSCB breakdown displays the same patterning as motor neuron loss and TDP-43 proteinopathy. Cerebrospinal fluid hemoglobin was measured in living ALS patients (n = 87 control, n = 236 ALS) as a potential biomarker of BSCB and blood–brain barrier leakage. Cervical, thoracic, and lumbar post-mortem spinal cord tissue (n = 5 control, n = 13 ALS) were then immunolabelled and semi-automated imaging and analysis performed to quantify hemoglobin leakage, lower motor neuron loss, and phosphorylated TDP-43 inclusion load. Hemoglobin leakage was observed along the whole ALS spinal cord axis and was most severe in the dorsal gray and white matter in the thoracic spinal cord. In contrast, motor neuron loss and TDP-43 proteinopathy were seen at all three levels of the ALS spinal cord, with most abundant TDP-43 deposition in the anterior gray matter of the cervical and lumbar cord. Our data show that leakage of the BSCB occurs during life, but at end-stage disease the regions with most severe BSCB damage are not those where TDP-43 accumulation is most abundant. This suggests BSCB leakage and TDP-43 pathology are independent pathologies in ALS.
Collapse
|
18
|
Pikatza-Menoio O, Elicegui A, Bengoetxea X, Naldaiz-Gastesi N, López de Munain A, Gerenu G, Gil-Bea FJ, Alonso-Martín S. The Skeletal Muscle Emerges as a New Disease Target in Amyotrophic Lateral Sclerosis. J Pers Med 2021; 11:671. [PMID: 34357138 PMCID: PMC8307751 DOI: 10.3390/jpm11070671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons (MNs) and severe muscle atrophy without effective treatment. Most research on ALS has been focused on the study of MNs and supporting cells of the central nervous system. Strikingly, the recent observations of pathological changes in muscle occurring before disease onset and independent from MN degeneration have bolstered the interest for the study of muscle tissue as a potential target for delivery of therapies for ALS. Skeletal muscle has just been described as a tissue with an important secretory function that is toxic to MNs in the context of ALS. Moreover, a fine-tuning balance between biosynthetic and atrophic pathways is necessary to induce myogenesis for muscle tissue repair. Compromising this response due to primary metabolic abnormalities in the muscle could trigger defective muscle regeneration and neuromuscular junction restoration, with deleterious consequences for MNs and thereby hastening the development of ALS. However, it remains puzzling how backward signaling from the muscle could impinge on MN death. This review provides a comprehensive analysis on the current state-of-the-art of the role of the skeletal muscle in ALS, highlighting its contribution to the neurodegeneration in ALS through backward-signaling processes as a newly uncovered mechanism for a peripheral etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Oihane Pikatza-Menoio
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Amaia Elicegui
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Xabier Bengoetxea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
| | - Neia Naldaiz-Gastesi
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014 Donostia/San Sebastián, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country UPV-EHU, 20014 Donostia/San Sebastián, Spain
| | - Gorka Gerenu
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Physiology, University of the Basque Country UPV-EHU, 48940 Leioa, Spain
| | - Francisco Javier Gil-Bea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Sonia Alonso-Martín
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| |
Collapse
|
19
|
Cicardi ME, Marrone L, Azzouz M, Trotti D. Proteostatic imbalance and protein spreading in amyotrophic lateral sclerosis. EMBO J 2021; 40:e106389. [PMID: 33792056 PMCID: PMC8126909 DOI: 10.15252/embj.2020106389] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder whose exact causative mechanisms are still under intense investigation. Several lines of evidence suggest that the anatomical and temporal propagation of pathological protein species along the neural axis could be among the main driving mechanisms for the fast and irreversible progression of ALS pathology. Many ALS-associated proteins form intracellular aggregates as a result of their intrinsic prion-like properties and/or following impairment of the protein quality control systems. During the disease course, these mutated proteins and aberrant peptides are released in the extracellular milieu as soluble or aggregated forms through a variety of mechanisms. Internalization by recipient cells may seed further aggregation and amplify existing proteostatic imbalances, thus triggering a vicious cycle that propagates pathology in vulnerable cells, such as motor neurons and other susceptible neuronal subtypes. Here, we provide an in-depth review of ALS pathology with a particular focus on the disease mechanisms of seeding and transmission of the most common ALS-associated proteins, including SOD1, FUS, TDP-43, and C9orf72-linked dipeptide repeats. For each of these proteins, we report historical, biochemical, and pathological evidence of their behaviors in ALS. We further discuss the possibility to harness pathological proteins as biomarkers and reflect on the implications of these findings for future research.
Collapse
Affiliation(s)
- Maria Elena Cicardi
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Lara Marrone
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Mimoun Azzouz
- Department of NeuroscienceSheffield Institute for Translational Neuroscience (SITraN)University of SheffieldSheffieldUK
| | - Davide Trotti
- Department of NeuroscienceWeinberg ALS CenterVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
20
|
Yamaguchi M, Lee IS, Jantrapirom S, Suda K, Yoshida H. Drosophila models to study causative genes for human rare intractable neurological diseases. Exp Cell Res 2021; 403:112584. [PMID: 33812867 DOI: 10.1016/j.yexcr.2021.112584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Drosophila is emerging as a convenient model for investigating human diseases. Functional homologues of almost 75% of human disease-related genes are found in Drosophila. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that causes defects in motoneurons. Charcot-Marie-Tooth disease (CMT) is one of the most commonly found inherited neuropathies affecting both motor and sensory neurons. No effective therapy has been established for either of these diseases. In this review, after overviewing ALS, Drosophila models targeting several ALS-causing genes, including TDP-43, FUS and Ubiquilin2, are described with their genetic interactants. Then, after overviewing CMT, examples of Drosophila models targeting several CMT-causing genes, including mitochondria-related genes and FIG 4, are also described with their genetic interactants. In addition, we introduce Sotos syndrome caused by mutations in the epigenetic regulator gene NSD1. Lastly, several genes and pathways that commonly interact with ALS- and/or CMT-causing genes are described. In the case of ALS and CMT that have many causative genes, it may be not practical to perform gene therapy for each of the many disease-causing genes. The possible uses of the common genes and pathways as novel diagnosis markers and effective therapeutic targets are discussed.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto, 619-0237, Japan
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kojiro Suda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
21
|
Ngo ST, Wang H, Henderson RD, Bowers C, Steyn FJ. Ghrelin as a treatment for amyotrophic lateral sclerosis. J Neuroendocrinol 2021; 33:e12938. [PMID: 33512025 DOI: 10.1111/jne.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/27/2022]
Abstract
Ghrelin is a gut hormone best known for its role in regulating appetite and stimulating the secretion of the anabolic hormone growth hormone (GH). However, there is considerable evidence to show wider-ranging biological actions of ghrelin that favour improvements in cellular and systemic metabolism, as well as neuroprotection. Activation of these ghrelin-mediated pathways may alleviate pathogenic processes that are assumed to contribute to accelerated progression of disease in patients with neurodegenerative disease. Here, we provide a brief overview on the history of discoveries that led to the identification of ghrelin. Focussing on the neurodegenerative disease amyotrophic lateral sclerosis (ALS), we also present an overview of emerging evidence that suggests that ghrelin and ghrelin mimetics may serve as potential therapies for the treatment of ALS. Given that ALS is a highly heterogeneous disease, where multiple disease mechanisms contribute to variability in disease onset and rate of disease progression, we speculate that the wide-ranging biological actions of ghrelin might offer therapeutic benefit through modulating multiple disease-relevant processes observed in ALS. Expanding on the well-known actions of ghrelin in regulating food intake and GH secretion, we consider the potential of ghrelin-mediated pathways in improving body weight regulation, metabolism and the anabolic and neuroprotective actions of GH and insulin-like growth factor-1 (IGF-1). This is of clinical significance because loss of body weight, impairments in systemic and cellular metabolism, and reductions in IGF-1 are associated with faster disease progression and worse disease outcome in patients with ALS.
