1
|
Al Massadi O, Labarchède M, de Pins B, Longueville S, Giralt A, Irinopoulou T, Savariradjane M, Subashi E, Ginés S, Caboche J, Mariani LL, Betuing S, Girault JA. PYK2 in the dorsal striatum of Huntington's disease R6/2 mouse model. Neurobiol Dis 2025; 207:106840. [PMID: 39971200 DOI: 10.1016/j.nbd.2025.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
Huntington's disease (HD) is a devastating disease due to autosomal dominant mutation in the HTT gene. Its pathophysiology involves multiple molecular alterations including transcriptional defects. We previously showed that in HD patients and mouse model, the protein levels of the non-receptor tyrosine kinase PYK2 were decreased in the hippocampus and that viral expression of PYK2 improved the hippocampal phenotype. Here, we investigated the possible contribution of PYK2 in the striatum, a brain region particularly altered in HD. PYK2 mRNA levels were decreased in the striatum and hippocampus of R6/2 mice, a severe HD model. Striatal PYK2 protein levels were also decreased in R6/2 mice and human patients. PYK2 knockout by itself did not result in motor symptoms observed in HD mouse models. We examined whether PYK2 deficiency participated in the R6/2 mice phenotype by expressing PYK2 in their dorsal striatum using AAV vectors. With an AAV1/Camk2a promoter, we did not observe significant improvement of body weight, clasping, motor activity and coordination (rotarod) alterations observed in R6/2 mice. With an AAV9/SYN1 promoter we found a slightly higher body weight and a trend to better rotarod performance. Both viruses similarly transduced striatal projection neurons and somatostatin-positive interneurons but only AAV9/SYN1 led to PYK2 expression in cholinergic and parvalbumin-positive interneurons. Expression of PYK2 in cholinergic interneurons may contribute to the slight effects observed. We conclude that PYK2 mRNA and protein levels are decreased in the striatum as in hippocampus of HD patients and mouse models. However, in contrast to hippocampus, striatal viral expression of PYK2 has only a minor effect on the R6/2 model striatal phenotype.
Collapse
Affiliation(s)
- Omar Al Massadi
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France.
| | - Mélody Labarchède
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France; Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Benoit de Pins
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France
| | - Sophie Longueville
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France
| | - Albert Giralt
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France; Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain
| | - Theano Irinopoulou
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France
| | - Mythili Savariradjane
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France
| | - Enejda Subashi
- Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Paris, France; CNRS UMR8246, Paris, France; INSERM U1130, Paris, France
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain
| | - Jocelyne Caboche
- Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Paris, France; CNRS UMR8246, Paris, France; INSERM U1130, Paris, France
| | - Louise-Laure Mariani
- Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, Sorbonne Université, Paris, France
| | - Sandrine Betuing
- Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Paris, France; CNRS UMR8246, Paris, France; INSERM U1130, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France; Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, Sorbonne Université, Paris, France.
| |
Collapse
|
2
|
Salemi M, Di Stefano V, Schillaci FA, Marchese G, Salluzzo MG, Cordella A, De Leo I, Perrotta CS, Nibali G, Lanza G, Ferri R. Transcriptome Study in Sicilian Patients with Huntington's Disease. Diagnostics (Basel) 2025; 15:409. [PMID: 40002561 PMCID: PMC11854416 DOI: 10.3390/diagnostics15040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the expansion of the CAG nucleotide repeat in the first exon of the huntingtin (HTT) gene. The disease typically manifests between the second and third decades of life and progresses gradually. The pathogenesis of HD involves the dysregulation of gene expression, influenced by various molecular processes ranging from transcription to protein stability. Methods: To investigate potential variations in gene expression associated with HD, a transcriptome study was conducted using peripheral blood mononuclear cell samples from 15 HD patients and 15 controls, all of Sicilian origin. Results: The analysis identified 7179 statistically significant differentially expressed genes between the two groups. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) terms were applied to identify the pathways affected by these differentially expressed mRNAs. The GSEA results highlighted significant associations between HD and GO pathways related to ribosomal functions and structure. These pathways were predominantly characterized by negative expression, with a substantial number of genes showing dysregulation. This suggests that the molecular processes leading to protein translation via ribosomes may be impaired in HD. Furthermore, dysregulation was observed in genes and non-coding RNAs involved in regulatory roles across various transcriptional processes. Conclusions: These findings support the hypothesis that the entire process, from transcription to translation, is disrupted in HD patients carrying the CAG repeat expansion in the first exon of the HTT gene.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, PA, Italy;
| | - Francesca A. Schillaci
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
| | - Giovanna Marchese
- Genomix4Life S.r.l., 84081 Baronissi, SA, Italy; (G.M.); (A.C.); (I.D.L.)
- Genome Research Center for Health-CRGS, 84081 Baronissi, SA, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
| | - Angela Cordella
- Genomix4Life S.r.l., 84081 Baronissi, SA, Italy; (G.M.); (A.C.); (I.D.L.)
- Genome Research Center for Health-CRGS, 84081 Baronissi, SA, Italy
| | - Ilenia De Leo
- Genomix4Life S.r.l., 84081 Baronissi, SA, Italy; (G.M.); (A.C.); (I.D.L.)
| | | | - Giuseppe Nibali
- U.O.S.D. Neurology and Stroke Unit, P.O. Umberto I, 96100 Siracusa, SR, Italy;
| | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, CT, Italy
| | - Raffaele Ferri
- Oasi Research Institute-IRCCS, 94018 Troina, EN, Italy; (F.A.S.); (M.G.S.); or (G.L.); (R.F.)
| |
Collapse
|
3
|
Andriessen RL, Oosterloo M, Molema J, Daemen MMJ, Linden DEJ, Leentjens AFG. Pharmacological Treatment of Neuropsychiatric Symptoms in Huntington's Disease: A Systematic Review. Mov Disord Clin Pract 2025. [PMID: 39891411 DOI: 10.1002/mdc3.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/07/2024] [Accepted: 12/30/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Studies focusing on the treatment of neuropsychiatric symptoms (NPS) in Huntington's disease (HD) are scarce and show a wide variation in design, outcome measures and methodological quality. The effectiveness of pharmacological treatment of NPS in HD has not been systematically reviewed so far. OBJECTIVE To provide an overview of the available literature on the effectiveness of pharmacological treatment of NPS in HD. METHODS PubMed and the Cochrane library were systematically searched for studies assessing the effects of pharmacotherapy of NPS, both as a primary and as secondary outcome. A risk of bias assessment was performed for each article. RESULTS Fifteen articles qualified for critical evaluation: 10 randomized controlled trials (RCTs) (five placebo-controlled and five cross-over) and five open label studies. One RCT reported improvement of the overall NPS with nabilone treatment; another RCT reported that fluoxetine slightly improved irritability. Lower-level evidence from open studies suggests that the atypical antipsychotics cariprazine, olanzapine and risperidone may improve overall NPS, and that cariprazine, venlafaxine XR and olanzapine may improve depression. In addition, olanzapine may improve obsessive thoughts, aggression, anxiety and irritability. CONCLUSIONS We conclude that although NPS in HD are common, hardly any clinical trials have addressed their treatment. As a result, convincing evidence that could guide clinical practice is lacking. More focused, and larger, multicenter trials focusing on NPS are urgently needed to generate the knowledge necessary to support the development of evidence-based clinical treatment guidelines.
Collapse
Affiliation(s)
- Ruben L Andriessen
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Mayke Oosterloo
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Jory Molema
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maud M J Daemen
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - David E J Linden
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Albert F G Leentjens
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
4
|
Ocampo-Ortega SA, Sierra-Sanchez VM, Blancas-Napoles CM, González-Carteño A, Mera-Jiménez E, Macías-Pérez ME, Hernandez-Guerra A, Romero-Nava R, Huang F, Hong E, Villafaña S. Evaluation of an Antisense Oligonucleotide Targeting CAG Repeats: A Patient-Customized Therapy Study for Huntington's Disease. Life (Basel) 2024; 14:1607. [PMID: 39768315 PMCID: PMC11677511 DOI: 10.3390/life14121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Huntington's disease is a genetic disorder characterized by progressive neuronal cell damage in some areas of the brain; symptoms are commonly associated with chorea, rigidity and dystonia. The symptoms in Huntington's Disease are caused by a pathological increase in the number of Cytokine-Adenine-Guanine (CAG) repeats on the first exon of the Huntingtin gene, which causes a protein to have an excessive number of glutamine residues; this alteration leads to a change in the protein's conformation and function. Therefore, the purpose of this work was to design, synthesize and evaluate an antisense oligonucleotide (ASO; 95 nucleotides) HTT 90-5 directed to the Huntingtin CAG repeats in primary leukocyte culture cells from a patient with Huntington's Disease; approximately 500,000 leukocytes per well extracted from venous blood were used, to which 100 pMol of ASO were administered, and the expression of Huntingtin was subsequently evaluated at 72 h by RT-PCR. Our results showed that the administration of the HTT 90-5 antisense decreased the expression of Huntingtin mRNA in the primary culture leukocyte cells from our patient. These results suggest that the use of long antisense targeting the CAG Huntingtin cluster may be an option to decrease the expression of Huntingtin and probably could be adjusted depending on the number of CAG repeats in the cluster.
Collapse
Affiliation(s)
- Sergio Adrian Ocampo-Ortega
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Vivany Maydel Sierra-Sanchez
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Citlali Margarita Blancas-Napoles
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Asdrúbal González-Carteño
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Elvia Mera-Jiménez
- Laboratorio de Cultivo Celular, Neurobiología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (E.M.-J.); (M.E.M.-P.)
| | - Martha Edith Macías-Pérez
- Laboratorio de Cultivo Celular, Neurobiología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (E.M.-J.); (M.E.M.-P.)
| | - Adriana Hernandez-Guerra
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Rodrigo Romero-Nava
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de Mexico “Federico Gómez”, Ciudad de Mexico 06720, Mexico;
| | - Enrique Hong
- Departamento de Neurofarmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de Mexico 14330, Mexico;
| | - Santiago Villafaña
- Laboratorio de Terapia Génica Experimental, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico; (S.A.O.-O.); (V.M.S.-S.); (C.M.B.-N.); (A.G.-C.); (A.H.-G.); (R.R.-N.)
| |
Collapse
|
5
|
Bartolomeu Pires S, Kunkel D, Goodwin N, Dace S, Culliford D, Kipps C, Portillo MC. Are people living with Huntington's disease experiencing person-centered integrated care? J Huntingtons Dis 2024; 13:535-546. [PMID: 39973375 DOI: 10.1177/18796397241288449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background: Huntington's disease (HD) is among the most complex long-term neurological conditions, necessitating care and management from multiple partners within and beyond the health sector. However, there is a paucity of evidence describing how individuals receive this multifaceted care and whether current care provision adequately meets their needs. Objective: To understand if current care provision is meeting the complex needs of people living with HD in England and assess their perceived need for integrated care. Methods: A cross-sectional survey was co-designed with patient and public representatives, as part of a mixed-methods study to explore what integrated care means for people living with HD. The survey was distributed online and via charities, collecting quantitative and qualitative data. Descriptive statistics and content analysis were performed. Results: A total of 153 people, from 45 counties in England, participated in the survey. When assessing person-centered coordinated care, 65% of respondents rated their care as very poor, poor, or expressed a neutral opinion; carers reported the lowest scores. Although 58% of the participants said it was extremely important to have a care coordinator, only 19% of people reported having one, with these coordinators being identified in only 40% of the counties. Nevertheless, people with access to a care coordinator reported markedly improved care experiences. Conclusions: People living with HD commonly report fragmented care, geographical inequalities in care access, and unmet complex needs. Future research should focus on developing an HD integrated care model tailored to address these complex needs, including an evaluation of the cost-effectiveness of an HD care coordinator.
