1
|
Hobara T, Ando M, Higuchi Y, Yuan JH, Yoshimura A, Kojima F, Noguchi Y, Takei J, Hiramatsu Y, Nozuma S, Nakamura T, Adachi T, Toyooka K, Yamashita T, Sakiyama Y, Hashiguchi A, Matsuura E, Okamoto Y, Takashima H. Linking LRP12 CGG repeat expansion to inherited peripheral neuropathy. J Neurol Neurosurg Psychiatry 2025; 96:140-149. [PMID: 39013564 DOI: 10.1136/jnnp-2024-333403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The causative genes for over 60% of inherited peripheral neuropathy (IPN) remain unidentified. This study endeavours to enhance the genetic diagnostic rate in IPN cases by conducting screenings focused on non-coding repeat expansions. METHODS We gathered data from 2424 unrelated Japanese patients diagnosed with IPN, among whom 1555 cases with unidentified genetic causes, as determined through comprehensive prescreening analyses, were selected for the study. Screening for CGG non-coding repeat expansions in LRP12, GIPC1 and RILPL1 genes was conducted using PCR and long-read sequencing technologies. RESULTS We identified CGG repeat expansions in LRP12 from 44 cases, establishing it as the fourth most common aetiology in Japanese IPN. Most cases (29/37) exhibited distal limb weakness, without ptosis, ophthalmoplegia, facial muscle weakness or bulbar palsy. Neurogenic changes were frequently observed in both needle electromyography (97%) and skeletal muscle tissue (100%). In nerve conduction studies, 28 cases primarily showed impairment in motor nerves without concurrent involvement of sensory nerves, consistent with the phenotype of hereditary motor neuropathy. In seven cases, both motor and sensory nerves were affected, resembling the Charcot-Marie-Tooth (CMT) phenotype. Importantly, the mean CGG repeat number detected in the present patients was significantly shorter than that of patients with LRP12-oculopharyngodistal myopathy (p<0.0001). Additionally, GIPC1 and RILPL1 repeat expansions were absent in our IPN cases. CONCLUSION We initially elucidate LRP12 repeat expansions as a prevalent cause of CMT, highlighting the necessity for an adapted screening strategy in clinical practice, particularly when addressing patients with IPN.
Collapse
Affiliation(s)
- Takahiro Hobara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun-Hui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Fumikazu Kojima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yutaka Noguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun Takei
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomonori Nakamura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tadashi Adachi
- Division of Neuropathology, Department of Brain and Neurosciences, Tottori University Faculty of Medicine, Tottori, Japan
| | - Keiko Toyooka
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Osaka, Japan
| | - Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Physical Therapy, Kagoshima University Faculty of Medicine School of Health Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
2
|
Cakar A, Candayan A, Bagırova G, Uyguner ZO, Ceylaner S, Durmus H, Battaloglu E, Parman Y. Delineating the genetic landscape of Charcot-Marie-tooth disease in Türkiye: Distinct distribution, rare phenotypes, and novel variants. Eur J Neurol 2025; 32:e16572. [PMID: 39776111 PMCID: PMC11707620 DOI: 10.1111/ene.16572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) disease is the most common inherited neuropathy. In this study, we aimed to analyze the genetic spectrum and describe phenotypic features in a large cohort from Türkiye. METHODS Demographic and clinical findings were recorded. Patients were initially screened for PMP22 duplication. Targeted sequencing or whole-exome sequencing was performed in duplication-negative patients. RESULTS Overall, 311 patients from 265 families were included. Demyelinating CMT (67.4%) was more common than axonal (20.5%) and intermediate subtypes (11.7%). PMP22 duplication was the most frequent mutation, followed by pathogenic variants in GJB1, MFN2, SH3TC2, and GDAP1 genes. MPZ-neuropathy was rare in our cohort (3.0%). Interestingly, CMT4 is the second most common type after CMT1. Lower extremity weakness and foot deformities were the most frequent presenting complaints. Striking clinical features included a high frequency of scoliosis in SH3TC2, peripheral hyperexcitability in HINT1, and central nervous system findings in GJB1. Autosomal recessive CMT subtypes had higher CMTESv2 scores when compared to autosomal dominant ones (12.39 ± 4.81 vs. 8.36 ± 4.15, p: 0.023). Twenty-one patients used wheelchairs during their last examination. Among them, 16 had an autosomal recessive subtype. Causative variants were identified in 31 genes, including 28 novel pathogenic or likely pathogenic changes. CONCLUSIONS Our findings provided robust data regarding the genetic distribution of CMT in Türkiye, which may pave the path for building population-specific diagnostic gene panels. Rare autosomal recessive subtypes were relatively frequent in our cohort. By analyzing genotype-phenotype correlations, our data may provide clinical clues for clinicians.
Collapse
Affiliation(s)
- Arman Cakar
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Ayse Candayan
- Department of Molecular Biology and GeneticsBogazici UniversityIstanbulTurkey
- Molecular Neurogenomics GroupVIB Center for Molecular Neurology, VIBAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Gulandam Bagırova
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Institute of Health SciencesIstanbul UniversityIstanbulTurkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | | | - Hacer Durmus
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Esra Battaloglu
- Department of Molecular Biology and GeneticsBogazici UniversityIstanbulTurkey
| | - Yesim Parman
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| |
Collapse
|
3
|
Bertini A, Gentile L, Cavallaro T, Tozza S, Saveri P, Russo M, Massucco S, Falzone YM, Bellone E, Taioli F, Geroldi A, Occhipinti G, Ferrarini M, Cavalca E, Crivellari L, Mandich P, Balistreri F, Magri S, Taroni F, Previtali SC, Schenone A, Grandis M, Manganelli F, Fabrizi GM, Mazzeo A, Pareyson D, Pisciotta C. Phenotypic spectrum of myelin protein zero-related neuropathies: a large cohort study from five mutation clusters across Italy. J Neurol Neurosurg Psychiatry 2024; 96:47-53. [PMID: 38839277 PMCID: PMC11672051 DOI: 10.1136/jnnp-2024-333842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND We aimed to investigate the clinical features of a large cohort of patients with myelin protein zero (MPZ)-related neuropathy, focusing on the five main mutation clusters across Italy. METHODS We retrospectively gathered a minimal data set of clinical information in a series of patients with these frequent mutations recruited among Italian Charcot-Marie-Tooth (CMT) registry centres, including disease onset/severity (CMTES-CMT Examination Score), motor/sensory symptoms and use of orthotics/aids. RESULTS We collected data from 186 patients: 60 had the p.Ser78Leu variant ('classical' CMT1B; from Eastern Sicily), 42 the p.Pro70Ser (CMT2I; mainly from Lombardy), 38 the p.Thr124Met (CMT2J; from Veneto), 25 the p.Ser44Phe (CMT2I; from Sardinia) and 21 the p.Asp104ThrfsX13 (mild CMT1B; from Apulia) mutation. Disease severity (CMTES) was higher (p<0.001) in late-onset axonal forms (p.Thr124Met=9.2±6.6; p.Ser44Phe=7.8±5.7; p.Pro70Ser=7.6±4.8) compared with p.Ser78Leu (6.1±3.5) patients. Disease progression (ΔCMTES/year) was faster in the p.Pro70Ser cohort (0.8±1.0), followed by p.Ser44Phe (0.7±0.4), p.Thr124Met (0.4±0.5) and p.Ser78Leu (0.2±0.4) patients. Disease severity (CMTES=1.2±1.5), progression (ΔCMTES/year=0.1±0.4) and motor involvement were almost negligible in p.Asp104ThrfsX13 patients, who, however, frequently (78%, p<0.001) complained of neuropathic pain. In the other four clusters, walking difficulties were reported by 69-85% of patients, while orthotic and walking aids use ranged between 40-62% and 16-28%, respectively. CONCLUSIONS This is the largest MPZ (and late-onset CMT2) cohort ever collected, reporting clinical features and disease progression of 186 patients from five different clusters across Italy. Our findings corroborate the importance of differentiating between 'classical' childhood-onset demyelinating, late-onset axonal and mild MPZ-related neuropathy, characterised by different pathomechanisms, in view of different therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Bertini
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Gentile
- Unità di Neurologia e Malattie Neuromuscolari, Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Tiziana Cavallaro
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Stefano Tozza
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università Federico II di Napoli, Naples, Italy
| | - Paola Saveri
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Russo
- Unità di Neurologia e Malattie Neuromuscolari, Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Sara Massucco
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Yuri Matteo Falzone
- INSPE and Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emilia Bellone
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Taioli
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Alessandro Geroldi
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
| | - Giuseppe Occhipinti
- Unità di Neurologia e Malattie Neuromuscolari, Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Moreno Ferrarini
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Eleonora Cavalca
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Crivellari
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Mandich
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Balistreri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Angelo Schenone
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marina Grandis
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiore Manganelli
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università Federico II di Napoli, Naples, Italy
| | - Gian Maria Fabrizi
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Anna Mazzeo
- Unità di Neurologia e Malattie Neuromuscolari, Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Davide Pareyson
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
4
|
Baron KR, Oviedo S, Krasny S, Zaman M, Aldakhlallah R, Bora P, Mathur P, Pfeffer G, Bollong MJ, Shutt TE, Grotjahn DA, Wiseman RL. Pharmacologic Activation of Integrated Stress Response Kinases Inhibits Pathologic Mitochondrial Fragmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598126. [PMID: 38915623 PMCID: PMC11195119 DOI: 10.1101/2024.06.10.598126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically-diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) - comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI - is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.
Collapse
Affiliation(s)
- Kelsey R. Baron
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
- These authors contributed equally
| | - Samantha Oviedo
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037
- These authors contributed equally
| | - Sophia Krasny
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Mashiat Zaman
- Department of Biochemistry and Molecular Biology, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rama Aldakhlallah
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Prerona Bora
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Prakhyat Mathur
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary; Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary
| | - Michael J. Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - R. Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
5
|
Parmar JM, Laing NG, Kennerson ML, Ravenscroft G. Genetics of inherited peripheral neuropathies and the next frontier: looking backwards to progress forwards. J Neurol Neurosurg Psychiatry 2024; 95:992-1001. [PMID: 38744462 PMCID: PMC11503175 DOI: 10.1136/jnnp-2024-333436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Inherited peripheral neuropathies (IPNs) encompass a clinically and genetically heterogeneous group of disorders causing length-dependent degeneration of peripheral autonomic, motor and/or sensory nerves. Despite gold-standard diagnostic testing for pathogenic variants in over 100 known associated genes, many patients with IPN remain genetically unsolved. Providing patients with a diagnosis is critical for reducing their 'diagnostic odyssey', improving clinical care, and for informed genetic counselling. The last decade of massively parallel sequencing technologies has seen a rapid increase in the number of newly described IPN-associated gene variants contributing to IPN pathogenesis. However, the scarcity of additional families and functional data supporting variants in potential novel genes is prolonging patient diagnostic uncertainty and contributing to the missing heritability of IPNs. We review the last decade of IPN disease gene discovery to highlight novel genes, structural variation and short tandem repeat expansions contributing to IPN pathogenesis. From the lessons learnt, we provide our vision for IPN research as we anticipate the future, providing examples of emerging technologies, resources and tools that we propose that will expedite the genetic diagnosis of unsolved IPN families.
