1
|
Łupicka A, Kowalczyk W, Cyman B, Spałek M. Should we be afraid of radiotherapy for hemorrhagic brain metastases? A narrative review. Ther Adv Med Oncol 2024; 16:17588359241289203. [PMID: 39416362 PMCID: PMC11481081 DOI: 10.1177/17588359241289203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Brain metastases (BM) are the most common intracranial malignancies. They are responsible for death as well as impairment of quality of life and cognitive function. In some cases, BMs can cause intracranial hemorrhage, which is not only responsible for the acute onset of either a new focal neurological deficit or worsening of a preexisting focal deficit but also poses a new challenge in treatment planning and clinical management. The aim of this study was to evaluate the available treatment modalities and their efficacy in hemorrhagic brain metastases (HBMs) with special attention to radiotherapy. In this review, we searched PubMed, BMJ, NCBI, Springer, BMC Cancer, Cochrane, and Google Scholar for articles containing data on the diagnosis and treatment of patients with HBMs, excluding the pediatric population. Treatment strategies consist of neurosurgery, whole brain radiotherapy, and stereotactic techniques (fractionated stereotactic radiosurgery (fSRS)/stereotactic radiosurgery (SRS)). Although the optimal treatment strategy for HBMs has not been established, we found no convincing evidence that radiotherapy, especially fSRS/SRS, is contraindicated in HBMs. We concluded that fSRS/SRS is a promising option for patients with HBM, particularly when surgical intervention poses risks.
Collapse
Affiliation(s)
- Aleksandra Łupicka
- The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Weronika Kowalczyk
- The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Bartosz Cyman
- The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Mateusz Spałek
- The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Wilhelma Konrada Roentgena 5, Warsaw 02-781, Poland
| |
Collapse
|
2
|
Zhong J, Xing X, Gao Y, Pei L, Lu C, Sun H, Lai Y, Du K, Xiao F, Yang Y, Wang X, Shi Y, Bai F, Zhang N. Distinct roles of TREM2 in central nervous system cancers and peripheral cancers. Cancer Cell 2024; 42:968-984.e9. [PMID: 38788719 DOI: 10.1016/j.ccell.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.
Collapse
Affiliation(s)
- Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Xudong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yixin Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Lei Pei
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Chenfei Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huixin Sun
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Yanxing Lai
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Kang Du
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ying Yang
- Institute of Pathology and Southwest Cancer Centre, Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Yu-Yue Pathology Scientific Research Center and Jinfeng Laboratory, Chongqing 400039, China
| | - Xiuxing Wang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Centre, Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Yu-Yue Pathology Scientific Research Center and Jinfeng Laboratory, Chongqing 400039, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
3
|
Liu Y, Cui M, Gao X, Yang H, Chen H, Guan B, Ma X. Structural connectome combining DTI features predicts postoperative language decline and its recovery in glioma patients. Eur Radiol 2024; 34:2759-2771. [PMID: 37736802 DOI: 10.1007/s00330-023-10212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023]
Abstract
OBJECTIVES A decline in language function is a common complication after glioma surgery, affecting patients' quality of life and survival. This study predicts the postoperative decline in language function and whether it can be recovered based on the preoperative white matter structural network. MATERIALS AND METHODS Eighty-one right-handed patients with glioma involving the left hemisphere were retrospectively included. Their language function was assessed using the Western Aphasia Battery before and 1 week and 3 months after surgery. Structural connectome combining DTI features was selected to predict postoperative language decline and recovery. Nested cross-validation was used to optimize the models, evaluate the prediction performance of the models, and identify the most predictive features. RESULTS Five, seven, and seven features were finally selected as the predictive features in each model and used to establish predictive models for postoperative language decline (1 week after surgery), long-term language decline (3 months after surgery), and language recovery, respectively. The overall accuracy of the three models in nested cross-validation and overall area under the receiver operating characteristic curve were 0.840, 0.790, and 0.867, and 0.841, 0.778, and 0.901, respectively. CONCLUSION We used machine learning algorithms to establish models to predict whether the language function of glioma patients will decline after surgery and whether postoperative language deficit can recover, which may help improve the development of treatment strategies. The difference in features in the non-language decline or the language recovery group may reflect the structural basis for the protection and compensation of language function in gliomas. CLINICAL RELEVANCE STATEMENT Models can predict the postoperative language decline and whether it can recover in glioma patients, possibly improving the development of treatment strategies. The difference in selected features may reflect the structural basis for the protection and compensation of language function. KEY POINTS • Structural connectome combining diffusion tensor imaging features predicted glioma patients' language decline after surgery. • Structural connectome combining diffusion tensor imaging features predicted language recovery of glioma patients with postoperative language disorder. • Diffusion tensor imaging and connectome features related to language function changes imply plastic brain regions and connections.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Meng Cui
- Department of Emergency Medicine, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Xin Gao
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, China
| | - Hui Yang
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, China
| | - Hewen Chen
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, China
| | - Bing Guan
- Health Economics Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Xiaodong Ma
- Department of Neurosurgery, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
4
|
Honeyman SI, Owen WJ, Mier J, Marks K, Dassanyake SN, Wood MJ, Fairhead R, Martinez-Soler P, Jasem H, Yarlagadda A, Roach JR, Boukas A, Stacey R, Apostolopoulos V, Plaha P. Multiple surgical resections for progressive IDH wildtype glioblastoma-is it beneficial? Acta Neurochir (Wien) 2024; 166:138. [PMID: 38488994 PMCID: PMC10943163 DOI: 10.1007/s00701-024-06025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE The role of repeat resection for recurrent glioblastoma (rGB) remains equivocal. This study aims to assess the overall survival and complications rates of single or repeat resection for rGB. METHODS A single-centre retrospective review of all patients with IDH-wildtype glioblastoma managed surgically, between January 2014 and January 2022, was carried out. Patient survival and factors influencing prognosis were analysed, using Kaplan-Meier and Cox regression methods. RESULTS Four hundred thirty-two patients were included, of whom 329 underwent single resection, 83 had two resections and 20 patients underwent three resections. Median OS (mOS) in the cohort who underwent a single operation was 13.7 months (95% CI: 12.7-14.7 months). The mOS was observed to be extended in patients who underwent second or third-time resection, at 22.9 months and 44.7 months respectively (p < 0.001). On second operation achieving > 95% resection or residual tumour volume of < 2.25 cc was significantly associated with prolonged survival. There was no significant difference in overall complication rates between primary versus second (p = 0.973) or third-time resections (p = 0.312). The use of diffusion tensor imaging (DTI) guided resection was associated with reduced post-operative neurological deficit (RR 0.37, p = 0.002), as was use of intraoperative ultrasound (iUSS) (RR 0.45, p = 0.04). CONCLUSIONS This study demonstrates potential prolongation of survival for rGB patients undergoing repeat resection, without significant increase in complication rates with repeat resections. Achieving a more complete repeat resection improved survival. Moreover, the use of intraoperative imaging adjuncts can maximise tumour resection, whilst minimising the risk of neurological deficit.
