1
|
van Veenhuijzen K, Tan HH, Nitert AD, van Es MA, Veldink JH, van den Berg LH, Westeneng H. Longitudinal Magnetic Resonance Imaging in Asymptomatic C9orf72 Mutation Carriers Distinguishes Phenoconverters to Amyotrophic Lateral Sclerosis or Amyotrophic Lateral Sclerosis With Frontotemporal Dementia. Ann Neurol 2025; 97:281-295. [PMID: 39487710 PMCID: PMC11740280 DOI: 10.1002/ana.27116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE We prospectively studied asymptomatic C9orf72 mutation carriers, identifying those developing amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD). METHODS We enrolled 56 asymptomatic family members (AFM) with a C9orf72 mutation (AFM C9+), 132 non-carriers (AFM C9-), and 359 population-based controls. Using 3 T magnetic resonance imaging, we measured cortical thickness, gyrification, and subcortical volumes longitudinally. Linear mixed-effects models on non-converting AFM C9+ scans (n = 107) created a reference for these measurements, establishing individual atrophy patterns. Atrophy patterns from presymptomatic phenoconverters (n = 10 scans) served as a template for group comparisons and similarity assessments. Similarity with phenoconverters was quantified using Dice similarity coefficient (DSC) for cortical and Kullback-Leibler similarity (KLS) for subcortical measures. Using longitudinal similarity assessments, we predicted when participants would reach the average similarity level of phenoconverters at their first post-onset scan. RESULTS Five AFM C9+ converted to ALS or ALS-FTD. Up to 6 years before symptoms, these phenoconverters exhibited significant atrophy in frontal, temporal, parietal, and cingulate cortex, along with smaller thalamus, hippocampus, and amygdala compared to other AFM C9+. Some non-converted AFM C9+ had high DSC and KLS, approaching values of phenoconverters, whereas others, along with AFM C9- and controls, had lower values. At age 80, we predicted 27.9% (95% confidence interval, 13.2-40.1%) of AFM C9+ and no AFM C9- would reach the same DSC as phenoconverters. INTERPRETATION Distinctive atrophy patterns are visible years before symptom onset on presymptomatic scans of phenoconverters. Combining baseline and follow-up similarity measures may serve as a promising imaging biomarker for identifying those at risk of ALS or ALS-FTD. ANN NEUROL 2025;97:281-295.
Collapse
Affiliation(s)
- Kevin van Veenhuijzen
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Harold H.G. Tan
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Abram D. Nitert
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Michael A. van Es
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jan H. Veldink
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Leonard H. van den Berg
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Henk‐Jan Westeneng
- Department of Neurology, UMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
2
|
Stanziano M, Fedeli D, Manera U, Ferraro S, Medina Carrion JP, Palermo S, Sciortino P, Cogoni M, Agosta F, Basaia S, Filippi M, Grisoli M, Valentini MC, De Mattei F, Canosa A, Calvo A, Bruzzone MG, Chiò A, Nigri A, Moglia C. Resting-state fMRI functional connectome of C9orf72 mutation status. Ann Clin Transl Neurol 2024; 11:686-697. [PMID: 38234062 DOI: 10.1002/acn3.51989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/15/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVE The resting-state functional connectome has not been extensively investigated in amyotrophic lateral sclerosis (ALS) spectrum disease, in particular in relationship with patients' genetic status. METHODS Here we studied the network-to-network connectivity of 19 ALS patients carrying the C9orf72 hexanucleotide repeat expansion (C9orf72+), 19 ALS patients not affected by C9orf72 mutation (C9orf72-), and 19 ALS-mimic patients (ALSm) well-matched for demographic and clinical variables. RESULTS When compared with ALSm, we observed greater connectivity of the default mode and frontoparietal networks with the visual network for C9orf72+ patients (P = 0.001). Moreover, the whole-connectome showed greater node degree (P < 0.001), while sensorimotor cortices resulted isolated in C9orf72+. INTERPRETATION Our results suggest a crucial involvement of extra-motor functions in ALS spectrum disease. In particular, alterations of the visual cortex may have a pathogenic role in C9orf72-related ALS. The prominent feature of these patients would be increased visual system connectivity with the networks responsible of the functional balance between internal and external attention.
Collapse
Affiliation(s)
- Mario Stanziano
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Davide Fedeli
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Umberto Manera
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| | - Stefania Ferraro
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jean P Medina Carrion
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Sara Palermo
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Paola Sciortino
- Neuroradiology Unit, CTO Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maurizio Cogoni
- Neuroradiology Unit, CTO Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Grisoli
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Maria C Valentini
- Neuroradiology Unit, CTO Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Filippo De Mattei
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| | - Antonio Canosa
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| | - Andrea Calvo
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| | - Maria G Bruzzone
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Adriano Chiò
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
- Institute of Cognitive Sciences and Technologies, National Council of Research, Rome, Italy
| | - Anna Nigri
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Cristina Moglia
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
- Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| |
Collapse
|
3
|
Sattler R, Traynor BJ, Robertson J, Van Den Bosch L, Barmada SJ, Svendsen CN, Disney MD, Gendron TF, Wong PC, Turner MR, Boxer A, Babu S, Benatar M, Kurnellas M, Rohrer JD, Donnelly CJ, Bustos LM, Van Keuren-Jensen K, Dacks PA, Sabbagh MN. Roadmap for C9ORF72 in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis: Report on the C9ORF72 FTD/ALS Summit. Neurol Ther 2023; 12:1821-1843. [PMID: 37847372 PMCID: PMC10630271 DOI: 10.1007/s40120-023-00548-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023] Open
Abstract
A summit held March 2023 in Scottsdale, Arizona (USA) focused on the intronic hexanucleotide expansion in the C9ORF72 gene and its relevance in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS; C9ORF72-FTD/ALS). The goal of this summit was to connect basic scientists, clinical researchers, drug developers, and individuals affected by C9ORF72-FTD/ALS to evaluate how collaborative efforts across the FTD-ALS disease spectrum might break down existing disease silos. Presentations and discussions covered recent discoveries in C9ORF72-FTD/ALS disease mechanisms, availability of disease biomarkers and recent advances in therapeutic development, and clinical trial design for prevention and treatment for individuals affected by C9ORF72-FTD/ALS and asymptomatic pathological expansion carriers. The C9ORF72-associated hexanucleotide repeat expansion is an important locus for both ALS and FTD. C9ORF72-FTD/ALS may be characterized by loss of function of the C9ORF72 protein and toxic gain of functions caused by both dipeptide repeat (DPR) proteins and hexanucleotide repeat RNA. C9ORF72-FTD/ALS therapeutic strategies discussed at the summit included the use of antisense oligonucleotides, adeno-associated virus (AAV)-mediated gene silencing and gene delivery, and engineered small molecules targeting RNA structures associated with the C9ORF72 expansion. Neurofilament light chain, DPR proteins, and transactive response (TAR) DNA-binding protein 43 (TDP-43)-associated molecular changes were presented as biomarker candidates. Similarly, brain imaging modalities (i.e., magnetic resonance imaging [MRI] and positron emission tomography [PET]) measuring structural, functional, and metabolic changes were discussed as important tools to monitor individuals affected with C9ORF72-FTD/ALS, at both pre-symptomatic and symptomatic disease stages. Finally, summit attendees evaluated current clinical trial designs available for FTD or ALS patients and concluded that therapeutics relevant to FTD/ALS patients, such as those specifically targeting C9ORF72, may need to be tested with composite endpoints covering clinical symptoms of both FTD and ALS. The latter will require novel clinical trial designs to be inclusive of all patient subgroups spanning the FTD/ALS spectrum.
Collapse
Affiliation(s)
- Rita Sattler
- Barrow Neurological Institute, 2910 N Third Ave, Phoenix, AZ, 85013, USA.