Collapse
Affiliation(s)
- Sandra Bartolomeu Pires
- NIHR Applied Research Collaboration Wessex, Southampton Science Park, Innovation Centre, Southampton, UK
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Dorit Kunkel
- NIHR Applied Research Collaboration Wessex, Southampton Science Park, Innovation Centre, Southampton, UK
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Nicholas Goodwin
- Central Coast Research Institute for Integrated Care, Central Coast Local Health District and University of Newcastle, Gosford, New South Wales, Australia
| | - Sally Dace
- NIHR Applied Research Collaboration Wessex, Southampton Science Park, Innovation Centre, Southampton, UK
| | - David Culliford
- NIHR Applied Research Collaboration Wessex, Southampton Science Park, Innovation Centre, Southampton, UK
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Christopher Kipps
- NIHR Applied Research Collaboration Wessex, Southampton Science Park, Innovation Centre, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Mari Carmen Portillo
- NIHR Applied Research Collaboration Wessex, Southampton Science Park, Innovation Centre, Southampton, UK
- School of Health Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
6
|
Li Y, Fu J, Wang H. Advancements in Targeting Ion Channels for the Treatment of Neurodegenerative Diseases. Pharmaceuticals (Basel) 2024; 17:1462. [PMID: 39598374 PMCID: PMC11597607 DOI: 10.3390/ph17111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Ion channels are integral membrane proteins embedded in biological membranes, and they comprise specific proteins that control the flow of ion transporters in and out of cells, playing crucial roles in the biological functions of different cells. They maintain the homeostasis of water and ion metabolism by facilitating ion transport and participate in the physiological processes of neurons and glial cells by regulating signaling pathways. Neurodegenerative diseases are a group of disorders characterized by the progressive loss of neurons in the central nervous system (CNS) or peripheral nervous system (PNS). Despite significant progress in understanding the pathophysiological processes of various neurological diseases in recent years, effective treatments for mitigating the damage caused by these diseases remain inadequate. Increasing evidence suggests that ion channels are closely associated with neuroinflammation; oxidative stress; and the characteristic proteins in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, studying the pathogenic mechanisms closely related to ion channels in neurodegenerative diseases can help identify more effective therapeutic targets for treating neurodegenerative diseases. Here, we discuss the progress of research on ion channels in different neurodegenerative diseases and emphasize the feasibility and potential of treating such diseases from the perspective of ion channels.
Collapse
Affiliation(s)
- Yuxuan Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
| |
Collapse
|
7
|
Andresen K, Cutting E, Apostolopoulos D, Evans AH, Oakley L, Dayimu A, Demiris N, Bongaerts K, Staples R, Gooding W, Rubinsztein DC, Barker RA. Trial to assess the tolerability of using felodipine to upregulate autophagy as a treatment of Huntington's disease (FELL-HD): a phase II, single-centre, open-label, dose-finding trial protocol. BMJ Open 2024; 14:e087983. [PMID: 39174070 PMCID: PMC11340714 DOI: 10.1136/bmjopen-2024-087983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that presents with a progressive movement disorder along with cognitive and psychiatric problems. It is caused by a Cytosine-adenin-guanine (CAG) expansion in exon 1 of the huntingtin gene which codes for mutant huntingtin (mHTT) that over time accumulates in cells, causing dysfunction and then death through new toxic gain-of-function mechanisms. Autophagy has been shown to be critical for the degradation of diverse intracytoplasmic aggregate-prone proteins that cause neurodegenerative disease, including mHTT. From a screen of a library enriched in approved drugs, felodipine was selected as the most suitable candidate showing strong autophagy-inducing effects in preclinical models of HD. We are, therefore, conducting a trial to assess the safety and tolerability of felodipine in people with early HD. METHODS AND ANALYSIS FELL-HD is a phase II, single-centre, open-label, dose-finding trial in people with early HD. 18 participants with early clinical features of the disease will be treated with felodipine for 58 weeks, with a further 4-week follow-up. The primary outcome measure is the number of adverse events attributable to felodipine. Exploratory outcomes include additional measures of motor and cognitive function, non-motor symptoms and quality of life scales, as well as peripheral and central disease biomarkers assessed through brain MRI. Analysis of blood and cerebrospinal fluid will also be performed through an associated sample study, FELL HD-s. ETHICS AND DISSEMINATION The study was approved by the London-Brent Research Ethics Committee (reference 22/LO/0387) and has been accepted by the Medicines and Healthcare products Regulatory Agency for clinical trials authorisation (reference CTA 12854/0256/001-0001). A lay summary of the results of the trial will be uploaded to our research group website which is publicly accessible. A webinar or in-person open day, to present results of the trial to participants and our wider cohort of patients who attend our centre, will be held once the trial is completed. The results of the trial will also be published in scientific journals and presented at national and international conferences. TRIAL REGISTRATION NUMBERS EudraCT-2021-000897-27, ISRCTN56240656.
Collapse
Affiliation(s)
- Katie Andresen
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Emma Cutting
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Trials Unit, Cambridge, UK
| | | | - Amy H Evans
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Laura Oakley
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Clinical Trials Unit, Cambridge, UK
| | | | | | - Katherine Bongaerts
- Department of Pharmacy, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Robyn Staples
- Department of Pharmacy, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Wendy Gooding
- Department of Pharmacy, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Piao X, Li D, Liu H, Guo Q, Yu Y. Advances in Gene and Cellular Therapeutic Approaches for Huntington's Disease. Protein Cell 2024:pwae042. [PMID: 39121016 DOI: 10.1093/procel/pwae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 08/11/2024] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the abnormal expansion of CAG trinucleotide repeats in the Huntingtin gene (HTT) located on chromosome 4. It is transmitted in an autosomal dominant manner and is characterized by motor dysfunction, cognitive decline, and emotional disturbances. To date, there are no curative treatments for HD have been developed; current therapeutic approaches focus on symptom relief and comprehensive care through coordinated pharmacological and non-pharmacological methods to manage the diverse phenotypes of the disease. International clinical guidelines for the treatment of HD are continually being revised in an effort to enhance care within a multidisciplinary framework. Additionally, innovative gene and cell therapy strategies are being actively researched and developed to address the complexities of the disorder and improve treatment outcomes. This review endeavours to elucidate the current and emerging gene and cell therapy strategies for HD, offering a detailed insight into the complexities of the disorder and looking forward to future treatment paradigms. Considering the complexity of the underlying mechanisms driving HD, a synergistic treatment strategy that integrates various factors-such as distinct cell types, epigenetic patterns, genetic components, and methods to improve the cerebral microenvironment-may significantly enhance therapeutic outcomes. In the future, we eagerly anticipate ongoing innovations in interdisciplinary research that will bring profound advancements and refinements in the treatment of HD.
Collapse
Affiliation(s)
- Xuejiao Piao
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Dan Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Hui Liu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Qing Guo
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
9
|
Canever JB, Queiroz LY, Soares ES, de Avelar NCP, Cimarosti HI. Circadian rhythm alterations affecting the pathology of neurodegenerative diseases. J Neurochem 2024; 168:1475-1489. [PMID: 37358003 DOI: 10.1111/jnc.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
The circadian rhythm is a nearly 24-h oscillation found in various physiological processes in the human brain and body that is regulated by environmental and genetic factors. It is responsible for maintaining body homeostasis and it is critical for essential functions, such as metabolic regulation and memory consolidation. Dysregulation in the circadian rhythm can negatively impact human health, resulting in cardiovascular and metabolic diseases, psychiatric disorders, and premature death. Emerging evidence points to a relationship between the dysregulation circadian rhythm and neurodegenerative diseases, suggesting that the alterations in circadian function might play crucial roles in the pathogenesis and progression of neurodegenerative diseases. Better understanding this association is of paramount importance to expand the knowledge on the pathophysiology of neurodegenerative diseases, as well as, to provide potential targets for the development of new interventions based on the dysregulation of circadian rhythm. Here we review the latest findings on dysregulation of circadian rhythm alterations in Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, spinocerebellar ataxia and multiple-system atrophy, focusing on research published in the last 3 years.
Collapse
Affiliation(s)
- Jaquelini Betta Canever
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Letícia Yoshitome Queiroz
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ericks Sousa Soares
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Núbia Carelli Pereira de Avelar
- Laboratory of Aging, Resources and Rheumatology, Department of Health Sciences, Federal University of Santa Catarina, Araranguá, Santa Catarina, Brazil
| | - Helena Iturvides Cimarosti
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
10
|
Ibañez K, Jadhav B, Zanovello M, Gagliardi D, Clarkson C, Facchini S, Garg P, Martin-Trujillo A, Gies SJ, Deforie VG, Dalmia A, Hensman Moss DJ, Vandrovcova J, Rocca C, Moutsianas L, Marini-Bettolo C, Walker H, Turner C, Shoai M, Long JD, Fratta P, Langbehn DR, Tabrizi SJ, Caulfield MJ, Cortese A, Escott-Price V, Hardy J, Houlden H, Sharp AJ, Tucci A. Increased frequency of repeat expansion mutations across different populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.07.03.23292162. [PMID: 37461547 PMCID: PMC10350132 DOI: 10.1101/2023.07.03.23292162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Repeat expansion disorders (REDs) are a devastating group of predominantly neurological diseases. Together they are common, affecting 1 in 3,000 people worldwide with population-specific differences. However, prevalence estimates of REDs are hampered by heterogeneous clinical presentation, variable geographic distributions, and technological limitations leading to under-ascertainment. Here, leveraging whole genome sequencing data from 82,176 individuals from different populations, we found an overall disease allele frequency of REDs of 1 in 283 individuals. Modelling disease prevalence using genetic data, age at onset and survival, we show that the expected number of people with REDs would be two to three times higher than currently reported figures, indicating under-diagnosis and/or incomplete penetrance. While some REDs are population-specific, e.g. Huntington disease-like 2 in Africans, most REDs are represented in all broad genetic ancestries (i.e. Europeans, Africans, Americans, East Asians, and South Asians), challenging the notion that some REDs are found only in specific populations. These results have worldwide implications for local and global health communities in the diagnosis and counselling of REDs.