Collapse
Affiliation(s)
- Susan Isabel Honeyman
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - William J Owen
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Juan Mier
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Katya Marks
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sohani N Dassanyake
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Matthew J Wood
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rory Fairhead
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Pablo Martinez-Soler
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Hussain Jasem
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ananya Yarlagadda
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Joy R Roach
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexandros Boukas
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Richard Stacey
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Surgery, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Ribeiro M, Yordanova YN, Noblet V, Herbet G, Ricard D. White matter tracts and executive functions: a review of causal and correlation evidence. Brain 2024; 147:352-371. [PMID: 37703295 DOI: 10.1093/brain/awad308] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Executive functions are high-level cognitive processes involving abilities such as working memory/updating, set-shifting and inhibition. These complex cognitive functions are enabled by interactions among widely distributed cognitive networks, supported by white matter tracts. Executive impairment is frequent in neurological conditions affecting white matter; however, whether specific tracts are crucial for normal executive functions is unclear. We review causal and correlation evidence from studies that used direct electrical stimulation during awake surgery for gliomas, voxel-based and tract-based lesion-symptom mapping, and diffusion tensor imaging to explore associations between the integrity of white matter tracts and executive functions in healthy and impaired adults. The corpus callosum was consistently associated with all executive processes, notably its anterior segments. Both causal and correlation evidence showed prominent support of the superior longitudinal fasciculus to executive functions, notably to working memory. More specifically, strong evidence suggested that the second branch of the superior longitudinal fasciculus is crucial for all executive functions, especially for flexibility. Global results showed left lateralization for verbal tasks and right lateralization for executive tasks with visual demands. The frontal aslant tract potentially supports executive functions, however, additional evidence is needed to clarify whether its involvement in executive tasks goes beyond the control of language. Converging evidence indicates that a right-lateralized network of tracts connecting cortical and subcortical grey matter regions supports the performance of tasks assessing response inhibition, some suggesting a role for the right anterior thalamic radiation. Finally, correlation evidence suggests a role for the cingulum bundle in executive functions, especially in tasks assessing inhibition. We discuss these findings in light of current knowledge about the functional role of these tracts, descriptions of the brain networks supporting executive functions and clinical implications for individuals with brain tumours.
Collapse
Affiliation(s)
- Monica Ribeiro
- Service de neuro-oncologie, Hôpital La Pitié-Salpêtrière, Groupe Hospitalier Universitaire Pitié Salpêtrière-Charles Foix, Sorbonne Université, 75013 Paris, France
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
| | - Yordanka Nikolova Yordanova
- Service de neurochirurgie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
| | - Vincent Noblet
- ICube, IMAGeS team, Université de Strasbourg, CNRS, UMR 7357, 67412 Illkirch, France
| | - Guillaume Herbet
- Praxiling, UMR 5267, CNRS, Université Paul Valéry Montpellier 3, 34090 Montpellier, France
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- Institut Universitaire de France
| | - Damien Ricard
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
- Département de neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
6
|
Voets NL, Bartsch AJ, Plaha P. Functional MRI applications for intra-axial brain tumours: uses and nuances in surgical practise. Br J Neurosurg 2023; 37:1544-1559. [PMID: 36148501 DOI: 10.1080/02688697.2022.2123893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Functional MRI (fMRI) has well-established uses to inform risks and plan maximally safe approaches in neurosurgery. In the field of brain tumour surgery, however, fMRI is currently in a state of clinical equipoise due to debate around both its sensitivity and specificity. MATERIALS AND METHODS In this review, we summarise the role and our experience of fMRI in neurosurgery for gliomas and metastases. We discuss nuances in the conduct and interpretation of fMRI that, based on our practise, most directly impact fMRI's usefulness in the neurosurgical setting. RESULTS Illustrated examples in which fMRI in our hands directly influences the neurosurgical treatment of brain tumours include evaluating the probability and nature of functional risks, especially for language functions. These presurgical risk assessments, in turn, help to predict the resectability of tumours, select or deselect patients for awake surgery, indicate the need for neurophysiological monitoring and guide the optimal use of intra-operative stimulation mapping. A further emerging application of fMRI is in measuring functional adaptation of functional networks after (partial) surgery, of potential use in the timing of further surgery. CONCLUSIONS In appropriately selected patients with a clearly defined surgical question, fMRI offers a valuable complementary tool in the pre-surgical evaluation of brain tumours. However, there is a great need for standards in the administration and analysis of fMRI as much as in the techniques that it is commonly evaluated against. Surprisingly little data exists that evaluates the accuracy of fMRI not just against complementary methods, but in terms of its ultimate clinical aim of minimising post-surgical morbidity.