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ludo Van Den Bosch
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology and KU Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
| | - Sami J Barmada
- Department of Neurology, Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew D Disney
- Department of Chemistry, The Herbert Wertheim UF-Scripps Institute for Biomedical Research and Innovation, The Scripps Research Institute, Jupiter, FL, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Philip C Wong
- Departments of Pathology and Neuroscience, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adam Boxer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of San Francisco, San Francisco, CA, USA
| | - Suma Babu
- Sean M. Healey and AMG Center for ALS and the Neurological Clinical Research Institute, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33129, USA
| | | | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christopher J Donnelly
- LiveLikeLou Center for ALS Research, Brain Institute, University of Pittsburgh, Pittsburgh, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynette M Bustos
- Barrow Neurological Institute, 2910 N Third Ave, Phoenix, AZ, 85013, USA
| | | | - Penny A Dacks
- The Association for Frontotemporal Degeneration and FTD Disorders Registry, King of Prussia, PA, USA
| | - Marwan N Sabbagh
- Barrow Neurological Institute, 2910 N Third Ave, Phoenix, AZ, 85013, USA.
| |
Collapse
|
4
|
Ghirelli A, Tafuri B, Urso D, Milella G, De Blasi R, Nigro S, Logroscino G. Cortical signature of depressive symptoms in frontotemporal dementia: A surface-based analysis. Ann Clin Transl Neurol 2023; 10:1704-1713. [PMID: 37522381 PMCID: PMC10578898 DOI: 10.1002/acn3.51860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Depressive symptoms are frequently reported in patients affected by frontotemporal dementia (FTD). At structural MRI, cortical features of depressed FTD patients have been poorly described. Our objective was to investigate correlations between cortical measures and depression severity in FTD patients. METHODS Data were obtained from the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) database. We included 98 controls and 92 FTD patients, n = 38 behavioral variant FTD (bvFTD), n = 26 non-fluent variant Primary Progressive Aphasia (nfvPPA), and n = 28 semantic variant Primary Progressive Aphasia (svPPA). Patients underwent clinical and cognitive evaluations, as well as a 3D T1-weighted MRI on a 3 Tesla scanner (Siemens, Trio Tim system). Depression was evaluated by means of Geriatric Depression Scale (GDS). Surface-based analysis was performed on T1-weighted images to evaluate cortical thickness, a measure of gray matter integrity, and local gyrification index (lGI), a quantitative metric of cortical folding. RESULTS Patients affected by svPPA were more depressed than controls at NPI and depression severity at GDS was higher in svPPA and bvFTD. Severity of depression correlated with a decrease in lGI in left precentral and superior frontal gyrus, supramarginal and postcentral gyrus and right precentral, supramarginal, superior parietal and superior frontal gyri. Furthermore, depression severity correlated positively with cortical thickness in the left medial orbitofrontal cortex. DISCUSSION We found that lGI was associated with depressive symptoms over brain regions involved in the pathophysiology of major depressive disorder. This finding provides novel insights into the mechanisms underlying psychiatric symptoms in FTD.
Collapse
Affiliation(s)
- Alma Ghirelli
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in NeurologyUniversity of Bari ‘Aldo Moro’, “Pia Fondazione Cardinale G. Panico”LecceItaly
- Department of Translational Biomedicine and Neuroscience (DiBraiN)University of Bari ‘Aldo Moro’BariItaly
| | - Benedetta Tafuri
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in NeurologyUniversity of Bari ‘Aldo Moro’, “Pia Fondazione Cardinale G. Panico”LecceItaly
- Department of Translational Biomedicine and Neuroscience (DiBraiN)University of Bari ‘Aldo Moro’BariItaly
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in NeurologyUniversity of Bari ‘Aldo Moro’, “Pia Fondazione Cardinale G. Panico”LecceItaly
- Department of Neurosciences, King's College LondonInstitute of Psychiatry, Psychology and NeuroscienceLondonUK
| | - Giammarco Milella
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in NeurologyUniversity of Bari ‘Aldo Moro’, “Pia Fondazione Cardinale G. Panico”LecceItaly
- Department of Translational Biomedicine and Neuroscience (DiBraiN)University of Bari ‘Aldo Moro’BariItaly
| | - Roberto De Blasi
- Department of Diagnostic ImagingPia Fondazione di Culto e Religione “Card. G. Panico”LecceItaly
| | - Salvatore Nigro
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in NeurologyUniversity of Bari ‘Aldo Moro’, “Pia Fondazione Cardinale G. Panico”LecceItaly
- Institute of Nanotechnology (NANOTEC), National Research CouncilLecceItaly
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, Department of Clinical Research in NeurologyUniversity of Bari ‘Aldo Moro’, “Pia Fondazione Cardinale G. Panico”LecceItaly
- Department of Diagnostic ImagingPia Fondazione di Culto e Religione “Card. G. Panico”LecceItaly
| | | |
Collapse
|
5
|
Portley M, Sherer C, Wu T, Farren J, Danielian LE, Scholz SW, Traynor BJ, Ward ME, Haselhuhn T, Snyder A, Kwan JY. Cognitive determinants of decisional capacity in neurodegenerative disorders. Ann Clin Transl Neurol 2023; 10:1816-1823. [PMID: 37545108 PMCID: PMC10578892 DOI: 10.1002/acn3.51871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
OBJECTIVE Cognitive contributions to decisional capacity are complex and not well understood. Capacity to consent for research has been linked to executive function, but executive function assessment tools are imperfect. In this study, we examine the relationship between decisional capacity and a newly developed executive function composite score and determine whether cognitive performance can predict impaired decisional capacity. METHODS This is a cross sectional study of participants at the National Institutes of Health with frontotemporal dementia-amyotrophic lateral sclerosis spectrum disorders enrolled between 2017 and 2022. A structured interview tool was used to ascertain research decisional capacity. Study participant Uniform Data Set (v3.0) executive function (UDS3-EF) composite score, Clinical Dementia Rating Scale©, and Neuropsychiatric Inventory was determined. RESULTS A decrease in UDS3-EF composite score significantly increased the odds of impaired decisional capacity (OR = 2.92, 95% CI [1.66-5.13], p = 0.0002). Executive function was most impaired in frontotemporal dementia (-2.86, SD = 1.26) and least impaired in amyotrophic lateral sclerosis (-0.52, SD = 1.25) participants. The UDS3-EF composite score was also strongly correlated to the Clinical Dementia Rating Scale©. INTERPRETATION Decisional capacity is intrinsically related to executive function in neurodegenerative disorders, and executive dysfunction may predict a lack of decisional capacity alerting investigators of the need for additional scrutiny during the informed consent process.
Collapse
Affiliation(s)
- Makayla Portley
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Carolyn Sherer
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Tianxia Wu
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Jennifer Farren
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Laura E. Danielian
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Sonja W. Scholz
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Bryan J. Traynor
- National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Michael E. Ward
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Taryn Haselhuhn
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Allison Snyder
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Justin Y. Kwan
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
6
|
Zhang Y, Zhang Y, Mao C, Jiang Z, Fan G, Wang E, Chen Y, Palaniyappan L. Association of Cortical Gyrification With Imaging and Serum Biomarkers in Patients With Parkinson Disease. Neurology 2023; 101:e311-e323. [PMID: 37268433 PMCID: PMC10382266 DOI: 10.1212/wnl.0000000000207410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/30/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Pathologic progression across the cortex is a key feature of Parkinson disease (PD). Cortical gyrification is a morphologic feature of human cerebral cortex that is tightly linked to the integrity of underlying axonal connectivity. Monitoring cortical gyrification reductions may provide a sensitive marker of progression through structural connectivity, preceding the progressive stages of PD pathology. We aimed to examine the progressive cortical gyrification reductions and their associations with overlying cortical thickness, white matter (WM) integrity, striatum dopamine availability, serum neurofilament light (NfL) chain, and CSF α-synuclein levels in PD. METHODS This study included a longitudinal dataset with baseline (T0), 1-year (T1), and 4-year (T4) follow-ups and 2 cross-sectional datasets. Local gyrification index (LGI) was computed from T1-weighted MRI data to measure cortical gyrification. Fractional anisotropy (FA) was computed from diffusion-weighted MRI data to measure WM integrity. Striatal binding ratio (SBR) was measured from 123Ioflupane SPECT scans. Serum NfL and CSF α-synuclein levels were also measured. RESULTS The longitudinal dataset included 113 patients with de novo PD and 55 healthy controls (HCs). The cross-sectional datasets included 116 patients with relatively more advanced PD and 85 HCs. Compared with HCs, patients with de novo PD showed accelerated LGI and FA reductions over 1-year period and a further decline at 4-year follow-up. Across the 3 time points, the LGI paralleled and correlated with FA (p = 0.002 at T0, p = 0.0214 at T1, and p = 0.0037 at T4) and SBR (p = 0.0095 at T0, p = 0.0035 at T1, and p = 0.0096 at T4) but not with overlying cortical thickness in patients with PD. Both LGI and FA correlated with serum NfL level (LGI: p < 0.0001 at T0, p = 0.0043 at T1; FA: p < 0.0001 at T0, p = 0.0001 at T1) but not with CSF α-synuclein level in patients with PD. In the 2 cross-sectional datasets, we revealed similar patterns of LGI and FA reductions and associations between LGI and FA in patients with more advanced PD. DISCUSSION We demonstrated progressive reductions in cortical gyrification that were robustly associated with WM microstructure, striatum dopamine availability, and serum NfL level in PD. Our findings may contribute biomarkers for PD progression and potential pathways for early interventions of PD.