Collapse
Affiliation(s)
- Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Hao Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Cyril Bowers
- Department of Internal Medicine, Tulane University Health Sciences Centre, New Orleans, LA, USA
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Ding X, Xiang Z, Qin C, Chen Y, Tian H, Meng L, Xia D, Liu H, Song J, Fu J, Ma M, Wang X. Spreading of TDP-43 pathology via pyramidal tract induces ALS-like phenotypes in TDP-43 transgenic mice. Acta Neuropathol Commun 2021; 9:15. [PMID: 33461623 PMCID: PMC7814549 DOI: 10.1186/s40478-020-01112-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) has been identified as the major component of ubiquitinated inclusions found in patients with sporadic amyotrophic lateral sclerosis (ALS). Increasing evidence suggests prion-like transmission of TDP-43 aggregates via neuroanatomic connection in vitro and pyramidal tract in vivo. However, it is still unknown whether the spreading of pathological TDP-43 sequentially via pyramidal tract can initiate ALS-like pathology and phenotypes. In this study, we reported that injection of TDP-43 preformed fibrils (PFFs) into the primary motor cortex (M1) of Thy1-e (IRES-TARDBP) 1 mice induced the spreading of pathological TDP-43 along pyramidal tract axons anterogradely. Moreover, TDP-43 PFFs-injected Thy1-e (IRES-TARDBP) 1 mice displayed ALS-like neuropathological features and symptoms, including motor dysfunctions and electrophysiological abnormalities. These findings provide direct evidence that transmission of pathological TDP-43 along pyramidal tract induces ALS-like phenotypes, which further suggest the potential mechanism for TDP-43 proteinopathy.
Collapse
|
23
|
Wongworawat YC, Liu YA, Raghavan R, White CL, Dietz R, Zuppan C, Rosenfeld J. Aggressive FUS-Mutant Motor Neuron Disease Without Profound Spinal Cord Pathology. J Neuropathol Exp Neurol 2020; 79:365-369. [PMID: 32142142 DOI: 10.1093/jnen/nlaa011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
A 29-year-old man presented with rapidly progressive severe neck weakness, asymmetrical bilateral upper extremity weakness, bulbar dysfunction, profound muscle wasting, and weight loss. Within 1 year, his speech became unintelligible, he became gastrostomy- and tracheostomy/ventilator-dependent, and wheelchair bound. Electrophysiology suggested motor neuron disease. Whole exome sequencing revealed a heterozygous pathogenic variant in the fused in sarcoma gene (FUS), c.1574C>T,p. R525L, consistent with autosomal dominant amyotrophic lateral sclerosis. Autopsy revealed extensive denervation atrophy of skeletal musculature. Surprisingly, there was only minimal patchy depletion of motor neurons within the cervico-thoracic spinal cord anterior horn cells, and the tracts were largely preserved. TDP-43 inclusions were absent. Abnormal expression of FUS mutation product (cytoplasmic inclusions) was demonstrated by immunohistochemistry within anterior horn motor neurons. The most prominent finding was a disparity between profound neck weakness and relatively low-grade anterior horn cell loss or tract degeneration in the cervico-thoracic cord.
Collapse
Affiliation(s)
- Yan Chen Wongworawat
- Department of Pathology and Laboratory Medicine, Loma Linda University Medical Center
| | - Yin Allison Liu
- Department of Pediatrics/Child Neurology, Loma Linda University Children's Hospital, Loma Linda, California
| | - Ravi Raghavan
- Department of Pathology and Laboratory Medicine, Loma Linda University Medical Center
| | - Charles L White
- Department of Pathology/Neuropathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Robin Dietz
- Department of Pathology and Laboratory Medicine, Loma Linda University Medical Center
| | - Craig Zuppan
- Department of Pathology and Laboratory Medicine, Loma Linda University Medical Center
| | - Jeffrey Rosenfeld
- Department of Neurology, Loma Linda University Medical Center, Loma Linda, California
| |
Collapse
|
24
|
Nakagawa Y, Yamada S. A novel hypothesis on metal dyshomeostasis and mitochondrial dysfunction in amyotrophic lateral sclerosis: Potential pathogenetic mechanism and therapeutic implications. Eur J Pharmacol 2020; 892:173737. [PMID: 33220280 DOI: 10.1016/j.ejphar.2020.173737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by motor dysfunctions resulting from the loss of upper (UMNs) and lower (LMNs) motor neurons. While ALS symptoms are coincidental with pathological changes in LMNs and UMNs, the causal relationship between the two is unclear. For example, research on the extra-motor symptoms associated with this condition suggests that an imbalance of metals, including copper, zinc, iron, and manganese, is initially induced in the sensory ganglia due to a malfunction of metal binding proteins and transporters. It is proposed that the resultant metal dyshomeostasis may promote mitochondrial dysfunction in the satellite glial cells of these sensory ganglia, causing sensory neuron disturbances and sensory symptoms. Sensory neuron hyperactivation can result in LMN impairments, while metal dyshomeostasis in spinal cord and brain stem parenchyma induces mitochondrial dysfunction in LMNs and UMNs. These events could prompt intracellular calcium dyshomeostasis, pathological TDP-43 formation, and reactive microglia with neuroinflammation, which in turn activate the apoptosis signaling pathways within the LMNs and UMNs. Our model suggests that the degeneration of LMNs and UMNs is incidental to the metal-induced changes in the spinal cord and brain stem. Over time psychiatric symptoms may appear as the metal dyshomeostasis and mitochondrial dysfunction affect other brain regions, including the reticular formation, hippocampus, and prefrontal cortex. It is proposed that metal dyshomeostasis in combination with mitochondrial dysfunction could be the underlying mechanism responsible for the initiation and progression of the pathological changes associated with both the motor and extra-motor symptoms of ALS.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
25
|
Chipika RH, Siah WF, McKenna MC, Li Hi Shing S, Hardiman O, Bede P. The presymptomatic phase of amyotrophic lateral sclerosis: are we merely scratching the surface? J Neurol 2020; 268:4607-4629. [PMID: 33130950 DOI: 10.1007/s00415-020-10289-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Presymptomatic studies in ALS have consistently captured considerable disease burden long before symptom manifestation and contributed important academic insights. With the emergence of genotype-specific therapies, however, there is a pressing need to address practical objectives such as the estimation of age of symptom onset, phenotypic prediction, informing the optimal timing of pharmacological intervention, and identifying a core panel of biomarkers which may detect response to therapy. Existing presymptomatic studies in ALS have adopted striking different study designs, relied on a variety of control groups, used divergent imaging and electrophysiology methods, and focused on different genotypes and demographic groups. We have performed a systematic review of existing presymptomatic studies in ALS to identify common themes, stereotyped shortcomings, and key learning points for future studies. Existing presymptomatic studies in ALS often suffer from sample size limitations, lack of disease controls and rarely follow their cohort until symptom manifestation. As the characterisation of presymptomatic processes in ALS serves a multitude of academic and clinical purposes, the careful review of existing studies offers important lessons for future initiatives.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group (CNG), Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, Ireland.