Collapse
Affiliation(s)
- Natalie L Voets
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- GenesisCare Ltd, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Andreas J Bartsch
- Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Neurosurgery, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Mahmoodi AL, Landers MJF, Rutten GJM, Brouwers HB. Characterization and Classification of Spatial White Matter Tract Alteration Patterns in Glioma Patients Using Magnetic Resonance Tractography: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3631. [PMID: 37509291 PMCID: PMC10377290 DOI: 10.3390/cancers15143631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Magnetic resonance (MR) tractography can be used to study the spatial relations between gliomas and white matter (WM) tracts. Various spatial patterns of WM tract alterations have been described in the literature. We reviewed classification systems of these patterns, and investigated whether low-grade gliomas (LGGs) and high-grade gliomas (HGGs) demonstrate distinct spatial WM tract alteration patterns. METHODS We conducted a systematic review and meta-analysis to summarize the evidence regarding MR tractography studies that investigated spatial WM tract alteration patterns in glioma patients. RESULTS Eleven studies were included. Overall, four spatial WM tract alteration patterns were reported in the current literature: displacement, infiltration, disruption/destruction and edematous. There was a considerable heterogeneity in the operational definitions of these terms. In a subset of studies, sufficient homogeneity in the classification systems was found to analyze pooled results for the displacement and infiltration patterns. Our meta-analyses suggested that LGGs displaced WM tracts significantly more often than HGGs (n = 259 patients, RR: 1.79, 95% CI [1.14, 2.79], I2 = 51%). No significant differences between LGGs and HGGs were found for WM tract infiltration (n = 196 patients, RR: 1.19, 95% CI [0.95, 1.50], I2 = 4%). CONCLUSIONS The low number of included studies and their considerable methodological heterogeneity emphasize the need for a more uniform classification system to study spatial WM tract alteration patterns using MR tractography. This review provides a first step towards such a classification system, by showing that the current literature is inconclusive and that the ability of fractional anisotropy (FA) to define spatial WM tract alteration patterns should be critically evaluated. We found variations in spatial WM tract alteration patterns between LGGs and HGGs, when specifically examining displacement and infiltration in a subset of the included studies.
Collapse
Affiliation(s)
- Arash L Mahmoodi
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Hilvarenbeekseweg 60, 5022 GC Tilburg, The Netherlands
| | - Maud J F Landers
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Hilvarenbeekseweg 60, 5022 GC Tilburg, The Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Hilvarenbeekseweg 60, 5022 GC Tilburg, The Netherlands
| | - H Bart Brouwers
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Hilvarenbeekseweg 60, 5022 GC Tilburg, The Netherlands
| |
Collapse
|
8
|
Sahoo SK, Mohanty M, Emanee SYS, Prabhakar A, Panda N, Chauhan R, Soni SL, Gendle C, Kumar A. Magnetic Resonance Tractography and Intraoperative Direct Electrical Stimulation in Eloquent Area Glioma Surgery for 102 Cases: A Tertiary Care Center Experience From Northwest India. World Neurosurg 2023; 172:e655-e666. [PMID: 36754350 DOI: 10.1016/j.wneu.2023.01.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVE Surgery of eloquent area gliomas is challenging and requires monitoring of the nearby white fiber tracts. In the present study, we analyzed 102 patients with eloquent region gliomas and discussed the concept of intraoperative dynamic white fiber tract navigation and monitoring. METHODS A total of 102 patients with an eloquent area glioma (52 insular, 29 motor area, 21 temporoparietal) were evaluated. The position of the white fiber tracts (corticospinal tract [or motor fiber; CST], inferior fronto-occipital fasciculus [ventral language fiber; IFOF], superior longitudinal fasciculus [SLF], and arcuate fasciculus [dorsal language fiber; AF) was recorded. Awake mapping of the cortical and subcortical eloquent structures was performed for all 102 patients. The suction stimulator was coregistered and used as a dynamic stimulator navigator. RESULTS Of the 102 patients, 60 were men and 42 were women, with an average age of 39.8 years. Most of the white fiber tracts were normal (CST, 31.3%; IFOF, 39.2%; SLF/AF, 40.19%) or displaced (CST, 59.8%; IFOF, 47.05%; AF/SLF, 44.11%). A few were disrupted (CST, 8.8%; IFOF, 13.7%; SLF/AF, 15.7%). The extent of tumor resection was 82.8%, 86.5%, and 94% for those with insular glioma, motor area glioma, and temporoparietal glioma, respectively. Of the 102 patients, 18 had developed transient speech and language disturbances with improvement, and 14 had developed motor deficits, of whom, all except for 2, had shown gradual improvement. When the dynamic suction stimulator navigator was used, the extent of resection was 96.5%, without any added deficits. CONCLUSIONS The use of intraoperative neuronavigation and neurophysiological assessment can help achieve maximal tumor resection of eloquent area gliomas. Use of the integrated suction stimulator navigator provided dynamic navigation and mapping of the peritumoral eloquent fibers.
Collapse
Affiliation(s)
- Sushanta K Sahoo
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Manju Mohanty
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sayed Yasin Shahtaz Emanee
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anuj Prabhakar
- Department of Neuroradiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Nidhi Panda
- Department of Neuroanesthesia, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajeev Chauhan
- Department of Neuroanesthesia, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shiv Lal Soni
- Department of Neuroanesthesia, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chandrashekhar Gendle
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anurodh Kumar
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Fava A, Gorgoglione N, De Angelis M, Esposito V, di Russo P. Key role of microsurgical dissections on cadaveric specimens in neurosurgical training: Setting up a new research anatomical laboratory and defining neuroanatomical milestones. Front Surg 2023; 10:1145881. [PMID: 36969758 PMCID: PMC10033783 DOI: 10.3389/fsurg.2023.1145881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionNeurosurgery is one of the most complex surgical disciplines where psychomotor skills and deep anatomical and neurological knowledge find their maximum expression. A long period of preparation is necessary to acquire a solid theoretical background and technical skills, improve manual dexterity and visuospatial ability, and try and refine surgical techniques. Moreover, both studying and surgical practice are necessary to deeply understand neuroanatomy, the relationships between structures, and the three-dimensional (3D) orientation that is the core of neurosurgeons' preparation. For all these reasons, a microsurgical neuroanatomy laboratory with human cadaveric specimens results in a unique and irreplaceable training tool that allows the reproduction of patients' positions, 3D anatomy, tissues' consistencies, and step-by-step surgical procedures almost identical to the real ones.MethodsWe describe our experience in setting up a new microsurgical neuroanatomy lab (IRCCS Neuromed, Pozzilli, Italy), focusing on the development of training activity programs and microsurgical milestones useful to train the next generation of surgeons. All the required materials and instruments were listed.ResultsSix competency levels were designed according to the year of residency, with training exercises and procedures defined for each competency level: (1) soft tissue dissections, bone drilling, and microsurgical suturing; (2) basic craniotomies and neurovascular anatomy; (3) white matter dissection; (4) skull base transcranial approaches; (5) endoscopic approaches; and (6) microanastomosis. A checklist with the milestones was provided.DiscussionMicrosurgical dissection of human cadaveric specimens is the optimal way to learn and train on neuroanatomy and neurosurgical procedures before performing them safely in the operating room. We provided a “neurosurgery booklet” with progressive milestones for neurosurgical residents. This step-by-step program may improve the quality of training and guarantee equal skill acquisition across countries. We believe that more efforts should be made to create new microsurgical laboratories, popularize the importance of body donation, and establish a network between universities and laboratories to introduce a compulsory operative training program.
