1
|
Bardi F, Gasparotti E, Vignali E, Antonuccio MN, Storto E, Avril S, Celi S. A hybrid mock circulatory loop integrated with a LED-PIV system for the investigation of AAA compliant phantoms. Front Bioeng Biotechnol 2024; 12:1452278. [PMID: 39450327 PMCID: PMC11499900 DOI: 10.3389/fbioe.2024.1452278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background Cardiovascular diseases remain a leading cause of morbidity and mortality worldwide and require extensive investigation through in-vitro studies. Mock Circulatory Loops (MCLs) are advanced in-vitro platforms that accurately replicate physiological and pathological hemodynamic conditions, while also allowing for precise and patient-specific data collection. Particle Image Velocimetry (PIV) is the standard flow visualization technique for in-vitro studies, but it is costly and requires strict safety measures. High-power Light Emitting Diode illuminated PIV (LED-PIV) offers a safer and cheaper alternative. Methods In this study, we aim to demonstrate the feasibility of a Hybrid-MCL integrated with a LED-PIV system for the investigation of Abdominal Aortic Aneurysm (AAA) compliant phantoms. We considered two distinct AAA models, namely, an idealized model and a patient-specific one under different physiological flow and pressure conditions. Results The efficacy of the proposed setup for the investigation of AAA hemodynamics was confirmed by observing velocity and vorticity fields across multiple flow rate scenarios and regions of interest. Conclusion The findings of this study underscore the potential impact of Hybrid-MCL integrated with a LED-PIV system on enhancing the affordability, accessibility, and safety of in-vitro CVD investigations.
Collapse
Affiliation(s)
- Francesco Bardi
- BioCardioLab, Bioengineering Unit, Ospedale del Cuore, Massa, Italy
- Mines Saint-Étienne, Université Jean Monnet, INSERM, Saint Étienne, France
- Predisurge, Grande Usine Creative 2, Saint Étienne, France
| | | | - Emanuele Vignali
- BioCardioLab, Bioengineering Unit, Ospedale del Cuore, Massa, Italy
| | - Maria Nicole Antonuccio
- BioCardioLab, Bioengineering Unit, Ospedale del Cuore, Massa, Italy
- Mines Saint-Étienne, Université Jean Monnet, INSERM, Saint Étienne, France
| | - Eleonora Storto
- BioCardioLab, Bioengineering Unit, Ospedale del Cuore, Massa, Italy
| | - Stéphane Avril
- BioCardioLab, Bioengineering Unit, Ospedale del Cuore, Massa, Italy
| | - Simona Celi
- BioCardioLab, Bioengineering Unit, Ospedale del Cuore, Massa, Italy
| |
Collapse
|
2
|
Rice J, Bushman W, Roldán-Alzate A. Validation of Dynamic 3D MRI for Urodynamics Assessment Using an Anatomically Realistic In Vitro Model of the Bladder. J Biomech Eng 2024; 146:071007. [PMID: 38511303 PMCID: PMC11080948 DOI: 10.1115/1.4065110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Lowery urinary tract symptoms (LUTS) affect a large majority of the aging population. 3D Dynamic MRI shows promise as a noninvasive diagnostic tool that can assess bladder anatomy and function (urodynamics) while overcoming challenges associated with current urodynamic assessment methods. However, validation of this technique remains an unmet need. In this study, an anatomically realistic, bladder-mimicking in vitro flow model was created and used to systematically benchmark 3D dynamic MRI performance using a highly controllable syringe pump. Time-resolved volumes of the synthetic bladder model were obtained during simulated filling and voiding events and used to calculate volumetric flowrate. During MRI acquisitions, pressure during each event was recorded and used to create PV loops for work assessment. Error between control and MRI-derived volume for voiding and filling events exhibited 3.36% and 4.66% differences, respectively. A slight increase in average error was observed for MRI-derived flowrate when compared to the control flowrate (4.90% and 7.67% for voiding and filling, respectively). Overall, average error in segmented volumes increased with decreasing volume flowrate. Pressure drops were observed during voiding. Pressure increased during filling. Enhanced validation of novel 3D MRI urodynamics is achieved by using high-resolution PIV for visualizing and quantifying velocity inside the bladder model, which is not currently possible with 3D Dynamic MRI.
Collapse
Affiliation(s)
- James Rice
- Department of Mechanical Engineering, University of Wisconsin–Madison, Madison, WI 53705;Department of Radiology, University of Wisconsin–Madison, Madison, WI 53705
- University of Wisconsin–Madison
| | - Wade Bushman
- Department of Urology, University of Wisconsin–Madison, Madison, WI 53705
- University of Wisconsin–Madison
| | - Alejandro Roldán-Alzate
- Department of Radiology, University of Wisconsin–Madison, Madison, WI 53705;Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53705
| |
Collapse
|
3
|
Hejčl A, Brunátová J, Švihlová H, Víteček J, Wünschová AV, Sejkorová A, Stratilová MH, Radovnický T, Sameš M, Hron J. Rupture point is associated with divergent hemodynamics in intracranial aneurysms. Front Neurol 2024; 15:1364105. [PMID: 38831781 PMCID: PMC11146371 DOI: 10.3389/fneur.2024.1364105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Background Understanding the risk factors leading to intracranial aneurysm (IA) rupture have still not been fully clarified. They are vital for proper medical guidance of patients harboring unruptured IAs. Clarifying the hemodynamics associated with the point of rupture could help could provide useful information about some of the risk factors. Thus far, few studies have studied this issue with often diverging conclusions. Methods We identified a point of rupture in patients operated for an IAs during surgery, using a combination of preoperative computed tomography (CT) and computed tomography angiography (CTA). Hemodynamic parameters were calculated both for the aneurysm sac as a whole and the point of rupture. In two cases, the results of CFD were compared with those of the experiment using particle image velocimetry (PIV). Results We were able to identify 6 aneurysms with a well-demarcated point of rupture. In four aneurysms, the rupture point was near the vortex with low wall shear stress (WSS) and high oscillatory shear index (OSI). In one case, the rupture point was in the flow jet with high WSS. In the last case, the rupture point was in the significant bleb and no specific hemodynamic parameters were found. The CFD results were verified in the PIV part of the study. Conclusion Our study shows that different hemodynamic scenarios are associated with the site of IA rupture. The numerical simulations were confirmed by laboratory models. This study further supports the hypothesis that various pathological pathways may lead to aneurysm wall damage resulting in its rupture.
Collapse
Affiliation(s)
- Aleš Hejčl
- Department of Neurosurgery, Masaryk Hospital, J. E. Purkyne University, Ústí nad Labem, Czechia
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Jana Brunátová
- Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czechia
- Faculty of Science and Engineering, Bernoulli Institute, University of Groningen, Groningen, Netherlands
| | - Helena Švihlová
- Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czechia
| | - Jan Víteček
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
- Department of Biochemistry, Faculty of Medicine, Masaryk University Brno, Brno, Czechia
| | | | - Alena Sejkorová
- Department of Neurosurgery, Masaryk Hospital, J. E. Purkyne University, Ústí nad Labem, Czechia
| | - Mária Hundža Stratilová
- Department of Neurosurgery, Masaryk Hospital, J. E. Purkyne University, Ústí nad Labem, Czechia
| | - Tomáš Radovnický
- Department of Neurosurgery, Masaryk Hospital, J. E. Purkyne University, Ústí nad Labem, Czechia
| | - Martin Sameš
- Department of Neurosurgery, Masaryk Hospital, J. E. Purkyne University, Ústí nad Labem, Czechia
| | - Jaroslav Hron
- Faculty of Mathematics and Physics, Mathematical Institute, Charles University, Prague, Czechia
| |
Collapse
|
4
|
Korte J, Klopp ES, Berg P. Multi-Dimensional Modeling of Cerebral Hemodynamics: A Systematic Review. Bioengineering (Basel) 2024; 11:72. [PMID: 38247949 PMCID: PMC10813503 DOI: 10.3390/bioengineering11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
The Circle of Willis (CoW) describes the arterial system in the human brain enabling the neurovascular blood supply. Neurovascular diseases like intracranial aneurysms (IAs) can occur within the CoW and carry the risk of rupture, which can lead to subarachnoid hemorrhage. The assessment of hemodynamic information in these pathologies is crucial for their understanding regarding detection, diagnosis and treatment. Multi-dimensional in silico approaches exist to evaluate these hemodynamics based on patient-specific input data. The approaches comprise low-scale (zero-dimensional, one-dimensional) and high-scale (three-dimensional) models as well as multi-scale coupled models. The input data can be derived from medical imaging, numerical models, literature-based assumptions or from measurements within healthy subjects. Thus, the most realistic description of neurovascular hemodynamics is still controversial. Within this systematic review, first, the models of the three scales (0D, 1D, 3D) and second, the multi-scale models, which are coupled versions of the three scales, were discussed. Current best practices in describing neurovascular hemodynamics most realistically and their clinical applicablility were elucidated. The performance of 3D simulation entails high computational expenses, which could be reduced by analyzing solely the region of interest in detail. Medical imaging to establish patient-specific boundary conditions is usually rare, and thus, lower dimensional models provide a realistic mimicking of the surrounding hemodynamics. Multi-scale coupling, however, is computationally expensive as well, especially when taking all dimensions into account. In conclusion, the 0D-1D-3D multi-scale approach provides the most realistic outcome; nevertheless, it is least applicable. A 1D-3D multi-scale model can be considered regarding a beneficial trade-off between realistic results and applicable performance.