| |
Collapse
|
26
|
Ng Kee Kwong KC, Mehta AR, Nedergaard M, Chandran S. Defining novel functions for cerebrospinal fluid in ALS pathophysiology. Acta Neuropathol Commun 2020; 8:140. [PMID: 32819425 PMCID: PMC7439665 DOI: 10.1186/s40478-020-01018-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.
Collapse
Affiliation(s)
- Koy Chong Ng Kee Kwong
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Arpan R Mehta
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, inStem, Bangalore, India.
| |
Collapse
|
27
|
Steyn FJ, Ngo ST. Prognostic value of weight loss in patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2020; 91:813. [PMID: 32576614 DOI: 10.1136/jnnp-2020-323440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Frederik J Steyn
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia .,Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Shyuan T Ngo
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
28
|
McCombe PA, Garton FC, Katz M, Wray NR, Henderson RD. What do we know about the variability in survival of patients with amyotrophic lateral sclerosis? Expert Rev Neurother 2020; 20:921-941. [PMID: 32569484 DOI: 10.1080/14737175.2020.1785873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION ALS is a fatal neurodegenerative disease. However, patients show variability in the length of survival after symptom onset. Understanding the mechanisms of long survival could lead to possible avenues for therapy. AREAS COVERED This review surveys the reported length of survival in ALS, the clinical features that predict survival in individual patients, and possible factors, particularly genetic factors, that could cause short or long survival. The authors also speculate on possible mechanisms. EXPERT OPINION a small number of known factors can explain some variability in ALS survival. However, other disease-modifying factors likely exist. Factors that alter motor neurone vulnerability and immune, metabolic, and muscle function could affect survival by modulating the disease process. Knowing these factors could lead to interventions to change the course of the disease. The authors suggest a broad approach is needed to quantify the proportion of variation survival attributable to genetic and non-genetic factors and to identify and estimate the effect size of specific factors. Studies of this nature could not only identify novel avenues for therapeutic research but also play an important role in clinical trial design and personalized medicine.
Collapse
Affiliation(s)
- Pamela A McCombe
- Centre for Clinical Research, The University of Queensland , Brisbane, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane, Australia
| | - Fleur C Garton
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Australia
| | - Matthew Katz
- Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane, Australia
| | - Naomi R Wray
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Australia.,Queensland Brain Institute, The University of Queensland , Brisbane, Australia
| | - Robert D Henderson
- Centre for Clinical Research, The University of Queensland , Brisbane, Australia
| |
Collapse
|
29
|
Perrone B, Conforti FL. Common mutations of interest in the diagnosis of amyotrophic lateral sclerosis: how common are common mutations in ALS genes? Expert Rev Mol Diagn 2020; 20:703-714. [PMID: 32497448 DOI: 10.1080/14737159.2020.1779060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease predominantly affecting upper and lower motor neurons. Diagnosis of this devastating pathology is very difficult because the high degree of clinical heterogeneity with which it occurs and until now, no truly effective treatment exists. AREAS COVERED Molecular diagnosis may be a valuable tool for dissecting out ALS complex heterogeneity and for identifying new molecular mechanisms underlying the characteristic selective degeneration and death of motor neurons. To date, pathogenic variants in ALS genes are known to be present in up to 70% of familial and 10% of apparently sporadic ALS cases and can be associated with risks for ALS only or risks for other neurodegenerative diseases. This paper shows the procedure currently used in diagnostic laboratories to investigate most frequent mutations in ALS and evaluating the utility of involved molecular techniques as potential tools to discriminate 'common mutations' in ALS patients. EXPERT OPINION Genetic testing may allow for establishing an accurate pathological diagnosis and a more precise stratification of patient groups in future drug trials.
Collapse
Affiliation(s)
- Benedetta Perrone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Arcavacata di Rende (Cosenza), Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria , Arcavacata di Rende (Cosenza), Italy
| |
Collapse
|
30
|
Tran TD, Lesaffre E, Verbeke G, Duyck J. Latent Ornstein-Uhlenbeck models for Bayesian analysis of multivariate longitudinal categorical responses. Biometrics 2020; 77:689-701. [PMID: 32391570 DOI: 10.1111/biom.13292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Abstract
We propose a Bayesian latent Ornstein-Uhlenbeck (OU) model to analyze unbalanced longitudinal data of binary and ordinal variables, which are manifestations of fewer continuous latent variables. We focus on the evolution of such latent variables when they continuously change over time. Existing approaches are limited to data collected at regular time intervals. Our proposal makes use of an OU process for the latent variables to overcome this limitation. We show that assuming real eigenvalues for the drift matrix of the OU process, as is frequently done in practice, can lead to biased estimates and/or misleading inference when the true process is oscillating. In contrast, our proposal allows for both real and complex eigenvalues. We illustrate our proposed model with a motivating dataset, containing patients with amyotrophic lateral sclerosis disease. We were interested in how bulbar, cervical, and lumbar functions evolve over time.