Collapse
Affiliation(s)
- Yuanchao Zhang
- From the School of Life Science and Technology (Yuanchao Zhang, Y.C.), University of Electronic Science and Technology of China, Chengdu, Sichuan; Artificial Intelligence Research Institute (Yu Zhang), Zhejiang Lab, Hangzhou; Department of Neurology (C.M.), and Department of Radiology (Z.J., G.F., E.W.), The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; and Douglas Mental Health University Institute (L.P.), McGill University, Montreal, Quebec, Canada.
| | - Yu Zhang
- From the School of Life Science and Technology (Yuanchao Zhang, Y.C.), University of Electronic Science and Technology of China, Chengdu, Sichuan; Artificial Intelligence Research Institute (Yu Zhang), Zhejiang Lab, Hangzhou; Department of Neurology (C.M.), and Department of Radiology (Z.J., G.F., E.W.), The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; and Douglas Mental Health University Institute (L.P.), McGill University, Montreal, Quebec, Canada.
| | - Chengjie Mao
- From the School of Life Science and Technology (Yuanchao Zhang, Y.C.), University of Electronic Science and Technology of China, Chengdu, Sichuan; Artificial Intelligence Research Institute (Yu Zhang), Zhejiang Lab, Hangzhou; Department of Neurology (C.M.), and Department of Radiology (Z.J., G.F., E.W.), The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; and Douglas Mental Health University Institute (L.P.), McGill University, Montreal, Quebec, Canada
| | - Zhen Jiang
- From the School of Life Science and Technology (Yuanchao Zhang, Y.C.), University of Electronic Science and Technology of China, Chengdu, Sichuan; Artificial Intelligence Research Institute (Yu Zhang), Zhejiang Lab, Hangzhou; Department of Neurology (C.M.), and Department of Radiology (Z.J., G.F., E.W.), The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; and Douglas Mental Health University Institute (L.P.), McGill University, Montreal, Quebec, Canada
| | - Guohua Fan
- From the School of Life Science and Technology (Yuanchao Zhang, Y.C.), University of Electronic Science and Technology of China, Chengdu, Sichuan; Artificial Intelligence Research Institute (Yu Zhang), Zhejiang Lab, Hangzhou; Department of Neurology (C.M.), and Department of Radiology (Z.J., G.F., E.W.), The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; and Douglas Mental Health University Institute (L.P.), McGill University, Montreal, Quebec, Canada
| | - Erlei Wang
- From the School of Life Science and Technology (Yuanchao Zhang, Y.C.), University of Electronic Science and Technology of China, Chengdu, Sichuan; Artificial Intelligence Research Institute (Yu Zhang), Zhejiang Lab, Hangzhou; Department of Neurology (C.M.), and Department of Radiology (Z.J., G.F., E.W.), The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; and Douglas Mental Health University Institute (L.P.), McGill University, Montreal, Quebec, Canada.
| | - Yifan Chen
- From the School of Life Science and Technology (Yuanchao Zhang, Y.C.), University of Electronic Science and Technology of China, Chengdu, Sichuan; Artificial Intelligence Research Institute (Yu Zhang), Zhejiang Lab, Hangzhou; Department of Neurology (C.M.), and Department of Radiology (Z.J., G.F., E.W.), The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; and Douglas Mental Health University Institute (L.P.), McGill University, Montreal, Quebec, Canada
| | - Lena Palaniyappan
- From the School of Life Science and Technology (Yuanchao Zhang, Y.C.), University of Electronic Science and Technology of China, Chengdu, Sichuan; Artificial Intelligence Research Institute (Yu Zhang), Zhejiang Lab, Hangzhou; Department of Neurology (C.M.), and Department of Radiology (Z.J., G.F., E.W.), The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; and Douglas Mental Health University Institute (L.P.), McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Broce IJ, Caverzasi E, Sacco S, Nillo RM, Paoletti M, Desikan RS, Geschwind M, Sugrue LP. PRNP expression predicts imaging findings in sporadic Creutzfeldt-Jakob disease. Ann Clin Transl Neurol 2023; 10:536-552. [PMID: 36744645 PMCID: PMC10109249 DOI: 10.1002/acn3.51739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE We explored the relationship between regional PRNP expression from healthy brain tissue and patterns of increased and decreased diffusion and regional brain atrophy in patients with sporadic Creutzfeldt-Jakob disease (sCJD). METHODS We used PRNP microarray data from 6 healthy adult brains from Allen Brain Institute and T1-weighted and diffusion-weighted MRIs from 34 patients diagnosed with sCJD and 30 age- and sex-matched healthy controls to construct partial correlation matrices across brain regions for specific measures of interest: PRNP expression, mean diffusivity, volume, cortical thickness, and local gyrification index, a measure of cortical folding. RESULTS Regional patterns of PRNP expression in the healthy brain correlated with regional patterns of diffusion signal abnormalities and atrophy in sCJD. Among different measures of cortical morphology, regional patterns of local gyrification index in sCJD most strongly correlated with regional patterns of PRNP expression. At the vertex-wise level, different molecular subtypes of sCJD showed distinct regional correlations in local gyrification index across the cortex. Local gyrification index correlation patterns most closely matched patterns of PRNP expression in sCJD subtypes known to have greatest pathologic involvement of the cerebral cortex. INTERPRETATION These results suggest that the specific genetic and molecular environment in which the prion protein is expressed confer variable vulnerability to misfolding across different brain regions that is reflected in patterns of imaging findings in sCJD. Further work in larger samples will be needed to determine whether these regional imaging patterns can serve as reliable markers of distinct disease subtypes to improve diagnosis and treatment targeting.
Collapse
Affiliation(s)
- Iris J. Broce
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California, San Francisco, UCSFSan FranciscoCaliforniaUSA
- Department of NeurosciencesUniversity of California, San DiegoSan DiegoCaliforniaUSA
| | - Eduardo Caverzasi
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California, San Francisco, UCSFSan FranciscoCaliforniaUSA
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Simone Sacco
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California, San Francisco, UCSFSan FranciscoCaliforniaUSA
- Division of Neuroimaging, Department of Medical ImagingUniversity of TorontoTorontoOntarioCanada
| | - Ryan Michael Nillo
- Neuroradiology Section, Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Matteo Paoletti
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California, San Francisco, UCSFSan FranciscoCaliforniaUSA
- Advanced Imaging and Radiomics Center, Neuroradiology DepartmentIRCCS Mondino FoundationPaviaItaly
| | - Rahul S. Desikan
- Neuroradiology Section, Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Michael Geschwind
- Weill Institute for Neurosciences, Department of NeurologyUniversity of California, San Francisco, UCSFSan FranciscoCaliforniaUSA
| | - Leo P. Sugrue
- Neuroradiology Section, Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
8
|
Maitra R, Horne CM, O’Daly O, Papanastasiou E, Gaser C. Psychotic Like Experiences in Healthy Adolescents are Underpinned by Lower Fronto-Temporal Cortical Gyrification: a Study from the IMAGEN Consortium. Schizophr Bull 2023; 49:309-318. [PMID: 36226895 PMCID: PMC10016412 DOI: 10.1093/schbul/sbac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND HYPOTHESIS Psychotic Like Experiences (PLEs) are widely prevalent in children and adolescents and increase the risk of developing psychosis. Cortical gyrification characterizes brain development from in utero till about the first 2 years of life and can be measured in later years as static gyrification changes demonstrating neurodevelopment and dynamic gyrification changes reflecting brain maturation during adolescence. We hypothesized that PLEs would be associated with static cortical gyrification changes reflecting a neurodevelopmental abnormality. STUDY DESIGN We studied 1252 adolescents recruited in the IMAGEN consortium. We used a longitudinal study design, with Magnetic Resonance Imaging measurements at age 14 years and age 19 years; measurement of PLEs using the Community Assessment of Psychic Experiences (CAPE) questionnaire at age 19 years; and clinical diagnoses at age 23 years. STUDY RESULTS Our results show static gyrification changes in adolescents with elevated PLEs on 3 items of the CAPE-voice hearing, unusual experiences of receiving messages, and persecutory ideas-with lower cortical gyrification in fronto-temporal regions in the left hemisphere. This group also demonstrated dynamic gyrification changes with higher cortical gyrification in right parietal cortex in late adolescence; a finding that we replicated in an independent sample of patients with first-episode psychosis. Adolescents with high PLEs were also 5.6 times more likely to transition to psychosis in adulthood by age 23 years. CONCLUSIONS This is the largest study in adolescents that demonstrates fronto-temporal abnormality of cortical gyrification as a potential biomarker for vulnerability to PLEs and transition to psychosis.