Collapse
Affiliation(s)
- Jana Korte
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, 39106 Magdeburg, Germany
| | - Ehlar Sophie Klopp
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Department of Medical Engineering, University of Magdeburg, 39106 Magdeburg, Germany
| | - Philipp Berg
- Research Campus STIMULATE, University of Magdeburg, 39106 Magdeburg, Germany
- Department of Medical Engineering, University of Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
5
|
Niemann A, Tulamo R, Netti E, Preim B, Berg P, Cebral J, Robertson A, Saalfeld S. Multimodal exploration of the intracranial aneurysm wall. Int J Comput Assist Radiol Surg 2023; 18:2243-2252. [PMID: 36877287 PMCID: PMC10480333 DOI: 10.1007/s11548-023-02850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
PURPOSE Intracranial aneurysms (IAs) are pathological changes of the intracranial vessel wall, although clinical image data can only show the vessel lumen. Histology can provide wall information but is typically restricted to ex vivo 2D slices where the shape of the tissue is altered. METHODS We developed a visual exploration pipeline for a comprehensive view of an IA. We extract multimodal information (like stain classification and segmentation of histologic images) and combine them via 2D to 3D mapping and virtual inflation of deformed tissue. Histological data, including four stains, micro-CT data and segmented calcifications as well as hemodynamic information like wall shear stress (WSS), are combined with the 3D model of the resected aneurysm. RESULTS Calcifications were mostly present in the tissue part with increased WSS. In the 3D model, an area of increased wall thickness was identified and correlated to histology, where the Oil red O (ORO) stained images showed a lipid accumulation and the alpha-smooth muscle actin (aSMA) stained images showed a slight loss of muscle cells. CONCLUSION Our visual exploration pipeline combines multimodal information about the aneurysm wall to improve the understanding of wall changes and IA development. The user can identify regions and correlate how hemodynamic forces, e.g. WSS, are reflected by histological structures of the vessel wall, wall thickness and calcifications.
Collapse
Affiliation(s)
- Annika Niemann
- Department of Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany
- STIMULATE Research Campus, Magdeburg, Germany
| | - Riikka Tulamo
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eliisa Netti
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bernhard Preim
- Department of Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany
- STIMULATE Research Campus, Magdeburg, Germany
| | - Philipp Berg
- STIMULATE Research Campus, Magdeburg, Germany
- Department of Medical Engineering, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Juan Cebral
- Computational Hemodynamics Lab, Georg Mason University, Fairfax, USA
| | - Anne Robertson
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, USA
| | - Sylvia Saalfeld
- Department of Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany.
- STIMULATE Research Campus, Magdeburg, Germany.
| |
Collapse
|
6
|
Sache A, Reymond P, Brina O, Jung B, Farhat M, Vargas MI. Near-wall hemodynamic parameters quantification in in vitro intracranial aneurysms with 7 T PC-MRI. MAGMA (NEW YORK, N.Y.) 2023; 36:295-308. [PMID: 37072539 PMCID: PMC10140017 DOI: 10.1007/s10334-023-01082-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVE Wall shear stress (WSS) and its derived spatiotemporal parameters have proven to play a major role on intracranial aneurysms (IAs) growth and rupture. This study aims to demonstrate how ultra-high field (UHF) 7 T phase contrast magnetic resonance imaging (PC-MRI) coupled with advanced image acceleration techniques allows a highly resolved visualization of near-wall hemodynamic parameters patterns in in vitro IAs, paving the way for more robust risk assessment of their growth and rupture. MATERIALS AND METHODS We performed pulsatile flow measurements inside three in vitro models of patient-specific IAs using 7 T PC-MRI. To this end, we built an MRI-compatible test bench, which faithfully reproduced a typical physiological intracranial flow rate in the models. RESULTS The ultra-high field 7 T images revealed WSS patterns with high spatiotemporal resolution. Interestingly, the high oscillatory shear index values were found in the core of low WSS vortical structures and in flow stream intersecting regions. In contrast, maxima of WSS occurred around the impinging jet sites. CONCLUSIONS We showed that the elevated signal-to-noise ratio arising from 7 T PC-MRI enabled to resolve high and low WSS patterns with a high degree of detail.
Collapse
Affiliation(s)
- Antoine Sache
- Department of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Philippe Reymond
- Division of Neuroradiology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Olivier Brina
- Division of Neuroradiology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| | - Bernd Jung
- Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mohamed Farhat
- Department of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maria Isabel Vargas
- Division of Neuroradiology, Geneva University Hospital, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Yi H, Yang Z, Johnson M, Bramlage L, Ludwig B. Hemodynamic characteristics in a cerebral aneurysm model using non-Newtonian blood analogues. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2022; 34:103101. [PMID: 36212224 PMCID: PMC9533395 DOI: 10.1063/5.0118097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
This study aims to develop an experimentally validated computational fluid dynamics (CFD) model to estimate hemodynamic characteristics in cerebral aneurysms (CAs) using non-Newtonian blood analogues. Blood viscosities varying with shear rates were measured under four temperatures first, which serves as the reference for the generation of blood analogues. Using the blood analogue, particle image velocimetry (PIV) measurements were conducted to quantify flow characteristics in a CA model. Then, using the identical blood properties in the experiment, CFD simulations were executed to quantify the flow patterns, which were used to compare with the PIV counterpart. Additionally, hemodynamic characteristics in the simplified Newtonian and non-Newtonian models were quantified and compared using the experimentally validated CFD model. Results showed the proposed non-Newtonian viscosity model can predict blood shear-thinning properties accurately under varying temperatures and shear rates. Another developed viscosity model based on the blood analogue can well represent blood rheological properties. The comparisons in flow characteristics show good agreements between PIV and CFD, demonstrating the developed CFD model is qualified to investigate hemodynamic factors within CAs. Furthermore, results show the differences of absolute values were insignificant between Newtonian and non-Newtonian fluids in the distributions of wall shear stress (WSS) and oscillatory shear index (OSI) on arterial walls. However, not only does the simplified Newtonian model underestimate WSS and OSI in most regions of the aneurysmal sac, but it also makes mistakes in identifying the high OSI regions on the sac surface, which may mislead the hemodynamic assessment on the pathophysiology of CAs.
Collapse
Affiliation(s)
- Hang Yi
- Department of Mechanical and Material Engineering, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, USA
| | - Zifeng Yang
- Department of Mechanical and Material Engineering, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, USA
| | - Mark Johnson
- Department of Mechanical and Material Engineering, Wright State University, 3640 Colonel Glenn Hwy., Dayton, Ohio 45435, USA
| | - Luke Bramlage
- Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | |
Collapse
|
8
|
Effects of Pulsatile Flow Rate and Shunt Ratio in Bifurcated Distal Arteries on Hemodynamic Characteristics Involved in Two Patient-Specific Internal Carotid Artery Sidewall Aneurysms: A Numerical Study. Bioengineering (Basel) 2022; 9:bioengineering9070326. [PMID: 35877376 PMCID: PMC9311626 DOI: 10.3390/bioengineering9070326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 01/08/2023] Open
Abstract
The pulsatile flow rate (PFR) in the cerebral artery system and shunt ratios in bifurcated arteries are two patient-specific parameters that may affect the hemodynamic characteristics in the pathobiology of cerebral aneurysms, which needs to be identified comprehensively. Accordingly, a systematic study was employed to study the effects of pulsatile flow rate (i.e., PFR−I, PFR−II, and PFR−III) and shunt ratio (i.e., 75:25 and 64:36) in bifurcated distal arteries, and transient cardiac pulsatile waveform on hemodynamic patterns in two internal carotid artery sidewall aneurysm models using computational fluid dynamics (CFD) modeling. Numerical results indicate that larger PFRs can cause higher wall shear stress (WSS) in some local regions of the aneurysmal dome that may increase the probability of small/secondary aneurysm generation than under smaller PFRs. The low WSS and relatively high oscillatory shear index (OSI) could appear under a smaller PFR, increasing the potential risk of aneurysmal sac growth and rupture. However, the variances in PFRs and bifurcated shunt ratios have rare impacts on the time-average pressure (TAP) distributions on the aneurysmal sac, although a higher PFR can contribute more to the pressure increase in the ICASA−1 dome due to the relatively stronger impingement by the redirected bloodstream than in ICASA−2. CFD simulations also show that the variances of shunt ratios in bifurcated distal arteries have rare impacts on the hemodynamic characteristics in the sacs, mainly because the bifurcated location is not close enough to the sac in present models. Furthermore, it has been found that the vortex location plays a major role in the temporal and spatial distribution of the WSS on the luminal wall, varying significantly with the cardiac period.
Collapse
|
9
|
Fluid Flow and Structural Numerical Analysis of a Cerebral Aneurysm Model. FLUIDS 2022. [DOI: 10.3390/fluids7030100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intracranial aneurysms (IA) are dilations of the cerebral arteries and, in most cases, have no symptoms. However, it is a very serious pathology, with a high mortality rate after rupture. Several studies have been focused only on the hemodynamics of the flow within the IA. However, besides the effect of the flow, the development and rupture of the IA are also associated with a combination of other factors such as the wall mechanical behavior. Thus, the objective of this work was to analyze, in addition to the flow behavior, the biomechanical behavior of the aneurysm wall. For this, CFD simulations were performed for different Reynolds numbers (1, 100, 500 and 1000) and for two different rheological models (Newtonian and Carreau). Subsequently, the pressure values of the fluid simulations were exported to the structural simulations in order to qualitatively observe the deformations, strains, normal stresses and shear stress generated in the channel wall. For the structural simulations, a hyperelastic constitutive model (5-parameter Mooney–Rivlin) was used. The results show that with the increase in the Reynolds number (Re), the recirculation phenomenon is more pronounced, which is not seen for Re = 1. The higher the Re, the higher the strain, displacement, normal and shear stresses values.
