1
|
Suenaga Y, Takeshita E, Yamamoto K, Sumitomo N, Baba S, Shimizu-Motohashi Y, Saito T, Komaki H, Nakagawa E, Sasaki M. Epidemiological study on pediatric-onset dystonia in Japan: A questionnaire-based survey. Brain Dev 2024; 46:274-279. [PMID: 38942709 DOI: 10.1016/j.braindev.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE This study aimed to investigate the clinical characteristics of pediatric-onset dystonia in Japan, addressing the diagnostic challenges arising from symptom variations and etiological diversity. METHODS From 2020 to 2022, questionnaires were distributed to 1218 board certified child neurologists (BCCNs) by Japanese Society of Child Neurology. In the primary survey, participants were asked to report the number of patients with pediatric-onset dystonia under their care. Subsequently, the follow-up secondary survey sought additional information on the clinical characteristics of these patients. RESULTS The primary survey obtained 550 responses (response rate: 45 %) from BCCNs for their 736 patients with dystonia. The predominant etiologies included inherited cases (with DYT10 being the most prevalent, followed by DYT5 and ATP1A3-related neurologic disorders), acquired cases (with perinatal abnormalities being the most common), and idiopathic cases. The secondary survey provided clinical insights into 308 cases from 82 BCCNs. Infancy-onset dystonia presented as persistent and generalized with diverse symptoms, primarily linked to ATP1A3-related neurologic disorders and other genetic disorders resembling acquired dystonia. Conversely, childhood/adolescent-onset dystonia showed paroxysmal, fluctuating courses, predominantly affecting limbs. The most common etiologies were DYT5 and DYT10 , leading to therapeutic diagnoses. CONCLUSION Pediatric-onset dystonia in Japan was treated by 28 % of BCCNs. The majority of cases were inherited, with high prevalence rates of DYT5 and DYT10 . Infancy-onset dystonia exhibits diverse etiologies and symptoms, emphasizing the utility of various examinations, including genetic testing. These findings significantly contribute to our understanding of pediatric-onset dystonia in Japan, although this study has the limitation of questionnaire survey.
Collapse
Affiliation(s)
- Yuta Suenaga
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan.
| | - Kaoru Yamamoto
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Noriko Sumitomo
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Shimpei Baba
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Takashi Saito
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan; Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan; Department of Pediatrics, Tokyo Children Rehabilitation Hospital, 4-10-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
2
|
Kumar VN, Garg D, Mukherjee SB, Pandey S, Sharma S. Clinical and Etiological Profile of Dystonia among Children. Indian J Pediatr 2023; 90:1267. [PMID: 37347439 DOI: 10.1007/s12098-023-04719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Affiliation(s)
- Vishnubhaktula Naveen Kumar
- Division of Neurology, Department of Pediatrics, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | - Divyani Garg
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmila B Mukherjee
- Division of Neurology, Department of Pediatrics, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India
| | - Sanjay Pandey
- Department of Neurology, Amrita Institute of Medical Sciences, Faridabad, Haryana, India
| | - Suvasini Sharma
- Division of Neurology, Department of Pediatrics, Lady Hardinge Medical College and Associated Hospitals, New Delhi, India.
| |
Collapse
|
3
|
Al-Fatly B, Giesler SJ, Oxenford S, Li N, Dembek TA, Achtzehn J, Krause P, Visser-Vandewalle V, Krauss JK, Runge J, Tadic V, Bäumer T, Schnitzler A, Vesper J, Wirths J, Timmermann L, Kühn AA, Koy A. Neuroimaging-based analysis of DBS outcomes in pediatric dystonia: Insights from the GEPESTIM registry. Neuroimage Clin 2023; 39:103449. [PMID: 37321142 PMCID: PMC10275720 DOI: 10.1016/j.nicl.2023.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an established treatment in patients of various ages with pharmaco-resistant neurological disorders. Surgical targeting and postoperative programming of DBS depend on the spatial location of the stimulating electrodes in relation to the surrounding anatomical structures, and on electrode connectivity to a specific distribution pattern within brain networks. Such information is usually collected using group-level analysis, which relies on the availability of normative imaging resources (atlases and connectomes). Analysis of DBS data in children with debilitating neurological disorders such as dystonia would benefit from such resources, especially given the developmental differences in neuroimaging data between adults and children. We assembled pediatric normative neuroimaging resources from open-access datasets in order to comply with age-related anatomical and functional differences in pediatric DBS populations. We illustrated their utility in a cohort of children with dystonia treated with pallidal DBS. We aimed to derive a local pallidal sweetspot and explore a connectivity fingerprint associated with pallidal stimulation to exemplify the utility of the assembled imaging resources. METHODS An average pediatric brain template (the MNI brain template 4.5-18.5 years) was implemented and used to localize the DBS electrodes in 20 patients from the GEPESTIM registry cohort. A pediatric subcortical atlas, analogous to the DISTAL atlas known in DBS research, was also employed to highlight the anatomical structures of interest. A local pallidal sweetspot was modeled, and its degree of overlap with stimulation volumes was calculated as a correlate of individual clinical outcomes. Additionally, a pediatric functional connectome of 100 neurotypical subjects from the Consortium for Reliability and Reproducibility was built to allow network-based analyses and decipher a connectivity fingerprint responsible for the clinical improvements in our cohort. RESULTS We successfully implemented a pediatric neuroimaging dataset that will be made available for public use as a tool for DBS analyses. Overlap of stimulation volumes with the identified DBS-sweetspot model correlated significantly with improvement on a local spatial level (R = 0.46, permuted p = 0.019). The functional connectivity fingerprint of DBS outcomes was determined to be a network correlate of therapeutic pallidal stimulation in children with dystonia (R = 0.30, permuted p = 0.003). CONCLUSIONS Local sweetspot and distributed network models provide neuroanatomical substrates for DBS-associated clinical outcomes in dystonia using pediatric neuroimaging surrogate data. Implementation of this pediatric neuroimaging dataset might help to improve the practice and pave the road towards a personalized DBS-neuroimaging analyses in pediatric patients.
Collapse
Affiliation(s)
- Bassam Al-Fatly
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany.
| | - Sabina J Giesler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Oxenford
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Ningfei Li
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Johannes Achtzehn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Patricia Krause
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Vera Tadic
- Department of Neurology, University Medical Center Schleswig Holstein, Lübeck Campus, Lübeck, Germany
| | - Tobias Bäumer
- Institute of System Motor Science, University Medical Center Schleswig Holstein, Lübeck Campus, Lübeck, Germany
| | - Alfons Schnitzler
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Vesper
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - Andrea A Kühn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany.
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Wolff Fernandes F, Saryyeva A, Ertl P, Krauss JK. Hemidystonia secondary to pediatric thalamic glioblastoma: a case report. Childs Nerv Syst 2023; 39:557-559. [PMID: 36220936 PMCID: PMC10006018 DOI: 10.1007/s00381-022-05698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Thalamic tumors are rare and uncommonly manifest as movement disorders, including hemidystonia. Despite this association, little is known about the evolution of hemidystonia. CASE DESCRIPTION We report on a 11-year-old boy who complained of hypaesthesia and fine motor problems in the left hand. A magnetic resonance imaging showed a large mass in the right thalamus. Stereotactic biopsy revealed a WHO grade 4 astrocytoma, and the patient underwent normofractioned radiochemotherapy with proton-beam radiation and temozolomide. Three months later, a spastic hemiparesis developed on the left side, which progressed over months. Over the following months, the hemiparesis slowly improved, but hemidystonia in the same side developed. This was accompanied with radiological evidence of tumor regression, showing a persistent lesion in the ventral posterolateral and the intralaminar thalamus. CONCLUSION This case illustrates the unusual and complex temporal course of appearance and disappearance of hemidystonia along with the regression and growth in glioblastoma involving the thalamus.
Collapse
Affiliation(s)
- Filipe Wolff Fernandes
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany.
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | - Philipp Ertl
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | - Joachim Kurt Krauss
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
5
|
Garofalo M, Beudel M, Dijk J, Bonouvrié L, Buizer A, Geytenbeek J, Prins R, Schuurman P, van de Pol L. Elective and Emergency Deep Brain Stimulation in Refractory Pediatric Monogenetic Movement Disorders Presenting with Dystonia: Current Practice Illustrated by Two Cases. Neuropediatrics 2022; 54:44-52. [PMID: 36223877 PMCID: PMC9842449 DOI: 10.1055/a-1959-9088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Dystonia is characterized by sustained or intermittent muscle contractions, leading to abnormal posturing and twisting movements. In pediatric patients, dystonia often negatively influences quality of life. Pharmacological treatment for dystonia is often inadequate and causes adverse effects. Deep brain stimulation (DBS) appears to be a valid therapeutic option for pharmacoresistant dystonia in children. METHODS To illustrate the current clinical practice, we hereby describe two pediatric cases of monogenetic movement disorders presenting with dystonia and treated with DBS. We provide a literature review of similar previously described cases and on different clinical aspects of DBS in pediatric dystonia. RESULTS The first patient, a 6-year-old girl with severe dystonia, chorea, and myoclonus due to an ADCY5 gene mutation, received DBS in an elective setting. The second patient, an 8-year-old boy with GNAO1-related dystonia and chorea, underwent emergency DBS due to a pharmacoresistant status dystonicus. A significant amelioration of motor symptoms (65% on the Burke-Fahn-Marsden Dystonia Rating Scale) was observed postoperatively in the first patient and her personal therapeutic goals were achieved. DBS was previously reported in five patients with ADCY5-related movement disorders, of which three showed objective improvement. Emergency DBS in our second patient resulted in the successful termination of his GNAO1-related status dystonicus, this being the eighth case reported in the literature. CONCLUSION DBS can be effective in monogenetic pediatric dystonia and should be considered early in the disease course. To better evaluate the effects of DBS on patients' functioning, patient-centered therapeutic goals should be discussed in a multidisciplinary approach.