Collapse
Affiliation(s)
- Kristina Ibañez
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Bharati Jadhav
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Matteo Zanovello
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | - Delia Gagliardi
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | - Christopher Clarkson
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Stefano Facchini
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
- IRCCS Mondino Foundation, Pavia, Italy
| | - Paras Garg
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alejandro Martin-Trujillo
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott J Gies
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | - Davina J. Hensman Moss
- St George’s, University of London, London, SW17 0RE, UK
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | | | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Helen Walker
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Chris Turner
- MRC Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG
| | - Maryam Shoai
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
| | - Jeffrey D Long
- Departments of Psychiatry and Biostatistics, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Pietro Fratta
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | - Douglas R Langbehn
- Departments of Psychiatry and Biostatistics, The University of Iowa, Iowa City, IA 52242, USA
| | - Sarah J Tabrizi
- UK Dementia Research Institute, UCL, London, UK
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
- Huntington’s Disease Centre, UCL, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Andrea Cortese
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | - Valentina Escott-Price
- Department of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, UK
- Dementia Research Institute, Cardiff University, UK
| | - John Hardy
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
| | - Henry Houlden
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| |
Collapse
|
11
|
Dickmann CGF, Milicevic Sephton S, Barker RA, Aigbirhio FI. PET Ligands for Imaging Mutant Huntingtin Aggregates: A Case Study in Non-For-Profit Scientific Management. Chembiochem 2024; 25:e202400152. [PMID: 38695673 DOI: 10.1002/cbic.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Indexed: 06/13/2024]
Abstract
Positron emission tomography imaging of misfolded proteins with high-affinity and selective radioligands has played a vital role in expanding our knowledge of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The pathogenesis of Huntington's disease, a CAG trinucleotide repeat disorder, is similarly linked to the presence of protein fibrils formed from mutant huntingtin (mHTT) protein. Development of mHTT fibril-specific radioligands has been limited by the lack of structural knowledge around mHTT and a dearth of available hit compounds for medicinal chemistry refinement. Over the past decade, the CHDI Foundation, a non-for-profit scientific management organisation has orchestrated a large-scale screen of small molecules to identify high affinity ligands of mHTT, with lead compounds now reaching clinical maturity. Here we describe the mHTT radioligands developed to date and opportunities for further improvement of this radiotracer class.
Collapse
Affiliation(s)
- Catherine G F Dickmann
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Selena Milicevic Sephton
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Franklin I Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Chen S, Zhang H, Yu J, Cao X, Zhang S, Dong D. Sex-Specific Differences in the Progression of Huntington's Disease Symptoms - A National Study in China. Neuroepidemiology 2024; 59:78-86. [PMID: 38815560 PMCID: PMC11797925 DOI: 10.1159/000539131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/13/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Huntington's disease (HD) is a rare, inherited neurodegenerative disorder. Despite extensive research on symptom progression and sex differences in Western populations, little is known about these aspects within the Chinese context. The objective of this study was to investigate the temporal trends of symptoms in individuals with HD in China. METHODS A nationwide cross-sectional study was conducted in Chinese individuals diagnosed with HD. Symptom progression over time, encompassing physical, psychiatric, and cognitive symptoms, was self-reported. We calculated the proportions of individuals who currently had each symptom by disease duration, and tested corresponding temporal trends by linear regression analyses. RESULTS A total of 269 individuals diagnosed with HD were included. Specific symptoms were found to progress more significantly in males compared to females over time, including psychotic symptoms (p = 0.007), urinary incontinence (p = 0.013), reduced concentration (p = 0.005), font alteration (p = 0.029), atypical facial expression (p = 0.037), and suicidal ideation (p = 0.047). In terms of cognitive and psychiatric symptoms, no significant temporal trends were identified in females, while males demonstrated significant increasing trends, with reduced concentration (p = 0.005) and psychotic symptoms (p = 0.007) standing out. CONCLUSIONS This study emphasizes the existence of sex-specific symptom progression in HD within the Chinese population, underscoring the importance of considering sex in clinical practice. Further research should investigate the mechanisms behind these differences and explore tailored treatment options. INTRODUCTION Huntington's disease (HD) is a rare, inherited neurodegenerative disorder. Despite extensive research on symptom progression and sex differences in Western populations, little is known about these aspects within the Chinese context. The objective of this study was to investigate the temporal trends of symptoms in individuals with HD in China. METHODS A nationwide cross-sectional study was conducted in Chinese individuals diagnosed with HD. Symptom progression over time, encompassing physical, psychiatric, and cognitive symptoms, was self-reported. We calculated the proportions of individuals who currently had each symptom by disease duration, and tested corresponding temporal trends by linear regression analyses. RESULTS A total of 269 individuals diagnosed with HD were included. Specific symptoms were found to progress more significantly in males compared to females over time, including psychotic symptoms (p = 0.007), urinary incontinence (p = 0.013), reduced concentration (p = 0.005), font alteration (p = 0.029), atypical facial expression (p = 0.037), and suicidal ideation (p = 0.047). In terms of cognitive and psychiatric symptoms, no significant temporal trends were identified in females, while males demonstrated significant increasing trends, with reduced concentration (p = 0.005) and psychotic symptoms (p = 0.007) standing out. CONCLUSIONS This study emphasizes the existence of sex-specific symptom progression in HD within the Chinese population, underscoring the importance of considering sex in clinical practice. Further research should investigate the mechanisms behind these differences and explore tailored treatment options.
Collapse
Affiliation(s)
- Shanquan Chen
- International Centre for Evidence in Disability, London School of Hygiene and Tropical Medicine, London, UK
| | - Huanyu Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiazhou Yu
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Xi Cao
- Chinese HD Association, Shanghai, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Dong
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
13
|
Massey TH, McLauchlan DJ. Huntington's disease: A clinical primer for acute and general physicians. Clin Med (Lond) 2024; 24:100200. [PMID: 38588915 PMCID: PMC11061216 DOI: 10.1016/j.clinme.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Huntington's disease (HD) usually manifests in adulthood and is characterised by progressive neurodegeneration in the brain that causes worsening involuntary movements, mental health and cognition over many years. Depression, anxiety and apathy are common. HD is autosomal dominant and affects about 1 in 8,000 people in the UK. There are currently no disease-modifying treatments and so patient care centres on multidisciplinary therapy support and medical treatments to relieve distressing symptoms. Progression of HD is usually slow, and so acute deteriorations often indicate another problem, such as intercurrent infections, constipation, urinary retention, gastro-oesophageal reflux disease or poor dentition. In this review we outline common presentations in HD patients, both acute and chronic, consider therapeutic options and discuss specific considerations in advanced HD.
Collapse
Affiliation(s)
- Thomas H Massey
- University Hospital of Wales, Cardiff & Vale University Health Board, Cardiff, UK; Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK; UK Dementia Research Institute at Cardiff University, Cardiff, UK.
| | - Duncan J McLauchlan
- Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK; Morriston Hospital, Swansea Bay University Health Board, Swansea, UK
| |
Collapse
|
14
|
Guo X, Yang L, Wang J, Wu Y, Li Y, Du L, Li L, Fang Z, Zhang X. The cytosolic DNA-sensing cGAS-STING pathway in neurodegenerative diseases. CNS Neurosci Ther 2024; 30:e14671. [PMID: 38459658 PMCID: PMC10924111 DOI: 10.1111/cns.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND With the widespread prevalence of neurodegenerative diseases (NDs) and high rates of mortality and disability, it is imminent to find accurate targets for intervention. There is growing evidence that neuroimmunity is pivotal in the pathology of NDs and that interventions targeting neuroimmunity hold great promise. Exogenous or dislocated nucleic acids activate the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS), activating the stimulator of interferon genes (STING). The activated STING triggers innate immune responses and then the cGAS-STING signaling pathway links abnormal nucleic acid sensing to the immune response. Recently, numerous studies have shown that neuroinflammation regulated by cGAS-STING signaling plays an essential role in NDs. AIMS In this review, we summarized the mechanism of cGAS-STING signaling in NDs and focused on inhibitors targeting cGAS-STING. CONCLUSION The cGAS-STING signaling plays an important role in the pathogenesis of NDs. Inhibiting the cGAS-STING signaling may provide new measures in the treatment of NDs.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
- Department of Intensive Care UnitJoint Logistics Force No. 988 HospitalZhengzhouChina
| | - Lin Yang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Jiawei Wang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - You Wu
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Yi Li
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Lixia Du
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Ling Li
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| | - Zongping Fang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
- Department of Anesthesiology, Xijing HospitalFourth Military Medical UniversityShaanxiChina
- Translational Research Institute of Brain and Brain‐Like Intelligence, Shanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xijing Zhang
- Department of Critical Care Medicine, Xijing HospitalThe Fourth Military Medical UniversityChina
| |
Collapse
|
15
|
Islam MR, Jony MH, Thufa GK, Akash S, Dhar PS, Rahman MM, Afroz T, Ahmed M, Hemeg HA, Rauf A, Thiruvengadam M, Venkidasamy B. A clinical study and future prospects for bioactive compounds and semi-synthetic molecules in the therapies for Huntington's disease. Mol Neurobiol 2024; 61:1237-1270. [PMID: 37698833 DOI: 10.1007/s12035-023-03604-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Puja Sutra Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Tahmina Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pukhtanukha, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, South Korea.