Collapse
|
10
|
Isoda H, Fukuyama A. Quality Control for 4D Flow MR Imaging. Magn Reson Med Sci 2022; 21:278-292. [PMID: 35197395 PMCID: PMC9680545 DOI: 10.2463/mrms.rev.2021-0165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 01/06/2023] Open
Abstract
In recent years, 4D flow MRI has become increasingly important in clinical applications for the blood vessels in the whole body, heart, and cerebrospinal fluid. 4D flow MRI has advantages over 2D cine phase-contrast (PC) MRI in that any targeted area of interest can be analyzed post-hoc, but there are some factors to be considered, such as ensuring measurement accuracy, a long imaging time and post-processing complexity, and interobserver variability.Due to the partial volume phenomenon caused by low spatial and temporal resolutions, the accuracy of flow measurement in 4D flow MRI is reduced. For spatial resolution, it is recommended to include at least four voxels in the vessel of interest, and if possible, six voxels. In large vessels such as the aorta, large voxels can be secured and SNR can be maintained, but in small cerebral vessels, SNR is reduced, resulting in reduced accuracy. A temporal resolution of less than 40 ms is recommended. The velocity-to-noise ratio (VNR) of low-velocity blood flow is low, resulting in poor measurement accuracy. The use of dual velocity encoding (VENC) or multi-VENC is recommended to avoid velocity wrap around and to increase VNR. In order to maintain sufficient spatio-temporal resolution, a longer imaging time is required, leading to potential patient movement during examination and a corresponding decrease in measurement accuracy.For the clinical application of new technologies, including various acceleration techniques, in vitro and in vivo accuracy verification based on existing accuracy-validated 2D cine PC MRI and 4D flow MRI, as well as accuracy verification on the conservation of mass' principle, should be performed, and intraobserver repeatability, interobserver reproducibility, and test-retest reproducibility should be checked.
Collapse
Affiliation(s)
- Haruo Isoda
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
- Biomedical Imaging Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Atsushi Fukuyama
- Faculty of Health Sciences, Department of Radiological Sciences, Japan Healthcare University, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Pravdivtseva MS, Gaidzik F, Berg P, Ulloa P, Larsen N, Jansen O, Hövener JB, Salehi Ravesh M. Influence of Spatial Resolution and Compressed SENSE Acceleration Factor on Flow Quantification with 4D Flow MRI at 3 Tesla. Tomography 2022; 8:457-478. [PMID: 35202203 PMCID: PMC8880336 DOI: 10.3390/tomography8010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
Four-dimensional (4D) flow MRI allows quantifying flow in blood vessels–non invasively and in vivo. The clinical use of 4D flow MRI in small vessels, however, is hampered by long examination times and limited spatial resolution. Compressed SENSE (CS-SENSE) is a technique that can accelerate 4D flow dramatically. Here, we investigated the effect of spatial resolution and CS acceleration on flow measurements by using 4D flow MRI in small vessels in vitro at 3 T. We compared the flow in silicon tubes (inner diameters of 2, 3, 4, and 5 mm) measured with 4D flow MRI, accelerated with four CS factors (CS = 2.5, 4.5, 6.5, and 13) and three voxel sizes (0.5, 1, and 1.5 mm3) to 2D flow MRI and a flow sensor. Additionally, the velocity field in an aneurysm model acquired with 4D flow MRI was compared to the one simulated with computational fluid dynamics (CFD). A strong correlation was observed between flow sensor, 2D flow MRI, and 4D flow MRI (rho > 0.94). The use of fewer than seven voxels per vessel diameter (nROI) resulted in an overestimation of flow in more than 5% of flow measured with 2D flow MRI. A negative correlation (rho = −0.81) between flow error and nROI were found for CS = 2.5 and 4.5. No statistically significant impact of CS factor on differences in flow rates was observed. However, a trend of increased flow error with increased CS factor was observed. In an aneurysm model, the peak velocity and stagnation zone were detected by CFD and all 4D flow MRI variants. The velocity difference error in the aneurysm sac did not exceed 11% for CS = 4.5 in comparison to CS = 2.5 for all spatial resolutions. Therefore, CS factors from 2.5–4.5 can appear suitable to improve spatial or temporal resolution for accurate quantification of flow rate and velocity. We encourage reporting the number of voxels per vessel diameter to standardize 4D flow MRI protocols.
Collapse
Affiliation(s)
- Mariya S. Pravdivtseva
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, 24105 Kiel, Germany; (P.U.); (J.-B.H.); (M.S.R.)
- Correspondence: ; Tel.: +49-(0)-431-500-16-533
| | - Franziska Gaidzik
- Department of Fluid Dynamics and Technical Flows, Research Campus STIMULATE, Magdeburg University, 39106 Magdeburg, Germany; (F.G.); (P.B.)
| | - Philipp Berg
- Department of Fluid Dynamics and Technical Flows, Research Campus STIMULATE, Magdeburg University, 39106 Magdeburg, Germany; (F.G.); (P.B.)
| | - Patricia Ulloa
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, 24105 Kiel, Germany; (P.U.); (J.-B.H.); (M.S.R.)
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, 24105 Kiel, Germany; (N.L.); (O.J.)
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, 24105 Kiel, Germany; (N.L.); (O.J.)
| | - Jan-Bernd Hövener
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, 24105 Kiel, Germany; (P.U.); (J.-B.H.); (M.S.R.)
| | - Mona Salehi Ravesh
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel University, 24105 Kiel, Germany; (P.U.); (J.-B.H.); (M.S.R.)
| |
Collapse
|
12
|
Saalfeld S, Stahl J, Korte J, Miller Marsh LM, Preim B, Beuing O, Cherednychenko Y, Behme D, Berg P. Can Endovascular Treatment of Fusiform Intracranial Aneurysms Restore the Healthy Hemodynamic Environment?–A Virtual Pilot Study. Front Neurol 2022; 12:771694. [PMID: 35140672 PMCID: PMC8818669 DOI: 10.3389/fneur.2021.771694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Numerous studies assess intracranial aneurysm rupture risk based on morphological and hemodynamic parameter analysis in addition to clinical information such as aneurysm localization, age, and sex. However, intracranial aneurysms mostly occur with a saccular shape located either lateral to the parent artery or at a bifurcation. In contrast, fusiform intracranial aneurysms (FIAs), i.e., aneurysms with a non-saccular, dilated form, occur in approximately 3–13% of all cases and therefore have not yet been as thoroughly studied. To improve the understanding of FIA hemodynamics, this pilot study contains morphological analyses and image-based blood flow simulations in three patient-specific cases. For a precise and realistic comparison to the pre-pathological state, each dilation was manually removed and the time-dependent blood flow simulations were repeated. Additionally, a validated fast virtual stenting approach was applied to evaluate the effect of virtual endovascular flow-diverter deployment focusing on relevant hemodynamic quantities. For two of the three patients, post-interventional information was available and included in the analysis. The results of this numerical pilot study indicate that complex flow structures, i.e., helical flow phenomena and the presence of high oscillating flow features, predominantly occur in FIAs with morphologically differing appearances. Due to the investigation of the individual healthy states, the original flow environment could be restored which serves as a reference for the virtual treatment target. It was shown that the realistic deployment led to a considerable stabilization of the individual hemodynamics in all cases. Furthermore, a quantification of the stent-induced therapy effect became feasible for the treating physician. The results of the morphological and hemodynamic analyses in this pilot study show that virtual stenting can be used in FIAs to quantify the effect of the planned endovascular treatment.
Collapse
Affiliation(s)
- Sylvia Saalfeld
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
- *Correspondence: Sylvia Saalfeld
| | - Janneck Stahl
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
| | - Jana Korte
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Laurel Morgan Miller Marsh
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Bernhard Preim
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Oliver Beuing
- Department of Radiology, AMEOS Hospital Bernburg, Bernburg, Germany
| | - Yurii Cherednychenko
- Endovascular Centre, Dnipropetrovsk Regional Clinical Hospital named after I.I. Mechnikov, Dnipro, Ukraine
| | - Daniel Behme
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Neuroradiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Philipp Berg
- Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
13
|
Zhang J, Brindise MC, Rothenberger SM, Markl M, Rayz VL, Vlachos PP. A multi-modality approach for enhancing 4D flow magnetic resonance imaging via sparse representation. J R Soc Interface 2022; 19:20210751. [PMID: 35042385 PMCID: PMC8767185 DOI: 10.1098/rsif.2021.0751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This work evaluates and applies a multi-modality approach to enhance blood flow measurements and haemodynamic analysis with phase-contrast magnetic resonance imaging (4D flow MRI) in cerebral aneurysms (CAs). Using a library of high-resolution velocity fields from patient-specific computational fluid dynamic simulations and in vitro particle tracking velocimetry measurements, the flow field of 4D flow MRI data is reconstructed as the sparse representation of the library. The method was evaluated with synthetic 4D flow MRI data in two CAs. The reconstruction enhanced the spatial resolution and velocity accuracy of the synthetic MRI data, leading to reliable pressure and wall shear stress (WSS) evaluation. The method was applied on in vivo 4D flow MRI data acquired in the same CAs. The reconstruction increased the velocity and WSS by 6-13% and 39-61%, respectively, suggesting that the accuracy of these quantities was improved since the raw MRI data underestimated the velocity and WSS by 10-20% and 40-50%, respectively. The computed pressure fields from the reconstructed data were consistent with the observed flow structures. The results suggest that using the sparse representation flow reconstruction with in vivo 4D flow MRI enhances blood flow measurement and haemodynamic analysis.