Collapse
Affiliation(s)
- Raka Maitra
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s CollegeLondon, UK
| | - Charlotte M Horne
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s CollegeLondon, UK
| | - Owen O’Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s CollegeLondon, UK
| | - Evangelos Papanastasiou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s CollegeLondon, UK
- Therapeutic Area CNS, Boehringer Ingelheim International GmbH, Inghelheim, Germany
| | - Christian Gaser
- Departments of Neurology, Jena University Hospital, Jena, Germany
- Departments of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
9
|
van Veenhuijzen K, Westeneng HJ, Tan HHG, Nitert AD, van der Burgh HK, Gosselt I, van Es MA, Nijboer TCW, Veldink JH, van den Berg LH. Longitudinal Effects of Asymptomatic C9orf72 Carriership on Brain Morphology. Ann Neurol 2022; 93:668-680. [PMID: 36511398 DOI: 10.1002/ana.26572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We investigated effects of C9orf72 repeat expansion and gene expression on longitudinal cerebral changes before symptom onset. METHODS We enrolled 79 asymptomatic family members (AFMs) from 9 families with C9orf72 repeat expansion. Twenty-eight AFMs carried the mutation (C9+). Participants had up to 3 magnetic resonance imaging (MRI) scans, after which we compared motor cortex and motor tracts between C9+ and C9- AFMs using mixed effects models, incorporating kinship to correct for familial relations and lessen effects of other genetic factors. We also compared cortical, subcortical, cerebellar, and connectome structural measurements in a hypothesis-free analysis. We correlated regional C9orf72 expression in donor brains with the pattern of cortical thinning in C9+ AFMs using meta-regression. For comparison, we included 42 C9+ and 439 C9- patients with amyotrophic lateral sclerosis (ALS) in this analysis. RESULTS C9+ AFM motor cortex had less gyrification and was thinner than in C9- AFMs, without differences in motor tracts. Whole brain analysis revealed thinner cortex and less gyrification in parietal, occipital, and temporal regions, smaller thalami and right hippocampus, and affected frontotemporal connections. Thinning of bilateral precentral, precuneus, and left superior parietal cortex was faster in C9+ than in C9- AFMs. Higher C9orf72 expression correlated with thinner cortex in both C9+ AFMs and C9+ ALS patients. INTERPRETATION In asymptomatic C9orf72 repeat expansion carriers, brain MRI reveals widespread features suggestive of impaired neurodevelopment, along with faster decline of motor and parietal cortex than found in normal aging. C9orf72 expression might play a role in cortical development, and consequently explain the specific brain abnormalities of mutation carriers. ANN NEUROL 2022.
Collapse
Affiliation(s)
- Kevin van Veenhuijzen
- Department of Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Harold H G Tan
- Department of Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Abram D Nitert
- Department of Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hannelore K van der Burgh
- Department of Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Isabel Gosselt
- Department of Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Center of Excellence for Rehabilitation Medicine, Brain Center, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, the Netherlands
| | - Michael A van Es
- Department of Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Tanja C W Nijboer
- Department of Experimental Psychology, Utrecht University, Utrecht, the Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Staffaroni AM, Quintana M, Wendelberger B, Heuer HW, Russell LL, Cobigo Y, Wolf A, Goh SYM, Petrucelli L, Gendron TF, Heller C, Clark AL, Taylor JC, Wise A, Ong E, Forsberg L, Brushaber D, Rojas JC, VandeVrede L, Ljubenkov P, Kramer J, Casaletto KB, Appleby B, Bordelon Y, Botha H, Dickerson BC, Domoto-Reilly K, Fields JA, Foroud T, Gavrilova R, Geschwind D, Ghoshal N, Goldman J, Graff-Radford J, Graff-Radford N, Grossman M, Hall MGH, Hsiung GY, Huey ED, Irwin D, Jones DT, Kantarci K, Kaufer D, Knopman D, Kremers W, Lago AL, Lapid MI, Litvan I, Lucente D, Mackenzie IR, Mendez MF, Mester C, Miller BL, Onyike CU, Rademakers R, Ramanan VK, Ramos EM, Rao M, Rascovsky K, Rankin KP, Roberson ED, Savica R, Tartaglia MC, Weintraub S, Wong B, Cash DM, Bouzigues A, Swift IJ, Peakman G, Bocchetta M, Todd EG, Convery RS, Rowe JB, Borroni B, Galimberti D, Tiraboschi P, Masellis M, Finger E, van Swieten JC, Seelaar H, Jiskoot LC, Sorbi S, Butler CR, Graff C, Gerhard A, Langheinrich T, Laforce R, Sanchez-Valle R, de Mendonça A, Moreno F, Synofzik M, Vandenberghe R, Ducharme S, Le Ber I, Levin J, Danek A, Otto M, Pasquier F, Santana I, Kornak J, Boeve BF, Rosen HJ, Rohrer JD, Boxer AL. Temporal order of clinical and biomarker changes in familial frontotemporal dementia. Nat Med 2022; 28:2194-2206. [PMID: 36138153 PMCID: PMC9951811 DOI: 10.1038/s41591-022-01942-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/08/2022] [Indexed: 01/17/2023]
Abstract
Unlike familial Alzheimer's disease, we have been unable to accurately predict symptom onset in presymptomatic familial frontotemporal dementia (f-FTD) mutation carriers, which is a major hurdle to designing disease prevention trials. We developed multimodal models for f-FTD disease progression and estimated clinical trial sample sizes in C9orf72, GRN and MAPT mutation carriers. Models included longitudinal clinical and neuropsychological scores, regional brain volumes and plasma neurofilament light chain (NfL) in 796 carriers and 412 noncarrier controls. We found that the temporal ordering of clinical and biomarker progression differed by genotype. In prevention-trial simulations using model-based patient selection, atrophy and NfL were the best endpoints, whereas clinical measures were potential endpoints in early symptomatic trials. f-FTD prevention trials are feasible but will likely require global recruitment efforts. These disease progression models will facilitate the planning of f-FTD clinical trials, including the selection of optimal endpoints and enrollment criteria to maximize power to detect treatment effects.
Collapse
Affiliation(s)
- Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | | | | | - Hilary W Heuer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Amy Wolf
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sheng-Yang Matt Goh
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Carolin Heller
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Annie L Clark
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jack Carson Taylor
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Amy Wise
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elise Ong
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Leah Forsberg
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Danielle Brushaber
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Julio C Rojas
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lawren VandeVrede
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Ljubenkov
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joel Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kaitlin B Casaletto
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Appleby
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Tatiana Foroud
- Indiana University School of Medicine, National Centralized Repository for Alzheimer's, Indianapolis, IN, USA
| | | | - Daniel Geschwind
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nupur Ghoshal
- Departments of Neurology and Psychiatry, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Jill Goldman
- Department of Neurology, Columbia University, New York, NY, USA
| | | | | | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew G H Hall
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ging-Yuek Hsiung
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward D Huey
- Department of Neurology, Columbia University, New York, NY, USA
| | - David Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kejal Kantarci
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Daniel Kaufer
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Walter Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Argentina Lario Lago
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Maria I Lapid
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Diane Lucente
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian R Mackenzie
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mario F Mendez
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
| | - Carly Mester
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Eliana Marisa Ramos
- Department of Neurology, University of California, Los Angeles, Los Angeles, USA
| | - Meghana Rao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Katya Rascovsky
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine P Rankin
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - M Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Weintraub
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Bonnie Wong
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Imogen J Swift
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Georgia Peakman
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Emily G Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Mario Masellis
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | | | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, Center for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Tobias Langheinrich
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | | | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Simon Ducharme
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, Québec, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Florence Pasquier
- University of Lille, Lille, France
- Inserm, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, France
| | - Isabel Santana
- Neurology Service, Faculty of Medicine, University Hospital of Coimbra (HUC), University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square London, London, UK
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
McKenna MC, Lope J, Tan EL, Bede P. Pre-symptomatic radiological changes in frontotemporal dementia: propagation characteristics, predictive value and implications for clinical trials. Brain Imaging Behav 2022; 16:2755-2767. [PMID: 35920960 DOI: 10.1007/s11682-022-00711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
Computational imaging and quantitative biomarkers offer invaluable insights in the pre-symptomatic phase of neurodegenerative conditions several years before clinical manifestation. In recent years, there has been a focused effort to characterize pre-symptomatic cerebral changes in familial frontotemporal dementias using computational imaging. Accordingly, a systematic literature review was conducted of original articles investigating pre-symptomatic imaging changes in frontotemporal dementia focusing on study design, imaging modalities, data interpretation, control cohorts and key findings. The review is limited to the most common genotypes: chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), or microtubule-associated protein tau (MAPT) genotypes. Sixty-eight studies were identified with a median sample size of 15 (3-141) per genotype. Only a minority of studies were longitudinal (28%; 19/68) with a median follow-up of 2 (1-8) years. MRI (97%; 66/68) was the most common imaging modality, and primarily grey matter analyses were conducted (75%; 19/68). Some studies used multimodal analyses 44% (30/68). Genotype-associated imaging signatures are presented, innovative study designs are highlighted, common methodological shortcomings are discussed and lessons for future studies are outlined. Emerging academic observations have potential clinical implications for expediting the diagnosis, tracking disease progression and optimising the timing of pharmaceutical trials.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Room 5.43, Pearse Street, Dublin 2, Ireland. .,Department of Neurology, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
12
|
Fractal dimension of the brain in neurodegenerative disease and dementia: A systematic review. Ageing Res Rev 2022; 79:101651. [PMID: 35643264 DOI: 10.1016/j.arr.2022.101651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022]
Abstract
Sensitive and specific antemortem biomarkers of neurodegenerative disease and dementia are crucial to the pursuit of effective treatments, required both to reliably identify disease and to track its progression. Atrophy is the structural magnetic resonance imaging (MRI) hallmark of neurodegeneration. However in most cases it likely indicates a relatively advanced stage of disease less susceptible to treatment as some disease processes begin decades prior to clinical onset. Among emerging metrics that characterise brain shape rather than volume, fractal dimension (FD) quantifies shape complexity. FD has been applied in diverse fields of science to measure subtle changes in elaborate structures. We review its application thus far to structural MRI of the brain in neurodegenerative disease and dementia. We identified studies involving subjects who met criteria for mild cognitive impairment, Alzheimer's Disease, Vascular Dementia, Lewy Body Dementia, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, Parkinson's Disease, Huntington's Disease, Multiple Systems Atrophy, Spinocerebellar Ataxia and Multiple Sclerosis. The early literature suggests that neurodegenerative disease processes are usually associated with a decline in FD of the brain. The literature includes examples of disease-related change in FD occurring independently of atrophy, which if substantiated would represent a valuable advantage over other structural imaging metrics. However, it is likely to be non-specific and to exhibit complex spatial and temporal patterns. A more harmonious methodological approach across a larger number of studies as well as careful attention to technical factors associated with image processing and FD measurement will help to better elucidate the metric's utility.