Collapse
Affiliation(s)
- Jevin M Parmar
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Preventive Genetics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Record CJ, Pipis M, Skorupinska M, Blake J, Poh R, Polke JM, Eggleton K, Nanji T, Zuchner S, Cortese A, Houlden H, Rossor AM, Laura M, Reilly MM. Whole genome sequencing increases the diagnostic rate in Charcot-Marie-Tooth disease. Brain 2024; 147:3144-3156. [PMID: 38481354 PMCID: PMC11370804 DOI: 10.1093/brain/awae064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/04/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common and genetically heterogeneous inherited neurological diseases, with more than 130 disease-causing genes. Whole genome sequencing (WGS) has improved diagnosis across genetic diseases, but the diagnostic impact in CMT is yet to be fully reported. We present the diagnostic results from a single specialist inherited neuropathy centre, including the impact of WGS diagnostic testing. Patients were assessed at our specialist inherited neuropathy centre from 2009 to 2023. Genetic testing was performed using single gene testing, next-generation sequencing targeted panels, research whole exome sequencing and WGS and, latterly, WGS through the UK National Health Service. Variants were assessed using the American College of Medical Genetics and Genomics and Association for Clinical Genomic Science criteria. Excluding patients with hereditary ATTR amyloidosis, 1515 patients with a clinical diagnosis of CMT and related disorders were recruited. In summary, 621 patients had CMT1 (41.0%), 294 CMT2 (19.4%), 205 intermediate CMT (CMTi, 13.5%), 139 hereditary motor neuropathy (HMN, 9.2%), 93 hereditary sensory neuropathy (HSN, 6.1%), 38 sensory ataxic neuropathy (2.5%), 72 hereditary neuropathy with liability to pressure palsies (HNPP, 4.8%) and 53 'complex' neuropathy (3.5%). Overall, a genetic diagnosis was reached in 76.9% (1165/1515). A diagnosis was most likely in CMT1 (96.8%, 601/621), followed by CMTi (81.0%, 166/205) and then HSN (69.9%, 65/93). Diagnostic rates remained less than 50% in CMT2, HMN and complex neuropathies. The most common genetic diagnosis was PMP22 duplication (CMT1A; 505/1165, 43.3%), then GJB1 (CMTX1; 151/1165, 13.0%), PMP22 deletion (HNPP; 72/1165, 6.2%) and MFN2 (CMT2A; 46/1165, 3.9%). We recruited 233 cases to the UK 100 000 Genomes Project (100KGP), of which 74 (31.8%) achieved a diagnosis; 28 had been otherwise diagnosed since recruitment, leaving a true diagnostic rate of WGS through the 100KGP of 19.7% (46/233). However, almost half of the solved cases (35/74) received a negative report from the study, and the diagnosis was made through our research access to the WGS data. The overall diagnostic uplift of WGS for the entire cohort was 3.5%. Our diagnostic rate is the highest reported from a single centre and has benefitted from the use of WGS, particularly access to the raw data. However, almost one-quarter of all cases remain unsolved, and a new reference genome and novel technologies will be important to narrow the 'diagnostic gap'.
Collapse
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Menelaos Pipis
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mariola Skorupinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Julian Blake
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Roy Poh
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - James M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Kelly Eggleton
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Tina Nanji
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
7
|
Ehara Y, Nakano N, Takayama K, Kuroda Y, Hashimoto S, Hayashi S, Matsushita T, Niikura T, Kuroda R, Matsumoto T. Rotating Hinge Knee Arthroplasty for Charcot Joints of the Knees in Patients With Charcot-Marie-Tooth Disease: A Report of Two Cases. Cureus 2024; 16:e63154. [PMID: 39070426 PMCID: PMC11272421 DOI: 10.7759/cureus.63154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
We report two cases wherein rotating hinge knee (RHK) arthroplasty was performed for Charcot joints that developed secondary to Charcot-Marie-Tooth disease (CMT). Case 1 was of a 74-year-old woman with CMT. She presented with muscle weakness and sensory disturbances of the distal lower limbs, deformity, and significant medial instability of the bilateral knees. She was then diagnosed with Charcot joints of the knees secondary to CMT, which were treated with RHK arthroplasty. Five years postoperatively, there was no instability, and she was able to stand unassisted without pain. Case 2 was a 90-year-old woman with CMT who presented with muscle weakness and sensory disturbances of the distal lower limbs, deformity, and significant medial instability of the bilateral knees. She was then diagnosed with Charcot joints of the knees secondary to CMT, which were also treated with RHK arthroplasty. One year postoperatively, there was no instability, and she was able to walk smoothly using a walker. These clinical cases indicate that RHK arthroplasty can be a good therapeutic option for Charcot joints of the knees in patients with CMT.
Collapse
Affiliation(s)
- Yutaka Ehara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Koji Takayama
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Shingo Hashimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, JPN
| |
Collapse
|
8
|
Kulsirichawaroj P, Suksangkharn Y, Nam DE, Pho-iam T, Limwongse C, Chung KW, Sanmaneechai O, Zuchner SL, Choi BO. Gene Distribution in Pediatric-Onset Inherited Peripheral Neuropathy: A Single Tertiary Center in Thailand. J Neuromuscul Dis 2024; 11:191-199. [PMID: 37927275 PMCID: PMC10789325 DOI: 10.3233/jnd-230174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Inherited peripheral neuropathy presents a diagnostic and therapeutic challenge due to its association with mutations in over 100 genes. This condition leads to long-term disability and poses a substantial healthcare burden on society. OBJECTIVE This study aimed to investigate the distribution of genes and establish the genotype-phenotype correlations, focusing on pediatric-onset cases. METHODS Exome sequencing and other analytical techniques were employed to identify pathogenic variants, including duplication analysis of the PMP22 gene. Each patient underwent physical examination and electrophysiological studies. Genotypes were correlated with phenotypic features, such as age at disease onset and ulnar motor nerve conduction velocity. RESULTS We identified 35 patients with pediatric-onset inherited peripheral neuropathy. Pathogenic or likely pathogenic variants were confirmed in 24 out of 35 (68.6%) patients, with 4 of these variants being novel. A confirmed molecular diagnosis was achieved in 90.9% (10/11) of patients with demyelinating Charcot-Marie-Tooth disease (CMT) and 56.3% (9/16) of patients with axonal CMT. Among patients with infantile-onset CMT (≤2 years), the most common causative genes were MFN2 and NEFL, while GDAP1 and MFN2 were frequent causes among patients with childhood- or adolescent-onset CMT (3-9 years). CONCLUSIONS The MFN2 gene was the most commonly implicated gene, and the axonal type was predominant in this cohort of Thai patients with pediatric-onset inherited peripheral neuropathy.
Collapse
Affiliation(s)
- Pimchanok Kulsirichawaroj
- Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Nakhon Pathom, Thailand
| | - Yanin Suksangkharn
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Theeraphong Pho-iam
- Siriraj Genomics, Office of the Dean, Faculty of Medicine, Siriraj Hospital, Mahidol University, Nakhon Pathom, Thailand
| | - Chanin Limwongse
- Siriraj Genomics, Office of the Dean, Faculty of Medicine, Siriraj Hospital, Mahidol University, Nakhon Pathom, Thailand
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Nakhon Pathom, Thailand
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Oranee Sanmaneechai
- Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Nakhon Pathom, Thailand
- Center of Research Excellence for Neuromuscular Diseases, Faculty of Medicine, Siriraj Hospital, Mahidol University, Nakhon Pathom, Thailand
| | - Stephan L. Zuchner
- Department of Human Genetics, University of Miami Health System, Miami, FL, USA
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, and Samsung Advanced Institute for Health Science & Tech, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Higuchi Y, Ando M, Kojima F, Yuan J, Hashiguchi A, Yoshimura A, Hiramatsu Y, Nozuma S, Fukumura S, Yahikozawa H, Abe E, Toyoshima I, Sugawara M, Okamoto Y, Matsuura E, Takashima H. Dystonia and Parkinsonism in COA7-related disorders: expanding the phenotypic spectrum. J Neurol 2024; 271:419-430. [PMID: 37750949 PMCID: PMC10769979 DOI: 10.1007/s00415-023-11998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Biallelic mutations in the COA7 gene have been associated with spinocerebellar ataxia with axonal neuropathy type 3 (SCAN3), and a notable clinical diversity has been observed. We aim to identify the genetic and phenotypic spectrum of COA7-related disorders. METHODS We conducted comprehensive genetic analyses on the COA7 gene within a large group of Japanese patients clinically diagnosed with inherited peripheral neuropathy or cerebellar ataxia. RESULTS In addition to our original report, which involved four patients until 2018, we identified biallelic variants of the COA7 gene in another three unrelated patients, and the variants were c.17A > G (p.D6G), c.115C > T (p.R39W), and c.449G > A (p.C150Y; novel). Patient 1 presented with an infantile-onset generalized dystonia without cerebellar ataxia. Despite experiencing an initial transient positive response to levodopa and deep brain stimulation, he became bedridden by the age of 19. Patient 2 presented with cerebellar ataxia, neuropathy, as well as parkinsonism, and showed a slight improvement upon levodopa administration. Dopamine transporter SPECT showed decreased uptake in the bilateral putamen in both patients. Patient 3 exhibited severe muscle weakness, respiratory failure, and feeding difficulties. A haplotype analysis of the mutation hotspot in Japan, c.17A > G (p.D6G), uncovered a common haplotype block. CONCLUSION COA7-related disorders typically encompass a spectrum of conditions characterized by a variety of major (cerebellar ataxia and axonal polyneuropathy) and minor (leukoencephalopathy, dystonia, and parkinsonism) symptoms, but may also display a dystonia-predominant phenotype. We propose that COA7 should be considered as a new causative gene for infancy-onset generalized dystonia, and COA7 gene screening is recommended for patients with unexplained dysfunctions of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Fumikazu Kojima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Shinobu Fukumura
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Erika Abe
- Department of Neurology, National Hospital Organization Akita National Hospital, Yurihonjo, Japan
| | - Itaru Toyoshima
- Department of Neurology, National Hospital Organization Akita National Hospital, Yurihonjo, Japan
| | - Masashiro Sugawara
- Department of Neurology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan.
| |
Collapse
|
10
|
Krannich T, Sarrias MH, Ben Aribi H, Shokrof M, Iacoangeli A, Al-Chalabi A, Sedlazeck FJ, Busby B, Al Khleifat A. VariantSurvival: a tool to identify genotype-treatment response. FRONTIERS IN BIOINFORMATICS 2023; 3:1277923. [PMID: 37885757 PMCID: PMC10598652 DOI: 10.3389/fbinf.2023.1277923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Motivation: For a number of neurological diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, and many others, certain genes are known to be involved in the disease mechanism. A common question is whether a structural variant in any such gene may be related to drug response in clinical trials and how this relationship can contribute to the lifecycle of drug development. Results: To this end, we introduce VariantSurvival, a tool that identifies changes in survival relative to structural variants within target genes. VariantSurvival matches annotated structural variants with genes that are clinically relevant to neurological diseases. A Cox regression model determines the change in survival between the placebo and clinical trial groups with respect to the number of structural variants in the drug target genes. We demonstrate the functionality of our approach with the exemplary case of the SETX gene. VariantSurvival has a user-friendly and lightweight graphical user interface built on the shiny web application package.
Collapse
Affiliation(s)
- Thomas Krannich
- Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany
| | - Marina Herrera Sarrias
- Computational Mathematics Division, Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Hiba Ben Aribi
- Faculty of Science of Tunis, University El Manar, Tunis, Tunisia
| | - Moustafa Shokrof
- Department of Computer Science, University of California, Davis, CA, United States
| | - Alfredo Iacoangeli
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Ben Busby
- DNAnexus, Mountain View, CA, United States
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| |
Collapse
|
11
|
Cavalcanti EBU, Leal RDCC, Marques Junior W, Nascimento OJMD. Charcot-Marie-Tooth disease: from historical landmarks in Brazil to current care perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:913-921. [PMID: 37611635 PMCID: PMC10631856 DOI: 10.1055/s-0043-1770348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/16/2023] [Indexed: 08/25/2023]
Abstract
Hereditary motor and sensory neuropathy, also known as Charcot-Marie-Tooth disease (CMT), traditionally refers to a group of genetic disorders in which neuropathy is the main or sole feature. Its prevalence varies according to different populations studied, with an estimate between 1:2,500 to 1:10,000. Since the identification of PMP22 gene duplication on chromosome 17 by Vance et al., in 1989, more than 100 genes have been related to this group of disorders, and we have seen advances in the care of patients, with identification of associated conditions and better supportive treatments, including clinical and surgical interventions. Also, with discoveries in the field of genetics, including RNA interference and gene editing techniques, new treatment perspectives begin to emerge. In the present work, we report the most import landmarks regarding CMT research in Brazil and provide a comprehensive review on topics such as frequency of different genes associated with CMT in our population, prevalence of pain, impact on pregnancy, respiratory features, and development of new therapies.
Collapse
Affiliation(s)
| | | | - Wilson Marques Junior
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurologia, Ribeirão Preto SP, Brazil.
| | | |
Collapse
|
12
|
Palu E, Järvilehto J, Pennonen J, Huber N, Herukka SK, Haapasalo A, Isohanni P, Tyynismaa H, Auranen M, Ylikallio E. Rare PMP22 variants in mild to severe neuropathy uncorrelated to plasma GDF15 or neurofilament light. Neurogenetics 2023; 24:291-301. [PMID: 37606798 PMCID: PMC10545620 DOI: 10.1007/s10048-023-00729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous set of hereditary neuropathies whose genetic causes are not fully understood. Here, we characterize three previously unknown variants in PMP22 and assess their effect on the recently described potential CMT biomarkers' growth differentiation factor 15 (GDF15) and neurofilament light (NFL): first, a heterozygous PMP22 c.178G > A (p.Glu60Lys) in one mother-son pair with adult-onset mild axonal neuropathy. The variant led to abnormal splicing, confirmed in fibroblasts by reverse transcription PCR. Second, a de novo PMP22 c.35A > C (p.His12Pro), and third, a heterozygous 3.2 kb deletion predicting loss of exon 4. The latter two had severe CMT and ultrasonography showing strong nerve enlargement similar to a previous case of exon 4 loss due to a larger deletion. We further studied patients with PMP22 duplication (CMT1A) finding slightly elevated plasma NFL, as measured by the single molecule array immunoassay (SIMOA). In addition, plasma GDF15, as measured by ELISA, correlated with symptom severity for CMT1A. However, in the severely affected individuals with PMP22 exon 4 deletion or p.His12Pro, these biomarkers were within the range of variability of CMT1A and controls, although they had more pronounced nerve hypertrophy. This study adds p.His12Pro and confirms PMP22 exon 4 deletion as causes of severe CMT, whereas the previously unknown splice variant p.Glu60Lys leads to mild axonal neuropathy. Our results suggest that GDF15 and NFL do not distinguish CMT1A from advanced hypertrophic neuropathy caused by rare PMP22 variants.