Collapse
Affiliation(s)
- Jiacheng Zhang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Melissa C. Brindise
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Sean M. Rothenberger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Michael Markl
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Vitaliy L. Rayz
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Pavlos P. Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
14
|
Sprengel U, Saalfeld P, Stahl J, Mittenentzwei S, Drittel M, Behrendt B, Kaneko N, Behme D, Berg P, Preim B, Saalfeld S. Virtual embolization for treatment support of intracranial AVMs using an interactive desktop and VR application. Int J Comput Assist Radiol Surg 2021; 16:2119-2127. [PMID: 34806143 PMCID: PMC8616893 DOI: 10.1007/s11548-021-02532-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/03/2021] [Indexed: 10/30/2022]
Abstract
PURPOSE The treatment of intracranial arteriovenous malformations (AVM) is challenging due to their complex anatomy. For this vessel pathology, arteries are directly linked to veins without a capillary bed in between. For endovascular treatment, embolization is carried out, where the arteries that supply the AVM are consecutively blocked. A virtual embolization could support the medical expert in treatment planning. METHOD We designed and implemented an immersive VR application that allows the visualization of the simulated blood flow by displaying millions of particles. Furthermore, the user can interactively block or unblock arteries that supply the AVM and analyze the altered blood flow based on pre-computed simulations. RESULTS In a pilot study, the application was successfully adapted to three patient-specific cases. We performed a qualitative evaluation with two experienced neuroradiologist who regularly conduct AVM embolizations. The feature of virtually blocking or unblocking feeders was rated highly beneficial, and a desire for the inclusion of quantitative information was formulated. CONCLUSION The presented application allows for virtual embolization and interactive blood flow visualization in an immersive virtual reality environment. It could serve as useful addition for treatment planning and education in clinical practice, supporting the understanding of AVM topology as well as understanding the influence of the AVM's feeding arteries.
Collapse
Affiliation(s)
- Ulrike Sprengel
- Department of Simulation and Graphics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Patrick Saalfeld
- Department of Simulation and Graphics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Janneck Stahl
- Department of Fluid Dynamics and Technical Flows, Otto-von-Guericke University Magdeburg, Forschungscampus STIMULATE, Magdeburg, Germany
| | - Sarah Mittenentzwei
- Department of Simulation and Graphics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Moritz Drittel
- Department of Simulation and Graphics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Benjamin Behrendt
- Department of Simulation and Graphics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Naoki Kaneko
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Daniel Behme
- Department of Neuroradiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Philipp Berg
- Department of Fluid Dynamics and Technical Flows, Otto-von-Guericke University Magdeburg, Forschungscampus STIMULATE, Magdeburg, Germany
| | - Bernhard Preim
- Department of Simulation and Graphics, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Sylvia Saalfeld
- Department of Simulation and Graphics, Otto-von-Guericke University Magdeburg, Forschungscampus STIMULATE, Magdeburg, Germany
| |
Collapse
|
15
|
Wu X, Gürzing S, Schinkel C, Toussaint M, Perinajová R, van Ooij P, Kenjereš S. Hemodynamic Study of a Patient-Specific Intracranial Aneurysm: Comparative Assessment of Tomographic PIV, Stereoscopic PIV, In Vivo MRI and Computational Fluid Dynamics. Cardiovasc Eng Technol 2021; 13:428-442. [PMID: 34750782 PMCID: PMC9197918 DOI: 10.1007/s13239-021-00583-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
Introduction Wall shear stress (WSS) is associated with the growth and rupture of an intracranial aneurysm. To reveal their underlying connections, many image-based computational fluid dynamics (CFD) studies have been conducted. However, the methodological validations using both in vivo medical imaging and in vitro optical flow measurements were rarely accompanied in such studies. Methods In the present study, we performed a comparative assessment on the hemodynamics of a patient-specific intracranial saccular aneurysm using in vivo 4D Flow MRI, in silico CFD, in vitro stereoscopic and tomographic particle imaging velocimetry (Stereo-PIV and Tomo-PIV) techniques. PIV experiments and CFD were conducted under steady state corresponding to the peak systole of 4D Flow MRI. Results The results showed that all modalities provided similar flow features and overall surface distribution of WSS. However, a large variation in the absolute WSS values was found. 4D Flow MRI estimated a 2- to 4-fold lower peak WSS (3.99 Pa) and a 1.6- to 2-fold lower mean WSS (0.94 Pa) than Tomo-PIV, Stereo-PIV, and CFD. Bland-Altman plots of WSS showed that the differences between PIV-/CFD-based WSS and 4D Flow MRI-based WSS increase with higher WSS magnitude. Such proportional trend was absent in the Bland-Altman comparison of velocity where the resolutions of PIV and CFD datasets were matched to 4D Flow MRI. We also found that because of superior resolution in the out-of-plane direction, WSS estimation by Tomo-PIV was higher than Stereo-PIV. Conclusions Our results indicated that the differences in spatial resolution could be the main contributor to the discrepancies between each modality. The findings of this study suggest that with current techniques, care should be taken when using absolute WSS values to perform a quantitative risk analysis of aneurysm rupture. Supplementary Information The online version contains supplementary material available at 10.1007/s13239-021-00583-2.
Collapse
Affiliation(s)
- Xiaolin Wu
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.,J. M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands
| | - Stefanie Gürzing
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Christiaan Schinkel
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Merel Toussaint
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Romana Perinajová
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.,J. M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Saša Kenjereš
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands. .,J. M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands.
| |
Collapse
|
16
|
Thurgood H, Witte R, Laksari K. 4D Reconstruction and Identification of Carotid Artery Stenosis Utilizing a Novel Pulsatile Ultrasound Phantom. Curr Protoc 2021; 1:e264. [PMID: 34679245 DOI: 10.1002/cpz1.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As a major application focus of vascular ultrasonography, the carotid artery has long been the subject of phantom design and procedure focus. It is therefore important to devise procedures that are minimally invasive and informative, initially using a physiologically accurate anthropomorphic phantom to validate the methodology. In this article, a novel phantom design protocol is presented that enables the efficient production of a pulsatile ultrasound phantom consisting of soft and vascular tissue mimics, as well as a blood surrogate fluid. These components when combined give the phantom high acoustic compatibility and lifelike mechanical properties. The phantom was developed using "at-home" purchasable components and 3D printing technology. The phantom was subsequently used to develop a 4D reconstruction algorithm of the pulsing vessel in MATLAB. In pattern with recent developments in medical imaging, the 4D reconstruction enables clinicians to view vessel wall motion in a 3D space without the need for manual intervention. The reconstruction algorithm also produces measured inner luminal areas and vessel wall thickness, providing further information relating to structural properties and stenosis, as well as elastic properties such as arterial stiffness, which could provide helpful markers for disease diagnosis. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Constructing a pulsatile ultrasound phantom model Support Protocol: Creating a vascular mimic mold Basic Protocol 2: Creating a 4D reconstruction from ultrasound frames.
Collapse
Affiliation(s)
- Harrison Thurgood
- Deptartment of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona
| | - Russell Witte
- Deptartment of Biomedical Engineering, University of Arizona, Tucson, Arizona.,Deptartment of Medical Imaging, University of Arizona, Tucson, Arizona
| | - Kaveh Laksari
- Deptartment of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona.,Deptartment of Biomedical Engineering, University of Arizona, Tucson, Arizona
| |
Collapse
|
17
|
Huang G, Sun Y, Li J, Xie Z, Tong X. Therapeutic Effects of Microsurgical Clipping at Different Time Points on Intracranial Aneurysm and Prognostic Factors. Artery Res 2021. [DOI: 10.1007/s44200-021-00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Microsurgical clipping is effective for treating early rupture hemorrhage in intracranial aneurysm (IA) patients. We aimed to evaluate the therapeutic effects of microsurgical clipping at different time points on IA and to explore prognostic factors.
Methods
A total of 102 eligible patients were divided into good prognosis group (n = 87) and poor prognosis group (n = 15) according to Glasgow Outcome Scale (GOS) scores at discharge. The effects of microsurgical clipping at different time points (within 24 h, 48 h and 72 h) were compared. The incidence rates of postoperative complications in patients with different Hunt–Hess grades were compared. Prognostic factors were determined by multivariate logistic regression analysis. The nomogram prediction model was established based on independent risk factors and validated.
Results
The good recovery and success rates of complete aneurysm clipping were significantly higher in patients undergoing surgery within 24 h after rupture. The incidence rate of complications was significantly higher in patients with Hunt–Hess grade IV. Good and poor prognosis groups had significantly different age, history of hypertension, preoperative intracranial hematoma volume, aneurysm size, preoperative Hunt–Hess grade, later surgery, postoperative complications and National Institute of Health Stroke Scale (NIHSS) score, as independent risk factors for prognosis. The nomogram model predicted that poor prognosis rate was 14.71%.
Conclusion
Timing (within 24 h after rupture) microsurgical clipping benefits the prognosis of IA patients. Age, history of hypertension, preoperative intracranial hematoma volume, aneurysm size, preoperative Hunt–Hess grade, later surgery, postoperative complications and NIHSS score are independent risk factors for poor prognosis.