Collapse
Affiliation(s)
- M. Garofalo
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
| | - M. Beudel
- Department of Neurology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands,Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - J.M. Dijk
- Department of Neurology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands,Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - L.A. Bonouvrié
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam, the Netherlands,Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, the Netherlands
| | - A.I. Buizer
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam, the Netherlands,Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, the Netherlands
| | - J. Geytenbeek
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Rehabilitation Medicine, Amsterdam, the Netherlands
| | - R.H.N. Prins
- Department of Neurology, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - P.R. Schuurman
- Department of Neurosurgery, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - L.A. van de Pol
- Department of Child Neurology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands,Department of Child Neurology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands,Address for correspondence L.A. van de Pol, MD, PhD Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije UniversiteitBoelelaan 1117, 1081 HV Amsterdamthe Netherlands
| |
Collapse
|
6
|
van Egmond ME, Lagrand TJ, Lizaitiene G, Smit M, Tijssen MAJ. A novel diagnostic approach for patients with adult-onset dystonia. J Neurol Neurosurg Psychiatry 2022; 93:1039-1048. [PMID: 35688632 DOI: 10.1136/jnnp-2021-328120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/07/2022] [Indexed: 11/04/2022]
Abstract
Adult-onset dystonia can be acquired, inherited or idiopathic. The dystonia is usually focal or segmental and for a limited number of cases causal treatment is available. In recent years, rapid developments in neuroimmunology have led to increased knowledge on autoantibody-related dystonias. At the same time, genetic diagnostics in sequencing technology have evolved and revealed several new genes associated with adult-onset dystonia. Furthermore, new phenotype-genotype correlations have been elucidated. Consequently, clinicians face the dilemma of which additional investigations should be performed and whether to perform genetic testing or not. To ensure early diagnosis and to prevent unnecessary investigations, integration of new diagnostic strategies is needed.We designed a new five-step diagnostic approach for adult-onset dystonia. The first four steps are based on a broad literature search and expert opinion, the fifth step, on when to perform genetic testing, is based on a detailed systematic literature review up to 1 December 2021.The basic principle of the algorithm is that genetic testing is unlikely to lead to changes in management in three groups: (1) patients with an acquired form of adult-onset dystonia; (2) patients with neurodegenerative disorders, presenting with a combined movement disorder including dystonic symptoms and (3) patients with adult-onset isolated focal or segmental dystonia. Throughout the approach, focus lies on early identification of treatable forms of dystonia, either acquired or genetic.This novel diagnostic approach for adult-onset dystonia can help clinicians to decide when to perform additional tests, including genetic testing and facilitates early aetiological diagnosis, to enable timely treatment.
Collapse
Affiliation(s)
- Martje E van Egmond
- Neurology, University Medical Centre Groningen, Groningen, The Netherlands.,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Tjerk J Lagrand
- Neurology, University Medical Centre Groningen, Groningen, The Netherlands.,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Neurology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Gintaute Lizaitiene
- Neurology, University Medical Centre Groningen, Groningen, The Netherlands.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Marenka Smit
- Neurology, University Medical Centre Groningen, Groningen, The Netherlands.,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marina A J Tijssen
- Neurology, University Medical Centre Groningen, Groningen, The Netherlands .,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
ATM rules neurodevelopment and glutamatergic transmission in the hippocampus but not in the cortex. Cell Death Dis 2022; 13:616. [PMID: 35842432 PMCID: PMC9288428 DOI: 10.1038/s41419-022-05038-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Interest in the function of ataxia-telangiectasia-mutated protein (ATM) is extensively growing as evidenced by preclinical studies that continuously link ATM with new intracellular pathways. Here, we exploited Atm+/- and Atm-/- mice and demonstrate that cognitive defects are rescued by the delivery of the antidepressant Fluoxetine (Fluox). Fluox increases levels of the chloride intruder NKCC1 exclusively at hippocampal level suggesting an ATM context-specificity. A deeper investigation of synaptic composition unveils increased Gluk-1 and Gluk-5 subunit-containing kainate receptors (KARs) levels in the hippocampus, but not in the cortex, of Atm+/- and Atm-/- mice. Analysis of postsynaptic fractions and confocal studies indicates that KARs are presynaptic while in vitro and ex vivo electrophysiology that are fully active. These changes are (i) linked to KCC2 activity, as the KCC2 blockade in Atm+/- developing neurons results in reduced KARs levels and (ii) developmental regulated. Indeed, the pharmacological inhibition of ATM kinase in adults produces different changes as identified by RNA-seq investigation. Our data display how ATM affects both inhibitory and excitatory neurotransmission, extending its role to a variety of neurological and psychiatric disorders.
Collapse
|
8
|
Singh J, Lanzarini E, Nardocci N, Santosh P. Movement disorders in patients with Rett syndrome: A systematic review of evidence and associated clinical considerations. Psychiatry Clin Neurosci 2021; 75:369-393. [PMID: 34472659 PMCID: PMC9298304 DOI: 10.1111/pcn.13299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022]
Abstract
AIM This systematic review identified and thematically appraised clinical evidence of movement disorders in patients with Rett syndrome (RTT). METHOD Using PRISMA criteria, six electronic databases were searched from inception to April 2021. A thematic analysis was then undertaken on the extracted data to identify potential themes. RESULTS Following the thematic analysis, six themes emerged: (i) clinical features of abnormal movement behaviors; (ii) mutational profile and its impact on movement disorders; (iii) symptoms and stressors that impact on movement disorders; (iv) possible underlying neurobiological mechanisms; (v) quality of life and movement disorders; and (vi) treatment of movement disorders. Current guidelines for managing movement disorders in general were then reviewed to provide possible treatment recommendations for RTT. CONCLUSION Our study offers an enriched data set for clinical investigations and treatment of fine and gross motor issues in RTT. A detailed understanding of genotype-phenotype relationships of movement disorders allows for more robust genetic counseling for families but can also assist healthcare professionals in terms of monitoring disease progression in RTT. The synthesis also showed that environmental enrichment would be beneficial for improving some aspects of movement disorders. The cerebellum, basal ganglia, alongside dysregulation of the cortico-basal ganglia-thalamo-cortical loop, are likely anatomical targets. A review of treatments for movement disorders also helped to provide recommendations for treating and managing movement disorders in patients with RTT.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK.,Centre for Personalised Medicine in Rett Syndrome, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Evamaria Lanzarini
- Child and Adolescent Neuropsychiatry Unit, Infermi Hospital, Rimini, Italy
| | - Nardo Nardocci
- Department of Paediatric Neurology, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK.,Centre for Personalised Medicine in Rett Syndrome, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
van der Stouwe AMM, Tuitert I, Giotis I, Calon J, Gannamani R, Dalenberg JR, van der Veen S, Klamer MR, Telea AC, Tijssen MAJ. Next move in movement disorders (NEMO): developing a computer-aided classification tool for hyperkinetic movement disorders. BMJ Open 2021; 11:e055068. [PMID: 34635535 PMCID: PMC8506849 DOI: 10.1136/bmjopen-2021-055068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/28/2021] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Our aim is to develop a novel approach to hyperkinetic movement disorder classification, that combines clinical information, electromyography, accelerometry and video in a computer-aided classification tool. We see this as the next step towards rapid and accurate phenotype classification, the cornerstone of both the diagnostic and treatment process. METHODS AND ANALYSIS The Next Move in Movement Disorders (NEMO) study is a cross-sectional study at Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen. It comprises patients with single and mixed phenotype movement disorders. Single phenotype groups will first include dystonia, myoclonus and tremor, and then chorea, tics, ataxia and spasticity. Mixed phenotypes are myoclonus-dystonia, dystonic tremor, myoclonus ataxia and jerky/tremulous functional movement disorders. Groups will contain 20 patients, or 40 healthy participants. The gold standard for inclusion consists of interobserver agreement on the phenotype among three independent clinical experts. Electromyography, accelerometry and three-dimensional video data will be recorded during performance of a set of movement tasks, chosen by a team of specialists to elicit movement disorders. These data will serve as input for the machine learning algorithm. Labels for supervised learning are provided by the expert-based classification, allowing the algorithm to learn to predict what the output label should be when given new input data. Methods using manually engineered features based on existing clinical knowledge will be used, as well as deep learning methods which can detect relevant and possibly new features. Finally, we will employ visual analytics to visualise how the classification algorithm arrives at its decision. ETHICS AND DISSEMINATION Ethical approval has been obtained from the relevant local ethics committee. The NEMO study is designed to pioneer the application of machine learning of movement disorders. We expect to publish articles in multiple related fields of research and patients will be informed of important results via patient associations and press releases.
Collapse
Affiliation(s)
- A M Madelein van der Stouwe
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
- Expertise Centre Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Inge Tuitert
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
- Expertise Centre Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ioannis Giotis
- ZiuZ Visual Intelligence BV, Gorredijk, Groningen, The Netherlands
| | - Joost Calon
- ZiuZ Visual Intelligence BV, Gorredijk, Groningen, The Netherlands
| | - Rahul Gannamani
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
- Expertise Centre Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jelle R Dalenberg
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
- Expertise Centre Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sterre van der Veen
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
- Expertise Centre Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marrit R Klamer
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
- Expertise Centre Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
- ZiuZ Visual Intelligence BV, Gorredijk, Groningen, The Netherlands
| | - Alex C Telea
- Department of Information and Computing Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
- Expertise Centre Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Smit M, Albanese A, Benson M, Edwards MJ, Graessner H, Hutchinson M, Jech R, Krauss JK, Morgante F, Pérez Dueñas B, Reilly RB, Tinazzi M, Contarino MF, Tijssen MAJ. Dystonia Management: What to Expect From the Future? The Perspectives of Patients and Clinicians Within DystoniaNet Europe. Front Neurol 2021; 12:646841. [PMID: 34149592 PMCID: PMC8211212 DOI: 10.3389/fneur.2021.646841] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Improved care for people with dystonia presents a number of challenges. Major gaps in knowledge exist with regard to how to optimize the diagnostic process, how to leverage discoveries in pathophysiology into biomarkers, and how to develop an evidence base for current and novel treatments. These challenges are made greater by the realization of the wide spectrum of symptoms and difficulties faced by people with dystonia, which go well-beyond motor symptoms. A network of clinicians, scientists, and patients could provide resources to facilitate information exchange at different levels, share mutual experiences, and support each other's innovative projects. In the past, collaborative initiatives have been launched, including the American Dystonia Coalition, the European Cooperation in Science and Technology (COST-which however only existed for a limited time), and the Dutch DystonieNet project. The European Reference Network on Rare Neurological Diseases includes dystonia among other rare conditions affecting the central nervous system in a dedicated stream. Currently, we aim to broaden the scope of these initiatives to a comprehensive European level by further expanding the DystoniaNet network, in close collaboration with the ERN-RND. In line with the ERN-RND, the mission of DystoniaNet Europe is to improve care and quality of life for people with dystonia by, among other endeavors, facilitating access to specialized care, overcoming the disparity in education of medical professionals, and serving as a solid platform to foster international clinical and research collaborations. In this review, both professionals within the dystonia field and patients and caregivers representing Dystonia Europe highlight important unsolved issues and promising new strategies and the role that a European network can play in activating them.