Collapse
Affiliation(s)
- Edouard Palu
- Department of Clinical Neurophysiology, Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Julius Järvilehto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pirjo Isohanni
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Child Neurology, New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Auranen
- Clinical Neurosciences, Neurology, Helsinki University Hospital, Biomedicum Room 525B, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Clinical Neurosciences, Neurology, Helsinki University Hospital, Biomedicum Room 525B, Haartmaninkatu 8, 00290, Helsinki, Finland.
| |
Collapse
|
13
|
Benslimane N, Miressi F, Loret C, Richard L, Nizou A, Pyromali I, Faye PA, Favreau F, Lejeune F, Lia AS. Amlexanox: Readthrough Induction and Nonsense-Mediated mRNA Decay Inhibition in a Charcot-Marie-Tooth Model of hiPSCs-Derived Neuronal Cells Harboring a Nonsense Mutation in GDAP1 Gene. Pharmaceuticals (Basel) 2023; 16:1034. [PMID: 37513945 PMCID: PMC10385573 DOI: 10.3390/ph16071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Nonsense mutations are involved in multiple peripheral neuropathies. These mutations induce the presence of a premature termination codon (PTC) at the mRNA level. As a result, a dysfunctional or truncated protein is synthesized, or even absent linked to nonsense-mediated mRNA degradation (NMD) system activation. Readthrough molecules or NMD inhibitors could be innovative therapies in these hereditary neuropathies, particularly molecules harboring the dual activity as amlexanox. Charcot-Marie-Tooth (CMT) is the most common inherited pathology of the peripheral nervous system, affecting 1 in 2500 people worldwide. Nonsense mutations in the GDAP1 gene have been associated with a severe form of CMT, prompting us to investigate the effect of readthrough and NMD inhibitor molecules. Although not clearly defined, GDAP1 could be involved in mitochondrial functions, such as mitophagy. We focused on the homozygous c.581C>G (p.Ser194*) mutation inducing CMT2H using patient human induced pluripotent stem cell (hiPSC)-derived neuronal cells. Treatment during 20 h with 100 µM of amlexanox on this cell model stabilized GDAP1 mRNAs carrying UGA-PTC and induced a restoration of the mitochondrial morphology. These results highlight the potential of readthrough molecules associated to NMD inhibitors for the treatment of genetic alterations in CMT, opening the way for future investigations and a potential therapy.
Collapse
Affiliation(s)
- Nesrine Benslimane
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Federica Miressi
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Camille Loret
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Laurence Richard
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
- CHU Limoges, Service de Neurologie, F-87000 Limoges, France
| | - Angélique Nizou
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Ioanna Pyromali
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
- Centre Hospitalier Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
| | - Frédéric Favreau
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
- Centre Hospitalier Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
| | - Fabrice Lejeune
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France
| | - Anne-Sophie Lia
- NeurIT UR 20218, GEIST Institute, Faculté de Médecine de Limoges, University of Limoges, F-87000 Limoges, France
- Centre Hospitalier Universitaire (CHU) Limoges, Service de Biochimie et de Génétique Moléculaire, F-87000 Limoges, France
- Centre Hospitalo-Universitaire (CHU) Limoges, UF de Bioinformatique, F-87000 Limoges, France
| |
Collapse
|
14
|
Ma Y, Duan X, Liu X, Fan D. Clinical and mutational spectrum of paediatric Charcot-Marie-Tooth disease in a large cohort of Chinese patients. Front Genet 2023; 14:1188361. [PMID: 37519884 PMCID: PMC10381926 DOI: 10.3389/fgene.2023.1188361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Charcot-Marie-Tooth disease (CMT) is the most common inherited neurological disorder suffered in childhood. To date, the disease features have not been extensively characterized in the Chinese paediatric population. In this study, we aimed to analyse the clinical profiles and genetic distributions of a paediatric CMT cohort in China. Methods: A total of 181 paediatric CMT patients were enrolled. After preexcluding PMP22 duplication/deletion by multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing, targeted next-generation sequencing (NGS) or whole-exome sequencing (WES) was performed to obtain a genetic diagnosis. Detailed information was collected to explore the spectrum of subtypes and genotype-phenotype correlations. Results: Pathogenic mutations were identified in 68% of patients in this study; with PMP22 duplication, MFN2 and GJB1 were the most frequent disease-causing genes. Of note, respect to the higher prevalence worldwide, CMT1A (18.2%) was relatively lower in our cohort. Besides, the mean age at onset (8.3 ± 5.7 years) was significantly older in our series. In genotype-phenotype analyse, PMP22 point mutations were considered the most severe genotypes and were mostly de novo. In addition, the de novo mutations were identified in up to 12.7% of all patients, which was higher than that in other studies. Conclusion: We identified a relatively lower detection rate of PMP22 duplication and a higher frequency of de novo variants among paediatric patients in China. We also identified the genetic and phenotypic heterogeneity of this cohort, which may provide clues for clinicians in directing genetic testing strategies for Chinese patients with early-onset CMT.
Collapse
Affiliation(s)
- Yan Ma
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | | | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
15
|
Ma X, Liu X, Duan X, Fan D. Screening for PRX mutations in a large Chinese Charcot-Marie-Tooth disease cohort and literature review. Front Neurol 2023; 14:1148044. [PMID: 37470010 PMCID: PMC10352492 DOI: 10.3389/fneur.2023.1148044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/06/2023] [Indexed: 07/21/2023] Open
Abstract
Background Periaxins (encoded by PRX) play an important role in the stabilization of peripheral nerve myelin. Mutations in PRX can lead to Charcot-Marie-Tooth disease type 4F (CMT4F). Methods In this study, we screened for PRX mutations using next-generation sequencing and whole-exome sequencing in a large Chinese CMT cohort consisting of 465 unrelated index patients and 650 healthy controls. Sanger sequencing was used for the validation of all identified variants. We also reviewed all previously reported PRX-related CMT cases and summarized the clinical manifestations and genetic features of PRX-related CMTs. Results The hit rate for biallelic PRX variants in our cohort of Chinese CMT patients was 0.43% (2/465). One patient carried a previously unreported splice-site mutation (c.25_27 + 9del) compound heterozygous with a known nonsense variant. Compiling data on CMT4F cases and PRX variants from the medical literature confirmed that early-onset (95.2%), distal amyotrophy or weakness (94.0%), feet deformity (75.0%), sensory impairment or sensory ataxia (65.5%), delayed motor milestones (60.7%), and spinal deformity (59.5%) are typical features for CMT4F. Less frequent features were auditory impairments, respiratory symptoms, late onset, dysarthria or hoarseness, ophthalmic problems, and central nervous system involvement. The two cases with biallelic missense mutations have later onset age than those with nonsense or frameshift mutations. We did not note clear correlations between the type and site of mutations and clinical severity or distinct constellations of symptoms. Conclusion Consistent with observations in other countries and ethnic groups, PRX-related CMT is rare in China. The clinical spectrum is wider than previously anticipated.
Collapse
Affiliation(s)
- Xinran Ma
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
16
|
Lei L, Xiaobo L, Zhiqiang L, Yongzhi X, Shunxiang H, Huadong Z, Beisha T, Ruxu Z. Genotype-phenotype characteristics and baseline natural history of Chinese myelin protein zero gene related neuropathy patients. Eur J Neurol 2023; 30:1069-1079. [PMID: 36692866 DOI: 10.1111/ene.15700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE The aim was to characterize the phenotypic and genotypic features of myelin protein zero (MPZ) related neuropathy and provide baseline data for longitudinal natural history studies or drug clinical trials. METHOD Clinical, neurophysiological and genetic data of 37 neuropathy patients with MPZ mutations were retrospectively collected. RESULTS Nineteen different MPZ mutations in 23 unrelated neuropathy families were detected, and the frequency of MPZ mutations was 5.84% in total. Mutations c.103_104InsTGGTTTACACCG, c.513dupG, c.521_557del and c.696_699delCAGT had not been reported previously. Hot spot mutation p.Thr124Met was detected in four unrelated families, and seven patients carried de novo mutations. The onset age indicated a bimodal distribution: prominent clustering in the first and fourth decades. The infantile-onset group included 12 families, the childhood-onset group consisted of two families and the adult-onset group included nine families. The Charcot-Marie-Tooth Disease Neuropathy Score ranged from 3 to 25 with a mean value of 15.85 ± 5.88. Mutations that changed the cysteine residue (p.Arg98Cys, p.Cys127Trp, p.Ser140Cys and p.Cys127Arg) in the extracellular region were more likely to cause severe early-onset Charcot-Marie-Tooth disease type 1B (CMT1B) or Dejerine-Sottas syndrome. Nonsense-mediated mRNA decay mutations p.Asp35delInsVVYTD, p.Leu174Argfs*66 and p.Leu172Alafs*63 were related to severe infantile-onset CMT1B or Dejerine-Sottas syndrome; however, mutation p.Val232Valfs*19 was associated with a relatively milder childhood-onset CMT1 phenotype. CONCLUSION Four novel MPZ mutations are reported that expand the genetic spectrum. De novo mutations accounted for 30.4% and were most related to a severe infantile-onset phenotype. Genetic and clinical data from this cohort will provide the baseline data necessary for clinical trials and natural history studies.
Collapse
Affiliation(s)
- Liu Lei
- Health Management Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiaobo
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhiqiang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xie Yongzhi
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Huang Shunxiang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Huadong
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Tang Beisha
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhang Ruxu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Higuchi Y, Takashima H. Clinical genetics of Charcot-Marie-Tooth disease. J Hum Genet 2023; 68:199-214. [PMID: 35304567 DOI: 10.1038/s10038-022-01031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot-Marie-Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
18
|
Zanfardino P, Longo G, Amati A, Morani F, Picardi E, Girolamo F, Pafundi M, Cox SN, Manzari C, Tullo A, Doccini S, Santorelli FM, Petruzzella V. Mitofusin 2 mutation drives cell proliferation in Charcot-Marie-Tooth 2A fibroblasts. Hum Mol Genet 2023; 32:333-350. [PMID: 35994048 DOI: 10.1093/hmg/ddac201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 01/20/2023] Open
Abstract
Dominant mutations in ubiquitously expressed mitofusin 2 gene (MFN2) cause Charcot-Marie-Tooth type 2A (CMT2A; OMIM 609260), an inherited sensory-motor neuropathy that affects peripheral nerve axons. Mitofusin 2 protein has been found to take part in mitochondrial fusion, mitochondria-endoplasmic reticulum tethering, mitochondrial trafficking along axons, mitochondrial quality control and various types of cancer, in which MFN2 has been indicated as a tumor suppressor gene. Discordant data on the mitochondrial altered phenotypes in patient-derived fibroblasts harboring MFN2 mutations and in animal models have been reported. We addressed some of these issues by focusing on mitochondria behavior during autophagy and mitophagy in fibroblasts derived from a CMT2AMFN2 patient with an MFN2650G > T/C217F mutation in the GTPase domain. This study investigated mitochondrial dynamics, respiratory capacity and autophagy/mitophagy, to tackle the multifaceted MFN2 contribution to CMT2A pathogenesis. We found that MFN2 mutated fibroblasts showed impairment of mitochondrial morphology, bioenergetics capacity, and impairment of the early stages of autophagy, but not mitophagy. Unexpectedly, transcriptomic analysis of mutated fibroblasts highlighted marked differentially expressed pathways related to cell population proliferation and extracellular matrix organization. We consistently found the activation of mTORC2/AKT signaling and accelerated proliferation in the CMT2AMFN2 fibroblasts. In conclusion, our evidence indicates that MFN2 mutation can positively drive cell proliferation in CMT2AMFN2 fibroblasts.