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
16
|
Dedman D, Williams R, Bhaskaran K, Douglas IJ. Pooling of primary care electronic health record (EHR) data on Huntington's disease (HD) and cancer: establishing comparability of two large UK databases. BMJ Open 2024; 14:e070258. [PMID: 38355188 PMCID: PMC10868307 DOI: 10.1136/bmjopen-2022-070258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
OBJECTIVES To explore whether UK primary care databases arising from two different software systems can be feasibly combined, by comparing rates of Huntington's disease (HD, which is rare) and 14 common cancers in the two databases, as well as characteristics of people with these conditions. DESIGN Descriptive study. SETTING Primary care electronic health records from Clinical Practice Research Datalink (CPRD) GOLD and CPRD Aurum databases, with linked hospital admission and death registration data. PARTICIPANTS 4986 patients with HD and 1 294 819 with an incident cancer between 1990 and 2019. PRIMARY AND SECONDARY OUTCOME MEASURES Incidence and prevalence of HD by calendar period, age group and region, and annual age-standardised incidence of 14 common cancers in each database, and in a subset of 'overlapping' practices which contributed to both databases. Characteristics of patients with HD or incident cancer: medical history, recent prescribing, healthcare contacts and database follow-up. RESULTS Incidence and prevalence of HD were slightly higher in CPRD GOLD than CPRD Aurum, but with similar trends over time. Cancer incidence in the two databases differed between 1990 and 2000, but converged and was very similar thereafter. Participants in each database were most similar in terms of medical history (median standardised difference, MSD 0.03 (IQR 0.01-0.03)), recent prescribing (MSD 0.06 (0.03-0.10)) and demographics and general health variables (MSD 0.05 (0.01-0.09)). Larger differences were seen for healthcare contacts (MSD 0.27 (0.10-0.41)), and database follow-up (MSD 0.39 (0.19-0.56)). CONCLUSIONS Differences in cancer incidence trends between 1990 and 2000 may relate to use of a practice-level data quality filter (the 'up-to-standard' date) in CPRD GOLD only. As well as the impact of data curation methods, differences in underlying data models can make it more challenging to define exactly equivalent clinical concepts in each database. Researchers should be aware of these potential sources of variability when planning combined database studies and interpreting results.
Collapse
Affiliation(s)
- Daniel Dedman
- Clinical Practice Research Datalink, Medicines and Healthcare Products Regulatory Agency, London, UK
- Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Rachael Williams
- Clinical Practice Research Datalink, Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Krishnan Bhaskaran
- Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Ian J Douglas
- Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
17
|
Akyol S, Ashrafi N, Yilmaz A, Turkoglu O, Graham SF. Metabolomics: An Emerging "Omics" Platform for Systems Biology and Its Implications for Huntington Disease Research. Metabolites 2023; 13:1203. [PMID: 38132886 PMCID: PMC10744751 DOI: 10.3390/metabo13121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Huntington's disease (HD) is a progressive, fatal neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. The precise mechanisms of HD progression are poorly understood; however, it is known that there is an expansion of the trinucleotide cytosine-adenine-guanine (CAG) repeat in the Huntingtin gene. Important new strategies are of paramount importance to identify early biomarkers with predictive value for intervening in disease progression at a stage when cellular dysfunction has not progressed irreversibly. Metabolomics is the study of global metabolite profiles in a system (cell, tissue, or organism) under certain conditions and is becoming an essential tool for the systemic characterization of metabolites to provide a snapshot of the functional and pathophysiological states of an organism and support disease diagnosis and biomarker discovery. This review briefly highlights the historical progress of metabolomic methodologies, followed by a more detailed review of the use of metabolomics in HD research to enable a greater understanding of the pathogenesis, its early prediction, and finally the main technical platforms in the field of metabolomics.
Collapse
Affiliation(s)
- Sumeyya Akyol
- NX Prenatal Inc., 4350 Brownsboro Road, Louisville KY 40207, USA;
| | - Nadia Ashrafi
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
| | - Ali Yilmaz
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| | - Onur Turkoglu
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, 318 Meadow Brook Road, Rochester, MI 48309, USA; (N.A.); (A.Y.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA
| |
Collapse
|
18
|
Tong H, Yang T, Liu L, Li C, Sun Y, Jia Q, Qin Y, Chen L, Zhao X, Zhou G, Yan S, Li XJ, Li S. Aberrant splicing of mutant huntingtin in Huntington's disease knock-in pigs. Neurobiol Dis 2023; 187:106291. [PMID: 37716514 DOI: 10.1016/j.nbd.2023.106291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disease caused by a CAG repeat expansion in exon1 of the huntingtin gene (HTT). This expansion leads to the production of N-terminal mutant huntingtin protein (mHtt) that contains an expanded polyglutamine tract, which is toxic to neurons and causes neurodegeneration. While the production of N-terminal mHtt can be mediated by proteolytic cleavage of full-length mHtt, abnormal splicing of exon1-intron1 of mHtt has also been identified in the brains of HD mice and patients. However, the proportion of aberrantly spliced exon1 mHTT in relation to normal mHTT exon remains to be defined. In this study, HTT exon1 production was examined in the HD knock-in (KI) pig model, which more closely recapitulates neuropathology seen in HD patient brains than HD mouse models. The study revealed that aberrant spliced HTT exon1 is also present in the brains of HD pigs, but it is expressed at a much lower level than the normally spliced HTT exon products. These findings suggest that careful consideration is needed when assessing the contribution of aberrantly spliced mHTT exon1 to HD pathogenesis, and further rigorous investigation is required.
Collapse
Affiliation(s)
- Huichun Tong
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Tianqi Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Li Liu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yize Sun
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yiyang Qin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xianxian Zhao
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Gongke Zhou
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
19
|
Jiang A, Handley RR, Lehnert K, Snell RG. From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research. Int J Mol Sci 2023; 24:13021. [PMID: 37629202 PMCID: PMC10455900 DOI: 10.3390/ijms241613021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative genetic disorder caused by an expanded polyglutamine-coding (CAG) trinucleotide repeat in the huntingtin (HTT) gene. HD behaves as a highly penetrant dominant disorder likely acting through a toxic gain of function by the mutant huntingtin protein. Widespread cellular degeneration of the medium spiny neurons of the caudate nucleus and putamen are responsible for the onset of symptomology that encompasses motor, cognitive, and behavioural abnormalities. Over the past 150 years of HD research since George Huntington published his description, a plethora of pathogenic mechanisms have been proposed with key themes including excitotoxicity, dopaminergic imbalance, mitochondrial dysfunction, metabolic defects, disruption of proteostasis, transcriptional dysregulation, and neuroinflammation. Despite the identification and characterisation of the causative gene and mutation and significant advances in our understanding of the cellular pathology in recent years, a disease-modifying intervention has not yet been clinically approved. This review includes an overview of Huntington's disease, from its genetic aetiology to clinical presentation and its pathogenic manifestation. An updated view of molecular mechanisms and the latest therapeutic developments will also be discussed.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; (R.R.H.); (K.L.); (R.G.S.)
| | | | | | | |
Collapse
|
20
|
Strong M, Quarrell OW. Prevalence and Incidence of Huntington's Disease. Mov Disord 2023; 38:1570-1572. [PMID: 37565397 DOI: 10.1002/mds.29532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 08/12/2023] Open
Affiliation(s)
- Mark Strong
- School of Health and Related Research, University of Sheffield, Sheffield, United Kingdom
| | - Oliver W Quarrell
- Sheffield Children's Hospital, Sheffield, United Kingdom
- Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
21
|
Li J, Wang Y, Yang R, Ma W, Yan J, Li Y, Chen G, Pan J. Pain in Huntington's disease and its potential mechanisms. Front Aging Neurosci 2023; 15:1190563. [PMID: 37484692 PMCID: PMC10357841 DOI: 10.3389/fnagi.2023.1190563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Pain is common and frequent in many neurodegenerative diseases, although it has not received much attention. In Huntington's disease (HD), pain is often ignored and under-researched because attention is more focused on motor and cognitive decline than psychiatric symptoms. In HD progression, pain symptoms are complex and involved in multiple etiologies, particularly mental issues such as apathy, anxiety and irritability. Because of psychiatric issues, HD patients rarely complain of pain, although their bodies show severe pain symptoms, ultimately resulting in insufficient awareness and lack of research. In HD, few studies have focused on pain and pain-related features. A detailed and systemic pain history is crucial to assess and explore pain pathophysiology in HD. This review provides an overview concentrating on pain-related factors in HD, including neuropathology, frequency, features, affecting factors and mechanisms. More attention and studies are still needed in this interesting field in the future.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yan Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Wenjun Ma
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - JunGuo Yan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yi Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
22
|
Abstract
Neurodegenerative diseases are characterized by the progressive loss of structure or function of neurons. In this Spotlight, we explore the idea that genetic forms of neurodegenerative disorders might be rooted in neural development. Focusing on Alzheimer's, Parkinson's and Huntington's disease, we first provide a brief overview of the pathology for these diseases. Although neurodegenerative diseases are generally thought of as late-onset diseases, we discuss recent evidence promoting the notion that they might be considered neurodevelopmental disorders. With this view in mind, we consider the suitability of animal models for studying these diseases, highlighting human-specific features of human brain development. We conclude by proposing that one such feature, human-specific regulation of neurogenic time, might be key to understanding the etiology and pathophysiology of human neurodegenerative disease.
Collapse
Affiliation(s)
- Khadijeh Shabani
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Bassem A. Hassan
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
23
|
Faquih TO, Aziz NA, Gardiner SL, Li-Gao R, de Mutsert R, Milaneschi Y, Trompet S, Jukema JW, Rosendaal FR, van Hylckama Vlieg A, van Dijk KW, Mook-Kanamori DO. Normal range CAG repeat size variations in the HTT gene are associated with an adverse lipoprotein profile partially mediated by body mass index. Hum Mol Genet 2023; 32:1741-1752. [PMID: 36715614 PMCID: PMC10448954 DOI: 10.1093/hmg/ddad020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/18/2022] [Accepted: 11/26/2023] [Indexed: 01/31/2023] Open
Abstract
Tandem cytosine-adenine-guanine (CAG) repeat sizes of 36 or more in the huntingtin gene (HTT) cause Huntington's disease (HD). Apart from neuropsychiatric complications, the disease is also accompanied by metabolic dysregulation and weight loss, which contribute to a progressive functional decline. Recent studies also reported an association between repeats below the pathogenic threshold (<36) for HD and body mass index (BMI), suggesting that HTT repeat sizes in the non-pathogenic range are associated with metabolic dysregulation. In this study, we hypothesized that HTT repeat sizes < 36 are associated with metabolite levels, possibly mediated through reduced BMI. We pooled data from three European cohorts (n = 10 228) with genotyped HTT CAG repeat size and metabolomic measurements. All 145 metabolites were measured on the same targeted platform in all studies. Multilevel mixed-effects analysis using the CAG repeat size in HTT identified 67 repeat size metabolite associations. Overall, the metabolomic profile associated with larger CAG repeat sizes in HTT were unfavorable-similar to those of higher risk of coronary artery disease and type 2 diabetes-and included elevated levels of amino acids, fatty acids, low-density lipoprotein (LDL)-, very low-density lipoprotein- and intermediate density lipoprotein (IDL)-related metabolites while with decreased levels of very large high-density lipoprotein (HDL)-related metabolites. Furthermore, the associations of 50 metabolites, in particular, specific very large HDL-related metabolites, were mediated by lower BMI. However, no mediation effect was found for 17 metabolites related to LDL and IDL. In conclusion, our findings indicate that large non-pathogenic CAG repeat sizes in HTT are associated with an unfavorable metabolomic profile despite their association with a lower BMI.