Collapse
|
13
|
How can we define the presymptomatic C9orf72 disease in 2022? An overview on the current definitions of preclinical and prodromal phases. Rev Neurol (Paris) 2022; 178:426-436. [PMID: 35525633 DOI: 10.1016/j.neurol.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
Repeat expansions in C9orf72 gene are the main genetic cause of frontotemporal dementia, amyotrophic lateral sclerosis and related phenotypes. With the advent of disease-modifying treatments, the presymptomatic disease phase is getting increasing interest as an ideal time window in which innovant therapeutic approaches could be administered. Recommendations issued from international study groups distinguish between a preclinical disease stage, during which lesions accumulate in absence of any symptoms or signs, and a prodromal stage, marked by the appearance the first subtle cognitive, behavioral, psychiatric and motor signs, before the full-blown disease. This paper summarizes the current definitions and criteria for these stages, in particular focusing on how fluid-based, neuroimaging and cognitive biomarkers can be useful to monitor disease trajectory across the presymptomatic phase, as well as to detect the earliest signs of clinical conversion. Continuous advances in the knowledge of C9orf72 pathophysiology, and the integration of biomarkers in the clinical evaluation of mutation carriers will allow a better diagnostic definition of C9orf72 disease spectrum from the earliest stages, with relevant impact on the possibility of disease prevention.
Collapse
|
14
|
White matter volume loss drives cortical reshaping after thalamic infarcts. Neuroimage Clin 2022; 33:102953. [PMID: 35139478 PMCID: PMC8844789 DOI: 10.1016/j.nicl.2022.102953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
Abstract
White matter volume loss after unilateral thalamic infarcts shows the trajectories of sensory and ocular motor input from the brainstem to the thalamus and their thalamocortical connections. The extensive volume loss drives reshaping of the cortex more than grey matter atrophy. Associated ocular motor and vestibular symptoms are compensated over time due to their redundant and intermingled connectivity and an early integration with other sensory modalities. Associated ocular motor and vestibular symptoms are compensated over time due to their redundant and intermingled connectivity and an early integration with other sensory modalities.
Objective The integration of somatosensory, ocular motor and vestibular signals is necessary for self-location in space and goal-directed action. We aimed to detect remote changes in the cerebral cortex after thalamic infarcts to reveal the thalamo-cortical connections necessary for multisensory processing and ocular motor control. Methods Thirteen patients with unilateral ischemic thalamic infarcts presenting with vestibular, somatosensory, and ocular motor symptoms were examined longitudinally in the acute phase and after six months. Voxel- and surface-based morphometry were used to detect changes in vestibular and multisensory cortical areas and known hubs of central ocular motor processing. The results were compared with functional connectivity data in 50 healthy volunteers. Results Patients with paramedian infarcts showed impaired saccades and vestibular perception, i.e., tilts of the subjective visual vertical (SVV). The most common complaint in these patients was double vision or vertigo / dizziness. Posterolateral thalamic infarcts led to tilts of the SVV and somatosensory deficits without vertigo. Tilts of the SVV were higher in paramedian compared to posterolateral infarcts (median 11.2° vs 3.8°). Vestibular and ocular motor symptoms recovered within six months. Somatosensory deficits persisted. Structural longitudinal imaging showed significant volume reduction in subcortical structures connected to the infarcted thalamic nuclei (vestibular nuclei region, dentate nucleus region, trigeminal root entry zone, medial lemniscus, superior colliculi). Volume loss was evident in connections to the frontal, parietal and cingulate lobes. Changes were larger in the ipsilesional hemisphere but were also detected in homotopical regions contralesionally. The white matter volume reduction led to deformation of the cortical projection zones of the infarcted nuclei. Conclusions White matter volume loss after thalamic infarcts reflects sensory input from the brainstem as well the cortical projections of the main affected nuclei for sensory and ocular motor processing. Changes in the cortical geometry seem not to reflect gray matter atrophy but rather reshaping of the cortical surface due to the underlying white matter atrophy.
Collapse
|
15
|
Gossink F, Dols A, Stek ML, Scheltens P, Nijmeijer B, Cohn Hokke P, Dijkstra A, Van Ruissen F, Aalfs C, Pijnenburg YAL. Early life involvement in C9orf72 repeat expansion carriers. J Neurol Neurosurg Psychiatry 2022; 93:93-100. [PMID: 33906932 DOI: 10.1136/jnnp-2020-325994] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The chromosome 9 open reading frame 72 gene (C9orf72) hexanucleotide repeat expansion (C9orf72RE) is the most common genetic cause of behavioural variant frontotemporal dementia (bvFTD). Since the onset of the C9orf72RE-associated disease is sometimes hard to define, we hypothesise that C9orf72RE may cause a lifelong neuropsychiatric vulnerability. The first aim of our study was to explore lifelong behavioural and personality characteristics in C9orf72RE. Second, we aimed to describe distinctive characteristics of C9orf72RE during disease course. METHODS Out of 183 patients from the Amsterdam Dementia Cohort that underwent genetic testing between 2011 and 2018, 20 C9orf72RE bvFTD patients and 23 C9orf72RE negative bvFTD patients were included. Patients and their relatives were interviewed extensively to chart their biography. Data analysis was performed through a mixed-methods approach including qualitative and quantitative analyses. RESULTS Education, type of professional career and number of intimate partners were not different between carriers and non-carriers. Carriers were more often described by their relatives as having 'fixed behavioural patterns in daily life' and with limited empathy already years before onset of bvFTD symptoms. In carriers, disease course was more often characterised by excessive buying and obsessive physical exercise than in non-carriers. CONCLUSION This is the first study thoroughly exploring biographies of bvFTD patients with C9orf72RE, revealing that subtle personality traits may be present early in life. Our study suggests that C9orf72RE exerts a lifelong neuropsychiatric vulnerability. This may strengthen hypotheses of links between neurodevelopmental and neurodegenerative diseases. Moreover, the presence of a distinct C9orf72RE -associated syndrome within the FTD spectrum opens doors for investigation of vulnerable neuronal networks.
Collapse
Affiliation(s)
- Flora Gossink
- Alzheimer Center, Department of Neurology, Location VU University Medical Center, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Annemiek Dols
- Department of Old Age psychiatry, GGZ inGeest Amsterdam locatie De Nieuwe Valerius, Amsterdam, The Netherlands
| | - Max L Stek
- Department of Old Age psychiatry, GGZ inGeest Amsterdam locatie De Nieuwe Valerius, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center, Department of Neurology, Location VU University Medical Center, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Bas Nijmeijer
- Clinical Genetics, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | | | - Anke Dijkstra
- Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
| | - Fred Van Ruissen
- Department of Clinical Genetics, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | | | - Yolande A L Pijnenburg
- Alzheimer Center, Department of Neurology, Location VU University Medical Center, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Sanfelici R, Ruef A, Antonucci LA, Penzel N, Sotiras A, Dong MS, Urquijo-Castro M, Wenzel J, Kambeitz-Ilankovic L, Hettwer MD, Ruhrmann S, Chisholm K, Riecher-Rössler A, Falkai P, Pantelis C, Salokangas RKR, Lencer R, Bertolino A, Kambeitz J, Meisenzahl E, Borgwardt S, Brambilla P, Wood SJ, Upthegrove R, Schultze-Lutter F, Koutsouleris N, Dwyer DB. Novel Gyrification Networks Reveal Links with Psychiatric Risk Factors in Early Illness. Cereb Cortex 2021; 32:1625-1636. [PMID: 34519351 DOI: 10.1093/cercor/bhab288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Adult gyrification provides a window into coordinated early neurodevelopment when disruptions predispose individuals to psychiatric illness. We hypothesized that the echoes of such disruptions should be observed within structural gyrification networks in early psychiatric illness that would demonstrate associations with developmentally relevant variables rather than specific psychiatric symptoms. We employed a new data-driven method (Orthogonal Projective Non-Negative Matrix Factorization) to delineate novel gyrification-based networks of structural covariance in 308 healthy controls. Gyrification within the networks was then compared to 713 patients with recent onset psychosis or depression, and at clinical high-risk. Associations with diagnosis, symptoms, cognition, and functioning were investigated using linear models. Results demonstrated 18 novel gyrification networks in controls as verified by internal and external validation. Gyrification was reduced in patients in temporal-insular, lateral occipital, and lateral fronto-parietal networks (pFDR < 0.01) and was not moderated by illness group. Higher gyrification was associated with better cognitive performance and lifetime role functioning, but not with symptoms. The findings demonstrated that gyrification can be parsed into novel brain networks that highlight generalized illness effects linked to developmental vulnerability. When combined, our study widens the window into the etiology of psychiatric risk and its expression in adulthood.