Collapse
Affiliation(s)
- Paola Zanfardino
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giovanna Longo
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Amati
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70125 Bari, Italy
| | - Francesco Girolamo
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariella Pafundi
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Sharon N Cox
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70125 Bari, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy
| | - Vittoria Petruzzella
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
19
|
Jung NY, Kwon HM, Nam DE, Tamanna N, Lee AJ, Kim SB, Choi BO, Chung KW. Peripheral Myelin Protein 22 Gene Mutations in Charcot-Marie-Tooth Disease Type 1E Patients. Genes (Basel) 2022; 13:genes13071219. [PMID: 35886002 PMCID: PMC9321036 DOI: 10.3390/genes13071219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Duplication and deletion of the peripheral myelin protein 22 (PMP22) gene cause Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP), respectively, while point mutations or small insertions and deletions (indels) usually cause CMT type 1E (CMT1E) or HNPP. This study was performed to identify PMP22 mutations and to analyze the genotype−phenotype correlation in Korean CMT families. By the application of whole-exome sequencing (WES) and targeted gene panel sequencing (TS), we identified 14 pathogenic or likely pathogenic PMP22 mutations in 21 families out of 850 CMT families who were negative for 17p12 (PMP22) duplication. Most mutations were located in the well-conserved transmembrane domains. Of these, eight mutations were not reported in other populations. High frequencies of de novo mutations were observed, and the mutation sites of c.68C>G and c.215C>T were suggested as the mutational hotspots. Affected individuals showed an early onset-severe phenotype and late onset-mild phenotype, and more than 40% of the CMT1E patients showed hearing loss. Physical and electrophysiological symptoms of the CMT1E patients were more severely damaged than those of CMT1A while similar to CMT1B caused by MPZ mutations. Our results will be useful for the reference data of Korean CMT1E and the molecular diagnosis of CMT1 with or without hearing loss.
Collapse
Affiliation(s)
- Na Young Jung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
| | - Nasrin Tamanna
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
| | - Ah Jin Lee
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul 05278, Korea;
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea
- Correspondence: (B.-O.C.); (K.W.C.); Tel.: +82-2-3410-1296 (B.-O.C.); +82-41-850-8506 (K.W.C.)
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
- Correspondence: (B.-O.C.); (K.W.C.); Tel.: +82-2-3410-1296 (B.-O.C.); +82-41-850-8506 (K.W.C.)
| |
Collapse
|
20
|
Ando M, Higuchi Y, Yuan J, Yoshimura A, Taniguchi T, Kojima F, Noguchi Y, Hobara T, Takeuchi M, Takei J, Hiramatsu Y, Sakiyama Y, Hashiguchi A, Okamoto Y, Mitsui J, Ishiura H, Tsuji S, Takashima H. Comprehensive Genetic Analyses of Inherited Peripheral Neuropathies in Japan: Making Early Diagnosis Possible. Biomedicines 2022; 10:biomedicines10071546. [PMID: 35884855 PMCID: PMC9312503 DOI: 10.3390/biomedicines10071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/18/2022] Open
Abstract
Various genomic variants were linked to inherited peripheral neuropathies (IPNs), including large duplication/deletion and repeat expansion, making genetic diagnosis challenging. This large case series aimed to identify the genetic characteristics of Japanese patients with IPNs. We collected data on 2695 IPN cases throughout Japan, in which PMP22 copy number variation (CNV) was pre-excluded. Genetic analyses were performed using DNA microarrays, next-generation sequencing-based gene panel sequencing, whole-exome sequencing, CNV analysis, and RFC1 repeat expansion analysis. The overall diagnostic rate and the genetic spectrum of patients were summarized. We identified 909 cases with suspected IPNs, pathogenic or likely pathogenic variants. The most common causative genes were MFN2, GJB1, MPZ, and MME. MFN2 was the most common cause for early-onset patients, whereas GJB1 and MPZ were the leading causes of middle-onset and late-onset patients, respectively. Meanwhile, GJB1 and MFN2 were leading causes for demyelinating and axonal subtypes, respectively. Additionally, we identified CNVs in MPZ and GJB1 genes and RFC1 repeat expansions. Comprehensive genetic analyses explicitly demonstrated the genetic basis of our IPN case series. A further understanding of the clinical characteristics of IPN and genetic spectrum would assist in developing efficient genetic testing strategies and facilitate early diagnosis.
Collapse
Affiliation(s)
- Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Takaki Taniguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Fumikazu Kojima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Yutaka Noguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Takahiro Hobara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Mika Takeuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Jun Takei
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8520, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (J.M.); (H.I.); (S.T.)
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (J.M.); (H.I.); (S.T.)
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; (J.M.); (H.I.); (S.T.)
- Institute of Medical Genomics, International University of Health and Welfare, Chiba 107-8402, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (M.A.); (Y.H.); (J.Y.); (A.Y.); (T.T.); (F.K.); (Y.N.); (T.H.); (M.T.); (J.T.); (Y.H.); (Y.S.); (A.H.); (Y.O.)
- Correspondence: ; Tel.: +81-99-275-5332
| |
Collapse
|
21
|
Ando M, Higuchi Y, Yuan J, Yoshimura A, Taniguchi T, Takei J, Takeuchi M, Hiramatsu Y, Shimizu F, Kubota M, Takeshima A, Ueda T, Koh K, Nagaoka U, Tokashiki T, Sawai S, Sakiyama Y, Hashiguchi A, Sato R, Kanda T, Okamoto Y, Takashima H. Novel heterozygous variants of SLC12A6 in Japanese families with Charcot-Marie-Tooth disease. Ann Clin Transl Neurol 2022; 9:902-911. [PMID: 35733399 PMCID: PMC9268887 DOI: 10.1002/acn3.51603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Recessive mutations in SLC12A6 have been linked to hereditary motor sensory neuropathy with agenesis of the corpus callosum. Patients with early-onset peripheral neuropathy associated with SLC12A6 heterozygous variants were reported in 2016. Only five families and three variants have been reported to date, and the spectrum is unclear. Here, we aim to describe the clinical and mutation spectra of SLC12A6-related Charcot-Marie-Tooth (CMT) disease in Japanese patients. METHODS We extracted SLC12A6 variants from our DNA microarray and targeted resequencing data obtained from 2598 patients with clinically suspected CMT who were referred to our genetic laboratory by neurological or neuropediatric departments across Japan. And we summarized the clinical and genetic features of these patients. RESULTS In seven unrelated families, we identified one previously reported and three novel likely pathogenic SLC12A6 heterozygous variants, as well as two variants of uncertain significance. The mean age of onset for these patients was 17.5 ± 16.1 years. Regarding electrophysiology, the median motor nerve conduction velocity was 39.6 ± 9.5 m/sec. For the first time, we observed intellectual disability in three patients. One patient developed epilepsy, and her brain MRI revealed frontal and temporal lobe atrophy without changes in white matter and corpus callosum. CONCLUSIONS Screening for the SLC12A6 gene should be considered in patients with CMT, particularly those with central nervous system lesions, such as cognitive impairment and epilepsy, regardless of the CMT subtype.
Collapse
Affiliation(s)
- Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takaki Taniguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Neurology, Imakiire General Hospital, Kagoshima, Japan
| | - Jun Takei
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mika Takeuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Akari Takeshima
- Department of Neurology, Brain Research Institute Niigata University, Niigata, Japan
| | - Takehiro Ueda
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kishin Koh
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Utako Nagaoka
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Takashi Tokashiki
- Department of Neurology, National Hospital Organization Okinawa National Hospital, Okinawa, Japan
| | - Setsu Sawai
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryota Sato
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
22
|
Ando M, Higuchi Y, Yuan JH, Yoshimura A, Kitao R, Morimoto T, Taniguchi T, Takeuchi M, Takei J, Hiramatsu Y, Sakiyama Y, Hashiguchi A, Okamoto Y, Mitsui J, Ishiura H, Tsuji S, Takashima H. Novel de novo POLR3B mutations responsible for demyelinating Charcot-Marie-Tooth disease in Japan. Ann Clin Transl Neurol 2022; 9:747-755. [PMID: 35482004 PMCID: PMC9082381 DOI: 10.1002/acn3.51555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background Biallelic POLR3B mutations cause a rare hypomyelinating leukodystrophy. De novo POLR3B heterozygous mutations were recently associated with afferent ataxia, spasticity, variable intellectual disability, and epilepsy, and predominantly demyelinating sensorimotor peripheral neuropathy. Methods We performed whole‐exome sequencing (WES) of DNA samples from 804 Charcot–Marie–Tooth (CMT) cases that could not be genetically diagnosed by DNA‐targeted resequencing microarray using next‐generation sequencers. Using WES data, we analyzed the POLR3B mutations and confirmed their clinical features. Results We identified de novo POLR3B heterozygous missense mutations in two patients. These patients presented with early‐onset demyelinating sensorimotor neuropathy without ataxia, spasticity, or cognitive impairment. Patient 1 showed mild cerebellar atrophy and spinal cord atrophy on magnetic resonance imaging and eventually died of respiratory failure in her 50s. We classified these mutations as pathogenic based on segregation studies, comparison with control database, and in silico analysis. Conclusion Our study is the third report on patients with demyelinating CMT harboring heterozygous POLR3B mutations and verifies the pathogenicity of POLR3B mutations in CMT. Although extremely rare in our large Japanese case series, POLR3B mutations should be added to the CMT‐related gene panel for comprehensive genetic screening, particularly for patients with early‐onset demyelinating CMT.
Collapse
Affiliation(s)
- Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun-Hui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ruriko Kitao
- Department of Neurology, National Hospital Organization Hakone Hospital, Kanagawa, Japan
| | - Takehiko Morimoto
- Department of Pediatrics, Asahigawaso Minamiehime Rehabilitation Hospital, Ehime, Japan
| | - Takaki Taniguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Neurology, Imakiire General Hospital, Kagoshima, Japan
| | - Mika Takeuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun Takei
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Chiba, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Chiba, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Chiba, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
23
|
Beppu S, Ikenaka K, Yabumoto T, Todo K, Hashiguchi A, Takashima H, Mochizuki H. [A case of sporadic amyotrophic lateral sclerosis (ALS) with Senataxin (SETX) gene variant]. Rinsho Shinkeigaku 2022; 62:205-210. [PMID: 35228463 DOI: 10.5692/clinicalneurol.cn-001675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A 67-year-old man presented slowly progressive weakness of the extremities visited our hospital. Nerve conduction study showed axonal neuropathy and needle electromyography showed neurogenic changes with denervation findings in multiple limb muscles. While he was diagnosed as Probable amyotrophic lateral sclerosis (ALS), which is defined by the Awaji criteria for diagnosis of ALS, he did not develop either respiratory muscle paralysis or bulbar palsy, which are characteristic symptoms of sporadic ALS. Genetic testing revealed a novel gene variant in senataxin (SETX), the causative gene of ALS4. We could not make a definite diagnosis of ALS4 because he had no relatives who could perform genetic testing (segregation study). However, we considered the variant can be pathogenic because it was not previously reported and absent in at least 1,000 healthy control individuals, the variant site was highly conserved in mammals, and it may impair the function of senataxin protein (in silico analysis).
Collapse
Affiliation(s)
- Shohei Beppu
- Department of Neurology, Osaka University Graduate School of Medicine
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine
| | - Taiki Yabumoto
- Department of Neurology, Osaka University Graduate School of Medicine
| | - Kenichi Todo
- Department of Neurology, Osaka University Graduate School of Medicine
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine
| |
Collapse
|
24
|
Genetic Workup for Charcot–Marie–Tooth Neuropathy: A Retrospective Single-Site Experience Covering 15 Years. Life (Basel) 2022; 12:life12030402. [PMID: 35330153 PMCID: PMC8948690 DOI: 10.3390/life12030402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease is the most commonly inherited neurological disorder. This study includes patients affected by CMT during regular follow-ups at the CMT clinic in Genova, a neuromuscular university center in the northwest of Italy, with the aim of describing the genetic distribution of CMT subtypes in our cohort and reporting a peculiar phenotype. Since 2004, 585 patients (447 index cases) have been evaluated at our center, 64.9% of whom have a demyelinating neuropathy and 35.1% of whom have an axonal neuropathy. A genetic diagnosis was achieved in 66% of all patients, with the following distribution: CMT1A (48%), HNPP (14%), CMT1X (13%), CMT2A (5%), and P0-related neuropathies (7%), accounting all together for 87% of all the molecularly defined neuropathies. Interestingly, we observe a peculiar phenotype with initial exclusive lower limb involvement as well as lower limb involvement that is maintained over time, which we have defined as a “strictly length-dependent” phenotype. Most patients with this clinical presentation shared variants in either HSPB1 or MPZ genes. The identification of distinctive phenotypes such as this one may help to address genetic diagnosis. In conclusion, we describe our diagnostic experiences as a multidisciplinary outpatient clinic, combining a gene-by-gene approach or targeted gene panels based on clinical presentation.