Collapse
Affiliation(s)
- Trung Dung Tran
- I-BioStat, KU Leuven, Leuven, Belgium.,I-BioStat, Universiteit Hasselt, Hasselt, Belgium
| | - Emmanuel Lesaffre
- I-BioStat, KU Leuven, Leuven, Belgium.,I-BioStat, Universiteit Hasselt, Hasselt, Belgium
| | - Geert Verbeke
- I-BioStat, KU Leuven, Leuven, Belgium.,I-BioStat, Universiteit Hasselt, Hasselt, Belgium
| | - Joke Duyck
- Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Bersano E, Sarnelli MF, Solara V, Iazzolino B, Peotta L, De Marchi F, Facchin A, Moglia C, Canosa A, Calvo A, Chiò A, Mazzini L. Decline of cognitive and behavioral functions in amyotrophic lateral sclerosis: a longitudinal study. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:373-379. [PMID: 32484726 DOI: 10.1080/21678421.2020.1771732] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: A cognitive impairment, ranging from frontotemporal dementia (FTD) to milder forms of dysexecutive or behavioral dysfunction, is detected in 30-50% of patients affected by amyotrophic lateral sclerosis (ALS) at diagnosis. Such condition considerably influences the prognosis, and possibly impacts on the decision-making process with regards to end-of-life choices. The aim of our study is to examine the changes of cognitive and behavioral impairment in a large population of ALS from the time of diagnosis to a 6-month follow-up (IQR 5.5-9.0 months), and to examine to what extent the progression of cognitive impairment affects survival time and rate of disease progression.Methods: We recruited 146 ALS patients classified according to revised criteria of ALS and FTD spectrum disorder. In a multidisciplinary setting, during two subsequent visits we examined clinical features with ALSFRS-r score, FVC% and BMI, and cognitive status with an extensive neuropsychological evaluation.Results: At second examination, one-third of patients showed a worsening of cognitive impairment, namely 88% of ALSbi, 27% of ALSci, 40% of ALScbi, and, interestingly, also 24% of cognitive normal ALS developed a significant cognitive dysfunction. We find that those who changed their cognitive status presented a lower ALSFRS-r score at t1 and a shorter survival time compared to those who did not change, regardless of the type of cognitive impairment.Conclusion: We show how cognitive disorders in ALS patients can not only be present at diagnosis, but also manifest during disease and influence the progression of motor deficit and the prognosis.
Collapse
Affiliation(s)
- Enrica Bersano
- ALS Center, Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy.,3rd Neurology Unit and Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Francesca Sarnelli
- ALS Center, Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Valentina Solara
- ALS Center, Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Barbara Iazzolino
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Laura Peotta
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy
| | - Fabiola De Marchi
- ALS Center, Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| | - Alessio Facchin
- Department of Psychology, University of Milano Bicocca, Milan, Italy
| | - Cristina Moglia
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy.,1st Neurology Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Antonio Canosa
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy.,1st Neurology Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Andrea Calvo
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy.,1st Neurology Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Adriano Chiò
- ALS Center, 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy.,1st Neurology Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino, Turin, Italy
| | - Letizia Mazzini
- ALS Center, Department of Neurology, Azienda Ospedaliera Universitaria Maggiore della Carità, Novara, Italy
| |
Collapse
|
32
|
Riku Y. Reappraisal of the anatomical spreading and propagation hypothesis about TDP-43 aggregation in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neuropathology 2020; 40:426-435. [PMID: 32157757 DOI: 10.1111/neup.12644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022]
Abstract
Neuronal inclusion of transactivation response DNA-binding protein 43 kDa (TDP-43) is known to be a pathologic hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TDP-43, which is physiologically a nuclear protein, is mislocalized from the nucleus and aggregated within the cytoplasm of affected neurons in ALS and FTLD patients. Neuropathologic or experimental studies have addressed mechanisms underlying spreading of TDP-43 inclusions in the central nervous system of ALS and FTLD patients. On the basis of postmortem observations, it is hypothesized that TDP-43 inclusions spread along the neural projections. A centrifugal gradient of TDP-43 pathology in certain anatomical systems and axonal or synaptic aggregation of TDP-43 may support the hypothesis. Experimental studies have revealed cell-to-cell propagation of aggregated or truncated TDP-43, which indicates a direct transmission of TDP-43 inclusions to contiguous cells. However, discrepancies remain between the cell-to-cell propagation suggested in the experimental models and the anatomical spreading of TDP-43 aggregations based on postmortem observations. Trans-synaptic transmission, rather than the direct cell-to-cell transmission, may be consistent with the anatomical spreading of TDP-43 aggregations, but cellular mechanisms of trans-synaptic transmission of aggregated proteins remain to be elucidated. Moreover, the spreading of TDP-43 inclusions varies among patients and genetic backgrounds, which indicates host-dependent factors for spreading of TDP-43 aggregations. Perturbation of cellular TDP-43 clearance may be a possible factor modifying the aggregation and spreading. This review discusses postmortem and experimental evidence that address mechanisms of spreading of TDP-43 pathology in the central nervous system of ALS and FTLD patients.
Collapse
Affiliation(s)
- Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan.,Department of Neurology, Nagoya University, Nagoya, Japan.,Department of Neuropathology Raymond Escourolle, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Paris, France
| |
Collapse
|
33
|
Chiò A, Moglia C, Canosa A, Manera U, D'Ovidio F, Vasta R, Grassano M, Brunetti M, Barberis M, Corrado L, D'Alfonso S, Iazzolino B, Peotta L, Sarnelli MF, Solara V, Zucchetti JP, De Marchi F, Mazzini L, Mora G, Calvo A. ALS phenotype is influenced by age, sex, and genetics: A population-based study. Neurology 2020; 94:e802-e810. [PMID: 31907290 DOI: 10.1212/wnl.0000000000008869] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To assess the determinants of amyotrophic lateral sclerosis (ALS) phenotypes in a population-based cohort. METHODS The study population included 2,839 patients with ALS diagnosed in Piemonte, Italy (1995-2015). Patients were classified according to motor (classic, bulbar, flail arm, flail leg, predominantly upper motor neuron [PUMN], respiratory) and cognitive phenotypes (normal, ALS with cognitive impairment [ALSci], ALS with behavioral impairment [ALSbi], ALSci and ALSbi combined [ALScbi], ALS-frontotemporal dementia [FTD]). Binary logistic regression analysis was adjusted for sex, age, and genetics. RESULTS Bulbar phenotype correlated with older age (p < 0.0001), women were more affected than men at increasing age (p < 0.0001), classic with younger age (p = 0.029), men were more affected than women at increasing age (p < 0.0001), PUMN with younger age (p < 0.0001), flail arm with male sex (p < 0.0001) and younger age (p = 0.04), flail leg with male sex with increasing age (p = 0.008), and respiratory with male sex (p < 0.0001). C9orf72 expansions correlated with bulbar phenotype (p < 0.0001), and were less frequent in PUMN (p = 0.041); SOD1 mutations correlated with flail leg phenotype (p < 0.0001), and were less frequent in bulbar (p < 0.0001). ALS-FTD correlated with C9orf72 (p < 0.0001) and bulbar phenotype (p = 0.008), ALScbi with PUMN (p = 0.014), and ALSci with older age (p = 0.008). CONCLUSIONS Our data suggest that the spatial-temporal combination of motor and cognitive events leading to the onset and progression of ALS is characterized by a differential susceptibility to the pathologic process of motor and prefrontal cortices and lower motor neurons, and is influenced by age, sex, and gene variants. The identification of those factors that regulate ALS phenotype will allow us to reclassify patients into pathologically homogenous subgroups, responsive to targeted personalized therapies.