Collapse
Affiliation(s)
- Marenka Smit
- Expertise Centre Movement Disorders Groningen, Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | - Alberto Albanese
- Department of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | | | - Mark J. Edwards
- Neuroscience Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics and Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Joachim K. Krauss
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hanover, Germany
| | - Francesca Morgante
- Neuroscience Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Belen Pérez Dueñas
- Pediatric Neurology Research Group, Hospital Vall d'Hebron–Institut de Recerca (VHIR), Barcelona, Spain
| | - Richard B. Reilly
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
- Department of Neurology, Haga Teaching Hospital, The Hague, Netherlands
| | - Marina A. J. Tijssen
- Expertise Centre Movement Disorders Groningen, Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | | |
Collapse
|
11
|
Tai CH, Lee WT, Tseng SH. DYT6 Dystonia Mimicking Adolescent Idiopathic Scoliosis Successfully Treated by Pallidal Stimulation. Int Med Case Rep J 2021; 14:315-321. [PMID: 34012300 PMCID: PMC8128503 DOI: 10.2147/imcrj.s307010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Dystonia type 6 (DYT6) is an autosomal dominant monogenic movement disorder that often involves craniocervical and laryngeal regions, but can in rare circumstance present as trunk dystonia or severe scoliosis. Deep brain stimulation of the globus pallidus internus (GPi-DBS) has yielded favorable results in the treatment of DYT6 patients. This report describes the case of a 14-year-old male adolescent with DYT6 dystonia and severe scoliosis who was successfully treated by GPi DBS. Patients and Methods The diagnosis of DYT6 dystonia was made after excluding other etiologies and was confirmed by next-generation sequencing. The patient underwent bilateral GPi-DBS implantation surgery under general anesthesia. Results The patient’s Burke–Fahn–Marsden Dystonia Rating Scale score was 24 before surgery and decreased to 13.5 at 3 months, 3 at 6 months, and 2 at 12 months after bilateral GPi-DBS, corresponding to a 91% improvement from baseline to 12 months post-surgery. The patient’s scoliosis improved significantly within 6 months after DBS. No complications occurred during surgery. Conclusion An adolescent DYT6 patient with dystonia-related severe scoliosis was treated by bilateral GPi-DBS. The patient had an excellent outcome at 12 months after surgery, which prevented him from developing severe spinal deformity and disability. Early diagnosis of dystonia in adolescent patients can lead to timely and effective treatment. The etiology of severe scoliosis in adolescents should be carefully evaluated and differential diagnosis including dystonia should be considered. GPi-DBS in patients with DYT6 dystonia can prevent deformity.
Collapse
Affiliation(s)
- Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Hong Tseng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Gannamani R, van der Veen S, van Egmond M, de Koning TJ, Tijssen MAJ. Challenges in Clinicogenetic Correlations: One Phenotype - Many Genes. Mov Disord Clin Pract 2021; 8:311-321. [PMID: 33816658 PMCID: PMC8015914 DOI: 10.1002/mdc3.13163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background In the field of movement disorders, what you see (phenotype) is seldom what you get (genotype). Whereas 1 phenotype was previously associated to 1 gene, the advent of next‐generation sequencing (NGS) has facilitated an exponential increase in disease‐causing genes and genotype–phenotype correlations, and the “one‐phenotype‐many‐genes” paradigm has become prominent. Objectives To highlight the “one‐phenotype‐many‐genes” paradigm by discussing the main challenges, perspectives on how to address them, and future directions. Methods We performed a scoping review of the various aspects involved in identifying the underlying molecular cause of a movement disorder phenotype. Results The notable challenges are (1) the lack of gold standards, overlap in clinical spectrum of different movement disorders, and variability in the interpretation of classification systems; (2) selecting which patients benefit from genetic tests and the choice of genetic testing; (3) problems in the variant interpretation guidelines; (4) the filtering of variants associated with disease; and (5) the lack of standardized, complete, and up‐to‐date gene lists. Perspectives to address these include (1) deep phenotyping and genotype–phenotype integration, (2) adherence to phenotype‐specific diagnostic algorithms, (3) implementation of current and complementary bioinformatic tools, (4) a clinical‐molecular diagnosis through close collaboration between clinicians and genetic laboratories, and (5) ongoing curation of gene lists and periodic reanalysis of genetic sequencing data. Conclusions Despite the rapidly emerging possibilities of NGS, there are still many steps to take to improve the genetic diagnostic yield. Future directions, including post‐NGS phenotyping and cohort analyses enriched by genotype–phenotype integration and gene networks, ought to be pursued to accelerate identification of disease‐causing genes and further improve our understanding of disease biology.
Collapse
Affiliation(s)
- Rahul Gannamani
- Department of Neurology University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Department of Genetics University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands
| | - Sterre van der Veen
- Department of Neurology University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands
| | - Martje van Egmond
- Department of Neurology University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands
| | - Tom J de Koning
- Department of Genetics University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands.,Pediatrics, Department of Clinical Sciences Lund University Lund Sweden
| | - Marina A J Tijssen
- Department of Neurology University of Groningen, University Medical Centre Groningen Groningen The Netherlands.,Expertise Centre Movement Disorders Groningen University Medical Centre Groningen Groningen The Netherlands
| |
Collapse
|
13
|
Koens LH, de Vries JJ, Vansenne F, de Koning TJ, Tijssen MAJ. How to detect late-onset inborn errors of metabolism in patients with movement disorders - A modern diagnostic approach. Parkinsonism Relat Disord 2021; 85:124-132. [PMID: 33745796 DOI: 10.1016/j.parkreldis.2021.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/15/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022]
Abstract
We propose a modern approach to assist clinicians to recognize and diagnose inborn errors of metabolism (IEMs) in adolescents and adults that present with a movement disorder. IEMs presenting in adults are still largely unexplored. These disorders receive little attention in neurological training and daily practice, and are considered complicated by many neurologists. Adult-onset presentations of IEMs differ from childhood-onset phenotypes, which may lead to considerable diagnostic delay. The identification of adult-onset phenotypes at the earliest stage of the disease is important, since early treatment may prevent or lessen further brain damage. Our approach is based on a systematic review of all papers that concerned movement disorders due to an IEM in patients of 16 years or older. Detailed clinical phenotyping is the diagnostic cornerstone of the approach. An underlying IEM should be suspected in particular in patients with more than one movement disorder, or in patients with additional neurological, psychiatric, or systemic manifestations. As IEMs are all genetic disorders, we recommend next-generation sequencing (NGS) as the first diagnostic approach to confirm an IEM. Biochemical tests remain the first choice in acute-onset or treatable IEMs that require rapid diagnosis, or to confirm the metabolic diagnosis after NGS results. With the use of careful and systematic clinical phenotyping combined with novel diagnostic approaches such as NGS, the diagnostic yield of late-onset IEMs will increase, in particular in patients with mild or unusual phenotypes.
Collapse
Affiliation(s)
- Lisette H Koens
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Jeroen J de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Fleur Vansenne
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Tom J de Koning
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Department of Clinical Sciences and Department of Pediatrics, Lund University, Box 188, SE-221 00, Lund, Sweden
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.
| |
Collapse
|
14
|
Brandsma R, van Egmond ME, Tijssen MAJ. Diagnostic approach to paediatric movement disorders: a clinical practice guide. Dev Med Child Neurol 2021; 63:252-258. [PMID: 33150968 PMCID: PMC7894329 DOI: 10.1111/dmcn.14721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
Abstract
Paediatric movement disorders (PMDs) comprise a large group of disorders (tics, myoclonus, tremor, dystonia, chorea, Parkinsonism, ataxia), often with mixed phenotypes. Determination of the underlying aetiology can be difficult given the broad differential diagnosis and the complexity of the genotype-phenotype relationships. This can make the diagnostic process time-consuming and difficult. In this overview, we present a diagnostic approach for PMDs, with emphasis on genetic causes. This approach can serve as a framework to lead the clinician through the diagnostic process in eight consecutive steps, including recognition of the different movement disorders, identification of a clinical syndrome, consideration of acquired causes, genetic testing including next-generation sequencing, post-sequencing phenotyping, and interpretation of test results. The aim of this approach is to increase the recognition and diagnostic yield in PMDs. WHAT THIS PAPER ADDS: An up-to-date description and diagnostic framework for testing of paediatric movement disorders is presented. The framework helps to determine which patients will benefit from next-generation sequencing.
Collapse
Affiliation(s)
- Rick Brandsma
- Department of Pediatric NeurologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Martje E van Egmond
- Department of NeurologyUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Marina A J Tijssen
- Department of NeurologyUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | | |
Collapse
|
15
|
Keller Sarmiento IJ, Mencacci NE. Genetic Dystonias: Update on Classification and New Genetic Discoveries. Curr Neurol Neurosci Rep 2021; 21:8. [PMID: 33564903 DOI: 10.1007/s11910-021-01095-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Since the advent of next-generation sequencing, the number of genes associated with dystonia has been growing exponentially. We provide here a comprehensive review of the latest genetic discoveries in the field of dystonia and discuss how the growing knowledge of biology underlying monogenic dystonias may influence and challenge current classification systems. RECENT FINDINGS Pathogenic variants in genes without previously confirmed roles in human disease have been identified in subjects affected by isolated or combined dystonia (KMT2B, VPS16, HPCA, KCTD17, DNAJC12, SLC18A2) and complex dystonia (SQSTM1, IRF2BPL, YY1, VPS41). Importantly, the classical distinction between isolated and combined dystonias has become harder to sustain since many genes have been shown to determine multiple dystonic presentations (e.g., ANO3, GNAL, ADCY5, and ATP1A3). In addition, a growing number of genes initially linked to other neurological phenotypes, such as developmental delay, epilepsy, or ataxia, are now recognized to cause prominent dystonia, occasionally in an isolated fashion (e.g., GNAO1, GNB1, SCN8A, RHOBTB2, and COQ8A). Finally, emerging analyses suggest biological convergence of genes linked to different dystonic phenotypes. While our knowledge on the genetic basis of monogenic dystonias has tremendously grown, their clinical boundaries are becoming increasingly blurry. The current phenotype-based classification may not reflect the molecular structure of the disease, urging the need for new systems based on shared biological pathways among dystonia-linked genes.