Collapse
|
25
|
Genetic and Clinical Studies of Peripheral Neuropathies with Three Small Heat Shock Protein Gene Variants in Korea. Genes (Basel) 2022; 13:genes13030462. [PMID: 35328016 PMCID: PMC8949397 DOI: 10.3390/genes13030462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones that help correct the folding of denatured proteins and protect cells from stress. Mutations in HSPB1, HSPB8, and HSPB3 are implicated in inherited peripheral neuropathies (IPNs), such as Charcot-Marie-Tooth disease type 2 (CMT2) and distal hereditary motor neuropathies (dHMN). This study, using whole exome sequencing or targeted gene sequencing, identified 9 pathogenic or likely pathogenic variants in these three sHSP genes from 11 Korean IPN families. Most variants were located in the evolutionally well conserved α-crystallin domain, except for p.P182S and p.S187L in HSPB1. As an atypical case, a patient with dHMN2 showed two compound heterozygous variants of p.R127Q and p.Y142H in HSPB1, suggesting a putative case of recessive inheritance, which requires additional research to confirm. Three HSPB8 variants were located in the p.K141 residue, which seemed to be a mutational hot spot. There were no significant differences between patient groups, which divided by sHSP genes for clinical symptoms such as onset age, severity, and nerve conduction. Early-onset patients showed a tendency of slightly decreased sensory nerve conduction values compared with late-onset patients. As a first Korean IPN cohort study examining sHSP genes, these results will, we believe, be helpful for molecular diagnosis and care of patients with CMT2 and dHMN.
Collapse
|
26
|
Xie Y, Lin Z, Li X, Liu L, Huang S, Zhao H, Wang B, Cao W, Hu Z, Guo J, Shen L, Tang B, Zhang R. One PMP22/MPZ and Three MFN2/GDAP1 Concomitant Variants Occurred in a Cohort of 189 Chinese Charcot-Marie-Tooth Families. Front Neurol 2022; 12:736704. [PMID: 35153971 PMCID: PMC8831722 DOI: 10.3389/fneur.2021.736704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Background and Aims Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of inherited peripheral neuropathies. The wide phenotypic variability may not be completely explained by a single mutation. Aims and Methods To explore the existence of concomitant variants in CMT, we enrolled 189 patients and performed molecular diagnosis by application of next-generation sequencing combined with multiplex ligation-dependent probe amplification. We conducted a retrospective analysis of patients harboring coinherited variants in different genes. Results Four families were confirmed to possess variants in two genes, accounting for 2.1% (4/189) of the total in our cohort. One CMT1 patient with PMP22 duplication and MPZ variant (c.286A>C, p.K96Q) exhibited moderate neuropathy with infantile onset, while her father possessing MPZ variant was mildly affected with adolescence onset. A CMT2 patient with heterozygous variants in MFN2 (c.613_622delGTCACCACAG, p.V205Sfs*26) and GDAP1 (c.713G>T, p.W238L) exhibited childhood onset mild phenotype, while his mother with MFN2 variant developed bilateral pes cavus only. A CMT2 patient with heterozygous variants in MFN2 (c.839G>A, p.R280H) and GDAP1 (c.3G>T, p.M1?) presented infantile onset and rapid progression, while her father with MFN2 variant presented with absence of deep tendon reflexes. One sporadic CMT2 patient with early onset was confirmed harboring de novo MFN2 variant (c.1835C>T, p.S612F) and heterozygous GDAP1 variant (c.767A>G, p.H256R). Conclusion Our results suggest that the possibility of concomitant variants was not uncommon and should be considered when significant intrafamilial clinical heterogeneity is observed.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Lin
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shunxiang Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huadong Zhao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Binghao Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wanqian Cao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhengmao Hu
- Hunan Key Laboratory of Medical Genetics, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ruxu Zhang
| |
Collapse
|
27
|
Kim HJ, Kim SB, Kim HS, Kwon HM, Park JH, Lee AJ, Lim SO, Nam SH, Hong YB, Chung KW, Choi BO. Phenotypic heterogeneity in patients with NEFL-related Charcot-Marie-Tooth disease. Mol Genet Genomic Med 2022; 10:e1870. [PMID: 35044100 PMCID: PMC8830812 DOI: 10.1002/mgg3.1870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/12/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
Charcot–Marie–Tooth disease (CMT) is the most common hereditary peripheral neuropathy. Mutations in the neurofilament light polypeptide (NEFL) gene produce diverse clinical phenotypes, including demyelinating (CMT1F), axonal (CMT2E), and intermediate (CMTDIG) neuropathies. From 2005 to 2020, 1,143 Korean CMT families underwent gene sequencing, and we investigated the clinical, genetic, and neuroimaging spectra of NEFL‐related CMT patients. Ten NEFL mutations in 17 families (1.49%) were identified, of which three (p.L312P, p.Y443N, and p.K467N) were novel. Eight de novo cases were identified at a rate of 0.47 based on a cosegregation analysis. The age of onset was ≤3 years in five cases (13.5%). The patients revealed additional features including delayed walking, ataxia, dysphagia, dysarthria, dementia, ptosis, waddling gait, tremor, hearing loss, and abnormal visual evoked potential. Signs of ataxia were found in 26 patients (70.3%). In leg MRI analyses, various degrees of intramuscular fat infiltration were found. All compartments were evenly affected in CMT1F patients. The anterior and anterolateral compartments were affected in CMT2E, and the posterior compartment was affected in CMTDIG. Thus, NEFL‐related CMT patients showed phenotypic heterogeneities. This study's clinical, genetic, and neuroimaging results could be helpful in the evaluation of novel NEFL variants and differential diagnosis against other CMT subtypes.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hong Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ah Jin Lee
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Si On Lim
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Soo Hyun Nam
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
28
|
Elderly patients with suspected Charcot-Marie-Tooth disease should be tested for the TTR gene for effective treatments. J Hum Genet 2022; 67:353-362. [PMID: 35027655 DOI: 10.1038/s10038-021-01005-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS Some hereditary transthyretin (ATTRv) amyloidosis patients are misdiagnosed as Charcot-Marie-Tooth disease (CMT) at onset. We assess the findings to identify ATTRv amyloidosis among patients with suspected CMT to screen transthyretin gene variants for treatments. METHODS We assessed clinical, cerebrospinal fluid, and electrophysiological findings by comparing ATTRv amyloidosis patients with suspected CMT (n = 10) and CMT patients (n = 489). RESULTS The median (interquartile range) age at onset of neurological symptoms was 69 (64.2-70) years in the ATTRv amyloidosis vs 12 (5-37.2) years in CMT group (Mann-Whitney U, p < 0.01). The proportion of patients with initial sensory symptoms was 70% in the ATTRv amyloidosis group vs 7.1% in CMT group (Fisher's exact, p < 0.01). The proportion of patients with histories of suspected chronic inflammatory demyelinating polyneuropathy (CIDP) were 50% in the ATTRv amyloidosis group vs 8.7% in CMT group (Fisher's exact, p < .01). Other measures and outcomes were not different between the two groups. Five of the six patients with ATTRv amyloidosis received treatment and survived. INTERPRETATION For effective treatments, the transthyretin gene should be screened in patients with suspected CMT with old age at onset of neurological symptoms, initial sensory symptoms, and histories of suspected CIDP.
Collapse
|
29
|
Sainio MT, Aaltio J, Hyttinen V, Kortelainen M, Ojanen S, Paetau A, Tienari P, Ylikallio E, Auranen M, Tyynismaa H. Effectiveness of clinical exome sequencing in adult patients with difficult-to-diagnose neurological disorders. Acta Neurol Scand 2022; 145:63-72. [PMID: 34418069 DOI: 10.1111/ane.13522] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Clinical diagnostics in adults with hereditary neurological diseases is complicated by clinical and genetic heterogeneity, as well as lifestyle effects. Here, we evaluate the effectiveness of exome sequencing and clinical costs in our difficult-to-diagnose adult patient cohort. Additionally, we expand the phenotypic and genetic spectrum of hereditary neurological disorders in Finland. METHODS We performed clinical exome sequencing (CES) to 100 adult patients from Finland with neurological symptoms of suspected genetic cause. The patients were classified as myopathy (n = 57), peripheral neuropathy (n = 16), ataxia (n = 15), spastic paraplegia (n = 4), Parkinsonism (n = 3), and mixed (n = 5). In addition, we gathered the costs of prior diagnostic work-up to retrospectively assess the cost-effectiveness of CES as a first-line diagnostic tool. RESULTS The overall diagnostic yield of CES was 27%. Pathogenic variants were found for 14 patients (in genes ANO5, CHCHD10, CLCN1, DES, DOK7, FKBP14, POLG, PYROXD1, SCN4A, TUBB3, and TTN) and likely pathogenic previously undescribed variants for 13 patients (in genes ABCD1, AFG3L2, ATL1, CACNA1A, COL6A1, DYSF, IRF2BPL, KCNA1, MT-ATP6, SAMD9L, SGCB, and TPM2). Age of onset below 40 years increased the probability of finding a genetic cause. Our cost evaluation of prior diagnostic work-up suggested that early CES would be cost-effective in this patient group, in which diagnostic costs increase linearly with prolonged investigations. CONCLUSIONS Based on our results, CES is a cost-effective, powerful first-line diagnostic tool in establishing the molecular diagnosis in adult neurological patients with variable symptoms. Importantly, CES can markedly shorten the diagnostic odysseys of about one third of patients.
Collapse
Affiliation(s)
- Markus T. Sainio
- Stem Cells and Metabolism Research Program Faculty of Medicine University of Helsinki Helsinki Finland
| | - Juho Aaltio
- Stem Cells and Metabolism Research Program Faculty of Medicine University of Helsinki Helsinki Finland
| | - Virva Hyttinen
- VATT Institute for Economic Research Helsinki Finland
- Department of Health and Social Management University of Eastern Finland Kuopio Finland
| | - Mika Kortelainen
- VATT Institute for Economic Research Helsinki Finland
- Department of Economics Turku School of Economics Turku Finland
| | - Simo Ojanen
- Department of Veterinary Biosciences Faculty of Veterinary Medicine University of Helsinki Helsinki Finland
| | - Anders Paetau
- Department of Pathology HUSLAB and University of Helsinki Helsinki Finland
| | - Pentti Tienari
- Clinical Neurosciences Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
- Translational Immunology Research Program Faculty of Medicine University of Helsinki Helsinki Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program Faculty of Medicine University of Helsinki Helsinki Finland
- Clinical Neurosciences Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Mari Auranen
- Clinical Neurosciences Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program Faculty of Medicine University of Helsinki Helsinki Finland
- Department of Medical and Clinical Genetics University of Helsinki Helsinki Finland
- Neuroscience Center Helsinki Institute of Life Science University of Helsinki Helsinki Finland
| |
Collapse
|
30
|
Nagappa M, Sharma S, Govindaraj P, Chickabasaviah Y, Siram R, Shroti A, Seshagiri D, Debnath M, Bindu P, Taly A. Genetic spectrum of inherited neuropathies in India. Ann Indian Acad Neurol 2022; 25:407-416. [PMID: 35936615 PMCID: PMC9350795 DOI: 10.4103/aian.aian_269_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: Charcot-Marie-Tooth (CMT) disease is the commonest inherited neuromuscular disorder and has heterogeneous manifestations. Data regarding genetic basis of CMT from India is limited. This study aims to report the variations by using high throughput sequencing in Indian CMT cohort. Methods: Fifty-five probands (M:F 29:26) with suspected inherited neuropathy underwent genetic testing (whole exome: 31, clinical exome: 17 and targeted panel: 7). Their clinical and genetic data were analysed. Results: Age at onset ranged from infancy to 54 years. Clinical features included early-onset neuropathy (n=23), skeletal deformities (n=45), impaired vision (n=8), impaired hearing (n=6), facial palsy (n=8), thickened nerves (n=4), impaired cognition (n=5), seizures (n=5), pyramidal signs (n=7), ataxia (n=8) and vocal cord palsy, slow tongue movements and psychosis in one patient each. Twenty-eight patients had demyelinating electrophysiology. Abnormal visual and auditory evoked potentials were noted in 60.60% and 37.5% respectively. Sixty two variants were identified in 37 genes including variants of uncertain significance (n=34) and novel variants (n=45). Eleven patients had additional variations in genes implicated in CMTs/ other neurological disorders. Ten patients did not have variations in neuropathy associated genes, but had variations in genes implicated in other neurological disorders. In seven patients, no variations were detected. Conclusion: In this single centre cohort study from India, genetic diagnosis could be established in 87% of patients with inherited neuropathy. The identified spectrum of genetic variations adds to the pool of existing data and provides a platform for validation studies in cell culture or animal model systems.