Collapse
Affiliation(s)
- Tariq O Faquih
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn 53175, Germany
- Department of Neurology, Bonn University Hospital, Bonn 53175, Germany
| | - Sarah L Gardiner
- Department of Neurology, Amsterdam UMC, Amsterdam 1080 HZ, The Netherlands
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Metabolon, Inc., Morrisville, NC 27560, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam 1081 HV, The Netherlands
| | - Stella Trompet
- Department of Internal Medicine, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Astrid van Hylckama Vlieg
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| |
Collapse
|
24
|
O'Shea SA, Shih LC. Global Epidemiology of Movement Disorders: Rare or Underdiagnosed? Semin Neurol 2023; 43:4-16. [PMID: 36893797 DOI: 10.1055/s-0043-1764140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In this manuscript, we review the epidemiology of movement disorders including Parkinson's disease (PD), atypical parkinsonism, essential tremor, dystonia, functional movement disorders, tic disorders, chorea, and ataxias. We emphasize age-, sex-, and geography-based incidence and prevalence, as well as notable trends including the rising incidence and prevalence of PD. Given the growing global interest in refining clinical diagnostic skills in recognizing movement disorders, we highlight some key epidemiological findings that may be of interest to clinicians and health systems tasked with diagnosing and managing the health of patients with movement disorders.
Collapse
Affiliation(s)
- Sarah A O'Shea
- Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York City, New York
| | - Ludy C Shih
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
25
|
D’Egidio F, Castelli V, Cimini A, d’Angelo M. Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease. Antioxidants (Basel) 2023; 12:571. [PMID: 36978821 PMCID: PMC10045781 DOI: 10.3390/antiox12030571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Huntington's Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. This is due to the involvement of oxidative damage, excitotoxicity, inflammation, and mitochondrial impairment. Neurons naturally adapt to bioenergetic alteration and oxidative stress in physiological conditions. However, this dynamic system is compromised when a neurodegenerative disorder occurs, resulting in changes in metabolism, alteration in calcium signaling, and impaired substrates transport. Thus, the aim of this review is to provide an overview of the cell's answer to the stress induced by HD, focusing on the role of oxidative stress and its balance with the antioxidant system.
Collapse
Affiliation(s)
| | | | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
26
|
Comorbidities and clinical outcomes in adult- and juvenile-onset Huntington's disease: a study of linked Swedish National Registries (2002-2019). J Neurol 2023; 270:864-876. [PMID: 36253622 PMCID: PMC9886595 DOI: 10.1007/s00415-022-11418-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a rare, neurodegenerative disease and its complex motor, cognitive and psychiatric symptoms exert a lifelong clinical burden on both patients and their families. OBJECTIVE To describe the clinical burden and natural history of HD. METHODS This longitudinal cohort study used data from the linked Swedish national registries to describe the occurrence of comorbidities (acute and chronic), symptomatic treatments and mortality in an incident cohort of individuals who either received the first diagnosis of HD above (adult onset HD; AoHD) or below (juvenile-onset HD; JoHD) 20 years of age, compared with a matched cohort without HD from the general population. Disease burden of all individuals alive in Sweden was described during a single calendar year (2018), including the occurrence of key symptoms, treatments and hospitalizations. RESULTS The prevalence of HD in 2018 was approximately 10.2 per 100,000. Of 1492 individuals with a diagnosis of HD during 2002 and 2018, 1447 had AoHD and 45 had JoHD. Individuals with AoHD suffered a higher incidence of obsessive-compulsive disorder, acute psychotic episodes, pneumonia, constipation and fractures compared with matched controls. Individuals with JoHD had higher incidence rates of epilepsy, constipation and acute respiratory symptoms. Median time to all-cause mortality in AoHD was 12.1 years from diagnosis. Patients alive with HD in Sweden in 2018 displayed a pattern of increased clinical burden for a number of years since diagnosis. CONCLUSIONS This study demonstrates the significant and progressive clinical burden in individuals with HD and presents novel insights into the natural history of JoHD.
Collapse
|
27
|
Zhang S, Cheng Y, Shang H. The updated development of blood-based biomarkers for Huntington's disease. J Neurol 2023; 270:2483-2503. [PMID: 36692635 PMCID: PMC9873222 DOI: 10.1007/s00415-023-11572-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Huntington's disease is a progressive neurodegenerative disease caused by mutation of the huntingtin (HTT) gene. The identification of mutation carriers before symptom onset provides an opportunity to intervene in the early stage of the disease course. Optimal biomarkers are of great value to reflect neuropathological and clinical progression and are sensitive to potential disease-modifying treatments. Blood-based biomarkers have the merits of minimal invasiveness, low cost, easy accessibility and safety. In this review, we summarized the updated development of blood-based biomarkers for HD from six aspects, including neuronal injuries, oxidative stress, endocrine functions, immune reactions, metabolism and differentially expressed miRNAs. The blood-based biomarkers presented and discussed in this review were close to clinical applicability and might facilitate clinical design as surrogate endpoints. Exploration and validation of robust blood-based biomarkers require further standard and systemic study design in the future.
Collapse
Affiliation(s)
- Sirui Zhang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yangfan Cheng
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Huifang Shang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
28
|
Willock R, Rickards H, Rosser AE, Haw A, Stanley C, Hossain P, Rodríguez-Santana I, Doherty M, Blair R, Kane W. An Overview of Specialist Services for Huntington's Disease in the United Kingdom. J Huntingtons Dis 2023; 12:363-370. [PMID: 38108355 PMCID: PMC10741324 DOI: 10.3233/jhd-220560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a rare inherited neurodegenerative disorder characterized by complex evolving needs that change as the condition progresses. There is limited understanding about the organization of HD clinical services and their resourcing in the United Kingdom (UK). OBJECTIVE To understand the organization and resourcing of specialist HD services for people with HD (PwHD) in the UKMethods:This cross-sectional study collected quantitative data via on online survey, and qualitative data via telephone semi-structured interviews. Descriptive statistics were used to describe quantitative outcomes, and qualitative results were analyzed using content analysis. RESULTS A total of 31 specialist services for HD were identified. Of the 27 services that completed the online survey, 23 had an active multidisciplinary team of healthcare professionals (HCPs) and were led primarily by a mental health trust (26%) or tertiary referral hospital (26%). Specialist services offered outpatient clinics (96%), outreach in the community (74%), telemedicine (70%), inpatient beds (26%) and satellite clinics (26%). Many services indicated that their capacity (ability to see patients as often as needed with current resources) was difficult, with some services reporting more difficulty at the early or later stages of HD. Key resourcing gaps were identified with access to facilities, HCPs and referral networks. CONCLUSIONS This research highlights the variation in organization and capacity within individual HD services as well as current resourcing and gaps in access that influence this capacity. Further research should be done to understand the impact of service organization and current resourcing gaps in access on the quality of care provided for PwHD in the UK.
Collapse
Affiliation(s)
| | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation Trust, Birmingham, England, UK
| | - Anne E. Rosser
- Schools of Medicine and Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Alistair Haw
- Scottish Huntington’s Association, Paisley, Scotland, UK
| | - Cath Stanley
- Huntington’s Disease Association, Liverpool, England, UK
| | | | | | | | - Rachel Blair
- Roche Products Ltd., Welwyn Garden City, England, UK
| | - Wendy Kane
- Roche Products Ltd., Welwyn Garden City, England, UK
| |
Collapse
|
29
|
Willock R, Rickards H, Rosser AE, Haw A, Stanley C, Hossain P, Rodríguez-Santana I, Doherty M, Blair R, Kane W. An Overview of Specialist Services for Huntington's Disease in the United Kingdom. J Huntingtons Dis 2023; 12:363-370. [PMID: 38108355 DOI: 10.3233/jhd-230560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a rare inherited neurodegenerative disorder characterized by complex evolving needs that change as the condition progresses. There is limited understanding about the organization of HD clinical services and their resourcing in the United Kingdom (UK). OBJECTIVE To understand the organization and resourcing of specialist HD services for people with HD (PwHD) in the UKMethods:This cross-sectional study collected quantitative data via on online survey, and qualitative data via telephone semi-structured interviews. Descriptive statistics were used to describe quantitative outcomes, and qualitative results were analyzed using content analysis. RESULTS A total of 31 specialist services for HD were identified. Of the 27 services that completed the online survey, 23 had an active multidisciplinary team of healthcare professionals (HCPs) and were led primarily by a mental health trust (26%) or tertiary referral hospital (26%). Specialist services offered outpatient clinics (96%), outreach in the community (74%), telemedicine (70%), inpatient beds (26%) and satellite clinics (26%). Many services indicated that their capacity (ability to see patients as often as needed with current resources) was difficult, with some services reporting more difficulty at the early or later stages of HD. Key resourcing gaps were identified with access to facilities, HCPs and referral networks. CONCLUSIONS This research highlights the variation in organization and capacity within individual HD services as well as current resourcing and gaps in access that influence this capacity. Further research should be done to understand the impact of service organization and current resourcing gaps in access on the quality of care provided for PwHD in the UK.