Collapse
Affiliation(s)
- Arianna Fava
- Department of Neurosurgery, IRCCS Neuromed, Pozzilli, Italy
- Department of Neuroscience, Sapienza University, Rome, Italy
- Correspondence: Arianna Fava
| | | | | | - Vincenzo Esposito
- Department of Neurosurgery, IRCCS Neuromed, Pozzilli, Italy
- Department of Neuroscience, Sapienza University, Rome, Italy
| | - Paolo di Russo
- Department of Neurosurgery, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
10
|
Dziedzic TA, Bala A, Balasa A, Olejnik A, Marchel A. Cortical and white matter anatomy relevant for the lateral and superior approaches to resect intraaxial lesions within the frontal lobe. Sci Rep 2022; 12:21402. [PMID: 36496517 PMCID: PMC9741612 DOI: 10.1038/s41598-022-25375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Despite being associated with high-order neurocognitive functions, the frontal lobe plays an important role in core neurological functions, such as motor and language functions. The aim of this study was to present a neurosurgical perspective of the cortical and subcortical anatomy of the frontal lobe in terms of surgical treatment of intraaxial frontal lobe lesions. We also discuss the results of direct brain mapping when awake craniotomy is performed. Ten adult cerebral hemispheres were prepared for white matter dissection according to the Klingler technique. Intraaxial frontal lobe lesions are approached with a superior or lateral trajectory during awake conditions. The highly eloquent cortex within the frontal lobe is identified within the inferior frontal gyrus (IFG) and precentral gyrus. The trajectory of the approach is mainly related to the position of the lesion in relation to the arcuate fascicle/superior longitudinal fascicle complex and ventricular system. Knowledge of the cortical and subcortical anatomy and its function within the frontal lobe is essential for preoperative planning and predicting the risk of immediate and long-term postoperative deficits. This allows surgeons to properly set the extent of the resection and type of approach during preoperative planning.
Collapse
Affiliation(s)
- Tomasz Andrzej Dziedzic
- grid.13339.3b0000000113287408Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland
| | - Aleksandra Bala
- grid.13339.3b0000000113287408Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland ,grid.12847.380000 0004 1937 1290Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Artur Balasa
- grid.13339.3b0000000113287408Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland
| | - Agnieszka Olejnik
- grid.13339.3b0000000113287408Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland ,grid.12847.380000 0004 1937 1290Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Andrzej Marchel
- grid.13339.3b0000000113287408Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097 Warszawa, Poland
| |
Collapse
|
11
|
Plaha P, Camp S, Cook J, McCulloch P, Voets N, Ma R, Taphoorn MJB, Dirven L, Grech-Sollars M, Watts C, Bulbeck H, Jenkinson MD, Williams M, Lim A, Dixon L, Price SJ, Ashkan K, Apostolopoulos V, Barber VS, Taylor A, Nandi D. FUTURE-GB: functional and ultrasound-guided resection of glioblastoma - a two-stage randomised control trial. BMJ Open 2022; 12:e064823. [PMID: 36379652 PMCID: PMC9668053 DOI: 10.1136/bmjopen-2022-064823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Surgery remains the mainstay for treatment of primary glioblastoma, followed by radiotherapy and chemotherapy. Current standard of care during surgery involves the intraoperative use of image-guidance and 5-aminolevulinic acid (5-ALA). There are multiple other surgical adjuncts available to the neuro-oncology surgeon. However, access to, and usage of these varies widely in UK practice, with limited evidence of their use. The aim of this trial is to investigate whether the addition of diffusion tensor imaging (DTI) and intraoperative ultrasound (iUS) to the standard of care surgery (intraoperative neuronavigation and 5-ALA) impacts on deterioration free survival (DFS). METHODS AND ANALYSIS This is a two-stage, randomised control trial (RCT) consisting of an initial non-randomised cohort study based on the principles of the IDEAL (Idea, Development, Exploration, Assessment and Long-term follow-up) stage-IIb format, followed by a statistically powered randomised trial comparing the addition of DTI and iUS to the standard of care surgery. A total of 357 patients will be recruited for the RCT. The primary outcome is DFS, defined as the time to either 10-point deterioration in health-related quality of life scores from baseline, without subsequent reversal, progressive disease or death. ETHICS AND DISSEMINATION The trial was registered in the Integrated Research Application System (Ref: 264482) and approved by a UK research and ethics committee (Ref: 20/LO/0840). Results will be published in a peer-reviewed journal. Further dissemination to participants, patient groups and the wider medical community will use a range of approaches to maximise impact. TRIAL REGISTRATION NUMBER ISRCTN38834571.