Collapse
Affiliation(s)
| | - Niccolò Emanuele Mencacci
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
16
|
Zech M, Jech R, Boesch S, Škorvánek M, Weber S, Wagner M, Zhao C, Jochim A, Necpál J, Dincer Y, Vill K, Distelmaier F, Stoklosa M, Krenn M, Grunwald S, Bock-Bierbaum T, Fečíková A, Havránková P, Roth J, Příhodová I, Adamovičová M, Ulmanová O, Bechyně K, Danhofer P, Veselý B, Haň V, Pavelekova P, Gdovinová Z, Mantel T, Meindl T, Sitzberger A, Schröder S, Blaschek A, Roser T, Bonfert MV, Haberlandt E, Plecko B, Leineweber B, Berweck S, Herberhold T, Langguth B, Švantnerová J, Minár M, Ramos-Rivera GA, Wojcik MH, Pajusalu S, Õunap K, Schatz UA, Pölsler L, Milenkovic I, Laccone F, Pilshofer V, Colombo R, Patzer S, Iuso A, Vera J, Troncoso M, Fang F, Prokisch H, Wilbert F, Eckenweiler M, Graf E, Westphal DS, Riedhammer KM, Brunet T, Alhaddad B, Berutti R, Strom TM, Hecht M, Baumann M, Wolf M, Telegrafi A, Person RE, Zamora FM, Henderson LB, Weise D, Musacchio T, Volkmann J, Szuto A, Becker J, Cremer K, Sycha T, Zimprich F, Kraus V, Makowski C, Gonzalez-Alegre P, Bardakjian TM, Ozelius LJ, Vetro A, Guerrini R, Maier E, Borggraefe I, Kuster A, Wortmann SB, Hackenberg A, Steinfeld R, Assmann B, Staufner C, Opladen T, Růžička E, Cohn RD, Dyment D, Chung WK, Engels H, Ceballos-Baumann A, Ploski R, Daumke O, Haslinger B, Mall V, Oexle K, Winkelmann J. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol 2020; 19:908-918. [PMID: 33098801 DOI: 10.1016/s1474-4422(20)30312-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dystonia is a clinically and genetically heterogeneous condition that occurs in isolation (isolated dystonia), in combination with other movement disorders (combined dystonia), or in the context of multisymptomatic phenotypes (isolated or combined dystonia with other neurological involvement). However, our understanding of its aetiology is still incomplete. We aimed to elucidate the monogenic causes for the major clinical categories of dystonia. METHODS For this exome-wide sequencing study, study participants were identified at 33 movement-disorder and neuropaediatric specialty centres in Austria, Czech Republic, France, Germany, Poland, Slovakia, and Switzerland. Each individual with dystonia was diagnosed in accordance with the dystonia consensus definition. Index cases were eligible for this study if they had no previous genetic diagnosis and no indication of an acquired cause of their illness. The second criterion was not applied to a subset of participants with a working clinical diagnosis of dystonic cerebral palsy. Genomic DNA was extracted from blood of participants and whole-exome sequenced. To find causative variants in known disorder-associated genes, all variants were filtered, and unreported variants were classified according to American College of Medical Genetics and Genomics guidelines. All considered variants were reviewed in expert round-table sessions to validate their clinical significance. Variants that survived filtering and interpretation procedures were defined as diagnostic variants. In the cases that went undiagnosed, candidate dystonia-causing genes were prioritised in a stepwise workflow. FINDINGS We sequenced the exomes of 764 individuals with dystonia and 346 healthy parents who were recruited between June 1, 2015, and July 31, 2019. We identified causative or probable causative variants in 135 (19%) of 728 families, involving 78 distinct monogenic disorders. We observed a larger proportion of individuals with diagnostic variants in those with dystonia (either isolated or combined) with coexisting non-movement disorder-related neurological symptoms (100 [45%] of 222; excepting cases with evidence of perinatal brain injury) than in those with combined (19 [19%] of 98) or isolated (16 [4%] of 388) dystonia. Across all categories of dystonia, 104 (65%) of the 160 detected variants affected genes which are associated with neurodevelopmental disorders. We found diagnostic variants in 11 genes not previously linked to dystonia, and propose a predictive clinical score that could guide the implementation of exome sequencing in routine diagnostics. In cases without perinatal sentinel events, genomic alterations contributed substantively to the diagnosis of dystonic cerebral palsy. In 15 families, we delineated 12 candidate genes. These include IMPDH2, encoding a key purine biosynthetic enzyme, for which robust evidence existed for its involvement in a neurodevelopmental disorder with dystonia. We identified six variants in IMPDH2, collected from four independent cohorts, that were predicted to be deleterious de-novo variants and expected to result in deregulation of purine metabolism. INTERPRETATION In this study, we have determined the role of monogenic variants across the range of dystonic disorders, providing guidance for the introduction of personalised care strategies and fostering follow-up pathophysiological explorations. FUNDING Else Kröner-Fresenius-Stiftung, Technische Universität München, Helmholtz Zentrum München, Medizinische Universität Innsbruck, Charles University in Prague, Czech Ministry of Education, the Slovak Grant and Development Agency, the Slovak Research and Grant Agency.
Collapse
Affiliation(s)
- Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Robert Jech
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Matej Škorvánek
- Department of Neurology, Pavol Jozef Šafárik University, Košice, Slovakia; Department of Neurology, University Hospital of Louis Pasteur, Košice, Slovakia
| | - Sandrina Weber
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Angela Jochim
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ján Necpál
- Department of Neurology, Zvolen Hospital, Zvolen, Slovakia
| | - Yasemin Dincer
- Lehrstuhl für Sozialpädiatrie, Technical University of Munich, Munich, Germany; Zentrum für Humangenetik und Laboratoriumsdiagnostik, Martinsried, Germany
| | - Katharina Vill
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Martin Krenn
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Stephan Grunwald
- Crystallography, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Tobias Bock-Bierbaum
- Crystallography, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Anna Fečíková
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Havránková
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Iva Příhodová
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Miriam Adamovičová
- Department of Paediatric Neurology, Thomayer Hospital, Prague, Czech Republic
| | - Olga Ulmanová
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Karel Bechyně
- Department of Neurology, Hospital Písek, Pisek, Czech Republic
| | - Pavlína Danhofer
- Department of Child Neurology, Faculty of Medicine of Masaryk University Brno and University Hospital, Brno, Czech Republic
| | - Branislav Veselý
- Department of Neurology, Faculty Hospital, Constantine the Philosopher University, Nitra, Slovakia
| | - Vladimír Haň
- Department of Neurology, Pavol Jozef Šafárik University, Košice, Slovakia; Department of Neurology, University Hospital of Louis Pasteur, Košice, Slovakia
| | - Petra Pavelekova
- Department of Neurology, Pavol Jozef Šafárik University, Košice, Slovakia; Department of Neurology, University Hospital of Louis Pasteur, Košice, Slovakia
| | - Zuzana Gdovinová
- Department of Neurology, Pavol Jozef Šafárik University, Košice, Slovakia; Department of Neurology, University Hospital of Louis Pasteur, Košice, Slovakia
| | - Tobias Mantel
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Meindl
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandra Sitzberger
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Schröder
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Astrid Blaschek
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Timo Roser
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michaela V Bonfert
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Edda Haberlandt
- Clinic for Pediatrics, Krankenhaus Stadt Dornbirn, Dornbirn, Austria
| | - Barbara Plecko
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Birgit Leineweber
- Sozialpädiatrisches Zentrum, Klinikum Dritter Orden, Munich, Germany
| | - Steffen Berweck
- Ludwig-Maximilians-Universität München, Munich, Germany; Hospital for Neuropediatrics and Neurological Rehabilitation, Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Vogtareuth, Germany
| | - Thomas Herberhold
- Hospital for Neuropediatrics and Neurological Rehabilitation, Centre of Epilepsy for Children and Adolescents, Schoen Klinik Vogtareuth, Vogtareuth, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Jana Švantnerová
- Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Michal Minár
- Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | | | - Monica H Wojcik
- Divisions of Newborn Medicine and Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sander Pajusalu
- Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia; Department of Clinical Genetics, University of Tartu, Tartu, Estonia; Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Katrin Õunap
- Department of Clinical Genetics, Tartu University Hospital, Tartu, Estonia; Department of Clinical Genetics, University of Tartu, Tartu, Estonia
| | - Ulrich A Schatz
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Laura Pölsler
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Ivan Milenkovic
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Roberto Colombo
- Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Steffi Patzer
- Klinik für Kinder-und Jugendmedizin St Elisabeth und St Barbara, Halle, Germany
| | - Arcangela Iuso
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Julia Vera
- Child Neurology Service, Hospital San Borja Arriarán, University of Chile, Santiago, Chile
| | - Monica Troncoso
- Child Neurology Service, Hospital San Borja Arriarán, University of Chile, Santiago, Chile
| | - Fang Fang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital and Capital Medical University, Beijing, China
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Friederike Wilbert
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Bader Alhaddad
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Martin Hecht
- Neurologische Klinik am Klinikum Kaufbeuren, Bezirkskliniken Schwaben, Kaufbeuren, Germany
| | - Matthias Baumann
- Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria
| | - Marc Wolf
- Neurologische Klinik, Klinikum Stuttgart, Stuttgart, Germany; Neurologische Klinik, Universitätsmedizin Mannheim, Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | - David Weise
- Klinik für Neurologie, Asklepios Fachklinikum Stadtroda, Stadtroda, Germany
| | - Thomas Musacchio
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Anna Szuto
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada; Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Jessica Becker
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Thomas Sycha
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Verena Kraus
- Department of Paediatrics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christine Makowski
- Department of Paediatrics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Pedro Gonzalez-Alegre
- Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Tanya M Bardakjian
- Department of Neurology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Annalisa Vetro
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Esther Maier
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ingo Borggraefe
- Dr von Haunersches Kinderspital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alice Kuster
- Inborn Errors of Metabolism, Pediatric Intensive Care Unit, University Hospital of Nantes, Nantes, France
| | - Saskia B Wortmann
- Institute of Human Genetics, Technical University of Munich, Munich, Germany; University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria; Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, Netherlands
| | - Annette Hackenberg
- Department of Pediatric Neurology, University Children's Hospital, Zürich, Switzerland
| | - Robert Steinfeld
- Department of Pediatric Neurology, University Children's Hospital, Zürich, Switzerland
| | - Birgit Assmann
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Staufner
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Evžen Růžička
- Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ronald D Cohn
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada; Hospital for Sick Children Research Institute, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Wendy K Chung
- Department of Pediatrics and Department of Medicine, Columbia University, New York, NY, USA
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn and University Hospital Bonn, Bonn, Germany
| | | | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Oliver Daumke
- Crystallography, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Bernhard Haslinger
- Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Volker Mall
- Lehrstuhl für Sozialpädiatrie, Technical University of Munich, Munich, Germany; kbo-Kinderzentrum München, Munich, Germany
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany; Lehrstuhl für Neurogenetik, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
| |
Collapse
|
17
|
Belykh NA, Akhkyamova MA, Gusev VV, Lvova OA. A case report of DOPA-responsive dystonia in a young woman. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dopa-responsive dystonia (DRD) is a rare progressive genetically heterogenous disorder with pediatric onset. DRD is 3 times as prevalent in women than in men. This article reports a clinical case of DRD in a young female presenting with paraparesis, foot dystonia (more pronounced in the right foot) and pronounced walking impairment, who was admitted for emergency treatment to a Neurology Unit. Based on the additional tests, which included a levodopa trial and Sanger sequencing, the patient was diagnosed with DRD. Levodopa caused a considerable improvement of the symptoms. The article describes the clinical features of the disease, talks about its differential diagnosis, genetic predisposition and treatment strategy.