Collapse
|
18
|
Bao Q, Meng X, Hu M, Xing J, Jin D, Liu H, Jiang J, Yin Y. Simulation analysis of aneurysm embolization surgery: Hemorheology of aneurysms with different embolization rates (CTA). Biomed Mater Eng 2021; 32:295-308. [PMID: 33998529 DOI: 10.3233/bme-211225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Embolization degree acts as an important factor affecting recurrence of aneurysm. OBJECTIVE To analyze the role of hemodynamics parameters of different degrees of embolization in the occurrence, development and post-treatment of aneurysms, and to determine the specific factors causing the occurrence and recurrence of aneurysms after hemodynamics treatment. Our study provides a theoretical basis for the prevention and treatment of aneurysms. METHODS Computed tomography angiography data of a patient with cerebral aneurysm was used to model 0%, 24%, 52%, 84% and 100% of endovascular embolization, respectively. The time average wall shear stress, time average wall shear stress, oscillatory shear index, hemodynamics formation index and relative retentive time were used to analyze the changes of hemodynamics indexes in different embolic models. RESULTS With the increase of embolic rate, the values of time average wall shear stress, time average wall shear stress grade and aneurysm index formation gradually increased, and the values of relative retention time gradually decreased. Oscillatory shear index was higher in patients with incomplete embolization and decreased in patients with complete embolization. CONCLUSIONS As the degree of embolization increased, the blood flow tended to stabilize, reducing the risk of cerebral aneurysm rupture, and finding that the wall of the vessel junction was susceptible to injury.
Collapse
Affiliation(s)
- Quan Bao
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| | - Xin Meng
- Department of Image, No. 3 Hospital Affiliated with Qiqihaer Medical University, Qiqihaer, China
| | - Mingcheng Hu
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| | - Jian Xing
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| | - Dan Jin
- Department of Image, No. 2 Hospital of Mudanjiang, Mudanjiang, China
| | - He Liu
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| | - Jie Jiang
- Department of Infectious Disease, Mudanjiang Forestry Center Hospital, Mudanjiang, China
| | - Yanwei Yin
- Department of Image, Hongqi Hospital Affiliated with Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
19
|
Pravdivtseva MS, Gaidzik F, Berg P, Hoffman C, Rivera-Rivera LA, Medero R, Bodart L, Roldan-Alzate A, Speidel MA, Johnson KM, Wieben O, Jansen O, Hövener JB, Larsen N. Pseudo-Enhancement in Intracranial Aneurysms on Black-Blood MRI: Effects of Flow Rate, Spatial Resolution, and Additional Flow Suppression. J Magn Reson Imaging 2021; 54:888-901. [PMID: 33694334 PMCID: PMC8403769 DOI: 10.1002/jmri.27587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Vessel-wall enhancement (VWE) on black-blood MRI (BB MRI) has been proposed as an imaging marker for a higher risk of rupture and associated with wall inflammation. Whether VWE is causally linked to inflammation or rather induced by flow phenomena has been a subject of debate. PURPOSE To study the effects of slow flow, spatial resolution, and motion-sensitized driven equilibrium (MSDE) preparation on signal intensities in BB MRI of patient-specific aneurysm flow models. STUDY TYPE Prospective. SUBJECTS/FLOW ANEURYSM MODEL/VIRTUAL VESSELS Aneurysm flow models based on 3D rotational angiography datasets of three patients with intracranial aneurysms were 3D printed and perfused at two different flow rates, with and without Gd-containing contrast agent. FIELD STRENGTH/SEQUENCE Variable refocusing flip angle 3D fast-spin echo sequence at 3 T with and without MSDE with three voxel sizes ((0.5 mm)3 , (0.7 mm)3 , and (0.9 mm)3 ); time-resolved with phase-contrast velocity-encoding 3D spoiled gradient echo sequence (4D flow MRI). ASSESSMENT Three independent observers performed a qualitative visual assessment of flow patterns and signal enhancement. Quantitative analysis included voxel-wise evaluation of signal intensities and magnitude velocity distributions in the aneurysm. STATISTICAL TESTS Kruskal-Wallis test, potential regressions. RESULTS A hyperintense signal in the lumen and adjacent to the aneurysm walls on BB MRI was colocalized with slow flow. Signal intensities increased by a factor of 2.56 ± 0.68 (P < 0.01) after administering Gd contrast. After Gd contrast administration, the signal was suppressed most in conjunction with high flows and with MSDE (2.41 ± 2.07 for slow flow without MSDE, and 0.87 ± 0.99 for high flow with MSDE). A clear result was not achieved by modifying the spatial resolution . DATA CONCLUSIONS Slow-flow phenomena contribute substantially to aneurysm enhancement and vary with MRI parameters. This should be considered in the clinical setting when assessing VWE in patients with an unruptured aneurysm. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Mariya S. Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University,Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Franziska Gaidzik
- Lab. of Fluid Dynamics and Technical Flows, Forschungscampus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Philipp Berg
- Lab. of Fluid Dynamics and Technical Flows, Forschungscampus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Carson Hoffman
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Leonardo A. Rivera-Rivera
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Rafael Medero
- Department of Mechanical Engineering and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Lindsay Bodart
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Alejandro Roldan-Alzate
- Department of Mechanical Engineering and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Michael A. Speidel
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Kevin M. Johnson
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Oliver Wieben
- Department of Medical Physics and Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, Madison, WI, United States
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
20
|
Integrating multi-fidelity blood flow data with reduced-order data assimilation. Comput Biol Med 2021; 135:104566. [PMID: 34157468 DOI: 10.1016/j.compbiomed.2021.104566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
High-fidelity patient-specific modeling of cardiovascular flows and hemodynamics is challenging. Direct blood flow measurement inside the body with in-vivo measurement modalities such as 4D flow magnetic resonance imaging (4D flow MRI) suffer from low resolution and acquisition noise. In-vitro experimental modeling and patient-specific computational fluid dynamics (CFD) models are subject to uncertainty in patient-specific boundary conditions and model parameters. Furthermore, collecting blood flow data in the near-wall region (e.g., wall shear stress) with experimental measurement modalities poses additional challenges. In this study, a computationally efficient data assimilation method called reduced-order modeling Kalman filter (ROM-KF) was proposed, which combined a sequential Kalman filter with reduced-order modeling using a linear model provided by dynamic mode decomposition (DMD). The goal of ROM-KF was to overcome low resolution and noise in experimental and uncertainty in CFD modeling of cardiovascular flows. The accuracy of the method was assessed with 1D Womersley flow, 2D idealized aneurysm, and 3D patient-specific cerebral aneurysm models. Synthetic experimental data were used to enable direct quantification of errors using benchmark datasets. The accuracy of ROM-KF in reconstructing near-wall hemodynamics was assessed by applying the method to problems where near-wall blood flow data were missing in the experimental dataset. The ROM-KF method provided blood flow data that were more accurate than the computational and synthetic experimental datasets and improved near-wall hemodynamics quantification.
Collapse
|
21
|
Pravdivtseva MS, Peschke E, Lindner T, Wodarg F, Hensler J, Gabbert D, Voges I, Berg P, Barker AJ, Jansen O, Hövener JB. 3D-printed, patient-specific intracranial aneurysm models: From clinical data to flow experiments with endovascular devices. Med Phys 2021; 48:1469-1484. [PMID: 33428778 DOI: 10.1002/mp.14714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Flow models of intracranial aneurysms (IAs) can be used to test new and existing endovascular treatments with flow modulation devices (FMDs). Additionally, 4D flow magnetic resonance imaging (MRI) offers the ability to measure hemodynamics. This way, the effect of FMDs can be determined noninvasively and compared to patient data. Here, we describe a cost-effective method for producing flow models to test the efficiency of FMDs with 4D flow MRI. METHODS The models were based on human radiological data (internal carotid and basilar arteries) and printed in 3D with stereolithography. The models were printed with three different printing layers (25, 50, and 100 µm thickness). To evaluate the models in vitro, 3D rotational angiography, time-of-flight MRI, and 4D flow MRI were employed. The flow and geometry of one model were compared with in vivo data. Two FMDs (FMD1 and FMD2) were deployed into two different IA models, and the effect on the flow was estimated by 4D flow MRI. RESULTS Models printed with different layer thicknesses exhibited similar flow and little geometric variation. The mean spatial difference between the vessel geometry measured in vivo and in vitro was 0.7 ± 1.1 mm. The main flow features, such as vortices in the IAs, were reproduced. The velocities in the aneurysms were similar in vivo and in vitro (mean velocity magnitude: 5.4 ± 7.6 and 7.7 ± 8.6 cm/s, maximum velocity magnitude: 72.5 and 55.1 cm/s). By deploying FMDs, the mean velocity was reduced in the IAs (from 8.3 ± 10 to 4.3 ± 9.32 cm/s for FMD1 and 9.9 ± 12.1 to 2.1 ± 5.6 cm/s for FMD2). CONCLUSIONS The presented method allows to produce neurovascular models in approx. 15 to 30 h. The resulting models were found to be geometrically accurate, reproducing the main flow patterns, and suitable for implanting FMDs as well as 4D flow MRI.