Collapse
Affiliation(s)
| | - Hugh Rickards
- Birmingham and Solihull Mental Health NHS Foundation Trust, Birmingham, England, UK
| | - Anne E Rosser
- Schools of Medicine and Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Alistair Haw
- Scottish Huntington's Association, Paisley, Scotland, UK
| | - Cath Stanley
- Huntington's Disease Association, Liverpool, England, UK
| | | | | | | | - Rachel Blair
- Roche Products Ltd., Welwyn Garden City, England, UK
| | - Wendy Kane
- Roche Products Ltd., Welwyn Garden City, England, UK
| |
Collapse
|
30
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
31
|
The Comprehensive Analysis of Motor and Neuropsychiatric Symptoms in Patients with Huntington's Disease from China: A Cross-Sectional Study. J Clin Med 2022; 12:jcm12010206. [PMID: 36615008 PMCID: PMC9821667 DOI: 10.3390/jcm12010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder caused by CAG repeats expansion. There is a paucity of comprehensive clinical analysis in Chinese HD patients due to the low prevalence of HD in Asia. We aimed to comprehensively describe the motor, neuropsychiatric symptoms, and functional assessment in patients with HD from China. A total of 205 HD patients were assessed by the Unified Huntington’s Disease Rating Scale (UHDRS), the short version of Problem-Behavior Assessment (PBA-s), Hamilton Depression Scale (HAMD) and Beck Depression Inventory (BDI). Multivariate logistic regression analysis was used to explore the independent variables correlated with neuropsychiatric subscales. The mean age of motor symptom onset was 41.8 ± 10.0 years old with a diagnostic delay of 4.3 ± 3.8 years and a median CAG repeats of 44. The patients with a positive family history had a younger onset and larger CAG expansion than the patients without a family history (p < 0.05). There was a significant increase in total motor score across disease stages (p < 0.0001). Depression (51%) was the most common neuropsychiatric symptom at all stages, whereas moderate to severe apathy commonly occurred in advanced HD stages. We found lower functional capacity and higher HAMD were independently correlated with irritability; higher HAMD and higher BDI were independently correlated with affect; male sex and higher HAMD were independently correlated with apathy. In summary, comprehensive clinical profile analysis of Chinese HD patients showed not only chorea-like movement, but psychiatric symptoms were outstanding problems and need to be detected early. Our study provides the basis to guide clinical practice, especially in practical diagnostic and management processes.
Collapse
|
32
|
Li XY, Bao YF, Xie JJ, Qian SX, Gao B, Xu M, Dong Y, Burgunder JM, Wu ZY. The Chinese Version of UHDRS in Huntington's Disease: Reliability and Validity Assessment. J Huntingtons Dis 2022; 11:407-413. [PMID: 36120787 DOI: 10.3233/jhd-220542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The Unified Huntington's Disease Rating Scale (UHDRS) is a universal scale assessing disease severity of Huntington's disease (HD). However, the English version cannot be widely used in China, and the reliability and validity of the Chinese UHDRS have not yet been confirmed. OBJECTIVE To test the reliability and validity of Chinse UHDRS in patients with HD. METHODS Between August 2013 and August 2021, 159 HD patients, 40 premanifest HD, and 64 healthy controls were consecutively recruited from two medical centers in China and assessed by Chinese UHDRS. Internal consistency and interrater reliability of the scale were examined. Intercorrelation was performed to analyze the convergent and divergent validity of the scale. A receiver operating characteristic analysis was conducted to explore the optimal cutoff point of each cognitive test. RESULTS High internal consistency was found in Chinese UHDRS, and its Cronbach's alpha values of the motor, cognitive, behavioral and functional subscales were 0.954, 0.826, 0.804, and 0.954, respectively. The interrater reliability of the total motor score was 0.960. The convergent and divergent validity revealed that motor, cognitive and functional subscales strongly related to each other except for Problem Behavior Assessment. Furthermore, we not only provided the normal level of each cognitive test in controls, but also gave the optimal cutoff points of cognitive tests between controls and HD patients. CONCLUSION We demonstrate for the first time that the translated version of UHDRS is reliable for assessing HD patients in China. This can promote the universal use of UHDRS in clinical practice.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Feng Bao
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan-Juan Xie
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu-Xia Qian
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Gao
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Xu
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Dong
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jean-Marc Burgunder
- Swiss Huntington's Disease Centre, Siloah, Gümligen and, Department of Neurology, University of Bern, Bern, Switzerland
| | - Zhi-Ying Wu
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,CAS Center for Excellence in Brain Scienceand Intelligence Technology, Shanghai, China
| |
Collapse
|
33
|
Tucci P, Lattanzi R, Severini C, Saso L. Nrf2 Pathway in Huntington's Disease (HD): What Is Its Role? Int J Mol Sci 2022; 23:ijms232315272. [PMID: 36499596 PMCID: PMC9739588 DOI: 10.3390/ijms232315272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that occurs worldwide. Despite some progress in understanding the onset of HD, drugs that block or delay symptoms are still not available. In recent years, many treatments have been proposed; among them, nuclear transcriptional factor-2 (Nrf2) enhancer compounds have been proposed as potential therapeutic agents to treat HD. Nrf2 triggers an endogenous antioxidant pathway activated in different neurodegenerative disorders. Probably, the stimulation of Nrf2 during either the early phase or before HD symptoms' onset, could slow or prevent striatum degeneration. In this review, we present the scientific literature supporting the role of Nrf2 in HD and the potential prophylactic and therapeutic role of this compound.
Collapse
Affiliation(s)
- Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Viale del Policlinico 155, 00161 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
34
|
Medina A, Mahjoub Y, Shaver L, Pringsheim T. Prevalence and Incidence of Huntington's Disease: An Updated Systematic Review and Meta-Analysis. Mov Disord 2022; 37:2327-2335. [PMID: 36161673 PMCID: PMC10086981 DOI: 10.1002/mds.29228] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023] Open
Abstract
The incidence and prevalence of Huntington's disease (HD) based on a systematic review and meta-analysis of 20 studies published from 1985 to 2010 was estimated at 0.38 per 100,000 person-years (95% confidence interval [CI], 0.16-0.94) and 2.71 per 100,000 persons (95% CI, 1.55-4.72), respectively. Since 2010, there have been many new epidemiological studies of HD. We sought to update the global estimates of HD incidence and prevalence using data published up to February 2022 and perform additional analyses based on study continent. Medline and Embase were searched for epidemiological studies of HD published between 2010 and 2022. Risk of bias was assessed using a quality assessment tool. Estimated pooled prevalence or incidence was calculated using a random-effects meta-analysis. A total of 33 studies published between 2010 and 2022 were included. Pooled incidence was 0.48 cases per 100,000 person-years (95% CI, 0.33-0.63). Subgroup analysis by continent demonstrated a significantly higher incidence of HD in Europe and North America than in Asia. Pooled prevalence was 4.88 per 100,000 (95% CI, 3.38-7.06). Subanalyses by continent demonstrated that the prevalence of HD was significantly higher in Europe and North America than in Africa. The minor increase in prevalence (more so than incidence) demonstrated in this updated review could relate to the enhanced availability of molecular testing, earlier diagnosis, increased life expectancy, and de novo mutations. Limitations include variable case ascertainment methods and lacking case validation data. © 2022 Her Majesty the Queen in Right of Canada. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. Reproduced with the permission of the Minister of Public Health Agency of Canada.
Collapse
Affiliation(s)
- Alex Medina
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Yasamin Mahjoub
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Larry Shaver
- Adult Chronic Diseases and Conditions DivisionPublic Health Agency of CanadaNepeanOntarioCanada
| | - Tamara Pringsheim
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Psychiatry, Pediatrics, Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
35
|
Wu J, Möhle L, Brüning T, Eiriz I, Rafehi M, Stefan K, Stefan SM, Pahnke J. A Novel Huntington's Disease Assessment Platform to Support Future Drug Discovery and Development. Int J Mol Sci 2022; 23:ijms232314763. [PMID: 36499090 PMCID: PMC9740291 DOI: 10.3390/ijms232314763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) is a lethal neurodegenerative disorder without efficient therapeutic options. The inefficient translation from preclinical and clinical research into clinical use is mainly attributed to the lack of (i) understanding of disease initiation, progression, and involved molecular mechanisms; (ii) knowledge of the possible HD target space and general data awareness; (iii) detailed characterizations of available disease models; (iv) better suitable models; and (v) reliable and sensitive biomarkers. To generate robust HD-like symptoms in a mouse model, the neomycin resistance cassette was excised from zQ175 mice, generating a new line: zQ175Δneo. We entirely describe the dynamics of behavioral, neuropathological, and immunohistological changes from 15-57 weeks of age. Specifically, zQ175Δneo mice showed early astrogliosis from 15 weeks; growth retardation, body weight loss, and anxiety-like behaviors from 29 weeks; motor deficits and reduced muscular strength from 36 weeks; and finally slight microgliosis at 57 weeks of age. Additionally, we collected the entire bioactivity network of small-molecule HD modulators in a multitarget dataset (HD_MDS). Hereby, we uncovered 358 unique compounds addressing over 80 different pharmacological targets and pathways. Our data will support future drug discovery approaches and may serve as useful assessment platform for drug discovery and development against HD.
Collapse
Affiliation(s)
- Jingyun Wu
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Luisa Möhle
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Thomas Brüning
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Iván Eiriz
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Correspondence: (J.P.); (S.M.S.); Tel.: +47-23-071-466 (J.P.)
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway; www.pahnkelab.eu
- Pahnke Lab (Drug Development and Chemical Biology), Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 4, 1004 Rīga, Latvia
- Department of Neurobiology, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: (J.P.); (S.M.S.); Tel.: +47-23-071-466 (J.P.)
| |
Collapse
|
36
|
Pellegrini M, Bergonzoni G, Perrone F, Squitieri F, Biagioli M. Current Diagnostic Methods and Non-Coding RNAs as Possible Biomarkers in Huntington's Disease. Genes (Basel) 2022; 13:2017. [PMID: 36360254 PMCID: PMC9689996 DOI: 10.3390/genes13112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Whether as a cause or a symptom, RNA transcription is recurrently altered in pathologic conditions. This is also true for non-coding RNAs, with regulatory functions in a variety of processes such as differentiation, cell identity and metabolism. In line with their increasingly recognized roles in cellular pathways, RNAs are also currently evaluated as possible disease biomarkers. They could be informative not only to follow disease progression and assess treatment efficacy in clinics, but also to aid in the development of new therapeutic approaches. This is especially important for neurological and genetic disorders, where the administration of appropriate treatment during the disease prodromal stage could significantly delay, if not halt, disease progression. In this review we focus on the current status of biomarkers in Huntington's Disease (HD), a fatal hereditary and degenerative disease condition. First, we revise the sources and type of wet biomarkers currently in use. Then, we explore the feasibility of different RNA types (miRNA, ncRNA, circRNA) as possible biomarker candidates, discussing potential advantages, disadvantages, sources of origin and the ongoing investigations on this topic.