Collapse
Affiliation(s)
- NA Belykh
- Ural State Medical University of the Ministry of health, Yekaterinburg, Russia
| | - MA Akhkyamova
- Ural State Medical University of the Ministry of health, Yekaterinburg, Russia
| | - VV Gusev
- Central Clinical Hospital #23, Yekaterinburg, Russia;Ural State Medical University of the Ministry of health, Yekaterinburg, Russia; Yeltsin Ural Federal University, Yekaterinburg, Russia
| | - OA Lvova
- Ural State Medical University of the Ministry of health, Yekaterinburg, Russia
| |
Collapse
|
18
|
Alderson J, Ghosh PS. Clinical Reasoning: Seven-year-old girl with progressive gait difficulties. Neurology 2020; 94:364-367. [DOI: 10.1212/wnl.0000000000009003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Abstract
PURPOSE OF REVIEW This article provides a summary of the state of the art in the diagnosis, classification, etiologies, and treatment of dystonia. RECENT FINDINGS Although many different clinical manifestations of dystonia have been recognized for decades, it is only in the past 5 years that a broadly accepted approach has emerged for classifying them into specific subgroups. The new classification system aids clinical recognition and diagnosis by focusing on key clinical features that help distinguish the many subtypes. In the past few years, major advances have been made in the discovery of new genes as well as advances in our understanding of the biological processes involved. These advances have led to major changes in strategies for diagnosis of the inherited dystonias. An emerging trend is to move away from heavy reliance on the phenotype to target diagnostic testing toward a broader approach that involves large gene panels or whole exome sequencing. SUMMARY The dystonias are a large family of phenotypically and etiologically diverse disorders. The diagnosis of these disorders depends on clinical recognition of characteristic clinical features. Symptomatic treatments are useful for all forms of dystonia and include oral medications, botulinum toxins, and surgical procedures. Determination of etiology is becoming increasingly important because the number of disorders is growing and more specific and sometimes disease-modifying therapies now exist.
Collapse
|
20
|
Bonnot O, Klünemann HH, Velten C, Torres Martin JV, Walterfang M. Systematic review of psychiatric signs in Niemann-Pick disease type C. World J Biol Psychiatry 2019; 20:320-332. [PMID: 29457916 DOI: 10.1080/15622975.2018.1441548] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objectives: We conducted the first systematic literature review and analysis of psychiatric manifestations in Niemann-Pick disease type C (NPC) to describe: (1) time of occurrence of psychiatric manifestations relative to other disease manifestations; and (2) frequent combinations of psychiatric, neurological and visceral disease manifestations. Methods: A systematic EMBase literature search was conducted to identify, collate and analyze published data from patients with NPC associated with psychiatric symptoms, published between January 1967 and November 2015. Results: Of 152 identified publications 40 were included after screening that contained useable data from 58 NPC patients (mean [SD] age at diagnosis of NPC 27.8 [15.1] years). Among patients with available data, cognitive, memory and instrumental impairments were most frequent (90% of patients), followed by psychosis (62%), altered behavior (52%) and mood disorders (38%). Psychiatric manifestations were reported before or at neurological disease onset in 41 (76%) patients; organic signs (e.g., hepatosplenomegaly, hearing problems) were reported before psychiatric manifestations in 12 (22%). Substantial delays to diagnosis were observed (5-6 years between psychiatric presentation and NPC diagnosis). Conclusions: NPC should be considered as a possible cause of psychiatric manifestations in patients with an atypical disease course, acute-onset psychosis, treatment failure, and/or certain combinations of psychiatric/neurological/visceral symptoms.
Collapse
Affiliation(s)
- Olivier Bonnot
- a Child and Adolescent Psychiatry Department , CHU and University of Nantes , Nantes , France
| | - Hans-Hermann Klünemann
- b University Clinic for Psychiatry and Psychotherapy, Regensburg University , Regensburg , Germany
| | | | | | | |
Collapse
|
21
|
Muranova AV, Strokov IA, Kazantsev KY, Voskresenskaya ON. Segawa's syndrome. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:55-59. [DOI: 10.17116/jnevro201911904155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Eggink H, Coenen MA, de Jong R, Toonen RF, Eissens MH, Veenstra WS, Peall KJ, Sival DA, Elema A, Tijssen MA. Motor and non-motor determinants of health-related quality of life in young dystonia patients. Parkinsonism Relat Disord 2019; 58:50-55. [PMID: 30181088 DOI: 10.1016/j.parkreldis.2018.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To systematically investigate the relationship between motor and non-motor symptoms, and health-related quality of life (HR-QoL) in children and young adults with dystonia. METHODS In this prospective observational cross-sectional study, 60 patients (6-25 years) with childhood-onset dystonia underwent a multidisciplinary assessment of dystonia severity (Burke-Fahn-Marsden Dystonia Rating Scale, Global Clinical Impression), motor function (Gross Motor Function Measure, Melbourne Assessment of Unilateral Upper Limb Function), pain (visual analogue scale), intelligence (Wechsler Intelligence Scale), executive functioning (Behavior Rating Inventory of Executive Function) and anxiety/depression (Child/Adult Behavior Checklist). Measures were analyzed using a principal component analysis and subsequent multiple regression to evaluate which components were associated with HR-QoL (Pediatric Quality of life Inventory) for total group, and non-lesional (primary) and lesional (secondary) subgroups. RESULTS Patients (29 non-lesional, 31 lesional dystonia) had a mean age of 13.6 ± 5.9 years. The principal component analysis revealed three components: 1) motor symptoms; 2) psychiatric and behavioral symptoms; and 3) pain. HR-QoL was associated with motor symptoms and psychiatric and behavioral symptoms (R2 = 0.66) for the total sample and lesional dystonia, but in the non-lesional dystonia subgroup only with psychiatric and behavioral symptoms (R2 = 0.51). CONCLUSIONS Non-motor symptoms are important for HR-QoL in childhood-onset dystonia. We suggest a multidisciplinary assessment of motor and non-motor symptoms to optimize individual patient management.
Collapse
Affiliation(s)
- Hendriekje Eggink
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Maraike A Coenen
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Ronald de Jong
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Center for Rehabilitation, Groningen, The Netherlands
| | - Rivka F Toonen
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Center for Rehabilitation, Groningen, The Netherlands
| | - Melanie H Eissens
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Wencke S Veenstra
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Kathryn J Peall
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands; Institute of Psychological Medicine and Clinical Neurosciences, Hadyn Ellis Building, Cardiff University, Cardiff, United Kingdom
| | - Deborah A Sival
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands
| | - Agnes Elema
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Center for Rehabilitation, Groningen, The Netherlands
| | - Marina Aj Tijssen
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands.
| |
Collapse
|
23
|
Nelin S, Hussey R, Faux BM, Rohena L. Youngest presenting patient with dystonia 24 and review of the literature. Clin Case Rep 2018; 6:2070-2074. [PMID: 30455893 PMCID: PMC6230669 DOI: 10.1002/ccr3.1671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022] Open
Abstract
Dystonia 24 was first reported in 2000 as an autosomal dominant cause of dystonia caused by variants in the ANO3 gene. Although many adults have been described with dystonia 24, since 2014, an increasing number of children have also been reported. Dystonia 24 should also be considered in the differential of a child with unexplained dystonia.
Collapse
|
24
|
van Egmond ME, Eggink H, Kuiper A, Sival DA, Verschuuren-Bemelmans CC, Tijssen MAJ, de Koning TJ. Crossing barriers: a multidisciplinary approach to children and adults with young-onset movement disorders. JOURNAL OF CLINICAL MOVEMENT DISORDERS 2018; 5:3. [PMID: 29636982 PMCID: PMC5887190 DOI: 10.1186/s40734-018-0070-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/22/2018] [Indexed: 11/10/2022]
Abstract
Background Diagnosis of less common young-onset movement disorders is often challenging, requiring a broad spectrum of skills of clinicians regarding phenotyping, normal and abnormal development and the wide range of possible acquired and genetic etiologies. This complexity often leads to considerable diagnostic delays, paralleled by uncertainty for patients and their families. Therefore, we hypothesized that these patients might benefit from a multidisciplinary approach. We report on the first 100 young-onset movement disorders patients who visited our multidisciplinary outpatient clinic. Methods Clinical data were obtained from the medical records of patients with disease-onset before age 18 years. We investigated whether the multidisciplinary team, consisting of a movement disorder specialist, pediatric neurologist, pediatrician for inborn errors of metabolism and clinical geneticist, revised the movement disorder classification, etiological diagnosis, and/or treatment. Results The 100 referred patients (56 males) had a mean age of 12.5 ± 6.3 years and mean disease duration of 9.2 ± 6.3 years. Movement disorder classification was revised in 58/100 patients. Particularly dystonia and myoclonus were recognized frequently and supported by neurophysiological testing in 24/29 patients. Etiological diagnoses were made in 24/71 (34%) formerly undiagnosed patients, predominantly in the genetic domain. Treatment strategy was adjusted in 60 patients, of whom 43 (72%) reported a subjective positive effect. Conclusions This exploratory study demonstrates that a dedicated tertiary multidisciplinary approach to complex young-onset movement disorders may facilitate phenotyping and improve recognition of rare disorders, with a high diagnostic yield and minimal diagnostic delay. Future studies are needed to investigate the cost-benefit ratio of a multidisciplinary approach in comparison to regular subspecialty care.