Collapse
Affiliation(s)
- Puneet Plaha
- Department of Neursurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Sophie Camp
- Neurosurgery, Imperial College Healthcare NHS Trust, London, UK
| | - Jonathan Cook
- Oxford Clinical Trials Research Unit & Surgical Intervention Trials Unit, University of Oxford Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Oxford, Oxfordshire, UK
| | - Peter McCulloch
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Natalie Voets
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, Oxfordshire, UK
| | - Ruichong Ma
- Department of Neursurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Haaglanden Medical Center Bronovo, Den Haag, Zuid-Holland, The Netherlands
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Matthew Grech-Sollars
- Department of Computer Sciences, UCL, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Colin Watts
- Institute of Cancer and Genomic Studies, University of Birmingham, Birmingham, UK
- Department of Neurosurgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Michael D Jenkinson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, Merseyside, UK
- Department of Neurosurgery, Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | - Matthew Williams
- Department of Clinical Oncology, Imperial College Healthcare NHS Trust, London, UK
| | - Adrian Lim
- Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Luke Dixon
- Neuroradiology, Imperial College Healthcare NHS Trust, London, UK
| | - Stephen John Price
- Neurosurgery Division, Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
| | | | | | - Vicki S Barber
- Oxford Clinical Trials Research Unit & Surgical Intervention Trials Unit, University of Oxford Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Oxford, Oxfordshire, UK
| | - Amy Taylor
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Dipankar Nandi
- Neurosurgery, Imperial College Healthcare NHS Trust, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
12
|
Duffau H. White Matter Tracts and Diffuse Lower-Grade Gliomas: The Pivotal Role of Myelin Plasticity in the Tumor Pathogenesis, Infiltration Patterns, Functional Consequences and Therapeutic Management. Front Oncol 2022; 12:855587. [PMID: 35311104 PMCID: PMC8924360 DOI: 10.3389/fonc.2022.855587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
For many decades, interactions between diffuse lower-grade glioma (LGG) and brain connectome were neglected. However, the neoplasm progression is intimately linked to its environment, especially the white matter (WM) tracts and their myelin status. First, while the etiopathogenesis of LGG is unclear, this tumor seems to appear during the adolescence, and it is mostly located within anterior and associative cerebral areas. Because these structures correspond to those which were myelinated later in the brain maturation process, WM myelination could play a role in the development of LGG. Second, WM fibers and the myelin characteristics also participate in LGG diffusion, since glioma cells migrate along the subcortical pathways, especially when exhibiting a demyelinated phenotype, which may result in a large invasion of the parenchyma. Third, such a migratory pattern can induce functional (neurological, cognitive and behavioral) disturbances, because myelinated WM tracts represent the main limitation of neuroplastic potential. These parameters are critical for tailoring an individualized therapeutic strategy, both (i) regarding the timing of active treatment(s) which must be proposed earlier, before a too wide glioma infiltration along the WM bundles, (ii) and regarding the anatomic extent of surgical resection and irradiation, which should take account of the subcortical connectivity. Therefore, the new science of connectomics must be integrated in LGG management, based upon an improved understanding of the interplay across glioma dissemination within WM and reactional neural networks reconfiguration, in order to optimize long-term oncological and functional outcomes. To this end, mechanisms of activity-dependent myelin plasticity should be better investigated.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM) U1191, University of Montpellier, Montpellier, France
| |
Collapse
|
13
|
Glioma invasion along white matter tracts: A dilemma for neurosurgeons. Cancer Lett 2022; 526:103-111. [PMID: 34808285 DOI: 10.1016/j.canlet.2021.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022]
Abstract
Invasive growth along white matter (WM) tracts is one of the most prominent clinicopathological features of glioma and is also an important reason for surgical treatment failure in glioma patients. A full understanding of relevant clinical features and mechanisms is of great significance for finding new therapeutic targets and developing new treatment regimens and strategies. Herein, we review the imaging and histological characteristics of glioma patients with WM tracts invasion and summarize the possible molecular mechanism. On this basis, we further discuss the correlation between glioma molecular typing, radiotherapy and tumor treating fields (TTFields) and the invasion of glioma along WM tracts.
Collapse
|
14
|
The european particle therapy network (EPTN) consensus on the follow-up of adult patients with brain and skull base tumours treated with photon or proton irradiation. Radiother Oncol 2022; 168:241-249. [DOI: 10.1016/j.radonc.2022.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
|
15
|
Ma R, Taphoorn MJB, Plaha P. Advances in the management of glioblastoma. J Neurol Neurosurg Psychiatry 2021; 92:1103-1111. [PMID: 34162730 DOI: 10.1136/jnnp-2020-325334] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023]
Abstract
Glioblastoma (GB) is the most common and most malignant primary brain tumour in adults. Despite much effort, gold standard therapy has not changed since the introduction of adjuvant temozolomide in 2005 and prognosis remains poor. Despite this, there has been significant improvement in the surgical technology and technique, that has allowed for increased rates of safe maximal resection of the tumour. In addition, our increased knowledge of the biology of GB has revealed more potential targets, especially in the field of immunotherapy, which has been successful in revolutionising treatment of other cancers. We review the current best practice for the treatment of GB and explore some of the more recent advances in GB management from both a surgical and molecular therapeutic perspective.
Collapse
Affiliation(s)
- Ruichong Ma
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK.,Human Immunology Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Nuffield Department of Surgery, University of Oxford, Oxford, UK
| | - Martin J B Taphoorn
- Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Neurology, Medical Center Haaglanden, The Hague, The Netherlands
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK .,Nuffield Department of Surgery, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Dziedzic TA, Bala A, Marchel A. Cortical and Subcortical Anatomy of the Parietal Lobe From the Neurosurgical Perspective. Front Neurol 2021; 12:727055. [PMID: 34512535 PMCID: PMC8426580 DOI: 10.3389/fneur.2021.727055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The anatomical structures of the parietal lobe at the cortical and subcortical levels are related mainly to sensory, visuospatial, visual and language function. The aim of this study was to present an intraoperative perspective of these critical structures in terms of the surgical treatment of intra-axial lesions. The study also discusses the results of the technique and the results of direct brain stimulation under awake conditions. Materials and Methods: Five adult brains were prepared according to the Klingler technique. Cortical assessments and all measurements were performed with the naked eye, while white matter dissection was performed with microscopic magnification. Results: Intra-axial lesions within the parietal lobe can be approached through a lateral or superior trajectory. This decision is based on the location of the lesions in relation to the arcuate fascicle/superior longitudinal fascicle (AF/SLF) complex and ventricular system. Regardless of the approach, the functional borders of the resection are defined by the postcentral gyrus anteriorly and Wernicke's speech area inferiorly. On the subcortical level, active identification of the AF/SLF complex and of the optic radiation within the sagittal stratum should be performed. The intraparietal sulcus (IPS) is a reliable landmark for the AF/SLF complex in ~60% of cases. Conclusion: Knowledge of the cortical and subcortical anatomical and functional borders of the resection is crucial in preoperative planning, prediction of the risk of postoperative deficits, and intraoperative decision making.