Collapse
|
31
|
Aoki S, Nagashima K, Shibata M, Kasahara H, Fujita Y, Hashiguchi A, Takashima H, Ikeda Y. Sibling Cases of Charcot-Marie-Tooth Disease Type 4H with a Homozygous FGD4 Mutation and Cauda Equina Thickening. Intern Med 2021; 60:3975-3981. [PMID: 34148957 PMCID: PMC8758460 DOI: 10.2169/internalmedicine.7247-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Charcot-Marie-Tooth disease type 4H (CMT4H) is an autosomal recessive inherited demyelinating neuropathy caused by an FYVE, RhoGEF, and a PH domain-containing protein 4 (FGD4) gene mutation. CMT4H is characterized by an early onset, slow progression, scoliosis, distal muscle atrophy, and foot deformities. We herein present sibling cases of CMT4H with a homozygous mutation in the FGD4 gene. Both patients exhibited cauda equina thickening on magnetic resonance imaging, which had not been reported among the previous CMT4H cases. This is the first report of CMT4H with a homozygous FGD4 c.1730G>A (p.Arg577Gln) mutation showing mild progression and cauda equina thickening.
Collapse
Affiliation(s)
- Sho Aoki
- Department of Neurology, Gunma University Graduate School of Medicine, Japan
| | - Kazuaki Nagashima
- Department of Neurology, Gunma University Graduate School of Medicine, Japan
| | - Makoto Shibata
- Department of Neurology, Gunma University Graduate School of Medicine, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Japan
| | - Yukio Fujita
- Department of Neurology, Gunma University Graduate School of Medicine, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Japan
| |
Collapse
|
32
|
Nam DE, Park JH, Park CE, Jung NY, Nam SH, Kwon HM, Kim HS, Kim SB, Son WS, Choi BO, Chung KW. Variants of aminoacyl-tRNA synthetase genes in Charcot-Marie-Tooth disease: A Korean cohort study. J Peripher Nerv Syst 2021; 27:38-49. [PMID: 34813128 DOI: 10.1111/jns.12476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) and related diseases are a genetically and clinically heterogeneous group of peripheral neuropathies. Particularly, mutations in several aminoacyl-tRNA synthetase (ARS) genes have been reported to cause axonal CMT (CMT2) or distal hereditary motor neuropathy (dHMN). However, the common pathogenesis among CMT subtypes by different ARS gene defects is not well understood. This study was performed to investigate ARS gene mutations in a CMT cohort of 710 Korean families. Whole-exome sequencing was applied to 710 CMT patients who were negative for PMP22 duplication. We identified 12 disease-causing variants (from 13 families) in GARS1, AARS1, HARS1, WARS1, and YARS1 genes. Seven variants were determined to be novel. The frequency of overall ARS gene mutations was 1.22% among all independent patients diagnosed with CMT and 1.83% in patients negative for PMP22 duplication. WARS1 mutations have been reported to cause dHMN; however, in our patients with WARS1 variants, CMT was associated with sensory involvement. We analyzed genotype-phenotype correlations and expanded the phenotypic spectrum of patients with CMT possessing ARS gene variants. We also characterized clinical phenotypes according to ARS genes. This study will be useful for performing exact molecular and clinical diagnoses and providing reference data for other population studies.
Collapse
Affiliation(s)
- Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Jin Hee Park
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Cho Eun Park
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Na Young Jung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Soo Hyun Nam
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Gangdong Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Won Seok Son
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| |
Collapse
|
33
|
Yang K, Hu HY, Zhang J, Yan YS, Chen WQ, Liu Y, Sun YQ, Guo Q, Yin CH. Metabolic and biophysical study of the MFN2 Ile213Thr mutant causing Hereditary Motor and Sensory Neuropathy (HMSN). Am J Transl Res 2021; 13:11501-11512. [PMID: 34786076 PMCID: PMC8581889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Charcot-Marie-Tooth (CMT) 2A disease, a genetic axonal nervous lesion, results from MFN2 pathogenic variation, and this gene plays a pivotal role in mitochondrial dynamics and calcium signaling. However, the underlying mechanism linking MFN2 defect to progressive dying-back of peripheral nerves is still unclear. The present work focused on analyzing one CMT2A patient from multiple perspectives. Clinical and pathologic evaluation was initially conducted on the recruited case. Subsequently, Sanger sequencing and whole-exome sequencing (WES) were performed for genetic detection. To reveal the cell metabolic alteration caused by the identified variant, this study also established and transfected plasmid vectors in HEK293 cells and analyzed cell metabolites through liquid chromatography in combination with quadrupole time-of-flight tandem mass spectrometry (UPLC Q-TOF MS). Additionally, we completed structural modeling and molecular dynamic (MD) simulation to investigate the intramolecular impact of the variant. According to our results, the clinical and neuropathologic manifestations of the proband matched with the diagnosis of CMT. The causative variant MFN2: c.638T>C: (p.Ile213Thr) was identified through genetic analysis. Moreover, metabolic pathway enrichment results demonstrated that this variant significantly affected the metabolism of sphingolipids and glycerophospholipids. MD analysis indicated that this variant crippled the binding ability of MFN2 to GTP. Taken together, our study deduced preliminary clues for the underlying mechanism by which mutant MFN2 affects cell metabolism and provided a novel perspective to understand the cellular and molecular impacts of MFN2 variants.
Collapse
Affiliation(s)
- Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, China
| | - Hua-Ying Hu
- Jiaen Genetics Laboratory, Beijing Jiaen HospitalBeijing 100191, China
| | - Jing Zhang
- Prenatal Diagnosis Center,Shijiazhuang Obstetrics and Gynecology HospitalShijiazhuang, Hebei, China
| | - You-Sheng Yan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, China
| | - Wen-Qi Chen
- Prenatal Diagnosis Center,Shijiazhuang Obstetrics and Gynecology HospitalShijiazhuang, Hebei, China
| | - Yan Liu
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, China
| | - Yong-Qing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, China
| | - Qing Guo
- Prenatal Diagnosis Center,Shijiazhuang Obstetrics and Gynecology HospitalShijiazhuang, Hebei, China
| | - Cheng-Hong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
34
|
Xie Y, Lin Z, Liu L, Li X, Huang S, Zhao H, Wang B, Zeng S, Cao W, Li L, Zhu X, Huang S, Yang H, Wang M, Hu Z, Wang J, Guo J, Shen L, Jiang H, Zuchner S, Tang B, Zhang R. Genotype and phenotype distribution of 435 patients with Charcot-Marie-Tooth disease from central south China. Eur J Neurol 2021; 28:3774-3783. [PMID: 34255403 DOI: 10.1111/ene.15024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE The purpose was to provide an overview of genotype and phenotype distribution in a cohort of patients with Charcot-Marie-Tooth disease (CMT) and related disorders from central south China. METHODS In all, 435 patients were enrolled and detailed clinical data were collected. Multiplex ligation-dependent probe amplification for PMP22 duplication/deletion and CMT multi-gene panel sequencing were performed. Whole exome sequencing was further applied in the remaining patients who failed to achieve molecular diagnosis. RESULTS Among the 435 patients, 216 had CMT1, 14 had hereditary neuropathy with pressure palsies (HNPP), 178 had CMT2, 24 had distal hereditary motor neuropathy (dHMN) and three had hereditary sensory and autonomic neuropathy (HSAN). The overall molecular diagnosis rate was 70%: 75.7% in CMT1, 100% in HNPP, 64.6% in CMT2, 41.7% in dHMN and 33.3% in HSAN. The most common four genotypes accounted for 68.9% of molecular diagnosed patients. Relatively frequent causes were missense changes in PMP22 (4.6%) and SH3TC2 (2.3%) in CMT1; and GDAP1 (5.1%), IGHMBP2 (4.5%) and MORC2 (3.9%) in CMT2. Twenty of 160 detected pathogenic variants and the associated phenotypes have not been previously reported. Broad phenotype spectra were observed in six genes, amongst which the pathogenic variants in BAG3 and SPTLC1 were detected in two sporadic patients presenting with the CMT2 phenotype. CONCLUSIONS Our results provided a unique genotypic and phenotypic landscape of patients with CMT and related disorders from central south China, including a relatively high proportion of CMT2 and lower occurrence of PMP22 duplication. The broad phenotype spectra in certain genes have advanced our understanding of CMT.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Lin
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Liu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China.,Health Management Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shunxiang Huang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Huadong Zhao
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Binghao Wang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Sen Zeng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Wanqian Cao
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Li
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiying Zhu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Siwei Huang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Honglan Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengli Wang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Lift Sciences, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Stephan Zuchner
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Felice KJ, Whitaker CH, Khorasanizadeh S. Diagnostic yield of advanced genetic testing in patients with hereditary neuropathies: A retrospective single-site study. Muscle Nerve 2021; 64:454-461. [PMID: 34232518 DOI: 10.1002/mus.27368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/09/2022]
Abstract
INTRODUCTION/AIMS Advanced genetic testing including next-generation sequencing (AGT/NGS) has facilitated DNA testing in the clinical setting and greatly expanded new gene discovery for the Charcot-Marie-Tooth neuropathies and other hereditary neuropathies (CMT/HN). Herein, we report AGT/NGS results, clinical findings, and diagnostic yield in a cohort of CMT/HN patients evaluated at our neuropathy care center. METHODS We reviewed the medical records of all patients with suspected CMT/HN who underwent AGT/NGS at the Hospital for Special Care from January 2017 through January 2020. Patients with variants reported as pathogenic or likely pathogenic were included for further clinical review. RESULTS We ordered AGT/NGS on 108 patients with suspected CMT/HN. Of these, pathogenic or likely pathogenic variants were identified in 17 patients (diagnostic yield, 15.7%), including 6 (35%) with PMP22 duplications; 3 (18%) with MPZ variants; 2 (12%) with MFN2 variants; and 1 each with NEFL, IGHMBP2, GJB1, BSCL2, DNM2, and TTR variants. Diagnostic yield increased to 31.0% for patients with a positive family history. DISCUSSION AGT/NGS panels can provide specific genetic diagnoses for a subset of patients with CMT/HN disorders, which improves disease and genetic counseling and prepares patients for disease-focused therapies. Despite these advancements, many patients with known or suspected CMT/HN disorders remain without a specific genetic diagnosis. Continued advancements in genetic testing, such as multiomic technology and better understanding of genotype-phenotype correlation, will further improve detection rates for patients with suspected CMT/HN disorders.
Collapse
Affiliation(s)
- Kevin J Felice
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Charles H Whitaker
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| | - Sadaf Khorasanizadeh
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, Connecticut, USA
| |
Collapse
|
36
|
Uchôa Cavalcanti EB, Santos SCDL, Martins CES, de Carvalho DR, Rizzo IMPDO, Freitas MCDNB, da Silva Freitas D, de Souza FS, Junior AM, do Nascimento OJM. Charcot-Marie-Tooth disease: Genetic profile of patients from a large Brazilian neuromuscular reference center. J Peripher Nerv Syst 2021; 26:290-297. [PMID: 34190362 DOI: 10.1111/jns.12458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to describe the clinical, genetic, and epidemiological features of Charcot-Marie-Tooth disease (CMT) in Brazilian patients from a tertiary center, and to compare our data with previously published findings. This retrospective observational study conducted between February 2015 and July 2020 evaluated 503 patients (94 families and 192 unrelated individuals), diagnosed with CMT. Clinical and neurophysiological data were obtained from electronic medical records and blood samples were used for genetic analyses. Multiplex ligation-dependent probe amplification was used to assess duplications/deletions in PMP22. Sanger sequencing of GJB1 was performed in cases of suspected demyelinating CMT. Targeted gene panel sequencing was used for the remaining negative demyelinating cases and all axonal CMT cases. The first decade of life was the most common period of disease onset. In all, 353 patients had demyelinating CMT, 39 had intermediate CMT, and 111 had axonal CMT. Pathogenic or likely pathogenic variants were identified in 197 index cases. The most common causative genes among probands were PMP22 (duplication) (n = 116, 58.88%), GJB1 (n = 23, 11.67%), MFN2 (n = 12, 6.09%), GDAP1 (n = 7, 3.55%), MPZ (n = 6, 3.05%), PMP22 (point mutation) (n = 6, 3.05%), NEFL (n = 3, 1.52%), SBF2 (n = 3, 1.52%), and SH3TC2 (n = 3, 1.52%). Other identified variants were ≤1% of index cases. This study provides further data on the frequency of CMT subtypes in a Brazilian clinical-based population and highlights the importance of rarer and previously undiagnosed variants in clinical practice.