Collapse
Affiliation(s)
- Mariya S Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel, Germany.,Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany.,University of Kiel, Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel, Germany.,Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany.,University of Kiel, Kiel, Germany
| | - Thomas Lindner
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany.,Department of Diagnostic and Interventional Neuroradiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Fritz Wodarg
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Johannes Hensler
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Dominik Gabbert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Inga Voges
- Department of Congenital Heart Disease and Pediatric Cardiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Philipp Berg
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany.,Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Alex J Barker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Kiel, Germany.,Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany.,University of Kiel, Kiel, Germany
| |
Collapse
|
22
|
Hosseini SA, Berg P, Huang F, Roloff C, Janiga G, Thévenin D. Central moments multiple relaxation time LBM for hemodynamic simulations in intracranial aneurysms: An in-vitro validation study using PIV and PC-MRI. Comput Biol Med 2021; 131:104251. [PMID: 33581475 DOI: 10.1016/j.compbiomed.2021.104251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
The lattice Boltzmann method (LBM) has recently emerged as an efficient alternative to classical Navier-Stokes solvers. This is particularly true for hemodynamics in complex geometries. However, in its most basic formulation, i.e. with the so-called single relaxation time (SRT) collision operator, it has been observed to have a limited stability domain in the Courant/Fourier space, strongly constraining the minimum time-step and grid size. The development of improved collision models such as the multiple relaxation time (MRT) operator in central moments space has tremendously widened the stability domain, while allowing to overcome a number of other well-documented artifacts, therefore opening the door for simulations over a wider range of grid and time-step sizes. The present work focuses on implementing and validating a specific collision operator, the central Hermite moments multiple relaxation time model with the full expansion of the equilibrium distribution function, to simulate blood flows in intracranial aneurysms. The study further proceeds with a validation of the numerical model through different test-cases and against experimental measurements obtained via stereoscopic particle image velocimetry (PIV) and phase-contrast magnetic resonance imaging (PC-MRI). For a patient-specific aneurysm both PIV and PC-MRI agree fairly well with the simulation. Finally, low-resolution simulations were shown to be able to capture blood flow information with sufficient accuracy, as demonstrated through both qualitative and quantitative analysis of the flow field while leading to strongly reduced computation times. For instance in the case of the patient-specific configuration, increasing the grid-size by a factor of two led to a reduction of computation time by a factor of 14 with very good similarity indices still ranging from 0.83 to 0.88.
Collapse
Affiliation(s)
- Seyed Ali Hosseini
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", D-39106, Magdeburg, Germany; Department of Mechanical and Process Engineering, ETH Zürich, 8092, Zürich, Switzerland.
| | - Philipp Berg
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", D-39106, Magdeburg, Germany; Research Campus STIMULATE, University of Magdeburg "Otto von Guericke", D-39106, Magdeburg, Germany
| | - Feng Huang
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", D-39106, Magdeburg, Germany
| | - Christoph Roloff
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", D-39106, Magdeburg, Germany
| | - Gábor Janiga
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", D-39106, Magdeburg, Germany
| | - Dominique Thévenin
- Laboratory of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", D-39106, Magdeburg, Germany
| |
Collapse
|
23
|
Wüstenhagen C, John K, Langner S, Brede M, Grundmann S, Bruschewski M. CFD validation using in-vitro MRI velocity data - Methods for data matching and CFD error quantification. Comput Biol Med 2021; 131:104230. [PMID: 33545507 DOI: 10.1016/j.compbiomed.2021.104230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 11/26/2022]
Abstract
Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data.
Collapse
Affiliation(s)
- Carolin Wüstenhagen
- Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany
| | - Kristine John
- Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany
| | - Sönke Langner
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Martin Brede
- Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany
| | - Sven Grundmann
- Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany
| | - Martin Bruschewski
- Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany.
| |
Collapse
|
24
|
Tian X, Cai G, Zhi D, Fan K, Song ZL, Qiu B, Jia L, Gao R. A Transparent Vessel-on-a-Chip Device for Hemodynamic Analysis and Early Diagnosis of Intracranial Aneurysms by CFD and PC-MRI. ACS Sens 2020; 5:4064-4071. [PMID: 33289559 DOI: 10.1021/acssensors.0c02164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hemodynamics plays a critical role in early diagnosis and investigating the growth mechanism of intracranial aneurysms (IAs), which usually induce hemorrhagic stroke, serious neurological diseases, and even death. We developed a transparent blood vessel-on-a-chip (VOC) device for magnetic resonance imaging (MRI) to provide characteristic flow fields of early IAs as the reference for early diagnosis. This VOC device takes advantage of the transparent property to clearly exhibit the internal structure and identify the needless air bubbles in the biomimetic fluid experiment, which significantly affects the MRI image quality. Furthermore, the device was miniaturized and easily assembled with arbitrary direction using a 3D-printed scaffold in a radiofrequency coil. Computational fluid dynamics (CFD) simulations of the flow field were greatly consistent with those data from MRI. Both internal flow and wall shear stress (WSS) exhibited very low levels during the IA growth, thus leading to the growth and rupture of IAs. PC-MRI images can also provide a reasonable basis for the early diagnosis of IAs. Therefore, we believed that this proposed VOC-based MR imaging technique has great potential for early diagnostic of intracranial aneurysms.
Collapse
Affiliation(s)
- Xin Tian
- School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Medical Imaging and Neurology, Jincheng People’s Hospital, Jincheng 048000, China
| | - Guochao Cai
- School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Debo Zhi
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Ka Fan
- Department of Medical Imaging and Neurology, Jincheng People’s Hospital, Jincheng 048000, China
| | - Zhi-ling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bensheng Qiu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Longbin Jia
- Department of Medical Imaging and Neurology, Jincheng People’s Hospital, Jincheng 048000, China
| | - Rongke Gao
- School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
25
|
Fathi MF, Perez-Raya I, Baghaie A, Berg P, Janiga G, Arzani A, D'Souza RM. Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105729. [PMID: 33007592 DOI: 10.1016/j.cmpb.2020.105729] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Time resolved three-dimensional phase contrast magnetic resonance imaging (4D-Flow MRI) has been used to non-invasively measure blood velocities in the human vascular system. However, issues such as low spatio-temporal resolution, acquisition noise, velocity aliasing, and phase-offset artifacts have hampered its clinical application. In this research, we developed a purely data-driven method for super-resolution and denoising of 4D-Flow MRI. METHODS The flow velocities, pressure, and the MRI image magnitude are modeled as a patient-specific deep neural net (DNN). For training, 4D-Flow MRI images in the complex Cartesian space are used to impose data-fidelity. Physics of fluid flow is imposed through regularization. Creative loss function terms have been introduced to handle noise and super-resolution. The trained patient-specific DNN can be sampled to generate noise-free high-resolution flow images. The proposed method has been implemented using the TensorFlow DNN library and tested on numerical phantoms and validated in-vitro using high-resolution particle image velocitmetry (PIV) and 4D-Flow MRI experiments on transparent models subjected to pulsatile flow conditions. RESULTS In case of numerical phantoms, we were able to increase spatial resolution by a factor of 100 and temporal resolution by a factor of 5 compared to the simulated 4D-Flow MRI. There is an order of magnitude reduction of velocity normalized root mean square error (vNRMSE). In case of the in-vitro validation tests with PIV as reference, there is similar improvement in spatio-temporal resolution. Although the vNRMSE is reduced by 50%, the method is unable to negate a systematic bias with respect to the reference PIV that is introduced by the 4D-Flow MRI measurement. CONCLUSIONS This work has demonstrated the feasibility of using the readily available machinery of deep learning to enhance 4D-Flow MRI using a purely data-driven method. Unlike current state-of-the-art methods, the proposed method is agnostic to geometry and boundary conditions and therefore eliminates the need for tedious tasks such as accurate image segmentation for geometry, image registration, and estimation of boundary flow conditions. Arbitrary regions of interest can be selected for processing. This work will lead to user-friendly analysis tools that will enable quantitative hemodynamic analysis of vascular diseases in a clinical setting.
Collapse
Affiliation(s)
- Mojtaba F Fathi
- Dept. of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Isaac Perez-Raya
- Dept. of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ahmadreza Baghaie
- Dept. of Electrical and Computer Engineering, New York Institute of Technology, Long Island, NY, USA
| | - Philipp Berg
- Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg, Germany; Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Gabor Janiga
- Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg, Germany; Research Campus STIMULATE, University of Magdeburg, Magdeburg, Germany
| | - Amirhossein Arzani
- Dept. of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA
| | - Roshan M D'Souza
- Dept. of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
26
|
Advancement in the haemodynamic study of intracranial aneurysms by computational fluid dynamics. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Medero R, Ruedinger K, Rutkowski D, Johnson K, Roldán-Alzate A. In Vitro Assessment of Flow Variability in an Intracranial Aneurysm Model Using 4D Flow MRI and Tomographic PIV. Ann Biomed Eng 2020; 48:2484-2493. [PMID: 32524379 PMCID: PMC7821079 DOI: 10.1007/s10439-020-02543-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/01/2020] [Indexed: 01/10/2023]
Abstract
Aneurysm rupture has been suggested to be related to aneurysm geometry, morphology, and complex flow activity; therefore, understanding aneurysm-specific hemodynamics is crucial. 4D Flow MRI has been shown to be a feasible tool for assessing hemodynamics in intracranial aneurysms with high spatial resolution. However, it requires averaging over multiple heartbeats and cannot account for cycle-to-cycle hemodynamics variations. This study aimed to assess cycle-to-cycle flow dynamics variations in a patient-specific intracranial aneurysm model using tomographic particle image velocimetry (tomo-PIV) at a high image rate under pulsatile flow conditions. Time-resolved and time-averaged velocity flow fields within the aneurysm sac and estimations of wall shear stress (WSS) were compared with those from 4D Flow MRI. A one-way ANOVA showed a significant difference between cardiac cycles (p value < 0.0001); however, differences were not significant after PIV temporal and spatial resolution was matched to that of MRI (p value 0.9727). This comparison showed the spatial resolution to be the main contributor to assess cycle-to-cycle variability. Furthermore, the comparison with 4D Flow MRI between velocity components, streamlines, and estimated WSS showed good qualitative and quantitative agreement. This study showed the feasibility of patient-specific in-vitro experiments using tomo-PIV to assess 4D Flow MRI with high repeatability in the measurements.