Collapse
Affiliation(s)
| | - Aleksandra Bala
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland.,Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Andrzej Marchel
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Voets NL, Pretorius P, Birch MD, Apostolopoulos V, Stacey R, Plaha P. Diffusion tractography for awake craniotomy: accuracy and factors affecting specificity. J Neurooncol 2021; 153:547-557. [PMID: 34196915 PMCID: PMC8280000 DOI: 10.1007/s11060-021-03795-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
Introduction Despite evidence of correspondence with intraoperative stimulation, there remains limited data on MRI diffusion tractography (DT)’s sensitivity to predict morbidity after neurosurgical oncology treatment. Our aims were: (1) evaluate DT against subcortical stimulation mapping and performance changes during and after awake neurosurgery; (2) evaluate utility of early post-operative DT to predict recovery from post-surgical deficits. Methods We retrospectively reviewed our first 100 awake neurosurgery procedures using DT- neuronavigation. Intra-operative stimulation and performance outcomes were assessed to classify DT predictions for sensitivity and specificity calculations. Post-operative DT data, available in 51 patients, were inspected for tract damage. Results 91 adult brain tumor patients (mean 49.2 years, 43 women) underwent 100 awake surgeries with subcortical stimulation between 2014 and 2019. Sensitivity and specificity of pre-operative DT predictions were 92.2% and 69.2%, varying among tracts. Post-operative deficits occurred after 41 procedures (39%), but were prolonged (> 3 months) in only 4 patients (4%). Post-operative DT in general confirmed surgical preservation of tracts. Post-operative DT anticipated complete recovery in a patient with supplementary motor area syndrome, and indicated infarct-related damage to corticospinal fibers associated with delayed, partial recovery in a second patient. Conclusions Pre-operative DT provided very accurate predictions of the spatial location of tracts in relation to a tumor. As expected, however, the presence of a tract did not inform its functional status, resulting in variable DT specificity among individual tracts. While prolonged deficits were rare, DT in the immediate post-operative period offered additional potential to monitor neurological deficits and anticipate recovery potential. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03795-7.
Collapse
Affiliation(s)
- Natalie L Voets
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, West Wing, L3, Oxford, Oxfordshire, OX3 9DU, UK
| | - Pieter Pretorius
- Department of Neuroradiology, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, Oxfordshire, UK
| | - Martin D Birch
- Nuffield Department of Anaesthesia, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, Oxfordshire, UK
| | - Vasileios Apostolopoulos
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, West Wing, L3, Oxford, Oxfordshire, OX3 9DU, UK
| | - Richard Stacey
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, West Wing, L3, Oxford, Oxfordshire, OX3 9DU, UK
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, West Wing, L3, Oxford, Oxfordshire, OX3 9DU, UK. .,Nuffield Department of Surgery, University of Oxford, Oxford, Oxfordshire, UK.
| |
Collapse
|
18
|
Ng S, Herbet G, Lemaitre AL, Moritz-Gasser S, Duffau H. Disrupting self-evaluative processing with electrostimulation mapping during awake brain surgery. Sci Rep 2021; 11:9386. [PMID: 33931714 PMCID: PMC8087680 DOI: 10.1038/s41598-021-88916-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Brain awake surgery with cognitive monitoring for tumor removal has become a standard of treatment for functional purpose. Yet, little attention has been given to patients' interpretation and awareness of their own responses to selected cognitive tasks during direct electrostimulation (DES). We aim to report disruptions of self-evaluative processing evoked by DES during awake surgery. We further investigate cortico-subcortical structures involved in self-assessment process and report the use of an intraoperative self-assessment tool, the self-confidence index (SCI). Seventy-two patients who had undergone awake brain tumor resections were selected. Inclusion criteria were the occurrence of a DES-induced disruption of an ongoing task followed by patient's failure to remember or criticize these impairments, or a dissociation between patient's responses to an ongoing task and patient's SCI. Disruptions of self-evaluation were frequently associated with semantic disorders and critical sites were mostly found along the left/right ventral semantic streams. Disconnectome analyses generated from a tractography-based atlas confirmed the high probability of the inferior fronto-occipital fasciculus to be transitory 'disconnected'. These findings suggest that white matters pathways belonging to the ventral semantic stream may be critically involved in human self-evaluative processing. Finally, the authors discuss the implementation of the SCI task during multimodal intraoperative monitoring.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France. .,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| | - Anne-Laure Lemaitre
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| |
Collapse
|
19
|
Zoli M, Talozzi L, Martinoni M, Manners DN, Badaloni F, Testa C, Asioli S, Mitolo M, Bartiromo F, Rochat MJ, Fabbri VP, Sturiale C, Conti A, Lodi R, Mazzatenta D, Tonon C. From Neurosurgical Planning to Histopathological Brain Tumor Characterization: Potentialities of Arcuate Fasciculus Along-Tract Diffusion Tensor Imaging Tractography Measures. Front Neurol 2021; 12:633209. [PMID: 33716935 PMCID: PMC7952864 DOI: 10.3389/fneur.2021.633209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Tractography has been widely adopted to improve brain gliomas' surgical planning and guide their resection. This study aimed to evaluate state-of-the-art of arcuate fasciculus (AF) tractography for surgical planning and explore the role of along-tract analyses in vivo for characterizing tumor histopathology. Methods: High angular resolution diffusion imaging (HARDI) images were acquired for nine patients with tumors located in or near language areas (age: 41 ± 14 years, mean ± standard deviation; five males) and 32 healthy volunteers (age: 39 ± 16 years; 16 males). Phonemic fluency task fMRI was acquired preoperatively for patients. AF tractography was performed using constrained spherical deconvolution diffusivity modeling and probabilistic fiber tracking. Along-tract analyses were performed, dividing the AF into 15 segments along the length of the tract defined using the Laplacian operator. For each AF segment, diffusion tensor imaging (DTI) measures were compared with those obtained in healthy controls (HCs). The hemispheric laterality index (LI) was calculated from language task fMRI activations in the frontal, parietal, and temporal lobe parcellations. Tumors were grouped into low/high grade (LG/HG). Results: Four tumors were LG gliomas (one dysembryoplastic neuroepithelial tumor and three glioma grade II) and five HG gliomas (two grade III and three grade IV). For LG tumors, gross total removal was achieved in all but one case, for HG in two patients. Tractography identified the AF trajectory in all cases. Four along-tract DTI measures potentially discriminated LG and HG tumor patients (false discovery rate < 0.1): the number of abnormal MD and RD segments, median AD, and MD measures. Both a higher number of abnormal AF segments and a higher AD and MD measures were associated with HG tumor patients. Moreover, correlations (unadjusted p < 0.05) were found between the parietal lobe LI and the DTI measures, which discriminated between LG and HG tumor patients. In particular, a more rightward parietal lobe activation (LI < 0) correlated with a higher number of abnormal MD segments (R = −0.732) and RD segments (R = −0.724). Conclusions: AF tractography allows to detect the course of the tract, favoring the safer-as-possible tumor resection. Our preliminary study shows that along-tract DTI metrics can provide useful information for differentiating LG and HG tumors during pre-surgical tumor characterization.