Collapse
Affiliation(s)
- Martje E van Egmond
- 1Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Neurology, Ommelander Ziekenhuis Groningen, Delfzijl and Winschoten, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Hendriekje Eggink
- 1Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anouk Kuiper
- 1Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Deborah A Sival
- 3Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Marina A J Tijssen
- 1Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tom J de Koning
- 1Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,3Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
25
|
Meijer IA, Pearson TS. The Twists of Pediatric Dystonia: Phenomenology, Classification, and Genetics. Semin Pediatr Neurol 2018; 25:65-74. [PMID: 29735118 DOI: 10.1016/j.spen.2018.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article aims to provide a practical review of pediatric dystonia from a clinician's perspective. The focus is on the underlying genetic causes, recent findings, and treatable conditions. Dystonia can occur in an isolated fashion or accompanied by other neurological or systemic features. The clinical presentation is often a complex overlap of neurological findings with a large differential diagnosis. We recommend an approach guided by thorough clinical evaluation, brain magnetic resonance imaging (MRI), biochemical analysis, and genetic testing to hone in on the diagnosis. This article highlights the clinical and genetic complexity of pediatric dystonia and underlines the importance of a genetic diagnosis for therapeutic considerations.
Collapse
Affiliation(s)
- Inge A Meijer
- Department of Neurology, Mount Sinai Beth Israel, New York, NY; Department of Pediatrics, Neurology division, Université de Montreal, Montreal, Canada
| | - Toni S Pearson
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO.
| |
Collapse
|
26
|
Coenen MA, Eggink H, Tijssen MA, Spikman JM. Cognition in childhood dystonia: a systematic review. Dev Med Child Neurol 2018; 60:244-255. [PMID: 29238959 DOI: 10.1111/dmcn.13632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
Abstract
AIM Cognitive impairments have been established as part of the non-motor phenomenology of adult dystonia. In childhood dystonia, the extent of cognitive impairments is less clear. This systematic review aims to present an overview of the existing literature to elucidate the cognitive profile of primary and secondary childhood dystonia. METHOD Studies focusing on cognition in childhood dystonia were searched in MEDLINE and PsychInfo up to October 2017. We included studies on idiopathic and genetic forms of dystonia as well as dystonia secondary to cerebral palsy and inborn errors of metabolism. RESULTS Thirty-four studies of the initial 527 were included. Studies for primary dystonia showed intact cognition and IQ, but mild working memory and processing speed deficits. Studies on secondary dystonia showed more pronounced cognitive deficits and lower IQ scores with frequent intellectual disability. Data are missing for attention, language, and executive functioning. INTERPRETATION This systematic review shows possible cognitive impairments in childhood dystonia. The severity of cognitive impairment seems to intensify with increasing neurological abnormalities. However, the available data on cognition in childhood dystonia are very limited and not all domains have been investigated yet. This underlines the need for future research using standardized neuropsychological procedures in this group. WHAT THIS PAPER ADDS There is limited data on cognition in childhood dystonia. Primary dystonia showed intact cognition and IQ, but mild working memory and processing speed deficits. Secondary dystonia showed more pronounced deficits and lower IQ, with frequent intellectual disability. There is a strong need for case-control studies assessing cognition using standardized neuropsychological tests.
Collapse
Affiliation(s)
- Maraike A Coenen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hendriekje Eggink
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marina A Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jacoba M Spikman
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
27
|
Oterdoom DLM, van Egmond ME, Ascencao LC, van Dijk JMC, Saryyeva A, Beudel M, Runge J, de Koning TJ, Abdallat M, Eggink H, Tijssen MAJ, Krauss JK. Reversal of Status Dystonicus after Relocation of Pallidal Electrodes in DYT6 Generalized Dystonia. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2018. [PMID: 29520331 PMCID: PMC5840317 DOI: 10.7916/d82f90dx] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background DYT6 dystonia can have an unpredictable clinical course and the result of deep brain stimulation (DBS) of the internal part of the globus pallidus (GPi) is known to be less robust than in other forms of autosomal dominant dystonia. Patients who had previous stereotactic surgery with insufficient clinical benefit form a particular challenge with very limited other treatment options available. Case Report A pediatric DYT6 patient unexpectedly deteriorated to status dystonicus 1 year after GPi DBS implantation with good initial clinical response. After repositioning the DBS electrodes the status dystonicus resolved. Discussion This case study demonstrates that medication‐resistant status dystonicus in DYT6 dystonia can be reversed by relocation of pallidal electrodes. This case highlights that repositioning of DBS electrodes may be considered in patients with status dystonicus, especially when the electrode position is not optimal, even after an initial clinical response to DBS.
Collapse
Affiliation(s)
- D L Marinus Oterdoom
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Martje E van Egmond
- Department of Neurology, University of Groningen, University Medical Center Groningen, the Netherlands.,Ommelander Ziekenhuis Groningen, Department of Neurology, Delfzijl and Winschoten, the Netherlands
| | | | - J Marc C van Dijk
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Martijn Beudel
- Department of Neurology, University of Groningen, University Medical Center Groningen, the Netherlands.,Department of Neurology, Isala Klinieken, Zwolle, the Netherlands
| | - Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Tom J de Koning
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, the Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands
| | | | - Hendriekje Eggink
- Department of Neurology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, the Netherlands
| | | |
Collapse
|
28
|
Abstract
Dystonia is one of the most frequent movement disorders in childhood. It can impede normal motor development and cause significant motor disability. The diagnostic evaluation of childhood dystonia is challenging due to the phenotypic variability and heterogeneous etiologies. Evidence to guide the diagnostic evaluation and treatment is limited. Assessment is primarily directed by clinical history and distinctive examination findings. Neuroimaging is typically necessary to evaluate for acquired or complex inherited dystonias. A trial of levodopa can be both diagnostic and therapeutic in children with dopa-responsive dystonia. However, for the majority of children with early-onset dystonia, treatment is symptomatic with varying efficacy. There is a paucity of therapeutic trials for childhood dystonia and most treatment recommendations are consensus or expert opinion driven. This review summarizes the available evidence and guidelines on the diagnostic evaluation and pharmacological treatment of childhood-onset dystonia and provides practical frameworks to approach both issues based on best evidence.
Collapse
|
29
|
Jinnah HA, Albanese A, Bhatia KP, Cardoso F, Da Prat G, de Koning TJ, Espay AJ, Fung V, Garcia-Ruiz PJ, Gershanik O, Jankovic J, Kaji R, Kotschet K, Marras C, Miyasaki JM, Morgante F, Munchau A, Pal PK, Rodriguez Oroz MC, Rodríguez-Violante M, Schöls L, Stamelou M, Tijssen M, Uribe Roca C, de la Cerda A, Gatto EM. Treatable inherited rare movement disorders. Mov Disord 2017; 33:21-35. [PMID: 28861905 DOI: 10.1002/mds.27140] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 12/19/2022] Open
Abstract
There are many rare movement disorders, and new ones are described every year. Because they are not well recognized, they often go undiagnosed for long periods of time. However, early diagnosis is becoming increasingly important. Rapid advances in our understanding of the biological mechanisms responsible for many rare disorders have enabled the development of specific treatments for some of them. Well-known historical examples include Wilson disease and dopa-responsive dystonia, for which specific and highly effective treatments have life-altering effects. In recent years, similarly specific and effective treatments have been developed for more than 30 rare inherited movement disorders. These treatments include specific medications, dietary changes, avoidance or management of certain triggers, enzyme replacement therapy, and others. This list of treatable rare movement disorders is likely to grow during the next few years because a number of additional promising treatments are actively being developed or evaluated in clinical trials. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- H A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Alberto Albanese
- Department of Neurology, Humanitas Research Hospital, Rozzano, Italy.,Catholic University, Milan, Italy
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
| | - Francisco Cardoso
- Department of Internal Medicine, Movement Disorders Clinic, Neurology Service, UFMG, Belo Horizonte, MG, Brazil
| | - Gustavo Da Prat
- Department of Neurology, Affiliated University of Buenos Aires, Buenos Aires, Argentina.,University DelSalvadore, Buenos Aires, Argentina
| | - Tom J de Koning
- Department of Genetics, Pediatrics and Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alberto J Espay
- James J. and Joan A. Gardner Center for Parkinson's disease and Movement Disorders, University of Cincinnati, Ohio, USA
| | - Victor Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital & Sydney Medical School, University of Sydney, Sydney, Australia
| | | | - Oscar Gershanik
- Institute of Neuroscience, Favaloro Foundation University Hospital, Buenos Aires, Argentina
| | - Joseph Jankovic
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, Texas, USA
| | - Ryuji Kaji
- Department of Neurology, Tokushima University Graduate School of Medicine, Tokushima, Japan
| | - Katya Kotschet
- Clinical Neurosciences, St. Vincent's Health, Melbourne, Australia
| | - Connie Marras
- The Morton and Gloria Shulman Movement Disorders Centre and the Edmond J Safra Program in Parkinson's Disease, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | | - Francesca Morgante
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alexander Munchau
- Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neuroscience, Bangalore, India
| | - Maria C Rodriguez Oroz
- University Hospital Donostia, Madrid, Spain.,BioDonostia Research Institute, Basque Center on Cognition, Brain and Language, San Sebastian, Madrid, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
| | | | - Ludger Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany.,German Center for Neurodegenerative Diseases, Tubingen, Germany
| | - Maria Stamelou
- Neurology Clinic, Philipps University Marburg, Marburg, Germany.,Parkinson's Disease and Other Movement Disorders Department, HYGEIA Hospital, Athens, Greece
| | - Marina Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Claudia Uribe Roca
- Department of Neurology, British Hospital of Buenos Aires, Buenos Aires, Argentina
| | | | - Emilia M Gatto
- Department of Neurology, Affiliated University of Buenos Aires and University DelSalvadore, Buenos Aires, Argentina
| | | |
Collapse
|
30
|
Molecular diversity of combined and complex dystonia: insights from diagnostic exome sequencing. Neurogenetics 2017; 18:195-205. [PMID: 28849312 DOI: 10.1007/s10048-017-0521-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/10/2017] [Indexed: 12/22/2022]
Abstract
Combined and complex dystonias are heterogeneous movement disorders combining dystonia with other motor and/or systemic signs. Although we are beginning to understand the diverse molecular causes of these disease entities, clinical pattern recognition and conventional genetic workup achieve an etiological diagnosis only in a minority of cases. Our goal was to provide a window into the variable genetic origins and distinct clinical patterns of combined/complex dystonia more broadly. Between August 2016 and January 2017, we applied whole-exome sequencing to a cohort of nine patients with varied combined and/or complex dystonic presentations, being on a diagnostic odyssey. Bioinformatics analyses, co-segregation studies, and sequence-interpretation algorithms were employed to detect causative mutations. Comprehensive clinical review was undertaken to define the phenotypic spectra and optimal management strategies. On average, we observed a delay in diagnosis of 23 years before whole-exome analysis enabled determination of each patient's genetic defect. Whereas mutations in ACTB, ATP1A3, ADCY5, and SGCE were associated with particular phenotypic clues, trait manifestations arising from mutations in PINK1, MRE11A, KMT2B, ATM, and SLC6A1 were different from those previously reported in association with these genes. Apart from improving counseling for our entire cohort, genetic findings had actionable consequences on preventative measures and therapeutic interventions for five patients. Our investigation confirms unique genetic diagnoses, highlights key clinical features and phenotypic expansions, and suggests whole-exome sequencing as a first-tier diagnostic for combined/complex dystonia. These results might stimulate independent teams to extend the scope of agnostic genetic screening to this particular phenotypic group that remains poorly characterized through existing studies.