Collapse
Affiliation(s)
- Rachele Sanfelici
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Max Planck School of Cognition, Leipzig, 04103, Germany
| | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany
| | - Linda A Antonucci
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Nora Penzel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | - Aristeidis Sotiras
- Department of Radiology and Institute of Informatics, Washington University in St. Luis, st. Luis, MO63110, USA
| | - Mark Sen Dong
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany
| | - Maria Urquijo-Castro
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany
| | - Julian Wenzel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | | | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | - Katharine Chisholm
- Institute for Mental Health, University of Birmingham, Birmingham, B15 2TT, UK.,Department of Psychology, Aston University, Birmingham, B4 7ET, UK
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Max-Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centrem University of Melbourne & Melbourne Health, Melbourne, 3053, Australia
| | | | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, 48149, Germany.,Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, 40629, Germany
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany.,Department of Psychiatry (Psychiatric University Hospital, UPK), University of Basel, Basel, 4002, Switzerland
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Grande Ospedale Maggiore Policlinico, Milano, 20122, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, 20122, Italy
| | - Stephen J Wood
- Centre for Youth Mental Health, University of Melbourne, Melbourne, 3052, Australia.,Orygen, Melbourne, 3052, Australia.,School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, B15 2TT, UK.,Early Intervention Service, Birmingham Women's and Children's NHS foundation Trust, Birmingham, B4 6NH, UK
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, 40629, Germany.,Department of Psychology and Mental Health, Faculty of Psychology, Airlangga University, Surubaya, 60286, Indonesia.,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, 3000, Switzerland
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Max-Planck Institute of Psychiatry, Munich, 80804, Germany.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany
| | | |
Collapse
|
17
|
De Vocht J, Blommaert J, Devrome M, Radwan A, Van Weehaeghe D, De Schaepdryver M, Ceccarini J, Rezaei A, Schramm G, van Aalst J, Chiò A, Pagani M, Stam D, Van Esch H, Lamaire N, Verhaegen M, Mertens N, Poesen K, van den Berg LH, van Es MA, Vandenberghe R, Vandenbulcke M, Van den Stock J, Koole M, Dupont P, Van Laere K, Van Damme P. Use of Multimodal Imaging and Clinical Biomarkers in Presymptomatic Carriers of C9orf72 Repeat Expansion. JAMA Neurol 2021; 77:1008-1017. [PMID: 32421156 PMCID: PMC7417970 DOI: 10.1001/jamaneurol.2020.1087] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Question Can metabolic brain changes be detected in presymptomatic individuals who are carriers of a hexanucleotide repeat expansion in the C9orf72 gene (preSxC9) using time-of-flight fluorine 18–labeled fluorodeoxyglucose positron emission tomographic imaging and magnetic resonance imaging, and what is the association between the mutation and clinical and fluid biomarkers of amyotrophic lateral sclerosis and frontotemporal dementia? Findings In a case-control study including 17 preSxC9 participants and 25 healthy controls, fluorine 18–labeled fluorodeoxyglucose positron emission tomographic imaging noted significant clusters of relative hypometabolism in frontotemporal regions, the insular cortices, basal ganglia, and thalami in the preSxC9 participants. Use of this strategy allowed detection of changes at an individual level. Meaning Glucose metabolic changes appear to occur early in the sequence of events leading to manifest amyotrophic lateral sclerosis and frontotemporal dementia. Fluorine 18–labeled fluorodeoxyglucose positron emission tomographic imaging may provide a sensitive biomarker of a presymptomatic phase of disease. Importance During a time with the potential for novel treatment strategies, early detection of disease manifestations at an individual level in presymptomatic carriers of a hexanucleotide repeat expansion in the C9orf72 gene (preSxC9) is becoming increasingly relevant. Objectives To evaluate changes in glucose metabolism before symptom onset of amyotrophic lateral sclerosis or frontotemporal dementia in preSxC9 using simultaneous fluorine 18–labeled fluorodeoxyglucose ([18F]FDG positron emission tomographic (PET) and magnetic resonance imaging as well as the mutation’s association with clinical and fluid biomarkers. Design, Setting, and Participants A prospective, case-control study enrolled 46 participants from November 30, 2015, until December 11, 2018. The study was conducted at the neuromuscular reference center of the University Hospitals Leuven, Leuven, Belgium. Main Outcomes and Measures Neuroimaging data were spatially normalized and analyzed at the voxel level at a height threshold of P < .001, cluster-level familywise error–corrected threshold of P < .05, and statistical significance was set at P < .05 for the volume-of-interest level analysis, using Benjamini-Hochberg correction for multiple correction. W-score maps were computed using the individuals serving as controls as a reference to quantify the degree of [18F]FDG PET abnormality. The threshold for abnormality on the W-score maps was designated as an absolute W-score greater than or equal to 1.96. Neurofilament levels and performance on cognitive and neurologic examinations were determined. All hypothesis tests were 1-sided. Results Of the 42 included participants, there were 17 with the preSxC9 mutation (12 women [71%]; mean [SD] age, 51 [9] years) and 25 healthy controls (12 women [48%]; mean [SD] age, 47 [10] years). Compared with control participants, significant clusters of relative hypometabolism were found in frontotemporal regions, basal ganglia, and thalami of preSxC9 participants and relative hypermetabolism in the peri-Rolandic region, superior frontal gyrus, and precuneus cortex. W-score frequency maps revealed reduced glucose metabolism with local maxima in the insular cortices, central opercular cortex, and thalami in up to 82% of preSxC9 participants and increased glucose metabolism in the precentral gyrus and precuneus cortex in up to 71% of preSxC9 participants. Other findings in the preSxC9 group were upper motor neuron involvement in 10 participants (59%), cognitive abnormalities in 5 participants (29%), and elevated neurofilament levels in 3 of 16 individuals (19%) who underwent lumbar puncture. Conclusions and Relevance The results suggest that [18F]FDG PET can identify glucose metabolic changes in preSxC9 at an individual level, preceding significantly elevated neurofilament levels and onset of symptoms.