Collapse
Affiliation(s)
- Miguel Pellegrini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Federica Perrone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, Viale Cappuccini, 71013 San Giovanni Rotondo, Italy
| | - Marta Biagioli
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
37
|
Chandolia P, Rahi V, Kumar P. Neuroprotective effect of silymarin against 3-Nitropropionic acid-induced neurotoxicity in rats. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100130. [PMID: 36568269 PMCID: PMC9780065 DOI: 10.1016/j.crphar.2022.100130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 12/27/2022] Open
Abstract
(HD) Huntington's disease is a severe hereditary catastrophic neurological disease with an autosomal dominant heritable changes manifested by cognitive, behavioural, and motor progression deficits, resulting in death. Several mechanisms are involved in the pathogenesis of this complex and rare disease, including excitotoxicity, mitochondrial dysfunction, neurotransmitters imbalance, and oxidative stress. Silymarin was selected as an investigational drug, due to its numerous activities in current research, it possesses substantial antioxidant and neuroprotective functionalities. The present research attempts, i.p. injections of 3-NPA (10 mg/kg) were given for 21 days to trigger Huntington-like symptoms in rats. The percentage fluctuations in body weight, the footfall counts, and the time required to transverse the beam and motor functions were analyzed at multiple time points. Oxidative stress markers like MDA/LPO, GSH, protein, nitrite, catalase, and superoxide dismutase levels were examined in the striatum region. The current study results conclusively demonstrate that chronic 3-NPA administration significantly decreased the body weight and showed marked abnormalities in motor coordination, locomotion, and increased striatal generation of free radicals. Furthermore, treatment with silymarin (100 & 200 mg/kg/p.o.), mitigated 3-NPA triggered behavioural and biochemical alterations. Our study results could conclude that Silymarin may be advantageous and might develop an adjuvant treatment for the management of Huntington's disease.
Collapse
Affiliation(s)
- Priyanka Chandolia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India,Corresponding author. Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
38
|
de Oliveira Furlam T, Roque IG, Machado da Silva EW, Vianna PP, Costa Valadão PA, Guatimosim C, Teixeira AL, de Miranda AS. Inflammasome activation and assembly in Huntington's disease. Mol Immunol 2022; 151:134-142. [PMID: 36126501 DOI: 10.1016/j.molimm.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Huntington's disease (HD) is a rare neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Inflammasomes are multiprotein complexes capable of sensing pathogen-associated and damage-associated molecular patterns, triggering innate immune pathways. Activation of inflammasomes results in a pro-inflammatory cascade involving, among other molecules, caspases and interleukins. NLRP3 (nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3) is the most studied inflammasome complex, and its activation results in caspase-1 mediated cleavage of the pro-interleukins IL-1β and IL-18 into their mature forms, also inducing a gasdermin D mediated form of pro-inflammatory cell death, i.e. pyroptosis. Accumulating evidence has implicated NLRP3 inflammasome complex in neurodegenerative diseases. The evidence in HD is still scant and mostly derived from pre-clinical studies. This review aims to present the available evidence on NLRP3 inflammasome activation in HD and to discuss whether targeting this innate immune system complex might be a promising therapeutic strategy to alleviate its symptoms.
Collapse
Affiliation(s)
| | | | | | - Pedro Parenti Vianna
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Cristina Guatimosim
- Department of Morphology - Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; Faculdade Santa Casa BH, Belo Horizonte, MG, Brazil
| | - Aline Silva de Miranda
- Department of Morphology - Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
39
|
Ji J, Huang J, Cao N, Hao X, Wu Y, Ma Y, An D, Pang S, Li X. Multiview behavior and neurotransmitter analysis of zebrafish dyskinesia induced by 6PPD and its metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156013. [PMID: 35588826 DOI: 10.1016/j.scitotenv.2022.156013] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The typical tire manufacturing additive 6PPD, its metabolites 6PPDQ and 4-Hydroxy should be monitored because of their ubiquitous presence in the environment and the high toxicity of 6PPDQ to coho salmon. The toxic effect of 6PPD and its metabolites have been revealed superficially, especially on behavioral characteristics. However, the behavioral indicators explored so far are relatively simple and the toxic causes are poorly understood. With this in mind, our work investigated the toxic effects of 6PPD, 6PPDQ and 4-Hydroxy on adult zebrafish penetratingly through machine vision, and the meandering, body angle, top time and 3D trajectory are used for the first time to show the abnormal behaviors induced by 6PPD and its metabolites. Moreover, neurotransmitter changes in the zebrafish brain were measured to explore the causes of abnormal behavior. The results showed that high-dose treatment of 6PPD reduced the velocity by 42.4% and decreased the time at the top of the tank by 91.0%, suggesting significant activity inhibition and anxiety. In addition, γ-aminobutyric acid and acetylcholine were significantly impacted by 6PPD, while dopamine exhibited a slight variation, which can explain the bradykinesia, unbalance and anxiety of zebrafish and presented similar symptoms as Huntingdon's disease. Our study explored new abnormal behaviors of zebrafish induced by 6PPD and its metabolites in detail, and the toxic causes were revealed for the first time by studying the changes of neurotransmitters, thus providing an important reference for further studies of the biological toxicity of 6PPD and its metabolites.
Collapse
Affiliation(s)
- Jiawen Ji
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jinze Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Niannian Cao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xianghong Hao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yanhua Wu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqiang Ma
- College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Dong An
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
40
|
Tobar Montilla CD, Rengifo Rodas CF, Muñoz Añasco M. Petri net transition times as training features for multiclass models to support the detection of neurodegenerative diseases. Biomed Phys Eng Express 2022; 8. [PMID: 36007476 DOI: 10.1088/2057-1976/ac8c9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022]
Abstract
This paper proposes the transition times of Petri net models of human gait as training features for multiclass random forests (RFs) and classification trees (CTs). These models are designed to support screening for neurodegenerative diseases. The proposed Petri net describes gait in terms of nine cyclic phases and the timing of the nine events that mark the transition between phases. Since the transition times between strides vary, each is represented as a random variable characterized by its mean and standard deviation. These transition times are calculated using the PhysioNet database of vertical ground reaction forces (VGRFs) generated by feet-ground contact. This database comprises the VGRFs of four groups: amyotrophic lateral sclerosis, the control group, Huntington's disease, and Parkinson disease. The RF produced an overall classification accuracy of 91%, and the specificities and sensitivities for each class were between 80% and 100%. However, despite this high performance, the RF-generated models demonstrated lack of interpretability prompted the training of a CT using identical features. The obtained tree comprised only four features and required a maximum of three comparisons. However, this simplification dramatically reduced the overall accuracy from 90.6% to 62.3%. The proposed set features were compared with those included in PhysioNet database of VGRFs. In terms of both the RF and CT, more accurate models were established using our features than those of the PhysioNet.
Collapse
Affiliation(s)
| | - Carlos Felipe Rengifo Rodas
- Electronics, Instrumentation and Control, Universidad del Cauca, Calle 5 No. 4-70, Sector Tulcan, Oficina 430, Popayan, Popayan, Departamento del Cauca, 190001, COLOMBIA
| | - Mariela Muñoz Añasco
- Universidad del Cauca, Calle 5 No 4 - 70 Sector Tulcan, Oficina 430, Popayan, Popayan, 190001, COLOMBIA
| |
Collapse
|
41
|
Lawlor M, Zigo M, Kerns K, Cho IK, Easley IV CA, Sutovsky P. Spermatozoan Metabolism as a Non-Traditional Model for the Study of Huntington’s Disease. Int J Mol Sci 2022; 23:ijms23137163. [PMID: 35806166 PMCID: PMC9266437 DOI: 10.3390/ijms23137163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Huntington’s Disease (HD) is a fatal autosomal dominant neurodegenerative disease manifested through motor dysfunction and cognitive deficits. Decreased fertility is also observed in HD animal models and HD male patients, due to altered spermatogenesis and sperm function, thus resulting in reduced fertilization potential. Although some pharmaceuticals are currently utilized to mitigate HD symptoms, an effective treatment that remedies the pathogenesis of the disease is yet to be approved by the FDA. Identification of genes and relevant diagnostic biomarkers and therapeutic target pathways including glycolysis and mitochondrial complex-I-dependent respiration may be advantageous for early diagnosis, management, and treatment of the disease. This review addresses the HD pathway in neuronal and sperm metabolism, including relevant gene and protein expression in both neurons and spermatozoa, indicated in the pathogenesis of HD. Furthermore, zinc-containing and zinc-interacting proteins regulate and/or are regulated by zinc ion homeostasis in both neurons and spermatozoa. Therefore, this review also aims to explore the comparative role of zinc in both neuronal and sperm function. Ongoing studies aim to characterize the products of genes implicated in HD pathogenesis that are expressed in both neurons and spermatozoa to facilitate studies of future treatment avenues in HD and HD-related male infertility. The emerging link between zinc homeostasis and the HD pathway could lead to new treatments and diagnostic methods linking genetic sperm defects with somatic comorbidities.
Collapse
Affiliation(s)
- Meghan Lawlor
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
| | - Michal Zigo
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
| | - Karl Kerns
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - In Ki Cho
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; (I.K.C.); (C.A.E.IV)
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Charles A. Easley IV
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; (I.K.C.); (C.A.E.IV)
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-(573)-882-3329
| |
Collapse
|
42
|
Lunev E, Karan A, Egorova T, Bardina M. Adeno-Associated Viruses for Modeling Neurological Diseases in Animals: Achievements and Prospects. Biomedicines 2022; 10:biomedicines10051140. [PMID: 35625877 PMCID: PMC9139062 DOI: 10.3390/biomedicines10051140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have become an attractive tool for efficient gene transfer into animal tissues. Extensively studied as the vehicles for therapeutic constructs in gene therapy, AAVs are also applied for creating animal models of human genetic disorders. Neurological disorders are challenging to model in laboratory animals by transgenesis or genome editing, at least partially due to the embryonic lethality and the timing of the disease onset. Therefore, gene transfer with AAV vectors provides a more flexible option for simulating genetic neurological disorders. Indeed, the design of the AAV expression construct allows the reproduction of various disease-causing mutations, and also drives neuron-specific expression. The natural and newly created AAV serotypes combined with various delivery routes enable differentially targeting neuronal cell types and brain areas in vivo. Moreover, the same viral vector can be used to reproduce the main features of the disorder in mice, rats, and large laboratory animals such as non-human primates. The current review demonstrates the general principles for the development and use of AAVs in modeling neurological diseases. The latest achievements in AAV-mediated modeling of the common (e.g., Alzheimer’s disease, Parkinson’s disease, ataxias, etc.) and ultra-rare disorders affecting the central nervous system are described. The use of AAVs to create multiple animal models of neurological disorders opens opportunities for studying their mechanisms, understanding the main pathological features, and testing therapeutic approaches.