Collapse
|
31
|
Abstract
Mainly due to the advent of next-generation sequencing (NGS), the field of genetics of dystonia has rapidly grown in recent years, which led to the discovery of a number of novel dystonia genes and the development of a new classification and nomenclature for inherited dystonias. In addition, new findings from both in vivo and in vitro studies have been published on the role of previously known dystonia genes, extending our understanding of the pathophysiology of dystonia. We here review the current knowledge and recent findings in the known genes for isolated dystonia TOR1A, THAP1, and GNAL as well as for the combined dystonias due to mutations in GCH1, ATP1A3, and SGCE. We present confirmatory evidence for a role of dystonia genes that had not yet been unequivocally established including PRKRA, TUBB4A, ANO3, and TAF1. We finally discuss selected novel genes for dystonia such as KMT2B and VAC14 along with the challenges for gene identification in the NGS era and the translational importance of dystonia genetics in clinical practice.
Collapse
|
32
|
Zech M, Jech R, Havránková P, Fečíková A, Berutti R, Urgošík D, Kemlink D, Strom TM, Roth J, Růžička E, Winkelmann J. KMT2B rare missense variants in generalized dystonia. Mov Disord 2017; 32:1087-1091. [PMID: 28520167 DOI: 10.1002/mds.27026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/22/2017] [Accepted: 04/03/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Recently a novel syndrome of childhood-onset generalized dystonia originating from mutations in lysine-specific methyltransferase 2B (KMT2B) has been reported. METHODS We sequenced the exomes of 4 generalized dystonia-affected probands recruited from a Prague movement disorders center (Czech Republic). Bioinformatics analyses were conducted to select candidate causal variants in described dystonia-mutated genes. After cosegregation testing, checklists from the American College of Medical Genetics and Genomics were adopted to judge variant pathogenicity. RESULTS Three novel, predicted protein-damaging missense variants in KMT2B were identified (p.Glu1234Lys, p.Ala1541Val, p.Arg1779Gln). Meeting pathogenicity criteria, p.Glu1234Lys was absent from population-based controls, situated in a key protein domain, and had occurred de novo. The associated phenotype comprised adolescence-onset generalized isolated dystonia with prominent speech impairment. Although linked to a similar clinical expression, p.Ala1541Val and p.Arg1779Gln remained of uncertain significance. CONCLUSIONS Rare missense variation in KMT2B represents an additional cause of generalized dystonia. Application of sequence interpretation standards is required before assigning pathogenicity to a KMT2B missense variant. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Michael Zech
- Institut für Neurogenomik, Helmholtz Zentrum München, Munich, Germany.,Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Petra Havránková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Anna Fečíková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Riccardo Berutti
- Institut für Humangenetik, Helmholtz Zentrum München, Munich, Germany
| | - Dušan Urgošík
- Department of Stereotactic Neurosurgery and Radiosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - David Kemlink
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Tim M Strom
- Institut für Humangenetik, Helmholtz Zentrum München, Munich, Germany.,Institut für Humangenetik, Technische Universität München, Munich, Germany
| | - Jan Roth
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Juliane Winkelmann
- Institut für Neurogenomik, Helmholtz Zentrum München, Munich, Germany.,Klinik und Poliklinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institut für Humangenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| |
Collapse
|
33
|
van Egmond ME, Lugtenberg CHA, Brouwer OF, Contarino MF, Fung VSC, Heiner-Fokkema MR, van Hilten JJ, van der Hout AH, Peall KJ, Sinke RJ, Roze E, Verschuuren-Bemelmans CC, Willemsen MA, Wolf NI, Tijssen MA, de Koning TJ. A post hoc study on gene panel analysis for the diagnosis of dystonia. Mov Disord 2017; 32:569-575. [PMID: 28186668 DOI: 10.1002/mds.26937] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 12/21/2016] [Accepted: 01/08/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genetic disorders causing dystonia show great heterogeneity. Recent studies have suggested that next-generation sequencing techniques such as gene panel analysis can be effective in diagnosing heterogeneous conditions. The objective of this study was to investigate whether dystonia patients with a suspected genetic cause could benefit from the use of gene panel analysis. METHODS In this post hoc study, we describe gene panel analysis results of 61 dystonia patients (mean age, 31 years; 72% young onset) in our tertiary referral center. The panel covered 94 dystonia-associated genes. As comparison with a historic cohort was not possible because of the rapidly growing list of dystonia genes, we compared the diagnostic workup with and without gene panel analysis in the same patients. The workup without gene panel analysis (control group) included theoretical diagnostic strategies formulated by independent experts in the field, based on detailed case descriptions. The primary outcome measure was diagnostic yield; secondary measures were cost and duration of diagnostic workup. RESULTS Workup with gene panel analysis led to a confirmed molecular diagnosis in 14.8%, versus 7.4% in the control group (P = 0.096). In the control group, on average 3 genes/case were requested. The mean costs were lower in the gene panel analysis group (€1822/case) than in the controls (€2660/case). The duration of the workup was considerably shorter with gene panel analysis (28 vs 102 days). CONCLUSIONS Gene panel analysis facilitates molecular diagnosis in complex cases of dystonia, with a good diagnostic yield (14.8%), a quicker diagnostic workup, and lower costs, representing a major improvement for patients and their families. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martje E van Egmond
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Groningen, the Netherlands.,Ommelander Ziekenhuis Groningen, Department of Neurology, Delfzijl and Winschoten, the Netherlands
| | - Coen H A Lugtenberg
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Groningen, the Netherlands
| | - Oebele F Brouwer
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Groningen, the Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Neurology, Haga Teaching Hospital, The Hague, the Netherlands
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital & Sydney Medical School, University of Sydney, Sydney, Australia
| | - M Rebecca Heiner-Fokkema
- University of Groningen, University Medical Centre Groningen, Department of Laboratory Medicine, Groningen, the Netherlands
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Annemarie H van der Hout
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, the Netherlands
| | - Kathryn J Peall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Richard J Sinke
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, the Netherlands
| | - Emmanuel Roze
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière and Sorbonne Universités, Université Pierre and Marie Curie, Institut du Cerveau et de la Moelle épinière, Paris, France
| | | | - Michel A Willemsen
- Radboud University Medical Centre, Department of Paediatric Neurology, Nijmegen, the Netherlands
| | - Nicole I Wolf
- VU University Medical Centre, Department of Child Neurology and Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Marina A Tijssen
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Groningen, the Netherlands
| | - Tom J de Koning
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Groningen, the Netherlands.,University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, the Netherlands.,University of Groningen, University Medical Centre Groningen, Department of Paediatrics, Groningen, the Netherlands
| |
Collapse
|
34
|
Deep brain stimulation for dystonia: a novel perspective on the value of genetic testing. J Neural Transm (Vienna) 2017; 124:417-430. [PMID: 28160152 DOI: 10.1007/s00702-016-1656-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
The dystonias are a group of disorders characterized by excessive muscle contractions leading to abnormal movements and postures. There are many different clinical manifestations and underlying causes. Deep brain stimulation (DBS) provides an effect treatment, but outcomes can vary considerably among the different subtypes of dystonia. Several variables are thought to contribute to this variation including age of onset and duration of dystonia, specific characteristics of the dystonic movements, location of stimulation and stimulator settings, and others. The potential contributions of genetic factors have received little attention. In this review, we summarize evidence that some of the variation in DBS outcomes for dystonia is due to genetic factors. The evidence suggests that more methodical genetic testing may provide useful information in the assessment of potential surgical candidates, and in advancing our understanding of the biological mechanisms that influence DBS outcomes.
Collapse
|
35
|
Ismail FY, Fatemi A, Johnston MV. Cerebral plasticity: Windows of opportunity in the developing brain. Eur J Paediatr Neurol 2017; 21:23-48. [PMID: 27567276 DOI: 10.1016/j.ejpn.2016.07.007] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neuroplasticity refers to the inherently dynamic biological capacity of the central nervous system (CNS) to undergo maturation, change structurally and functionally in response to experience and to adapt following injury. This malleability is achieved by modulating subsets of genetic, molecular and cellular mechanisms that influence the dynamics of synaptic connections and neural circuitry formation culminating in gain or loss of behavior or function. Neuroplasticity in the healthy developing brain exhibits a heterochronus cortex-specific developmental profile and is heightened during "critical and sensitive periods" of pre and postnatal brain development that enable the construction and consolidation of experience-dependent structural and functional brain connections. PURPOSE In this review, our primary goal is to highlight the essential role of neuroplasticity in brain development, and to draw attention to the complex relationship between different levels of the developing nervous system that are subjected to plasticity in health and disease. Another goal of this review is to explore the relationship between plasticity responses of the developing brain and how they are influenced by critical and sensitive periods of brain development. Finally, we aim to motivate researchers in the pediatric neuromodulation field to build on the current knowledge of normal and abnormal neuroplasticity, especially synaptic plasticity, and their dependence on "critical or sensitive periods" of neural development to inform the design, timing and sequencing of neuromodulatory interventions in order to enhance and optimize their translational applications in childhood disorders of the brain. METHODS literature review. RESULTS We discuss in details five patterns of neuroplasticity expressed by the developing brain: 1) developmental plasticity which is further classified into normal and impaired developmental plasticity as seen in syndromic autism spectrum disorders, 2) adaptive (experience-dependent) plasticity following intense motor skill training, 3) reactive plasticity to pre and post natal CNS injury or sensory deprivation, 4) excessive plasticity (loss of homeostatic regulation) as seen in dystonia and refractory epilepsy, 6) and finally, plasticity as the brain's "Achilles tendon" which induces brain vulnerability under certain conditions such as hypoxic ischemic encephalopathy and epileptic encephalopathy syndromes. We then explore the unique feature of "time-sensitive heightened plasticity responses" in the developing brain in the in the context of neuromodulation. CONCLUSION The different patterns of neuroplasticity and the unique feature of heightened plasticity during critical and sensitive periods are important concepts for researchers and clinicians in the field of pediatric neurology and neurodevelopmental disabilities. These concepts need to be examined systematically in the context of pediatric neuromodulation. We propose that critical and sensitive periods of brain development in health and disease can create "windows of opportunity" for neuromodulatory interventions that are not commonly seen in adult brain and probably augment plasticity responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Fatima Yousif Ismail
- Department of neurology and developmental medicine, The Kennedy Krieger Institute, Johns Hopkins Medical Institutions, MD, USA; Department of pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al- Ain, UAE.