Collapse
Affiliation(s)
- Rafael Medero
- Department of Mechanical Engineering, University of Wisconsin-Madison,Department of Radiology, University of Wisconsin-Madison
| | - Katrina Ruedinger
- Department of Biomedical Engineering, University of Wisconsin-Madison,School of Medicine and Public Health, University of Wisconsin-Madison
| | - David Rutkowski
- Department of Mechanical Engineering, University of Wisconsin-Madison,Department of Radiology, University of Wisconsin-Madison
| | - Kevin Johnson
- Department of Medical Physics, University of Wisconsin-Madison
| | - Alejandro Roldán-Alzate
- Department of Mechanical Engineering, University of Wisconsin-Madison,Department of Radiology, University of Wisconsin-Madison,Department of Biomedical Engineering, University of Wisconsin-Madison
| |
Collapse
|
28
|
Gaidzik F, Pathiraja S, Saalfeld S, Stucht D, Speck O, Thévenin D, Janiga G. Hemodynamic Data Assimilation in a Subject-specific Circle of Willis Geometry. Clin Neuroradiol 2020; 31:643-651. [PMID: 32974727 PMCID: PMC8463518 DOI: 10.1007/s00062-020-00959-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE The anatomy of the circle of Willis (CoW), the brain's main arterial blood supply system, strongly differs between individuals, resulting in highly variable flow fields and intracranial vascularization patterns. To predict subject-specific hemodynamics with high certainty, we propose a data assimilation (DA) approach that merges fully 4D phase-contrast magnetic resonance imaging (PC-MRI) data with a numerical model in the form of computational fluid dynamics (CFD) simulations. METHODS To the best of our knowledge, this study is the first to provide a transient state estimate for the three-dimensional velocity field in a subject-specific CoW geometry using DA. High-resolution velocity state estimates are obtained using the local ensemble transform Kalman filter (LETKF). RESULTS Quantitative evaluation shows a considerable reduction (up to 90%) in the uncertainty of the velocity field state estimate after the data assimilation step. Velocity values in vessel areas that are below the resolution of the PC-MRI data (e.g., in posterior communicating arteries) are provided. Furthermore, the uncertainty of the analysis-based wall shear stress distribution is reduced by a factor of 2 for the data assimilation approach when compared to the CFD model alone. CONCLUSION This study demonstrates the potential of data assimilation to provide detailed information on vascular flow, and to reduce the uncertainty in such estimates by combining various sources of data in a statistically appropriate fashion.
Collapse
Affiliation(s)
- Franziska Gaidzik
- Lab. of Fluid Dynamics and Technical Flows, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sahani Pathiraja
- Institute for Mathematics, University of Potsdam, Potsdam, Germany
| | - Sylvia Saalfeld
- Department of Simulation and Graphics, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Daniel Stucht
- Institute for Physics, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Biometry and Medical Informatics, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Speck
- Institute for Physics, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Dominique Thévenin
- Lab. of Fluid Dynamics and Technical Flows, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Gábor Janiga
- Lab. of Fluid Dynamics and Technical Flows, Otto von Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
29
|
Castle-Kirszbaum M, Maingard J, Lim RP, Barras CD, Kok HK, Chandra RV, Chong W, Asadi H. Four-Dimensional Magnetic Resonance Imaging Assessment of Intracranial Aneurysms: A State-of-the-Art Review. Neurosurgery 2020; 87:453-465. [PMID: 32140714 DOI: 10.1093/neuros/nyaa021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/15/2019] [Indexed: 11/14/2022] Open
Abstract
Treatment of unruptured intracranial aneurysms can reduce the risk of subarachnoid hemorrhage and its associated morbidity and mortality. However, current methods to predict the risk of rupture and optimize treatment strategies for intracranial aneurysms are limited. Assessment of intra-aneurysmal flow using 4-dimensional magnetic resonance imaging (4D MRI) is a novel tool that could be used to guide therapy. A systematic search of the literature was performed to provide a state-of-the-art review on 4D MRI assessment of unruptured intracranial aneurysms. A total of 18 studies were available for review. Eccentric flow on 4D MRI is associated with a greater aspect ratio and peak wall shear stress (WSS). WSS, vorticity, and peak velocity are greater in saccular than fusiform aneurysms. Unstable aneurysms are associated with greater WSS, peak wall stress, and flow jet angle and may exhibit wall enhancement. In comparison to computational fluid dynamics (CFD), 4D MRI has a lower spatial resolution and reports lower WSS and velocity magnitudes, but these parameters equalize when spatial resolution is matched. 4D MRI demonstrates the intra-aneurysmal hemodynamic changes associated with flow diversion, including significantly decreased flow velocity. Thus, 4D MRI is a novel, noninvasive imaging tool used for the evaluation of hemodynamics within intracranial aneurysms. Hemodynamic indices derived from 4D MRI appear to correlate well with the simulated (CFD) values and may be used to measure the success of endovascular therapies and risk factors for aneurysm growth and rupture.
Collapse
Affiliation(s)
- Mendel Castle-Kirszbaum
- NeuroInterventional Radiology Unit, Monash Health, Melbourne, Australia.,Department of Neurosurgery, Monash Health, Melbourne, Australia
| | - Julian Maingard
- NeuroInterventional Radiology Unit, Monash Health, Melbourne, Australia.,Department of Imaging, Monash Health, Melbourne, Australia.,School of Medicine, Deakin University, Victoria, Australia
| | - Ruth P Lim
- Austin Health, Melbourne, Australia.,The University of Melbourne, Melbourne, Australia
| | - Christen D Barras
- Department of Radiology, Royal Adelaide Hospital, The University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Hong Kuan Kok
- School of Medicine, Deakin University, Victoria, Australia.,Department of Radiology Northern Health, Melbourne, Australia
| | - Ronil V Chandra
- NeuroInterventional Radiology Unit, Monash Health, Melbourne, Australia.,Department of Imaging, Monash Health, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Winston Chong
- NeuroInterventional Radiology Unit, Monash Health, Melbourne, Australia.,Department of Imaging, Monash Health, Melbourne, Australia.,Monash University, Melbourne, Australia
| | - Hamed Asadi
- NeuroInterventional Radiology Unit, Monash Health, Melbourne, Australia.,Department of Imaging, Monash Health, Melbourne, Australia.,School of Medicine, Deakin University, Victoria, Australia.,Austin Health, Melbourne, Australia
| |
Collapse
|
30
|
Berg P, Saalfeld S, Voß S, Beuing O, Janiga G. A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation. Neurosurg Focus 2020; 47:E15. [PMID: 31261119 DOI: 10.3171/2019.4.focus19181] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 12/23/2022]
Abstract
Computational blood flow modeling in intracranial aneurysms (IAs) has enormous potential for the assessment of highly resolved hemodynamics and derived wall stresses. This results in an improved knowledge in important research fields, such as rupture risk assessment and treatment optimization. However, due to the requirement of assumptions and simplifications, its applicability in a clinical context remains limited.This review article focuses on the main aspects along the interdisciplinary modeling chain and highlights the circumstance that computational fluid dynamics (CFD) simulations are embedded in a multiprocess workflow. These aspects include imaging-related steps, the setup of realistic hemodynamic simulations, and the analysis of multidimensional computational results. To condense the broad knowledge, specific recommendations are provided at the end of each subsection.Overall, various individual substudies exist in the literature that have evaluated relevant technical aspects. In this regard, the importance of precise vessel segmentations for the simulation outcome is emphasized. Furthermore, the accuracy of the computational model strongly depends on the specific research question. Additionally, standardization in the context of flow analysis is required to enable an objective comparison of research findings and to avoid confusion within the medical community. Finally, uncertainty quantification and validation studies should always accompany numerical investigations.In conclusion, this review aims for an improved awareness among physicians regarding potential sources of error in hemodynamic modeling for IAs. Although CFD is a powerful methodology, it cannot provide reliable information, if pre- and postsimulation steps are inaccurately carried out. From this, future studies can be critically evaluated and real benefits can be differentiated from results that have been acquired based on technically inaccurate procedures.
Collapse
Affiliation(s)
- Philipp Berg
- 1Department of Fluid Dynamics and Technical Flows.,2Research CampusSTIMULATE, and
| | - Sylvia Saalfeld
- 2Research CampusSTIMULATE, and.,3Department of Simulation and Graphics, University of Magdeburg; and
| | - Samuel Voß
- 1Department of Fluid Dynamics and Technical Flows.,2Research CampusSTIMULATE, and
| | - Oliver Beuing
- 2Research CampusSTIMULATE, and.,4Department of Neuroradiology, University Hospital Magdeburg, Magdeburg, Germany
| | - Gábor Janiga
- 1Department of Fluid Dynamics and Technical Flows.,2Research CampusSTIMULATE, and
| |
Collapse
|
31
|
Hoving AM, de Vries EE, Mikhal J, de Borst GJ, Slump CH. A Systematic Review for the Design of In Vitro Flow Studies of the Carotid Artery Bifurcation. Cardiovasc Eng Technol 2020; 11:111-127. [PMID: 31823191 PMCID: PMC7082306 DOI: 10.1007/s13239-019-00448-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE In vitro blood flow studies in carotid artery bifurcation models may contribute to understanding the influence of hemodynamics on carotid artery disease. However, the design of in vitro blood flow studies involves many steps and selection of imaging techniques, model materials, model design, and flow visualization parameters. Therefore, an overview of the possibilities and guidance for the design process is beneficial for researchers with less experience in flow studies. METHODS A systematic search to in vitro flow studies in carotid artery bifurcation models aiming at quantification and detailed flow visualization of blood flow dynamics results in inclusion of 42 articles. RESULTS Four categories of imaging techniques are distinguished: MRI, optical particle image velocimetry (PIV), ultrasound and miscellaneous techniques. Parameters for flow visualization are categorized into velocity, flow, shear-related, turbulent/disordered flow and other parameters. Model materials and design characteristics vary between study type. CONCLUSIONS A simplified three-step design process is proposed for better fitting and adequate match with the pertinent research question at hand and as guidance for less experienced flow study researchers. The three consecutive selection steps are: flow parameters, image modality, and model materials and designs. Model materials depend on the chosen imaging technique, whereas choice of flow parameters is independent from imaging technique and is therefore only determined by the goal of the study.