Collapse
Affiliation(s)
- Matteo Zoli
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lia Talozzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Martinoni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Filippo Badaloni
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Micaela Mitolo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Magali Jane Rochat
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmelo Sturiale
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Conti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
20
|
Boissonneau S, Graillon T, Rolland A, Botella C, Pallud J, Dufour H. Management of patients suffering from hemorrhagic intracranial metastases: Propositions to help the neurosurgeon in emergency situations based on a literature review. Neurochirurgie 2020; 67:369-374. [PMID: 33232711 DOI: 10.1016/j.neuchi.2020.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/09/2020] [Accepted: 11/14/2020] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Brain metastases are the most common intracranial neoplasm in adult patients, and one of the fearsome complications proves to be intratumoral hemorrhage. The neurosurgical management of patients harboring a bleeding brain metastasis is not fully established and there is still today an ongoing debate on the optimal management of these patients. The aim of this article is to provide the neurosurgeons with practical tools to assist in their decision-making process in the management of BMs. METHODS We conducted a literature review of the relevant Pubmed, Cochrane, and Google scholar-indexed articles published between 2000 and 2019. The following key words were entered in the Pubmed search engine: [metastasis], [metastases], [brain metastases], [brain metastasis], [hemorrhage], [hematoma], [blood clot], [intracerebral hemorrhage], [intracranial hemorrhage]. The review was performed in accordance with the PRISMA recommendations. RESULTS Based on PubMed, Cochrane, and Google scholar, 459 articles were retained, 392 were then removed because of their non-adequacy with the topic and, 9 articles were removed because they were not written in English language. So, 58 articles were analyzed. Radiological evaluation is crucial, but few traps exist. The frequency of overall brain tumor-related with intracranial hematoma is 7.2%, with a higher frequency for secondary tumors. The local recurrence rate after resection of a hemorrhagic metastasis seems to be better probably because of an easier "en bloc" resection thanks to the hematoma. An atypical presentation is reported in up to 4% in patients with chronic or acute subdural hematoma. Patients with subarachnoid hemorrhage and epidural hematoma are rare. A clear-cut correlation between the incidence of bleeding event in brain mets and prior stereotactic radiosurgery was not established. CONCLUSION The current literature pertaining to the neurosurgical management of acute bleeding in brain metastasis is scant and the level of evidence remains low (experts 'opinions; class C). Herein we suggest a flowchart to assist in dealing with those difficult patients.
Collapse
Affiliation(s)
- S Boissonneau
- Aix-Marseille Université, AP-HM, CHU Timone, Department of Neurosurgery, Marseille, France; Inserm, INS, Institute of Neurosciences of Systems, Aix Marseille Univ, Marseille, France.
| | - T Graillon
- Aix-Marseille Université, AP-HM, CHU Timone, Department of Neurosurgery, Marseille, France; Aix-Marseille Université, inserm, MMG, Marseille, France
| | - A Rolland
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - C Botella
- Department of Neurosurgery, Centre Hospitalier Saint Anne, Paris, France
| | - J Pallud
- Department of Neurosurgery, Centre Hospitalier Saint Anne, Paris, France; UMR 1266 inserm, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Paris, France
| | - H Dufour
- Aix-Marseille Université, AP-HM, CHU Timone, Department of Neurosurgery, Marseille, France; Aix-Marseille Université, inserm, MMG, Marseille, France
| |
Collapse
|
21
|
Wende T, Hoffmann KT, Meixensberger J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J Neurol Surg A Cent Eur Neurosurg 2020; 81:442-455. [PMID: 32176926 DOI: 10.1055/s-0039-1691823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to visualize the brain's fiber connections noninvasively in vivo is relatively young compared with other possibilities of functional magnetic resonance imaging. Although many studies showed tractography to be of promising value for neurosurgical care, the implications remain inconclusive. An overview of current applications is presented in this systematic review. A search was conducted for (("tractography" or "fiber tracking" or "fibre tracking") and "neurosurgery") that produced 751 results. We identified 260 relevant articles and added 20 more from other sources. Most publications concerned surgical planning for resection of tumors (n = 193) and vascular lesions (n = 15). Preoperative use of transcranial magnetic stimulation was discussed in 22 of these articles. Tractography in skull base surgery presents a special challenge (n = 29). Fewer publications evaluated traumatic brain injury (TBI) (n = 25) and spontaneous intracranial bleeding (n = 22). Twenty-three articles focused on tractography in pediatric neurosurgery. Most authors found tractography to be a valuable addition in neurosurgical care. The accuracy of the technique has increased over time. There are articles suggesting that tractography improves patient outcome after tumor resection. However, no reliable biomarkers have yet been described. The better rehabilitation potential after TBI and spontaneous intracranial bleeding compared with brain tumors offers an insight into the process of neurorehabilitation. Tractography and diffusion measurements in some studies showed a correlation with patient outcome that might help uncover the neuroanatomical principles of rehabilitation itself. Alternative corticofugal and cortico-cortical networks have been implicated in motor recovery after ischemic stroke, suggesting more complex mechanisms in neurorehabilitation that go beyond current models. Hence tractography may potentially be able to predict clinical deficits and rehabilitation potential, as well as finding possible explanations for neurologic disorders in retrospect. However, large variations of the results indicate a lack of data to establish robust diagnostical concepts at this point. Therefore, in vivo tractography should still be interpreted with caution and by experienced surgeons.