Collapse
|
37
|
Kanwal S, Choi YJI, Lim SO, Choi HJ, Park JH, Nuzhat R, Khan A, Perveen S, Choi BO, Chung KW. Novel homozygous mutations in Pakistani families with Charcot-Marie-Tooth disease. BMC Med Genomics 2021; 14:174. [PMID: 34193129 PMCID: PMC8247155 DOI: 10.1186/s12920-021-01019-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) is a group of genetically and clinically heterogeneous peripheral nervous system disorders. Few studies have identified genetic causes of CMT in the Pakistani patients. METHODS This study was performed to identify pathogenic mutations in five consanguineous Pakistani CMT families negative for PMP22 duplication. Genomic screening was performed by application of whole exome sequencing. RESULTS We identified five pathogenic or likely pathogenic homozygous mutations in four genes: c.2599C > T (p.Gln867*) and c.3650G > A (p.Gly1217Asp) in SH3TC2, c.19C > T (p.Arg7*) in HK1, c.247delG (p.Gly83Alafs*44) in REEP1, and c.334G > A (p.Val112Met) in MFN2. These mutations have not been reported in CMT patients. Mutations in SH3TC2, HK1, REEP1, and MFN2 have been reported to be associated with CMT4C, CMT4G, dHMN5B (DSMA5B), and CMT2A, respectively. The genotype-phenotype correlations were confirmed in all the examined families. We also confirmed that both alleles from the homozygous variants originated from a single ancestor using homozygosity mapping. CONCLUSIONS This study found five novel mutations as the underlying causes of CMT. Pathogenic mutations in SH3TC2, HK1, and REEP1 have been reported rarely in other populations, suggesting ethnic-specific distribution. This study would be useful for the exact molecular diagnosis and treatment of CMT in Pakistani patients.
Collapse
Affiliation(s)
- Sumaira Kanwal
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Yu JIn Choi
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea
| | - Si On Lim
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea
| | - Hee Ji Choi
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea
| | - Jin Hee Park
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea
| | - Rana Nuzhat
- Department of Pediatric Neurology, The Children Hospital and Institute of Child Health, Multan, Pakistan
| | - Aneela Khan
- Department of Pediatric Neurology, The Children Hospital and Institute of Child Health, Multan, Pakistan
| | - Shazia Perveen
- Department of Zoology, The Women University, Multan, Pakistan
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehakro, Gongju, 32588, Korea.
| |
Collapse
|
38
|
Matsuda N, Ootsuki K, Kobayashi S, Nemoto A, Kubo H, Usami SI, Kanani K. A novel case of concurrent occurrence of demyelinating-polyneuropathy-causing PMP22 duplication and SOX10 gene mutation producing severe hypertrophic neuropathy. BMC Neurol 2021; 21:243. [PMID: 34171997 PMCID: PMC8228911 DOI: 10.1186/s12883-021-02256-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hereditary motor and sensory neuropathy, also referred to as Charcot-Marie-Tooth disease (CMT), is most often caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. This duplication causes CMT type 1A (CMT1A). CMT1A rarely occurs in combination with other hereditary neuromuscular disorders. However, such rare genetic coincidences produce a severe phenotype and have been reported in terms of "double trouble" overlapping syndrome. Waardenburg syndrome (WS) is the most common form of a hereditary syndromic deafness. It is primarily characterized by pigmentation anomalies and classified into four major phenotypes. A mutation in the SRY sex determining region Y-box 10 (SOX10) gene causes WS type 2 or 4 and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, WS, and Hirschsprung disease. We describe a 11-year-old boy with extreme hypertrophic neuropathy because of a combination of CMT1A and WS type 2. This is the first published case on the co-occurrence of CMT1A and WS type 2. CASE PRESENTATION The 11-year-old boy presented with motor developmental delay and a deterioration in unstable walking at 6 years of age. In addition, he had congenital hearing loss and heterochromia iridis. The neurological examination revealed weakness in the distal limbs with pes cavus. He was diagnosed with CMT1A by the fluorescence in situ hybridization method. His paternal pedigree had a history of CMT1A. However, no family member had congenital hearing loss. His clinical manifestation was apparently severe than those of his relatives with CMT1A. In addition, a whole-body magnetic resonance neurography revealed an extreme enlargement of his systemic cranial and spinal nerves. Subsequently, a genetic analysis revealed a heterozygous frameshift mutation c.876delT (p.F292Lfs*19) in the SOX10 gene. He was eventually diagnosed with WS type 2. CONCLUSIONS We described a patient with a genetically confirmed overlapping diagnoses of CMT1A and WS type 2. The double trouble with the genes created a significant impact on the peripheral nerves system. Severe phenotype in the proband can be attributed to the cumulative effect of mutations in both PMP22 and SOX10 genes, responsible for demyelinating neuropathy.
Collapse
Affiliation(s)
- Nozomu Matsuda
- Department of Neurology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.
| | - Koushi Ootsuki
- Department of Otorhinolaryngology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shunsuke Kobayashi
- Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Ayaka Nemoto
- Advanced Clinical Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Hitoshi Kubo
- Advanced Clinical Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.,Preparing Section for New Faculty of Medical Science, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Kazuaki Kanani
- Department of Neurology, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| |
Collapse
|
39
|
Kim HJ, Nam SH, Kwon HM, Lim SO, Park JH, Kim HS, Kim SB, Lee KS, Lee JE, Choi BO, Chung KW. Genetic and clinical spectrums in Korean Charcot-Marie-Tooth disease patients with myelin protein zero mutations. Mol Genet Genomic Med 2021; 9:e1678. [PMID: 33825325 PMCID: PMC8222852 DOI: 10.1002/mgg3.1678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background Charcot‐Marie‐Tooth disease (CMT) is the most common disorder of inherited peripheral neuropathies characterized by distal muscle weakness and sensory loss. CMT is usually classified into three types, demyelinating, axonal, and intermediate neuropathies. Mutations in myelin protein zero (MPZ) gene which encodes a transmembrane protein of the Schwann cells as a major component of peripheral myelin have been reported to cause various type of CMT. Methods This study screened MPZ mutations in Korean CMT patients (1,121 families) by whole exome sequencing and targeted sequencing. Results We identified 22 pathogenic or likely pathogenic MPZ mutations in 36 families as the underlying cause of the CMT1B, CMTDID, or CMT2I subtypes. Among them, five mutations were novel. The frequency of CMT patients with the MPZ mutations was similar or slightly lower compared to other ethnic groups. Conclusions We showed that the median onset ages and clinical phenotypes varied by subtypes: the most severe in the CMT1B group, and the mildest in the CMT2I group. This study also observed a clear correlation that earlier onsets cause more severe symptoms. We believe that this study will provide useful reference data for genetic and clinical information on CMT patients with MPZ mutations in Korea.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Hyun Nam
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Si On Lim
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Jae Hong Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seou, Korea
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung Suk Lee
- Department of Physics Education, Kongju National University, Gongju, Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| |
Collapse
|
40
|
Figueiredo FB, Silva WA, Giuliatti S, Tomaselli PJ, Lourenço CM, Gouvêa SDP, Covaleski APPM, Hallak JE, Marques W. GDAP1 mutations are frequent among Brazilian patients with autosomal recessive axonal Charcot-Marie-Tooth disease. Neuromuscul Disord 2021; 31:505-511. [PMID: 33903021 DOI: 10.1016/j.nmd.2021.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022]
Abstract
Mutations in ganglioside-induced differentiation-associated-protein 1 (GDAP1) are associated with several subtypes of Charcot-Marie-Tooth (CMT) disease, including autosomal recessive and demyelinating (CMT4A); autosomal recessive and axonal (AR-CMT2K); autosomal dominant and axonal (CMT2K); and an intermediate and recessive form (CMTRIA). To date, at least 103 mutations in this gene have been described, but the relative frequency of GDAP1 mutations in the Brazilian CMT population is unknown. In this study, we investigated the frequency of GDAP1 mutations in a cohort of 100 unrelated Brazilian CMT patients. We identified five variants in unrelated axonal CMT patients, among which two were novel and probably pathogenic (N64S, P119T) one was novel and was classified as VUS (K207L) and two were known pathogenic variants (R125* and Q163*). The prevalence rate of GDAP1 among the axonal CMT cases was 7,14% (5/70), all of them of recessive inheritance, thus suggesting that the prevalence was higher than what is observed in most countries. All patients exhibited severe early-onset CMT that was rapidly progressive. Additionally, this study widens the mutational spectrum of GDAP1-related CMT through identification of two novel likely pathogenic variants.
Collapse
Affiliation(s)
- Fernanda Barbosa Figueiredo
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pedro José Tomaselli
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Charles Marques Lourenço
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Silmara de Paula Gouvêa
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | | - Jaime E Hallak
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil; National Institute of Sciences and Technology - INCT-Translational Medicine - CNPq/FAPESP, São Paulo, Brazil
| | - Wilson Marques
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto Medical School, University of São Paulo, Brazil; National Institute of Sciences and Technology - INCT-Translational Medicine - CNPq/FAPESP, São Paulo, Brazil.
| |
Collapse
|
41
|
Koh K, Takaki R, Ishiura H, Tsuji S, Takiyama Y. SPG9A with the new occurrence of an ALDH18A1 mutation in a CMT1A family with PMP22 duplication: case report. BMC Neurol 2021; 21:64. [PMID: 33573605 PMCID: PMC7876803 DOI: 10.1186/s12883-021-02087-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/02/2021] [Indexed: 12/03/2022] Open
Abstract
Background ALDH18A1 mutations lead to delta-1-pyrroline-5-carboxylate-synthetase (P5CS) deficiency, which is a urea cycle-related disorder including SPG9A, SPG9B, autosomal dominant cutis laxa-3 (ADCL3), and autosomal recessive cutis laxa type 3A (ARCL3A). These diseases exhibit a broad clinical spectrum, which makes the diagnosis of P5CS deficiency difficult. We report here a rare Japanese family including both patients with an ALDH18A1 mutation (SPG9A) and ones with CMT1A. Case presentation A Japanese family included five patients with the CMT phenotype and five with the HSP phenotype in four generations. The patients with the HSP phenotype showed a pure or complicated form, and intrafamilial clinical variability was noted. Genetically, FISH analysis revealed that two CMT patients had a PMP22 duplication (CMT1A). Exome analysis and Sanger sequencing revealed five HSP patients had an ALDH18A1 heterozygous mutation of c.755G > A, which led to SPG9A. Haplotype analysis revealed that the ALDH18A1 mutation must have newly occurred. To date, although de novo mutations of ALDH18A1 have been described in ADCL3A, they were not mentioned in SPG9A in earlier reports. Thus, this is the first SPG9A family with a de novo mutation or the new occurrence of gonadal mosaicism of ALDH18A1. Analysis of serum amino acid levels revealed that two SPG9A patients and two unaffected family members had low citrulline levels and one had a low level of ornithine. Conclusions Since the newly occurring ALDH18A1 mutation, c.755G > A, is the same as that in two ADHSP families and one sporadic patient with SPG9A reported previously, this genomic site might easily undergo mutation. The patients with the c.755G > A mutation in our family showed clinical variability of symptoms like in the earlier reported two families and one sporadic patient with this mutation. Further studies are required to clarify the relationship between the amino acid levels and clinical manifestations, which will reveal how P5CS deficiency influences disease phenotypes including ARCL3A, ADCL3, SPG9B, and SPG9A.
Collapse
Affiliation(s)
- Kishin Koh
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Ryusuke Takaki
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan.,Department of Neurology, Iida Hospital, Nagano, 395-8505, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, University of Tokyo, Graduate School of Medicine, Tokyo, 113-8655, Japan.,Department of Neurology, International University of Health and Welfare, Chiba, 286-8686, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
42
|
Kim HS, Kim HJ, Nam SH, Kim SB, Choi YJ, Lee KS, Chung KW, Yoon YC, Choi BO. Clinical and Neuroimaging Features in Charcot-Marie-Tooth Patients with GDAP1 Mutations. J Clin Neurol 2021; 17:52-62. [PMID: 33480199 PMCID: PMC7840330 DOI: 10.3988/jcn.2021.17.1.52] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background and Purpose Mutations in the ganglioside-induced differentiation-associated protein 1 gene (GDAP1) are known to cause Charcot-Marie-Tooth disease (CMT). These mutations are very rare in most countries, but not in certain Mediterranean countries. The purpose of this study was to identify the clinical and neuroimaging characteristics of Korean CMT patients with GDAP1 mutations. Methods Gene sequencing was applied to 1,143 families in whom CMT had been diagnosed from 2005 to 2020. PMP22 duplication was found in 344 families, and whole-exome sequencing was performed in 699 patients. Magnetic resonance imaging (MRI) were obtained using either a 1.5-T or 3.0-T MRI system. Results We found ten patients from eight families with GDAP1 mutations: five with autosomal dominant (AD) CMT type 2K (three families with p.R120W and two families with p.Q218E) and three with autosomal recessive (AR) intermediate CMT type A (two families with homozygous p.H256R and one family with p.P111H and p.V219G mutations). The frequency was about 1.0% exclusive of the PMP22 duplication, which is similar to that in other Asian countries. There were clinical differences among AD GDAP1 patients according to mutation sites. Surprisingly, fat infiltrations evident in lower-limb MRI differed between AD and AR patients. The posterior-compartment muscles in the calf were affected early and predominantly in AD patients, whereas AR patients showed fat infiltration predominantly in the anterolateral-compartment muscles. Conclusions This is the first cohort report on Korean patients with GDAP1 mutations. The patients with AD and AR inheritance routes exhibited different clinical and neuroimaging features in the lower extremities. We believe that these results will help to expand the knowledge of the clinical, genetic, and neuroimaging features of CMT.