Collapse
Affiliation(s)
- Adriano Chiò
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy.
| | - Cristina Moglia
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Antonio Canosa
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Umberto Manera
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Fabrizio D'Ovidio
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Rosario Vasta
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Maurizio Grassano
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Maura Brunetti
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Marco Barberis
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Lucia Corrado
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Sandra D'Alfonso
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Barbara Iazzolino
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Laura Peotta
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Maria Francesca Sarnelli
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Valentina Solara
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Jean Pierre Zucchetti
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Fabiola De Marchi
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Letizia Mazzini
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Gabriele Mora
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| | - Andrea Calvo
- From the ALS Center (A. Chiò, C.M., A. Canosa, U.M., F.D., R.V., M.G., M. Brunetti, M. Barberis, B.I., L.P., J.P.Z., A. Calvo), "Rita Levi Montalcini" Department of Neuroscience, University of Torino; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Torino (A. Chiò, C.M., A. Calvo), Turin; Institute of Cognitive Sciences and Technologies (A. Chiò), National Research Council, Rome; Department of Health Sciences Interdisciplinary Research Center of Autoimmune Diseases (L.C., S.D.), "Amedeo Avogadro" University of Eastern Piedmont, Novara; ALS Center, Department of Neurology (M.F.S., V.S., F.D.M., L.M.), Azienda Ospedaliera Universitaria Maggiore della Carità, Novara; and Istituti Clinici Scientifici Maugeri (G.M.), IRCCS Milano, Milan, Italy
| |
Collapse
|
34
|
Tokuda E, Takei YI, Ohara S, Fujiwara N, Hozumi I, Furukawa Y. Wild-type Cu/Zn-superoxide dismutase is misfolded in cerebrospinal fluid of sporadic amyotrophic lateral sclerosis. Mol Neurodegener 2019; 14:42. [PMID: 31744522 PMCID: PMC6862823 DOI: 10.1186/s13024-019-0341-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Background A subset of familial forms of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene coding Cu/Zn-superoxide dismutase (SOD1). Mutant SOD1 proteins are susceptible to misfolding and abnormally accumulated in spinal cord, which is most severely affected in ALS. It, however, remains quite controversial whether misfolding of wild-type SOD1 is involved in more prevalent sporadic ALS (sALS) cases without SOD1 mutations. Methods Cerebrospinal fluid (CSF) from patients including sALS as well as several other neurodegenerative diseases and non-neurodegenerative diseases was examined with an immunoprecipitation assay and a sandwich ELISA using antibodies specifically recognizing misfolded SOD1. Results We found that wild-type SOD1 was misfolded in CSF from all sALS cases examined in this study. The misfolded SOD1 was also detected in CSF from a subset of Parkinson’s disease and progressive supranuclear palsy, albeit with smaller amounts than those in sALS. Furthermore, the CSF samples containing the misfolded SOD1 exhibited significant toxicity toward motor neuron-like NSC-34 cells, which was ameliorated by removal of the misfolded wild-type SOD1 with immunoprecipitation. Conclusions Taken together, we propose that misfolding of wild-type SOD1 in CSF is a common pathological process of ALS cases regardless of SOD1 mutations.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Yo-Ichi Takei
- Department of Neurology, Matsumoto Medical Center, Matsumoto, 399-0021, Japan
| | - Shinji Ohara
- Department of Neurology, Matsumoto Medical Center, Matsumoto, 399-0021, Japan.,Department of Neurology, Iida Hospital, Iida, 395-8505, Japan
| | - Noriko Fujiwara
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.,Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
35
|
Wang R, Xu X, Hao Z, Zhang S, Wu D, Sun H, Mu C, Ren H, Wang G. Poly-PR in C9ORF72-Related Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Causes Neurotoxicity by Clathrin-Dependent Endocytosis. Neurosci Bull 2019; 35:889-900. [PMID: 31148094 DOI: 10.1007/s12264-019-00395-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 02/04/2023] Open
Abstract
GGGGCC repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). It has been reported that hexanucleotide repeat expansions in C9ORF72 produce five dipeptide repeat (DPR) proteins by an unconventional repeat-associated non-ATG (RAN) translation. Within the five DPR proteins, poly-PR and poly-GR that contain arginine are more toxic than the other DPRs (poly-GA, poly-GP, and poly-PA). Here, we demonstrated that poly-PR peptides transferred into cells by endocytosis in a clathrin-dependent manner, leading to endoplasmic reticulum stress and cell death. In SH-SY5Y cells and primary cortical neurons, poly-PR activated JUN amino-terminal kinase (JNK) and increased the levels of p53 and Bax. The uptake of poly-PR peptides by cells was significantly inhibited by knockdown of clathrin or by chlorpromazine, an inhibitor that blocks clathrin-mediated endocytosis. Inhibition of clathrin-dependent endocytosis by chlorpromazine significantly blocked the transfer of poly-PR peptides into cells, and attenuated poly-PR-induced JNK activation and cell death. Our data revealed that the uptake of poly-PR undergoes clathrin-dependent endocytosis and blockade of this process prevents the toxic effects of synthetic poly-PR peptides.
Collapse
Affiliation(s)
- Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xingyun Xu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shun Zhang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Dan Wu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
36
|
Zhenfei L, Shiru D, Xiaomeng Z, Cuifang C, Yaling L. Discontiguous or Contiguous Spread Patterns Affect the Functional Staging in Patients With Sporadic Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:523. [PMID: 31191429 PMCID: PMC6540586 DOI: 10.3389/fneur.2019.00523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/01/2019] [Indexed: 12/12/2022] Open
Abstract
Objective: This study aimed to investigate whether the spread pattern affects functional staging in amyotrophic lateral sclerosis (ALS). We examined the spreading patterns of disease following symptom onset and the affected regions in ALS using electromyography. Methods: This study reviewed the medical records of 103 patients with sporadic ALS in the Second Hospital of Hebei Medical University from 2012 to 2017. According to the clinical manifestation and the distribution of the affected regions on electromyography, spread patterns were classified as discontiguous or contiguous. The patients were graded according to the ALS-Milano-Torino staging (MITOS) system. Results: The clinical spread patterns were contiguous in 91.5% of patients and discontiguous in 8.5% of patients. The electrophysiological spread patterns were contiguous in 87.4% of patients and discontiguous in 12.6% of patients. Sex, age, or delay in diagnosis did not affect the clinical or electrophysiological spread patterns. No significant correlation was observed between the clinical classification and the ALS-MITOS grade, but the electrophysiological spread was significantly correlated with the ALS-MITOS. Conclusion: This study provides evidence that not all ALS patients show contiguous clinical or electrophysiological spread patterns. The electrophysiological spread pattern can affect the functional staging in ALS patients.