Collapse
Affiliation(s)
- Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
22
|
Kaestner E, Balachandra AR, Bahrami N, Reyes A, Lalani SJ, Macari AC, Voets NL, Drane DL, Paul BM, Bonilha L, McDonald CR. The white matter connectome as an individualized biomarker of language impairment in temporal lobe epilepsy. Neuroimage Clin 2019; 25:102125. [PMID: 31927128 PMCID: PMC6953962 DOI: 10.1016/j.nicl.2019.102125] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The distributed white matter network underlying language leads to difficulties in extracting clinically meaningful summaries of neural alterations leading to language impairment. Here we determine the predictive ability of the structural connectome (SC), compared with global measures of white matter tract microstructure and clinical data, to discriminate language impaired patients with temporal lobe epilepsy (TLE) from TLE patients without language impairment. METHODS T1- and diffusion-MRI, clinical variables (CVs), and neuropsychological measures of naming and verbal fluency were available for 82 TLE patients. Prediction of language impairment was performed using a robust tree-based classifier (XGBoost) for three models: (1) a CV-model which included demographic and epilepsy-related clinical features, (2) an atlas-based tract-model, including four frontotemporal white matter association tracts implicated in language (i.e., the bilateral arcuate fasciculus, inferior frontal occipital fasciculus, inferior longitudinal fasciculus, and uncinate fasciculus), and (3) a SC-model based on diffusion MRI. For the association tracts, mean fractional anisotropy was calculated as a measure of white matter microstructure for each tract using a diffusion tensor atlas (i.e., AtlasTrack). The SC-model used measurement of cortical-cortical connections arising from a temporal lobe subnetwork derived using probabilistic tractography. Dimensionality reduction of the SC was performed with principal components analysis (PCA). Each model was trained on 49 patients from one epilepsy center and tested on 33 patients from a different center (i.e., an independent dataset). Randomization was performed to test the stability of the results. RESULTS The SC-model yielded a greater area under the curve (AUC; .73) and accuracy (79%) compared to both the tract-model (AUC: .54, p < .001; accuracy: 70%, p < .001) and the CV-model (AUC: .59, p < .001; accuracy: 64%, p < .001). Within the SC-model, lateral temporal connections had the highest importance to model performance, including connections similar to language association tracts such as links between the superior temporal gyrus to pars opercularis. However, in addition to these connections many additional connections that were widely distributed, bilateral and interhemispheric in nature were identified as contributing to SC-model performance. CONCLUSION The SC revealed a white matter network contributing to language impairment that was widely distributed, bilateral, and lateral temporal in nature. The distributed network underlying language may be why the SC-model has an advantage in identifying sub-components of the complex fiber networks most relevant for aspects of language performance.
Collapse
Affiliation(s)
- Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Akshara R Balachandra
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Naeim Bahrami
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Anny Reyes
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Sanam J Lalani
- Department of Neurology, University of California - San Francisco, San Francisco, CA, USA
| | - Anna Christina Macari
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel L Drane
- Departments of Neurology and Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, University of Washington, Seattle, WA, USA
| | - Brianna M Paul
- Department of Neurology, University of California - San Francisco, San Francisco, CA, USA
| | - Leonardo Bonilha
- Medical University of South Carolina, Department of Neurology, USA
| | - Carrie R McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA.
| |
Collapse
|
23
|
Wallace E, Mathias J, Ward L. The relationship between diffusion tensor imaging findings and cognitive outcomes following adult traumatic brain injury: A meta-analysis. Neurosci Biobehav Rev 2018; 92:93-103. [DOI: 10.1016/j.neubiorev.2018.05.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/04/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022]
|
24
|
Glenn C, Conner AK, Rahimi M, Briggs RG, Baker C, Sughrue M. Common Disconnections in Glioma Surgery: An Anatomic Description. Cureus 2017; 9:e1778. [PMID: 29255657 PMCID: PMC5732013 DOI: 10.7759/cureus.1778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Within the surgical treatment of glioma, extended survival is predicated upon extent of resection which is limited by proximity and/or invasion of eloquent structures. Diffusion tensor imaging (DTI) tractography is a very useful tool for guiding supramaximal surgical resection while preserving eloquence. Although gliomas can vary significantly in size, shape, and invasion of functionally significant brain tissue, typical surgical disconnection patterns emerge. In this study, our typical surgical paradigm is outlined. We describe our surgical philosophy for resecting gliomas supramaximally summarized as define, divide, and destroy with the adjuvant utilization of neuronavigation and DTI. We describe the most common disconnections involved in glioma surgery at our institution; specifically, delineating tumor disconnections involving the medial posterior frontal, lateral posterior frontal, posterior temporal, anterior occipital, medial parietal, and insular regions. Although gliomas are highly variable, common patterns emerge in relation to the necessary disconnections required to preserve eloquent brain while maximizing the extent of resection.
Collapse
Affiliation(s)
- Chad Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center
| | - Meherzad Rahimi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center
| | - Cordell Baker
- Department of Neurosurgery, University of Oklahoma Health Sciences Center
| | - Michael Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center
| |
Collapse
|