Collapse
Affiliation(s)
- Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Jin Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Hyun Nam
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Yu Jin Choi
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Kyung Suk Lee
- Department of Physics Education, Kongju National University, Gongju, Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Young Cheol Yoon
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Byung Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
43
|
Miressi F, Magdelaine C, Cintas P, Bourthoumieux S, Nizou A, Derouault P, Favreau F, Sturtz F, Faye PA, Lia AS. One Multilocus Genomic Variation Is Responsible for a Severe Charcot-Marie-Tooth Axonal Form. Brain Sci 2020; 10:brainsci10120986. [PMID: 33333791 PMCID: PMC7765239 DOI: 10.3390/brainsci10120986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of inherited disorders affecting the peripheral nervous system, with a prevalence of 1/2500. So far, mutations in more than 80 genes have been identified causing either demyelinating forms (CMT1) or axonal forms (CMT2). Consequentially, the genotype-phenotype correlation is not always easy to assess. Diagnosis could require multiple analysis before the correct causative mutation is detected. Moreover, it seems that approximately 5% of overall diagnoses for genetic diseases involves multiple genomic loci, although they are often underestimated or underreported. In particular, the combination of multiple variants is rarely described in CMT pathology and often neglected during the diagnostic process. Here, we present the complex genetic analysis of a family including two CMT cases with various severities. Interestingly, next generation sequencing (NGS) associated with Cov'Cop analysis, allowing structural variants (SV) detection, highlighted variations in MORC2 (microrchidia family CW-type zinc-finger 2) and AARS1 (alanyl-tRNA-synthetase) genes for one patient and an additional mutation in MFN2 (Mitofusin 2) in the more affected patient.
Collapse
Affiliation(s)
- Federica Miressi
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Correspondence:
| | - Corinne Magdelaine
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Pascal Cintas
- Service de Neurologie, Centre Hospitalier Universitaire à Toulouse, F-31000 Toulouse, France;
| | - Sylvie Bourthoumieux
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Cytogénétique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Angélique Nizou
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
| | - Paco Derouault
- Service de Bioinformatique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France;
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Franck Sturtz
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Anne-Sophie Lia
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
- Service de Bioinformatique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France;
| |
Collapse
|
44
|
Paketci C, Karakaya M, Edem P, Bayram E, Keller N, Daimagüler HS, Cirak S, Jordanova A, Hiz S, Wirth B, Yiş U. Clinical, electrophysiological and genetic characteristics of childhood hereditary polyneuropathies. Rev Neurol (Paris) 2020; 176:846-855. [DOI: 10.1016/j.neurol.2020.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022]
|
45
|
Taniguchi T, Ando M, Okamoto Y, Yoshimura A, Higuchi Y, Hashiguchi A, Shiga K, Hayashida A, Hatano T, Ishiura H, Mitsui J, Hattori N, Mizuno T, Nakagawa M, Tsuji S, Takashima H. Genetic spectrum of Charcot-Marie-Tooth disease associated with myelin protein zero gene variants in Japan. Clin Genet 2020; 99:359-375. [PMID: 33179255 PMCID: PMC7898366 DOI: 10.1111/cge.13881] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
We aimed to reveal the genetic features associated with MPZ variants in Japan. From April 2007 to August 2017, 64 patients with 23 reported MPZ variants and 21 patients with 17 novel MPZ variants were investigated retrospectively. Variation in MPZ variants and the pathogenicity of novel variants was examined according to the American College of Medical Genetics standards and guidelines. Age of onset, cranial nerve involvement, serum creatine kinase (CK), and cerebrospinal fluid (CSF) protein were also analyzed. We identified 64 CMT patients with reported MPZ variants. The common variants observed in Japan were different from those observed in other countries. We identified 11 novel pathogenic variants from 13 patients. Six novel MPZ variants in eight patients were classified as likely benign or uncertain significance. Cranial nerve involvement was confirmed in 20 patients. Of 30 patients in whom serum CK levels were evaluated, eight had elevated levels. Most of the patients had age of onset >20 years. In another subset of 30 patients, 18 had elevated CSF protein levels; four of these patients had spinal diseases and two had enlarged nerve root or cauda equina. Our results suggest genetic diversity across patients with MPZ variants.
Collapse
Affiliation(s)
- Takaki Taniguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kensuke Shiga
- Department of Neurology, Matsushita Memorial Hospital, Osaka, Japan.,Department of Neurology, Kyoto prefectural University of Medicine, Kyoto, Japan
| | - Arisa Hayashida
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto prefectural University of Medicine, Kyoto, Japan
| | - Masanori Nakagawa
- Department of Neurology, Kyoto prefectural University of Medicine, Kyoto, Japan.,North Medical Center, Kyoto prefectural University of Medicine, Kyoto, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
46
|
Barreda Fierro R, Herrera Mora P, Zenteno JC, Villarroel Cortés CE. Clinical and molecular evidence of possible digenic inheritance for MFN2/GDAP1 genes in Charcot-Marie-Tooth disease. Neuromuscul Disord 2020; 30:986-990. [PMID: 33187793 DOI: 10.1016/j.nmd.2020.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Charcot Marie Tooth disease (CMT) is a progressive motor and sensory polyneuropathy, it is characterized by a very heterogeneous molecular basis and phenotype. MFN2 and GDAP1 participate in mitochondrial energy metabolism and the rare coinheritance of its pathogenic variants has been associated with a cumulative effect in the observed phenotype. We describe a patient with a severe axonal CMT and inherited heterozygous MFN2 (p.Leu741Val) and GDAP1 (p.Gln163*) variants. In accordance with a possible digenic inheritance, none of the heterozygous carriers in his family were symptomatic or exhibited electrophysiological abnormalities. We also review all of the previously reported patients with coinheritance of variants in these two genes; similar to our patient, all exhibit a predominantly axonal severe CMT phenotype. Our findings expand the genotypic spectrum of CMT and further support that digenic inheritance should be considered for analyzing and counseling CMT patients.
Collapse
Affiliation(s)
- Renée Barreda Fierro
- Human Genetics Department, National Institute of Pediatrics, Mexico City, Mexico
| | | | - Juan Carlos Zenteno
- Genetics Department-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico; Biochemistry Department, Faculty of Medicine, UNAM, Mexico City, Mexico
| | | |
Collapse
|
47
|
Abstract
Abstract
Inherited peripheral neuropathy is the most common hereditary neuromuscular disease with a prevalence of about 1:2,500. The most frequent form is Charcot-Marie-Tooth disease (CMT, or hereditary motor and sensory neuropathy [HMSN]). Other clinical entities are hereditary neuropathy with liability to pressure palsies (HNPP), distal hereditary motor neuropathies (dHMN), and hereditary sensory and autonomic neuropathies (HSAN). With the exception of HNPP, which is almost always caused by defects of the PMP22 gene, all other forms show genetic heterogeneity with altogether more than 100 genes involved. Mutation detection rates vary considerably, reaching up to 80 % in demyelinating CMT (CMT1) but are still as low as 10–30 % in axonal CMT (CMT2), dHMN, and HSAN. Based on current information, analysis of only four genes (PMP22, GJB1, MPZ, MFN2) identifies 80–90 % of CMT-causing mutations that can be detected in all known disease genes. For the remaining patients, parallel analysis of multiple neuropathy genes using next-generation sequencing is now replacing phenotype-oriented multistep gene-by-gene sequencing. Such approaches tend to generate a wealth of genetic information that requires comprehensive evaluation of the pathogenic relevance of identified variants. In this review, we present current classification systems, specific phenotypic clues, and diagnostic yields in the different subgroups of hereditary CMT and motor neuropathies.
Collapse
|
48
|
Dorn GW. Mitofusin 2 Dysfunction and Disease in Mice and Men. Front Physiol 2020; 11:782. [PMID: 32733278 PMCID: PMC7363930 DOI: 10.3389/fphys.2020.00782] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/15/2020] [Indexed: 01/30/2023] Open
Abstract
A causal relationship between Mitofusin (MFN) 2 gene mutations and the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2A (CMT2A) was described over 15 years ago. During the intervening period much has been learned about MFN2 functioning in mitochondrial fusion, calcium signaling, and quality control, and the consequences of these MFN2 activities on cell metabolism, fitness, and development. Nevertheless, the challenge of defining the central underlying mechanism(s) linking mitochondrial abnormalities to progressive dying-back of peripheral arm and leg nerves in CMT2A is largely unmet. Here, a different perspective of why, in humans, MFN2 dysfunction preferentially impacts peripheral nerves is provided based on recent insights into its role in determining whether individual mitochondria will be fusion-competent and retained within the cell, or are fusion-impaired, sequestered, and eliminated by mitophagy. Evidence for and against a regulatory role of mitofusins in mitochondrial transport is reviewed, nagging questions defined, and implications on mitochondrial fusion, quality control, and neuronal degeneration discussed. Finally, in the context of recently described mitofusin activating peptides and small molecules, an overview is provided of potential therapeutic applications for pharmacological enhancement of mitochondrial fusion and motility in CMT2A and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
49
|
Muranova LK, Sudnitsyna MV, Strelkov SV, Gusev NB. Mutations in HspB1 and hereditary neuropathies. Cell Stress Chaperones 2020; 25:655-665. [PMID: 32301006 PMCID: PMC7332652 DOI: 10.1007/s12192-020-01099-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is major hereditary neuropathy. CMT has been linked to mutations in a range of proteins, including the small heat shock protein HspB1. Here we review the properties of several HspB1 mutants associated with CMT. In vitro, mutations in the N-terminal domain lead to a formation of larger HspB1 oligomers when compared with the wild-type (WT) protein. These mutants are resistant to phosphorylation-induced dissociation and reveal lower chaperone-like activity than the WT on a range of model substrates. Mutations in the α-crystallin domain lead to the formation of yet larger HspB1 oligomers tending to dissociate at low protein concentration and having variable chaperone-like activity. Mutations in the conservative IPV motif within the C-terminal domain induce the formation of very large oligomers with low chaperone-like activity. Most mutants interact with a partner small heat shock protein, HspB6, in a manner different from that of the WT protein. The link between the altered physico-chemical properties and the pathological CMT phenotype is a subject of discussion. Certain HspB1 mutations appear to have an effect on cytoskeletal elements such as intermediate filaments and/or microtubules, and by this means damage the axonal transport. In addition, mutations of HspB1 can affect the metabolism in astroglia and indirectly modulate the viability of motor neurons. While the mechanisms of pathological mutations in HspB1 are likely to vary greatly across different mutations, further in vitro and in vivo studies are required for a better understanding of the CMT disease at molecular level.
Collapse
Affiliation(s)
- Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 119991
| | - Maria V Sudnitsyna
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 119991
| | - Sergei V Strelkov
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Biocrystallography, KU Leuven, 3000, Leuven, Belgium
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, Russian Federation, 119991.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Charcot-Marie-Tooth (CMT) disease and related disorders are the commonest group of inherited neuromuscular diseases and represent a heterogeneous group of disorders. This review will cover recent advances in genetic diagnosis and the evolving genetic and phenotype landscape of this disease group. We will review recent evidence of the increasingly recognized phenotypic overlap with other neurodegenerative conditions including hereditary spastic paraplegia, hereditary ataxias and mitochondrial diseases and highlight the importance of deep phenotyping to inform genetic diagnosis and prognosis. RECENT FINDINGS Through whole exome sequencing and multicentre collaboration new genes are being identified as causal for CMT expanding the genetic heterogeneity of this condition. In addition, an increasing number of variants have been identified in genes known to cause complex inherited diseases in which the peripheral neuropathy is part of the disorder and may be the presenting feature. The recent discovery of a repeat expansion in the RFC1 gene in cerebellar ataxia, neuropathy, vestibular areflexia syndrome highlights the prevalence of late-onset recessive conditions which have historically been considered to cause early-onset disease. SUMMARY CMT is an evolving field with considerable phenotypic and genetic heterogeneity and deep phenotyping remains a cornerstone in contemporary CMT diagnostics.
Collapse
|