Collapse
Affiliation(s)
- Li Zhenfei
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, China
| | - Duan Shiru
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, China
| | - Zhou Xiaomeng
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, China
| | - Cao Cuifang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, China
| | - Liu Yaling
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Hebei Neurology, Shijiazhuang, China
| |
Collapse
|
37
|
Verber NS, Shepheard SR, Sassani M, McDonough HE, Moore SA, Alix JJP, Wilkinson ID, Jenkins TM, Shaw PJ. Biomarkers in Motor Neuron Disease: A State of the Art Review. Front Neurol 2019; 10:291. [PMID: 31001186 PMCID: PMC6456669 DOI: 10.3389/fneur.2019.00291] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Motor neuron disease can be viewed as an umbrella term describing a heterogeneous group of conditions, all of which are relentlessly progressive and ultimately fatal. The average life expectancy is 2 years, but with a broad range of months to decades. Biomarker research deepens disease understanding through exploration of pathophysiological mechanisms which, in turn, highlights targets for novel therapies. It also allows differentiation of the disease population into sub-groups, which serves two general purposes: (a) provides clinicians with information to better guide their patients in terms of disease progression, and (b) guides clinical trial design so that an intervention may be shown to be effective if population variation is controlled for. Biomarkers also have the potential to provide monitoring during clinical trials to ensure target engagement. This review highlights biomarkers that have emerged from the fields of systemic measurements including biochemistry (blood, cerebrospinal fluid, and urine analysis); imaging and electrophysiology, and gives examples of how a combinatorial approach may yield the best results. We emphasize the importance of systematic sample collection and analysis, and the need to correlate biomarker findings with detailed phenotype and genotype data.
Collapse
Affiliation(s)
- Nick S Verber
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Stephanie R Shepheard
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Harry E McDonough
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Sophie A Moore
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - James J P Alix
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Iain D Wilkinson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Tom M Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
38
|
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a progressive fatal disorder that affects all skeletal muscles, leading to death, mostly within 2-4 years from onset. To date, the anti-glutamatergic drug riluzole is the only drug that has been approved for the treatment of this disease; however, its efficacy is modest. Oxidative stress is considered to be involved in the pathology of ALS, and in this regard, the free radical scavenger edaravone, which was originally developed for the treatment of acute ischemic stroke, has also been developed for the treatment of ALS. Areas covered: This review describes the pharmacological properties of edaravone and the progress of clinical trials conducted to evaluate the efficacy of this drug in the treatment of ALS. Expert commentary: Edaravone is the first drug to show effective inhibition of the motor function deterioration experienced by ALS patients with early-stage probable and definite types. In order to effectively prolong the quality of motor function, edaravone treatment should be initiated as soon as the diagnosis has been confirmed; however, the respiratory function should be carefully monitored when a deterioration in breathing capacity is detected.
Collapse
Affiliation(s)
- Hiide Yoshino
- a Department of Neurology , Yoshino Neurology Clinic , Ichikawa-city , Japan
| |
Collapse
|
39
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
40
|
Ayers JI, Cashman NR. Prion-like mechanisms in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:337-354. [PMID: 29887144 DOI: 10.1016/b978-0-444-63945-5.00018-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prion hypothesis - a protein conformation capable of replicating without a nucleic acid genome - was heretical at the time of its discovery. However, the characteristics of the disease-misfolded prion protein and its ability to transmit disease, replicate, and spread are now widely accepted throughout the scientific community. In fact, in the last decade a wealth of evidence has emerged supporting similar properties observed for many of the misfolded proteins implicated in other neurodegenerative diseases, such as Alzheimer disease, Parkinson disease, tauopathies, and as described in this chapter, amyotrophic lateral sclerosis (ALS). Multiple studies have now demonstrated the ability for superoxide dismutase-1, 43-kDa transactive response (TAR) DNA-binding protein, fused-in sarcoma, and most recently, C9orf72-encoded polypeptides to display properties similar to those of prions. The majority of these are cell-free and in vitro assays, while superoxide dismutase-1 remains the only ALS-linked protein to demonstrate several prion-like properties in vivo. In this chapter, we provide an introduction to ALS and review the recent literature linking several proteins implicated in the familial forms of the disease to properties of the prion protein.
Collapse
Affiliation(s)
- Jacob I Ayers
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, United States
| | - Neil R Cashman
- Department of Medicine, Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
41
|
Azuma Y, Mizuta I, Tokuda T, Mizuno T. Amyotrophic Lateral Sclerosis Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:79-95. [PMID: 29951816 DOI: 10.1007/978-981-13-0529-0_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects upper and lower motor neurons in the brain and the spinal cord. Due to the progressive neurodegeneration, ALS leads to paralysis and death caused by respiratory failure 2-5 years after the onset of symptoms. There is no effective cure available. Most ALS cases are sporadic, without family history, whereas 10% of the cases are familial. Identification of variants in more than 30 different loci has provided insight into the pathogenic molecular mechanisms mediating disease pathogenesis. Studies of a Drosophila melanogaster model for each of the ALS genes can contribute to uncovering pathophysiological mechanism of ALS and finding targets of the disease-modifying therapy. In this review, we focus on three ALS-causing genes: TAR DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS/TLS), and chromosome 9 open reading frame 72 (C9orf72).
Collapse
Affiliation(s)
- Yumiko Azuma
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
42
|
Cruz MP. Edaravone (Radicava): A Novel Neuroprotective Agent for the Treatment of Amyotrophic Lateral Sclerosis. P & T : A PEER-REVIEWED JOURNAL FOR FORMULARY MANAGEMENT 2018; 43:25-28. [PMID: 29290672 PMCID: PMC5737249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Edaravone (Radicava): a novel neuroprotective agent for the treatment of amyotrophic lateral sclerosis.
Collapse
|
43
|
Goutman SA, Chen KS, Paez-Colasante X, Feldman EL. Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:603-623. [PMID: 29478603 DOI: 10.1016/b978-0-444-64076-5.00039-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, noncurable neurodegenerative disorder of the upper and lower motor neurons causing weakness and death within a few years of symptom onset. About 10% of patients with ALS have a family history of the disease; however, ALS-associated genetic mutations are also found in sporadic cases. There are over 100 ALS-associated mutations, and importantly, several genetic mutations, including C9ORF72, SOD1, and TARDBP, have led to mechanistic insight into this complex disease. In the clinical realm, knowledge of ALS genetics can also help explain phenotypic heterogeneity, aid in genetic counseling, and in the future may help direct treatment efforts.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
44
|
Westergard T, Jensen BK, Wen X, Cai J, Kropf E, Iacovitti L, Pasinelli P, Trotti D. Cell-to-Cell Transmission of Dipeptide Repeat Proteins Linked to C9orf72-ALS/FTD. Cell Rep 2017; 17:645-652. [PMID: 27732842 DOI: 10.1016/j.celrep.2016.09.032] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/05/2016] [Accepted: 09/12/2016] [Indexed: 01/13/2023] Open
Abstract
Aberrant hexanucleotide repeat expansions in C9orf72 are the most common genetic change underlying amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). RNA transcripts containing these expansions undergo repeat-associated non-ATG translation (RAN-T) to form five dipeptide repeat proteins (DPRs). DPRs are found as aggregates throughout the CNS of C9orf72-ALS/FTD patients, and some cause degeneration when expressed in vitro in neuronal cultures and in vivo in animal models. The spread of characteristic disease-related proteins drives the progression of pathology in many neurodegenerative diseases. While DPR toxic mechanisms continue to be investigated, the potential for DPRs to spread has yet to be determined. Using different experimental cell culture platforms, including spinal motor neurons derived from induced pluripotent stem cells from C9orf72-ALS patients, we found evidence for cell-to-cell spreading of DPRs via exosome-dependent and exosome-independent pathways, which may be relevant to disease.