Collapse
Affiliation(s)
- Evgenii Lunev
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence: (E.L.); (M.B.)
| | - Anna Karan
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
| | - Tatiana Egorova
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
| | - Maryana Bardina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Marlin Biotech LLC, 354340 Sochi, Russia; (A.K.); (T.E.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence: (E.L.); (M.B.)
| |
Collapse
|
43
|
Wildridge B, Rozewicz S, Mohamed A, James J, Connolly G. Use of clozapine for psychosis and chorea in Huntington's disease systematic narrative review. PROGRESS IN NEUROLOGY AND PSYCHIATRY 2022. [DOI: 10.1002/pnp.750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bethany Wildridge
- Dr Wildridge is FY2 within South Thames Foundation School, Dr Rozewicz is a Senior House Officer at Gold Coast University Hospital, Australia
| | - Samuel Rozewicz
- Dr Wildridge is FY2 within South Thames Foundation School, Dr Rozewicz is a Senior House Officer at Gold Coast University Hospital, Australia
| | - Ashma Mohamed
- Dr Mohamed is ST5 Psychiatrist within Surrey and Borders Partnership Trust (SABP), Dr James is a Senior House Officer, St Peter's Hospital, Chertsey and Dr Connolly is a Consultant Psychiatrist within SABP
| | - Joel James
- Dr Mohamed is ST5 Psychiatrist within Surrey and Borders Partnership Trust (SABP), Dr James is a Senior House Officer, St Peter's Hospital, Chertsey and Dr Connolly is a Consultant Psychiatrist within SABP
| | - Gerard Connolly
- Dr Mohamed is ST5 Psychiatrist within Surrey and Borders Partnership Trust (SABP), Dr James is a Senior House Officer, St Peter's Hospital, Chertsey and Dr Connolly is a Consultant Psychiatrist within SABP
| |
Collapse
|
44
|
Furby H, Siadimas A, Rutten-Jacobs L, Rodrigues FB, Wild EJ. Natural History and Burden of Huntington's Disease in the UK: A Population-Based Cohort Study. Eur J Neurol 2022; 29:2249-2257. [PMID: 35514071 PMCID: PMC9542098 DOI: 10.1111/ene.15385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a rare neurodegenerative disease that presents with progressive psychological, cognitive and motor impairment. These diverse symptoms place a high burden on the patient, families and the healthcare systems they rely on. This study aimed to describe the epidemiology and clinical burden in individuals with HD compared with controls from the general population. METHODS This cohort study utilised data from general practitioner (GP) medical records to estimate the prevalence and incidence of HD between Jan 2000 and Dec 2018. A cohort of incident HD cases were matched 1:3 to controls from the general population, in whom common clinical diagnoses, medications and healthcare interventions were compared at the time of first recorded diagnosis and at a time close to death. Incidence rates of common diagnoses and mortality were compared with matched controls in the time following HD diagnosis. RESULTS Prevalence of HD increased between 2000 and 2018, whilst incidence remained stable. Prevalence of psychiatric diagnoses and symptomatic treatments were higher in HD cases than controls. A higher relative risk of psychotic disorders, depression, insomnia, dementia, weight loss, pneumonia and falls was observed in HD cases. Risk of death was >4 times higher in HD, with a median survival of ~12 years from first recorded diagnosis. CONCLUSIONS This study demonstrates the significant and progressive clinical burden in individuals up to 18 years after first recorded diagnosis.
Collapse
Affiliation(s)
| | | | | | - Filipe B Rodrigues
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
45
|
Nguyen TPN, Kumar M, Fedele E, Bonanno G, Bonifacino T. MicroRNA Alteration, Application as Biomarkers, and Therapeutic Approaches in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23094718. [PMID: 35563107 PMCID: PMC9104163 DOI: 10.3390/ijms23094718] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are essential post-transcriptional gene regulators involved in various neuronal and non-neuronal cell functions and play a key role in pathological conditions. Numerous studies have demonstrated that miRNAs are dysregulated in major neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, or Huntington’s disease. Hence, in the present work, we constructed a comprehensive overview of individual microRNA alterations in various models of the above neurodegenerative diseases. We also provided evidence of miRNAs as promising biomarkers for prognostic and diagnostic approaches. In addition, we summarized data from the literature about miRNA-based therapeutic applications via inhibiting or promoting miRNA expression. We finally identified the overlapping miRNA signature across the diseases, including miR-128, miR-140-5p, miR-206, miR-326, and miR-155, associated with multiple etiological cellular mechanisms. However, it remains to be established whether and to what extent miRNA-based therapies could be safely exploited in the future as effective symptomatic or disease-modifying approaches in the different human neurodegenerative disorders.
Collapse
Affiliation(s)
- T. P. Nhung Nguyen
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Mandeep Kumar
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
46
|
Insights into Human-Induced Pluripotent Stem Cell-Derived Astrocytes in Neurodegenerative Disorders. Biomolecules 2022; 12:biom12030344. [PMID: 35327542 PMCID: PMC8945600 DOI: 10.3390/biom12030344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Most neurodegenerative disorders have complex and still unresolved pathology characterized by progressive neuronal damage and death. Astrocytes, the most-abundant non-neuronal cell population in the central nervous system, play a vital role in these processes. They are involved in various functions in the brain, such as the regulation of synapse formation, neuroinflammation, and lactate and glutamate levels. The development of human-induced pluripotent stem cells (iPSCs) reformed the research in neurodegenerative disorders allowing for the generation of disease-relevant neuronal and non-neuronal cell types that can help in disease modeling, drug screening, and, possibly, cell transplantation strategies. In the last 14 years, the differentiation of human iPSCs into astrocytes allowed for the opportunity to explore the contribution of astrocytes to neurodegenerative diseases. This review discusses the development protocols and applications of human iPSC-derived astrocytes in the most common neurodegenerative conditions.
Collapse
|
47
|
Abstract
OBJECTIVE This study aims to systematically review evidence of the accuracy of the Montreal Cognitive Assessment (MoCA) for evaluating the presence of cognitive impairment in patients with Huntington's disease (HD) and to outline the quality and quantity of research evidence available about the use of the MoCA in this population. METHODS We conducted a systematic literature review, searching four databases from inception until April 2020. RESULTS We identified 26 studies that met the inclusion criteria: two case-control studies comparing the MoCA to a battery of tests, three studies comparing MoCA to Mini-Mental State Examination, two studies estimating the prevalence of cognitive impairment in individuals with HD and 19 studies or clinical trials in which the MoCA was used as an instrument for the cognitive assessment of participants with HD. We found no cross-sectional studies in which participants received the index test (MoCA) and a reference standard diagnostic assessment composed of an extensive neuropsychological battery. The publication period ranged from 2010 to 2020. CONCLUSIONS In patients with HD, the MoCA provides information about disturbances in general cognitive function. Even if the MoCA demonstrated good sensitivity and specificity when used at the recommended threshold score of 26, further cross-sectional studies are required to examine the optimum cutoff score for detecting cognitive impairments in patients with HD. Moreover, more studies are necessary to determine whether the MoCA adequately assesses cognitive status in individuals with HD.
Collapse
|
48
|
More than Just a Brain Disorder: A Five-Point Manifesto for Psychological Care for People with Huntington’s Disease. J Pers Med 2022; 12:jpm12010064. [PMID: 35055379 PMCID: PMC8780585 DOI: 10.3390/jpm12010064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Huntington’s disease (HD) is a rare and complex condition where affected individuals, family members, caregivers, and clinicians face a number of both long-term and fluctuating challenges. The predominant biomedical framework adopted in HD to date has traditionally viewed it as a brain disorder first and foremost. As a consequence, one of the most challenging aspects of the condition—psychological difficulties and their care—is often not given the emphasis it deserves in everyday clinical practice. Here, we propose a manifesto outlining five points to address the quality, effectiveness, availability, and accessibility of psychological care in HD. These include (1) Listening to People with HD, (2) Reformulating Difficulties Psychologically, (3) Exploring New Interventions, (4) Increasing Psychological Provision, and (5) Learning from Other Conditions. As the search for a cure continues, we hope that this manifesto will create a new impetus towards refining the current approach to psychological difficulties in HD and ultimately improve the quality of life of the tens of thousands of families affected by HD worldwide.
Collapse
|
49
|
Bai Y, Niu L, Li S, Le W. Psychopharmacotherapy in Patients with Tics and Other Motor Disorders. NEUROPSYCHOPHARMACOTHERAPY 2022:4271-4301. [DOI: 10.1007/978-3-030-62059-2_257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
50
|
Exuzides A, To TM, Abbass IM, Ta JT, Patel AM, Surinach A, Fuller RLM, Luo J. Healthcare resource utilization and costs in individuals with Huntington's disease by disease stage in a US population. J Med Econ 2022; 25:722-729. [PMID: 35608039 DOI: 10.1080/13696998.2022.2076997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIMS To quantify healthcare resource utilization (HRU) and costs by disease stage in individuals with Huntington's disease (HD) in a US population. MATERIALS AND METHODS This retrospective cohort study used administrative claims data from the IBM MarketScan Commercial, Multi-State Medicaid, and Medicare Supplemental Databases between 1 January 2009 and 31 December 2018. Individuals with an HD claim between 1 January 2010 and 31 December 2017 were selected. Index date was the date of first HD diagnosis. Individuals were required to have continuous enrollment for ≥ 12 months pre-index, 3 months post-index, and have no pre-index HD claims. All-cause HRU and costs per patient per month (PPPM) (overall and stratified by disease stage) were assessed for individuals with HD. RESULTS A total of 2,669 individuals with HD were identified. Of these, 1,432 (53.7%), 689 (25.8%), and 548 (20.5%) had early-, middle-, and late-stage HD at baseline, respectively. Mean HRU PPPM by post-index HD stage increased with disease stage for outpatient visits, pharmacy claims, and HD-related pharmacy claims (p < 0.05 for all). Mean inpatient visits and emergency room visits PPPM were highest in individuals with middle-stage HD (p <0.05 for all). Mean total all-cause healthcare cost PPPM for individuals with HD was $2,889, and it was significantly higher in middle-stage individuals, at $7,988, compared with early- and late-stage individuals, at $3,726 and $5,125, respectively; p <0.0001. LIMITATIONS In the absence of disease staging information in administrative claims data, staging was based on the presence of clinical markers in claims. Our evaluations didn't include the indirect costs of HD, which may be substantial as HD typically affects people at their peak earning potential. CONCLUSIONS HRU and costs of care are high among individuals with HD, particularly among those with middle- and late-stage disease. This indicates that the disease burden in HD increases with disease stage, highlighting the need for interventions that can slow or prevent disease progression.
Collapse
Affiliation(s)
| | - Tu My To
- Genentech Inc, South San Francisco, CA, USA
| | | | - Jamie T Ta
- Genentech Inc, South San Francisco, CA, USA
| | | | | | | | - Jia Luo
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| |
Collapse
|