| | - Ali Fatemi
- Departments of Neurology and Pediatrics, The Kennedy Krieger Institute, and Johns Hopkins University School of Medicine, MD, USA
| | - Michael V Johnston
- Departments of Neurology and Pediatrics, The Kennedy Krieger Institute, and Johns Hopkins University School of Medicine, MD, USA
| |
Collapse
|
36
|
Eggink H, van Egmond ME, Verschuuren-Bemelmans CC, Schönherr MC, de Koning TJ, Oterdoom DLM, van Dijk JMC, Tijssen MAJ. Dystonia-deafness syndrome caused by a β-actin gene mutation and response to deep brain stimulation. Mov Disord 2016; 32:162-165. [PMID: 27862284 DOI: 10.1002/mds.26842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Dystonia-deafness syndrome is a distinct clinical presentation within the dystonia-spectrum. Although several genetic and acquired causes have been reported, etiology remains unknown in the majority of patients. OBJECTIVES To describe two patients with dystonia-deafness syndrome due to a beta-actin gene mutation. METHODS We report on disease course, genetic testing, and management of 2 patients, mother and daughter, presenting with dystonia-deafness syndrome. RESULTS After exclusion of known dystonia-deafness syndrome causes, whole-exome sequencing revealed a beta-actin gene mutation (p.Arg183Trp) in both patients. Although beta-actin gene mutations are generally associated with developmental Baraitser-Winter syndrome, dystonia-deafness syndrome has been reported once in identical twin brothers. Bilateral GPi-DBS led to a significant decrease of dystonia and regain of independency in our patients. CONCLUSION The p.Arg183Trp mutation in the beta-actin gene is associated with the clinical presentation of dystonia-deafness syndrome, even with only minimal or no developmental abnormalities of Baraitser-Winter syndrome. GPi-DBS should be considered to ameliorate the invalidating dystonia in these patients. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hendriekje Eggink
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martje E van Egmond
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Marleen C Schönherr
- Department of Rehabilitation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tom J de Koning
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - D L Marinus Oterdoom
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Zech M, Boesch S, Jochim A, Weber S, Meindl T, Schormair B, Wieland T, Lunetta C, Sansone V, Messner M, Mueller J, Ceballos-Baumann A, Strom TM, Colombo R, Poewe W, Haslinger B, Winkelmann J. Clinical exome sequencing in early-onset generalized dystonia and large-scale resequencing follow-up. Mov Disord 2016; 32:549-559. [PMID: 27666935 DOI: 10.1002/mds.26808] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dystonia is clinically and genetically heterogeneous. Despite being a first-line testing tool for heterogeneous inherited disorders, whole-exome sequencing has not yet been evaluated in dystonia diagnostics. We set up a pilot study to address the yield of whole-exome sequencing for early-onset generalized dystonia, a disease subtype enriched for monogenic causation. METHODS Clinical whole-exome sequencing coupled with bioinformatics analysis and detailed phenotyping of mutation carriers was performed on 16 consecutive cases with genetically undefined early-onset generalized dystonia. Candidate pathogenic variants were validated and tested for cosegregation. The whole-exome approach was complemented by analyzing 2 mutated yet unestablished causative genes in another 590 dystonia cases. RESULTS Whole-exome sequencing detected clinically relevant mutations of known dystonia-related genes in 6 generalized dystonia cases (37.5%), among whom 3 had novel variants. Reflecting locus heterogeneity, identified unique variants were distributed over 5 genes (GCH1, THAP1, TOR1A, ANO3, ADCY5), of which only 1 (ANO3) was mutated recurrently. Three genes (GCH1, THAP1, TOR1A) were associated with isolated generalized dystonia, whereas 2 (ANO3, ADCY5) gave rise to combined dystonia-myoclonus phenotypes. Follow-up screening of ANO3 and ADCY5 revealed a set of distinct variants of interest, the pathogenicity of which was supported by bioinformatics testing and cosegregation work. CONCLUSIONS Our study identified whole-exome sequencing as an effective strategy for molecular diagnosis of early-onset generalized dystonia and offers insights into the heterogeneous genetic architecture of this condition. Furthermore, it provides confirmatory evidence for a dystonia-relevant role of ANO3 and ADCY5, both of which likely associate with a broader spectrum of dystonic expressions than previously thought. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Michael Zech
- Institut für Neurogenomik, Helmholtz Zentrum München, Munich, Germany.,Klinik und Poliklinik für Neurologie, Klinikum rechts der lsar, Technische Universität München, Munich, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Angela Jochim
- Klinik und Poliklinik für Neurologie, Klinikum rechts der lsar, Technische Universität München, Munich, Germany
| | - Sandrina Weber
- Institut für Neurogenomik, Helmholtz Zentrum München, Munich, Germany
| | - Tobias Meindl
- Klinik und Poliklinik für Neurologie, Klinikum rechts der lsar, Technische Universität München, Munich, Germany
| | - Barbara Schormair
- Institut für Neurogenomik, Helmholtz Zentrum München, Munich, Germany
| | - Thomas Wieland
- Institut für Humangenetik, Helmholtz Zentrum München, Munich, Germany
| | - Christian Lunetta
- Neuromuscular Omnicentre Sud (NEMO SUD), Fondazione Aurora Onlus, Messina, Italy
| | - Valeria Sansone
- Neuromuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milan, Italy.,Department of Biochemical Sciences for Health, University of Milan, Milan, Italy
| | | | - Joerg Mueller
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.,Vivantes Klinikum Spandau, Berlin, Germany
| | - Andres Ceballos-Baumann
- Klinik und Poliklinik für Neurologie, Klinikum rechts der lsar, Technische Universität München, Munich, Germany.,Schön Klinik München Schwabing, Munich, Germany
| | - Tim M Strom
- Institut für Humangenetik, Helmholtz Zentrum München, Munich, Germany.,Institut für Humangenetik, Technische Universität München, Munich, Germany
| | - Roberto Colombo
- Institute of Clinical Biochemistry, Catholic University, Rome, Italy.,Center for the Study of Rare Hereditary Diseases, Niguarda Ca' Granda Metropolitan Hospital, Milan, Italy
| | - Werner Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Haslinger
- Klinik und Poliklinik für Neurologie, Klinikum rechts der lsar, Technische Universität München, Munich, Germany
| | - Juliane Winkelmann
- Institut für Neurogenomik, Helmholtz Zentrum München, Munich, Germany.,Klinik und Poliklinik für Neurologie, Klinikum rechts der lsar, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
38
|
Kuiper A, Eggink H, Tijssen MAJ, de Koning TJ. Neurometabolic disorders are treatable causes of dystonia. Rev Neurol (Paris) 2016; 172:455-464. [PMID: 27561437 DOI: 10.1016/j.neurol.2016.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023]
Abstract
A broad range of rare inherited metabolic disorders can present with dystonia. For clinicians, it is important to recognize dystonic features, but it can be complicated by the mixed and complex clinical picture seen in many neurometabolic patients. Careful phenotyping is the first step towards the diagnosis of the underlying condition and subsequent targeted treatment, further supported by imaging, biochemical diagnostics and the availability of modern diagnostic techniques such as next generation sequencing. As several neurometabolic disorders are treatable causes of dystonia, these should have priority in the diagnostic process. In the symptomatic treatment of dystonia, several therapeutic options are available. Awareness for the occurrence and optimal treatment of dystonia and other movement disorders in neurometabolic conditions is important because these symptoms can have a substantial impact on the quality of life and daily functioning; this effect is not only exerted by the dystonia itself, but also by the frequently associated non-motor features. In this paper, the highlights and key concepts of neurometabolic forms of dystonia are discussed, with a focus on phenomenology, the diagnostic approach, the most important neurometabolic aetiologies, co-occurring non-motor features and therapeutic options.
Collapse
Affiliation(s)
- A Kuiper
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H Eggink
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M A J Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - T J de Koning
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The dystonias are a family of related disorders with many different clinical manifestations and causes. This review summarizes recent developments regarding these disorders, focusing mainly on advances with direct clinical relevance from the past 2 years. RECENT FINDINGS The dystonias are generally defined by their clinical characteristics, rather than by their underlying genetic or neuropathological defects. The many varied clinical manifestations and causes contribute to the fact that they are one of the most poorly recognized of all movement disorders. A series of recent publications has addressed these issues, offering a revised definition and more logical means for classifying the many subtypes. Our understanding of the genetic and neurobiological mechanisms responsible for different types of dystonias also has grown rapidly, creating new opportunities and challenges for diagnosis, and identifying increasing numbers of rare subtypes for which specific treatments are available. SUMMARY Recent advances in describing the clinical phenotypes and determining associated causes have pointed to the need for new strategies for diagnosis, classification, and treatment of the dystonias.
Collapse
Affiliation(s)
- Hyder A Jinnah
- aDepartment of Neurology, Human Genetics & Pediatrics, Emory University, Atlanta, Georgia bDystonia Medical Research Foundation, Chicago, Illinois cNational Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
40
|
Vittal P, Hall DA, Dames S, Mao R, Berry-Kravis E. BCAP31 Mutation Causing a Syndrome of Congenital Dystonia, Facial Dysorphism and Central Hypomyelination Discovered Using Exome Sequencing. Mov Disord Clin Pract 2015; 3:197-199. [PMID: 30713915 DOI: 10.1002/mdc3.12250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/27/2015] [Accepted: 08/09/2015] [Indexed: 01/27/2023] Open
Affiliation(s)
- Padmaja Vittal
- Department of Neurological Sciences Rush University Medical Center Chicago Illinois USA
| | - Deborah A Hall
- Department of Neurological Sciences Rush University Medical Center Chicago Illinois USA
| | - Shale Dames
- ARUP Research and Experimental Institute Salt Lake City Utah USA
| | - Rong Mao
- ARUP Laboratories Salt Lake City Utah USA.,Department of Pathology University of Utah Salt Lake City Utah USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, Biochemistry Rush University Medical Center Chicago Illinois USA
| |
Collapse
|
41
|
de Koning TJ, Tijssen MAJ. Genetic advances spark a revolution in dystonia phenotyping. Nat Rev Neurol 2015; 11:78-9. [DOI: 10.1038/nrneurol.2014.254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|