Collapse
Affiliation(s)
- Thomas Westergard
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Brigid K Jensen
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Xinmei Wen
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Jingli Cai
- Stem Cell Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Elizabeth Kropf
- Stem Cell Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Lorraine Iacovitti
- Stem Cell Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
45
|
Takeda T. Possible concurrence of TDP-43, tau and other proteins in amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Neuropathology 2017; 38:72-81. [PMID: 28960544 DOI: 10.1111/neup.12428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
Abstract
Transactivation response DNA-binding protein 43 kDa (TDP-43) has been regarded as a major component of ubiquitin-positive/tau-negative inclusions of motor neurons and the frontotemporal cortices in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Neurofibrillary tangles (NFT), an example of tau-positive inclusions, are biochemically and morphologically distinguished from TDP-43-positive inclusions, and are one of the pathological core features of Alzheimer disease (AD). Although ALS/FTLD and AD are distinct clinical entities, they can coexist in an individual patient. Whether concurrence of ALS/FTLD-TDP-43 and AD-tau is incidental is still controversial, because aging is a common risk factor for ALS/FTLD and AD development. Indeed, it remains unclear whether the pathogenesis of ALS/FTLD is a direct causal link to tau accumulation. Recent studies suggested that AD pathogenesis could cause the accumulation of TDP-43, while abnormal TDP-43 accumulation could also lead to abnormal tau expression. Overlapping presence of TDP-43 and tau, when observed in a brain during autopsy, should attract attention, and should initiate the search for the pathological substrate for this abnormal protein accumulation. In addition to tau, other proteins including α-synuclein and amyloid β should be also taken into account as candidates for an interaction with TDP-43. Awareness of a possible comorbidity between TDP-43, tau and other proteins in patients with ALS/FTLD will be useful for our understanding of the influence of these proteins on the disease development and its clinical manifestation.
Collapse
Affiliation(s)
- Takahiro Takeda
- Department of Neurology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
46
|
Platelet phosphorylated TDP-43: an exploratory study for a peripheral surrogate biomarker development for Alzheimer's disease. Future Sci OA 2017; 3:FSO238. [PMID: 29134122 PMCID: PMC5674277 DOI: 10.4155/fsoa-2017-0090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
Aim: Alzheimer's disease (AD) and other forms of dementia create a noncurable disease population in world's societies. To develop a blood-based biomarker is important so that the remedial or disease-altering therapeutic intervention for AD patients would be available at the early stage. Materials & methods: TDP-43 levels were analyzed in postmortem brain tissue and platelets of AD and control subjects. Results: We observed an increased TDP-43 (<60%) in postmortem AD brain regions and similar trends were also observed in patient's platelets. Conclusion: Platelet TDP-43 could be used as a surrogate biomarker that is measurable, reproducible and sensitive for screening the patients with some early clinical signs of AD and can be used to monitor disease prognosis. In this study, we explore to identify an Alzheimer's disease (AD)-selective phospho-specific antibody that recognizes the diseased form of TDP-43 protein in patient's blood-derived platelets. Our results suggest that selective antiphosphorylated TDP-43 antibody discriminates AD from non-demented controls and patients with amyotrophic lateral sclerosis. Therefore, platelet screening with a selective antibody could potentially be a useful tool for diagnostic purposes for AD.
Collapse
|
47
|
Bella ED, Tramacere I, Antonini G, Borghero G, Capasso M, Caponnetto C, Chiò A, Corbo M, Eleopra R, Filosto M, Giannini F, Granieri E, Bella VL, Lunetta C, Mandrioli J, Mazzini L, Messina S, Monsurrò MR, Mora G, Riva N, Rizzi R, Siciliano G, Silani V, Simone I, Sorarù G, Volanti P, Lauria G. Protein misfolding, amyotrophic lateral sclerosis and guanabenz: protocol for a phase II RCT with futility design (ProMISe trial). BMJ Open 2017; 7:e015434. [PMID: 28801400 PMCID: PMC5724081 DOI: 10.1136/bmjopen-2016-015434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Recent studies suggest that endoplasmic reticulum stress may play a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS) through an altered regulation of the proteostasis, the cellular pathway-balancing protein synthesis and degradation. A key mechanism is thought to be the dephosphorylation of eIF2α, a factor involved in the initiation of protein translation. Guanabenz is an alpha-2-adrenergic receptor agonist safely used in past to treat mild hypertension and is now an orphan drug. A pharmacological action recently discovered is its ability to modulate the synthesis of proteins by the activation of translational factors preventing misfolded protein accumulation and endoplasmic reticulum overload. Guanabenz proved to rescue motoneurons from misfolding protein stress both in in vitro and in vivo ALS models, making it a potential disease-modifying drug in patients. It is conceivable investigating whether its neuroprotective effects based on the inhibition of eIF2α dephosphorylation can change the progression of ALS. METHODS AND ANALYSES Protocolised Management In Sepsis is a multicentre, randomised, double-blind, placebo-controlled phase II clinical trial with futility design. We will investigate clinical outcomes, safety, tolerability and biomarkers of neurodegeneration in patients with ALS treated with guanabenz or riluzole alone for 6 months. The primary aim is to test if guanabenz can reduce the proportion of patients progressed to a higher stage of disease at 6 months compared with their baseline stage as measured by the ALS Milano-Torino Staging (ALS-MITOS) system and to the placebo group. Secondary aims are safety, tolerability and change in at least one biomarker of neurodegeneration in the guanabenz arm compared with the placebo group. Findings will provide reliable data on the likelihood that guanabenz can slow the course of ALS in a phase III trial. ETHICS AND DISSEMINATION The study protocol was approved by the Ethics Committee of IRCCS 'Carlo Besta Foundation' of Milan (Eudract no. 2014-005367-32 Pre-results) based on the Helsinki declaration.