Collapse
Affiliation(s)
- Joke De Vocht
- KU Leuven, Department of Neurosciences, Experimental Neurology, B-3000 Leuven, Belgium.,KU Leuven, University Hospitals Leuven, University Psychiatric Center, Adult Psychiatry, B-3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium.,VIB - Center of Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | | | - Martijn Devrome
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Ahmed Radwan
- KU Leuven, Department of Imaging and Pathology, Translational MRI, B-3000 Leuven, Belgium
| | - Donatienne Van Weehaeghe
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Maxim De Schaepdryver
- KU Leuven, Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, B-3000 Leuven, Belgium
| | - Jenny Ceccarini
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Ahmadreza Rezaei
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Georg Schramm
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - June van Aalst
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Adriano Chiò
- ALS Center, Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy.,Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Daphne Stam
- KU Leuven, Leuven Brain Institute, Laboratory for Translational Neuropsychiatry, B-3000 Leuven, Belgium
| | - Hilde Van Esch
- University Hospitals Leuven, Center for Human Genetics, B-3000 Leuven, Belgium
| | - Nikita Lamaire
- University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium
| | - Marianne Verhaegen
- KU Leuven, University Hospitals Leuven, University Psychiatric Center, Adult Psychiatry, B-3000 Leuven, Belgium
| | - Nathalie Mertens
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Koen Poesen
- KU Leuven, Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research, B-3000 Leuven, Belgium
| | - Leonard H van den Berg
- Brain Center Rudolf Magnus, Department of Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michael A van Es
- Brain Center Rudolf Magnus, Department of Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rik Vandenberghe
- University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences, Laboratory for Cognitive Neurology, B-3000 Leuven, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Laboratory for Translational Neuropsychiatry, B-3000 Leuven, Belgium.,KU Leuven, University Psychiatric Center, Geriatric Psychiatry, B-3000 Leuven, Belgium
| | - Jan Van den Stock
- KU Leuven, Leuven Brain Institute, Laboratory for Translational Neuropsychiatry, B-3000 Leuven, Belgium.,KU Leuven, University Psychiatric Center, Geriatric Psychiatry, B-3000 Leuven, Belgium
| | - Michel Koole
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Patrick Dupont
- KU Leuven, Department of Neurosciences, Laboratory for Cognitive Neurology, B-3000 Leuven, Belgium
| | - Koen Van Laere
- KU Leuven, University Hospitals Leuven, Department of Imaging and Pathology, Division of Nuclear Medicine, B-3000 Leuven, Belgium
| | - Philip Van Damme
- KU Leuven, Department of Neurosciences, Experimental Neurology, B-3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium.,VIB - Center of Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| |
Collapse
|
18
|
Waugh RE, Danielian LE, Shoukry RFS, Floeter MK. Longitudinal changes in network homogeneity in presymptomatic C9orf72 mutation carriers. Neurobiol Aging 2021; 99:1-10. [PMID: 33421737 PMCID: PMC11428095 DOI: 10.1016/j.neurobiolaging.2020.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/04/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
The risk for carriers of repeat expansion mutations in C9orf72 to develop amyotrophic lateral sclerosis and frontotemporal dementia increases with age. Functional magnetic resonance imaging studies have shown reduced connectivity in symptomatic carriers, but it is not known whether connectivity declines throughout life as an acceleration of the normal aging pattern. In this study, we examined intra-network homogeneity (NeHo) in 5 functional networks in 15 presymptomatic C9+ carriers over an 18-month period and compared to repeated scans in 34 healthy controls and 27 symptomatic C9+ carriers. The longitudinal trajectory of NeHo in the somatomotor, dorsal attention, and default mode networks in presymptomatic carriers differed from aging controls and symptomatic carriers. In somatomotor networks, NeHo increased over time in regions adjacent to regions where symptomatic carriers had reduced NeHo. In the default network, the posterior cingulate exhibited age-dependent increases in NeHo. These findings are evidence against the proposal that the decline in functional connectivity seen in symptomatic carriers represents a lifelong acceleration of the healthy aging process.
Collapse
Affiliation(s)
- Rebecca E Waugh
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Laura E Danielian
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rachel F Smallwood Shoukry
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mary Kay Floeter
- Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Li Hi Shing S, McKenna MC, Siah WF, Chipika RH, Hardiman O, Bede P. The imaging signature of C9orf72 hexanucleotide repeat expansions: implications for clinical trials and therapy development. Brain Imaging Behav 2021; 15:2693-2719. [PMID: 33398779 DOI: 10.1007/s11682-020-00429-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 01/14/2023]
Abstract
While C9orf72-specific imaging signatures have been proposed by both ALS and FTD research groups and considerable presymptomatic alterations have also been confirmed in young mutation carriers, considerable inconsistencies exist in the literature. Accordingly, a systematic review of C9orf72-imaging studies has been performed to identify consensus findings, stereotyped shortcomings, and unique contributions to outline future directions. A formal literature review was conducted according to the STROBE guidelines. All identified papers were individually reviewed for sample size, choice of controls, study design, imaging modalities, statistical models, clinical profiling, and identified genotype-associated pathological patterns. A total of 74 imaging papers were systematically reviewed. ALS patients with GGGGCC repeat expansions exhibit relatively limited motor cortex involvement and widespread extra-motor pathology. C9orf72 positive FTD patients often show preferential posterior involvement. Reports of thalamic involvement are relatively consistent across the various phenotypes. Asymptomatic hexanucleotide repeat carriers often exhibit structural and functional changes decades prior to symptom onset. Common shortcomings included sample size limitations, lack of disease-controls, limited clinical profiling, lack of genetic testing in healthy controls, and absence of post mortem validation. There is a striking paucity of longitudinal studies and existing presymptomatic studies have not evaluated the predictive value of radiological changes with regard to age of onset and phenoconversion. With the advent of antisense oligonucleotide therapies, the meticulous characterisation of C9orf72-associated changes has gained practical relevance. Neuroimaging offers non-invasive biomarkers for future clinical trials, presymptomatic ascertainment, diagnostic and prognostic applications.
Collapse
Affiliation(s)
- Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mary Clare McKenna
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - We Fong Siah
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
20
|
Clinical Update on C9orf72: Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:67-76. [PMID: 33433869 DOI: 10.1007/978-3-030-51140-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The identification of C9orf72 gene has led to important scientific progresses and has considerably changed our clinical practice. However, a decade after C9orf72 discovery, some important clinical questions remain unsolved. The reliable cutoff for the pathogenic repeat number and the implication of intermediate alleles in frontotemporal dementia, amyotrophic lateral sclerosis, or in other diseases are still uncertain. The occurrence of an anticipation phenomenon - at the clinical and molecular levels - in C9orf72 kindreds is still debated as well, and the factors driving age at onset and phenotype variability are largely unknown. All these questions have a significant impact not only in clinical practice for diagnosis and genetic counseling but also in a research context for the initiation of therapeutic trials. In this chapter, we will address all those issues and summarize the recent updates about clinical aspects of C9orf72 disease, focusing on both the common and the less typical phenotypes.
Collapse
|
21
|
Gagliardi D, Costamagna G, Taiana M, Andreoli L, Biella F, Bersani M, Bresolin N, Comi GP, Corti S. Insights into disease mechanisms and potential therapeutics for C9orf72-related amyotrophic lateral sclerosis/frontotemporal dementia. Ageing Res Rev 2020; 64:101172. [PMID: 32971256 DOI: 10.1016/j.arr.2020.101172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
In 2011, a hexanucleotide repeat expansion (HRE) in the noncoding region of C9orf72 was associated with the most frequent genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The main pathogenic mechanisms in C9-ALS/FTD are haploinsufficiency of the C9orf72 protein and gain of function toxicity from bidirectionally-transcribed repeat-containing RNAs and dipeptide repeat proteins (DPRs) resulting from non-canonical RNA translation. Additionally, abnormalities in different downstream cellular mechanisms, such as nucleocytoplasmic transport and autophagy, play a role in pathogenesis. Substantial research efforts using in vitro and in vivo models have provided valuable insights into the contribution of each mechanism in disease pathogenesis. However, conflicting evidence exists, and a unifying theory still lacks. Here, we provide an overview of the recently published literature on clinical, neuropathological and molecular features of C9-ALS/FTD. We highlight the supposed neuronal role of C9orf72 and the HRE pathogenic cascade, mainly focusing on the contribution of RNA foci and DPRs to neurodegeneration and discussing the several downstream mechanisms. We summarize the emerging biochemical and neuroimaging biomarkers, as well as the potential therapeutic approaches. Despite promising results, a specific disease-modifying treatment is still not available to date and greater insights into disease mechanisms may help in this direction.
Collapse
Affiliation(s)
- Delia Gagliardi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Gianluca Costamagna
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Michela Taiana
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Luca Andreoli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Fabio Biella
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Margherita Bersani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
22
|
Shoukry RS, Waugh R, Bartlett D, Raitcheva D, Floeter MK. Longitudinal changes in resting state networks in early presymptomatic carriers of C9orf72 expansions. NEUROIMAGE-CLINICAL 2020; 28:102354. [PMID: 32769055 PMCID: PMC7406915 DOI: 10.1016/j.nicl.2020.102354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/26/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Previous cross-sectional imaging studies found differences in brain structure and in resting state networks between presymptomatic carriers of mutations in C9orf72 (C9+) and healthy controls. We carried out a prospective longitudinal study of clinical and resting state functional imaging in a cohort of 15 presymptomatic C9+ carriers to determine whether differences in resting state connectivity prior to developing symptoms reflect static developmental differences or ongoing low-grade degenerative changes. Presymptomatic C9+ carriers were scanned at baseline with follow-up scanning at 6- and 18-months and compared to a cohort of 14 healthy controls scanned longitudinally. Resting state networks associated with manifest disease were visualized by comparing 27 symptomatic C9+ carriers to 34 healthy controls. Motor, salience, thalamic, and speech production networks were visualized using a seed-based analysis. Neurofilament light chain was measured in serum obtained at the time of the scans. Neither clinical measures of motor, cognitive, and behavioral function nor neurofilament levels changed over follow-up in presymptomatic C9+ carriers. In thalamic networks, there was a reduction in connectivity in presymptomatic carriers at all timepoints with a constant difference compared to healthy controls. In contrast, precuneus/posterior cingulate regions exhibited declining functional connectivity compared to controls over the 18-month follow-up, particularly in motor networks. These were regions that also exhibited reduced functional connectivity in symptomatic C9+ carriers. Reduced connectivity over time also occurred in small regions of frontal and temporal cortex within salience and thalamic networks in presymptomatic C9+ carriers. A few areas of increased connectivity occurred, including cortex near the motor seed and within the speech production network. Overall, changes in functional connectivity over time favor the explanation of ongoing low-grade alterations in presymptomatic C9+ carriers in most networks, with the exception of thalamic networks where functional connectivity reductions were stable over time. The loss of connectivity to parietal cortex regions in several different networks may be a distinct feature of C9orf72-related degeneration. Longitudinal studies of carriers who phenoconvert will be important to determine the prognostic significance of presymptomatic functional connectivity alterations.