Collapse
Affiliation(s)
- Eleonora Dalla Bella
- 3rd Neurology Unit and ALS Centre, IRCCS ‘Carlo Besta’ Neurological Institute, Milan, Italy
| | - Irene Tramacere
- Scientific Direction, IRCCS ‘Carlo Besta’ Neurological Institute, Milan, Italy
| | - Giovanni Antonini
- Neuromuscular Disease Unit, Sant’Andrea Hospital and University of Rome ‘Sapienza’, Rome, Italy
| | - Giuseppe Borghero
- Neurologic Unit, Monserrato University Hospital, Cagliari University, Cagliari, Italy
| | | | - Claudia Caponnetto
- Department of Neurosciences, Rehabilitatioņ Ophthalmology, Genetics, Mother and Child Disease, IRCCS University Hospital San Martino IST, Genova, Italy
| | - Adriano Chiò
- Department of Neurosciences, ALS Centre, ‘Rita Levi Montalcini’, University of Turin and Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation, Casa Cura Policlinico, Milan, Italy
| | - Roberto Eleopra
- Neurology Unit, S Maria della Misericordia University Hospital, Udine, Italy
| | | | - Fabio Giannini
- Department of Medical and Surgery Sciences and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | - Jessica Mandrioli
- Department of Neurosciences, S Agostino-Estense Hospital, Modena, Italy
| | - Letizia Mazzini
- ALS Centre, Neurologic Clinic, Maggiore della Carità University Hospital, Novara;, Italy
| | | | | | - Gabriele Mora
- ALS Center, ‘Salvatore Maugeri’ Clinical-Scientific Institutes, Milan, Italy
| | - Nilo Riva
- Department of Neurology IRCCS ‘San Raffaele’ Hospital, Milan, Italy
| | - Romana Rizzi
- Neurology Unit, Department of Neuro-Motor Diseases, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Pisa, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano - Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Isabella Simone
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Paolo Volanti
- Intensive Neurorehabilitation Unit, IRCCS ‘Salvatore Maugeri’ Foundation, Mistretta, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit and ALS Centre, IRCCS ‘Carlo Besta’ Neurological Institute, Milan, Italy
| |
Collapse
|
48
|
Grad LI, Rouleau GA, Ravits J, Cashman NR. Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024117. [PMID: 28003278 DOI: 10.1101/cshperspect.a024117] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is primarily characterized by progressive loss of motor neurons, although there is marked phenotypic heterogeneity between cases. Typical, or "classical," ALS is associated with simultaneous upper motor neuron (UMN) and lower motor neuron (LMN) involvement at disease onset, whereas atypical forms, such as primary lateral sclerosis and progressive muscular atrophy, have early and predominant involvement in the UMN and LMN, respectively. The varying phenotypes can be so distinctive that they would seem to have differing biology. Because the same phenotypes can have multiple causes, including different gene mutations, there may be multiple molecular mechanisms causing ALS, implying that the disease is a syndrome. Conversely, multiple phenotypes can be caused by a single gene mutation; thus, a single molecular mechanism could be compatible with clinical heterogeneity. The pathogenic mechanism(s) in ALS remain unknown, but active propagation of the pathology neuroanatomically is likely a primary component.
Collapse
Affiliation(s)
- Leslie I Grad
- Djavad Mowafaghian Centre for Brain Health, Department of Medicine (Neurology), University of British Columbia, Vancouver V6T 2B5, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montréal H3A 2B4, Canada
| | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, Department of Medicine (Neurology), University of British Columbia, Vancouver V6T 2B5, Canada
| |
Collapse
|
49
|
Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133:79-90. [PMID: 27757524 PMCID: PMC5209403 DOI: 10.1007/s00401-016-1633-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 01/31/2023]
Abstract
Two nerve cells types, Betz cells in layer Vb of the primary motor neocortex and α-motoneurons of the lower brainstem and spinal cord, become involved at the beginning of the pathological cascade underlying sporadic amyotrophic lateral sclerosis (sALS). In both neuronal types, the cell nuclei forfeit their normal (non-phosphorylated) expression of the 43-kDa transactive response DNA-binding protein (TDP-43). Here, we present initial evidence that in α-motoneurons the loss of normal nuclear TDP-43 expression is followed by the formation of phosphorylated TDP-43 aggregates (pTDP-43) within the cytoplasm, whereas in Betz cells, by contrast, the loss of normal nuclear TDP-43 expression remains mostly unaccompanied by the development of cytoplasmic aggregations. We discuss some implications of this phenomenon of nuclear clearing in the absence of cytoplasmic inclusions, namely, abnormal but soluble (and, thus, probably toxic) cytoplasmic TDP-43 could enter the axoplasm of Betz cells, and following its transmission to the corresponding α-motoneurons in the lower brainstem and spinal cord, possibly contribute in recipient neurons to the dysregulation of the normal nuclear protein. Because the cellular mechanisms that possibly inhibit the aggregation of TDP-43 in the cytoplasm of involved Betz cells are unknown, insight into such mechanisms could disclose a pathway by which the development of aggregates in this cell population could be accelerated, thereby opening an avenue for a causally based therapy.
Collapse
|
50
|
Ding X, Ma M, Teng J, Teng RKF, Zhou S, Yin J, Fonkem E, Huang JH, Wu E, Wang X. Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget 2016; 6:24178-91. [PMID: 26172304 PMCID: PMC4695178 DOI: 10.18632/oncotarget.4680] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent a continuum of devastating neurodegenerative diseases, characterized by transactive response DNA-binding protein of 43 kDa (TDP-43) aggregates accumulation throughout the nervous system. Despite rapidly emerging evidence suggesting the hypothesis of 'prion-like propagation' of TDP-43 positive inclusion in the regional spread of ALS symptoms, whether and how TDP-43 aggregates spread between cells is not clear. Herein, we established a cerebrospinal fluid (CSF)-cultured cell model to dissect mechanisms governing TDP-43 aggregates formation and propagation. Remarkably, intracellular TDP-43 mislocalization and aggregates were induced in the human glioma U251 cells following exposure to ALS-FTD-CSF but not ALS-CSF and normal control (NC) -CSF for 21 days. The exosomes derived from ALS-FTD-CSF were enriched in TDP-43 C-terminal fragments (CTFs). Incubation of ALS-FTD-CSF induced the increase of mislocated TDP-43 positive exosomes in U251 cells. We further demonstrated that exposure to ALS-FTD-CSF induced the generations of tunneling nanotubes (TNTs)-like structure and exosomes at different stages, which mediated the propagation of TDP-43 aggregates in the cultured U251 cells. Moreover, immunoblotting analyses revealed that abnormal activations of apoptosis and autophagy were induced in U251 cells, following incubation of ALS-CSF and ALS-FTD-CSF. Taken together, our data provide direct evidence that ALS-FTD-CSF has prion-like transmissible properties. TNTs-like structure and exosomes supply the routes for the transfer of TDP-43 aggregates, and selective inhibition of their over-generations may interrupt the progression of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Xuebing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingming Ma
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Robert K F Teng
- College of Engineering, California State University, Los Angeles, CA, USA
| | - Shuang Zhou
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Jingzheng Yin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ekokobe Fonkem
- Scott & White Neuroscience Institute, Texas A & M Health Science Center, College of Medicine, Temple, TX, USA
| | - Jason H Huang
- Scott & White Neuroscience Institute, Texas A & M Health Science Center, College of Medicine, Temple, TX, USA
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|