Collapse
Affiliation(s)
- Rachel Smallwood Shoukry
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 10 Center Drive, 20892-1140, USA
| | - Rebecca Waugh
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 10 Center Drive, 20892-1140, USA.
| | - Dan Bartlett
- Biogen, 225 Binney Street, Cambridge, MA 02142, USA.
| | | | - Mary Kay Floeter
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 10 Center Drive, 20892-1140, USA.
| |
Collapse
|
23
|
Le Blanc G, Jetté Pomerleau V, McCarthy J, Borroni B, Swieten J, Galimberti D, Sanchez‐Valle R, LaForce R, Moreno F, Synofzik M, Graff C, Masellis M, Tartaglia MC, Rowe JB, Vandenberghe R, Finger E, Tagliavini F, Mendonça A, Santana I, Butler C, Gerhard A, Danek A, Levin J, Otto M, Frisoni G, Sorbi S, Rohrer JD, Ducharme S, Almeida MR, Anderl‐Straub S, Andersson C, Antonell A, Arighi A, Balasa M, Barandiaran M, Bargalló N, Bartha R, Bender B, Benussi L, Binetti G, Black S, Bocchetta M, Borrego S, Bras J, Bruffaerts R, Caroppo P, Cash D, Castelo‐Branco M, Convery R, Cope T, Arriba M, Di Fede G, Díaz Z, Dick KM, Duro D, Fenoglio C, Ferreira C, Ferreira CB, Flanagan T, Fox N, Freedman M, Fumagalli G, Gabilondo A, Gauthier S, Ghidoni R, Giaccone G, Gorostidi A, Greaves C, Guerreiro R, Heller C, Hoegen T, Indakoetxea B, Jelic V, Jiskoot L, Karnath H, Keren R, Leitão MJ, Lladó A, Lombardi G, Loosli S, Maruta C, Mead S, Meeter L, Miltenberger G, Minkelen R, Mitchell S, Nacmias B, Neason M, Nicholas J, Öijerstedt L, Olives J, Panman J, Papma J, Patzig M, Pievani M, Pijnenburg Y, Prioni S, Prix C, Rademakers R, Redaelli V, Rittman T, Rogaeva E, Rosa‐Neto P, Rossi G, Rossor M, Santiago B, Scarpini E, Semler E, Shafei R, Shoesmith C, Tábuas‐Pereira M, Tainta M, Tang‐Wai D, Thomas DL, Thonberg H, Timberlake C, Tiraboschi P, Vandamme P, Vandenbulcke M, Veldsman M, Verdelho A, Villanua J, Warren J, Wilke C, Zetterberg H, Zulaica M. Faster Cortical Thinning and Surface Area Loss in Presymptomatic and Symptomatic
C9orf72
Repeat Expansion Adult Carriers. Ann Neurol 2020; 88:113-122. [DOI: 10.1002/ana.25748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Vincent Jetté Pomerleau
- Department of Psychiatry McGill University Health Centre, McGill University Montreal Quebec Canada
| | - Jillian McCarthy
- McConnell Brain Imaging Centre Montreal Neurological Institute Montreal Quebec Canada
| | - Barbara Borroni
- Center for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences University of Brescia Brescia Italy
| | - John Swieten
- Department of Neurology, Erasmus Medical Center Rotterdam the Netherlands
| | - Daniela Galimberti
- Department of Pathophysiology and Transplantation, Dino Ferrari Center University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico Milan Italy
| | - Raquel Sanchez‐Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona Barcelona Spain
| | - Robert LaForce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine Laval University Quebec City Quebec Canada
| | - Fermin Moreno
- Department of Neurology Hospital Universitario Donostia San Sebastian Spain
| | - Matthis Synofzik
- Department of Cognitive Neurology, Center for Neurology and Hertie Institute for Clinical Brain Research Tübingen Germany
| | - Caroline Graff
- Department NVS, Center for Alzheimer Research, Division of Neurogenetics Karolinska Institute Stockholm Sweden
| | - Mario Masellis
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute Toronto Ontario Canada
| | - Maria C. Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease Toronto Ontario Canada
| | - James B. Rowe
- Department of Clinical Neurosciences University of Cambridge Cambridge United Kingdom
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences KU Leuven Leuven Belgium
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences University of Western Ontario London Ontario Canada
| | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta Milan Italy
| | | | - Isabel Santana
- Neurology Department Centro Hospitalar e Universitário de Coimbra Coimbra Portugal
| | - Chris Butler
- Department of Clinical Neurology University of Oxford Oxford United Kingdom
| | - Alex Gerhard
- Institute of Brain, Behaviour, and Mental Health, University of Manchester, Withington Manchester United Kingdom
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig Maximilian University Munich Germany
- German Center for Neurodegenerative Diseases Munich Germany
| | - Johannes Levin
- Department of Neurology University Hospital Ulm Ulm Germany
| | - Markus Otto
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia Italy
| | - Giovanni Frisoni
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia Italy
- Memory Clinic and LANVIE‐Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva Geneva Switzerland
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health University of Florence Florence Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Don Carlo Gnocchi Florence Italy
| | - Jonathan D. Rohrer
- Dementia Research Centre University College London Institute of Neurology London United Kingdom
| | - Simon Ducharme
- Department of Psychiatry McGill University Health Centre, McGill University Montreal Quebec Canada
- McConnell Brain Imaging Centre Montreal Neurological Institute Montreal Quebec Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Barschke P, Oeckl P, Steinacker P, Al Shweiki MR, Weishaupt JH, Landwehrmeyer GB, Anderl-Straub S, Weydt P, Diehl-Schmid J, Danek A, Kornhuber J, Schroeter ML, Prudlo J, Jahn H, Fassbender K, Lauer M, van der Ende EL, van Swieten JC, Volk AE, Ludolph AC, Otto M. Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. J Neurol Neurosurg Psychiatry 2020; 91:503-511. [PMID: 32132225 DOI: 10.1136/jnnp-2019-322476] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The hexanucleotide repeat expansion in the C9orf72 gene is the most common mutation associated with amyotrophic lateral sclerosis (C9-ALS) and frontotemporal dementia (C9-FTD). Until now, it is unknown which factors define whether C9orf72 mutation carriers develop ALS or FTD. Our aim was to identify protein biomarker candidates in the cerebrospinal fluid (CSF) which differentiate between C9-ALS and C9-FTD and might be indicative for the outcome of the mutation. METHODS We compared the CSF proteome of 16 C9-ALS and 8 C9-FTD patients and 11 asymptomatic C9orf72 mutation carriers (CAR) by isobaric tags for relative and absolute quantitation. Eleven biomarker candidates were selected from the pool of differentially regulated proteins for further validation by multiple reaction monitoring and single-molecule array in a larger cohort (n=156). RESULTS In total, 2095 CSF proteins were identified and 236 proteins were significantly different in C9-ALS versus C9-FTD including neurofilament medium polypeptide (NEFM) and chitotriosidase-1 (CHIT1). Eight candidates were successfully validated including significantly increased ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) levels in C9-ALS compared with C9-FTD and controls and decreased neuronal pentraxin receptor (NPTXR) levels in C9-FTD versus CAR. CONCLUSIONS This study presents a deep proteomic CSF analysis of C9-ALS versus C9-FTD patients. As a proof of concept, we observed higher NEFM and CHIT1 CSF levels in C9-ALS. In addition, we also show clear upregulation of UCHL1 in C9-ALS and downregulation of NPTXR in C9-FTD. Significant differences in UCHL1 CSF levels may explain diverging ubiquitination and autophagy processes and NPTXR levels might reflect different synapses organisation processes.
Collapse
Affiliation(s)
- Peggy Barschke
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Patrick Oeckl
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Petra Steinacker
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | | | - Jochen H Weishaupt
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | | | | | - Patrick Weydt
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians Universität, Munich, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias L Schroeter
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Johannes Prudlo
- Department of Neurology, Rostock University Medical Center, German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Holger Jahn
- Clinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Fassbender
- Department of Neurology, University of Saarland, Homburg, Germany
| | - Martin Lauer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Würzburg, Würzburg, Germany
| | | | | | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | | |
Collapse
|
25
|
Abnormal gyrification patterns present before symptoms in C9orf72 expansion carriers. Nat Rev Neurol 2019; 15:434. [DOI: 10.1038/s41582-019-0213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|