Collapse
Affiliation(s)
- A M Hoving
- University of Twente, 7500 AE, Enschede, The Netherlands.
| | - E E de Vries
- University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - J Mikhal
- University of Twente, 7500 AE, Enschede, The Netherlands
| | - G J de Borst
- University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - C H Slump
- University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
32
|
Rayz VL, Cohen-Gadol AA. Hemodynamics of Cerebral Aneurysms: Connecting Medical Imaging and Biomechanical Analysis. Annu Rev Biomed Eng 2020; 22:231-256. [PMID: 32212833 DOI: 10.1146/annurev-bioeng-092419-061429] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the last two decades, numerous studies have conducted patient-specific computations of blood flow dynamics in cerebral aneurysms and reported correlations between various hemodynamic metrics and aneurysmal disease progression or treatment outcomes. Nevertheless, intra-aneurysmal flow analysis has not been adopted in current clinical practice, and hemodynamic factors usually are not considered in clinical decision making. This review presents the state of the art in cerebral aneurysm imaging and image-based modeling, discussing the advantages and limitations of each approach and focusing on the translational value of hemodynamic analysis. Combining imaging and modeling data obtained from different flow modalities can improve the accuracy and fidelity of resulting velocity fields and flow-derived factors that are thought to affect aneurysmal disease progression. It is expected that predictive models utilizing hemodynamic factors in combination with patient medical history and morphological data will outperform current risk scores and treatment guidelines. Possible future directions include novel approaches enabling data assimilation and multimodality analysis of cerebral aneurysm hemodynamics.
Collapse
Affiliation(s)
- Vitaliy L Rayz
- Weldon School of Biomedical Engineering and School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Aaron A Cohen-Gadol
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.,Goodman Campbell Brain and Spine, Carmel, Indiana 46032, USA
| |
Collapse
|
33
|
Ho WH, Tshimanga IJ, Ngoepe MN, Jermy MC, Geoghegan PH. Evaluation of a Desktop 3D Printed Rigid Refractive-Indexed-Matched Flow Phantom for PIV Measurements on Cerebral Aneurysms. Cardiovasc Eng Technol 2019; 11:14-23. [PMID: 31820351 PMCID: PMC7002330 DOI: 10.1007/s13239-019-00444-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Fabrication of a suitable flow model or phantom is critical to the study of biomedical fluid dynamics using optical flow visualization and measurement methods. The main difficulties arise from the optical properties of the model material, accuracy of the geometry and ease of fabrication. METHODS Conventionally an investment casting method has been used, but recently advancements in additive manufacturing techniques such as 3D printing have allowed the flow model to be printed directly with minimal post-processing steps. This study presents results of an investigation into the feasibility of fabrication of such models suitable for particle image velocimetry (PIV) using a common 3D printing Stereolithography process and photopolymer resin. RESULTS An idealised geometry of a cerebral aneurysm was printed to demonstrate its applicability for PIV experimentation. The material was shown to have a refractive index of 1.51, which can be refractive matched with a mixture of de-ionised water with ammonium thiocyanate (NH4SCN). The images were of a quality that after applying common PIV pre-processing techniques and a PIV cross-correlation algorithm, the results produced were consistent within the aneurysm when compared to previous studies. CONCLUSIONS This study presents an alternative low-cost option for 3D printing of a flow phantom suitable for flow visualization simulations. The use of 3D printed flow phantoms reduces the complexity, time and effort required compared to conventional investment casting methods by removing the necessity of a multi-part process required with investment casting techniques.
Collapse
Affiliation(s)
- W H Ho
- Department of Mechanical and Industrial Engineering, University of South Africa, Johannesburg, South Africa.,School of Mechanical Aerospace and Industrial Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - I J Tshimanga
- Department of Mechanical and Industrial Engineering, University of South Africa, Johannesburg, South Africa
| | - M N Ngoepe
- Department of Mechanical Engineering, University of Cape Town, Cape Town, South Africa
| | - M C Jermy
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - P H Geoghegan
- Department of Mechanical and Industrial Engineering, University of South Africa, Johannesburg, South Africa. .,Biomedical Engineering, School of Life and Health Sciences, Aston University, Birmingham, England.
| |
Collapse
|
34
|
Transient flow prediction in an idealized aneurysm geometry using data assimilation. Comput Biol Med 2019; 115:103507. [DOI: 10.1016/j.compbiomed.2019.103507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/27/2019] [Accepted: 10/12/2019] [Indexed: 01/01/2023]
|
35
|
Brindise MC, Rothenberger S, Dickerhoff B, Schnell S, Markl M, Saloner D, Rayz VL, Vlachos PP. Multi-modality cerebral aneurysm haemodynamic analysis: in vivo 4D flow MRI, in vitro volumetric particle velocimetry and in silico computational fluid dynamics. J R Soc Interface 2019; 16:20190465. [PMID: 31506043 PMCID: PMC6769317 DOI: 10.1098/rsif.2019.0465] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 12/29/2022] Open
Abstract
Typical approaches to patient-specific haemodynamic studies of cerebral aneurysms use image-based computational fluid dynamics (CFD) and seek to statistically correlate parameters such as wall shear stress (WSS) and oscillatory shear index (OSI) to risk of growth and rupture. However, such studies have reported contradictory results, emphasizing the need for in-depth multi-modality haemodynamic metric evaluation. In this work, we used in vivo 4D flow MRI data to inform in vitro particle velocimetry and CFD modalities in two patient-specific cerebral aneurysm models (basilar tip and internal carotid artery). Pulsatile volumetric particle velocimetry experiments were conducted, and the particle images were processed using Shake-the-Box, a particle tracking method. Distributions of normalized WSS and relative residence time were shown to be highly yet inconsistently affected by minor flow field and spatial resolution variations across modalities, and specific relationships among these should be explored in future work. Conversely, OSI, a non-dimensional parameter, was shown to be more robust to the varying assumptions, limitations and spatial resolutions of each subject and modality. These results suggest a need for further multi-modality analysis as well as development of non-dimensional haemodynamic parameters and correlation of such metrics to aneurysm risk of growth and rupture.
Collapse
Affiliation(s)
- Melissa C. Brindise
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sean Rothenberger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Benjamin Dickerhoff
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Susanne Schnell
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Markl
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Vitaliy L. Rayz
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Pavlos P. Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
36
|
Voß S, Beuing O, Janiga G, Berg P. Stent-induced vessel deformation after intracranial aneurysm treatment – A hemodynamic pilot study. Comput Biol Med 2019; 111:103338. [DOI: 10.1016/j.compbiomed.2019.103338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
|
37
|
Salman HE, Ramazanli B, Yavuz MM, Yalcin HC. Biomechanical Investigation of Disturbed Hemodynamics-Induced Tissue Degeneration in Abdominal Aortic Aneurysms Using Computational and Experimental Techniques. Front Bioeng Biotechnol 2019; 7:111. [PMID: 31214581 PMCID: PMC6555197 DOI: 10.3389/fbioe.2019.00111] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is the dilatation of the aorta beyond 50% of the normal vessel diameter. It is reported that 4-8% of men and 0.5-1% of women above 50 years of age bear an AAA and it accounts for ~15,000 deaths per year in the United States alone. If left untreated, AAA might gradually expand until rupture; the most catastrophic complication of the aneurysmal disease that is accompanied by a striking overall mortality of 80%. The precise mechanisms leading to AAA rupture remains unclear. Therefore, characterization of disturbed hemodynamics within AAAs will help to understand the mechanobiological development of the condition which will contribute to novel therapies for the condition. Due to geometrical complexities, it is challenging to directly quantify disturbed flows for AAAs clinically. Two other approaches for this investigation are computational modeling and experimental flow measurement. In computational modeling, the problem is first defined mathematically, and the solution is approximated with numerical techniques to get characteristics of flow. In experimental flow measurement, once the setup providing physiological flow pattern in a phantom geometry is constructed, velocity measurement system such as particle image velocimetry (PIV) enables characterization of the flow. We witness increasing number of applications of these complimentary approaches for AAA investigations in recent years. In this paper, we outline the details of computational modeling procedures and experimental settings and summarize important findings from recent studies, which will help researchers for AAA investigations and rupture mechanics.
Collapse
Affiliation(s)
| | - Burcu Ramazanli
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
| | - Mehmet Metin Yavuz
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
| | | |
Collapse
|
38
|
Berg P, Voß S, Janiga G, Saalfeld S, Bergersen AW, Valen-Sendstad K, Bruening J, Goubergrits L, Spuler A, Chiu TL, Tsang ACO, Copelli G, Csippa B, Paál G, Závodszky G, Detmer FJ, Chung BJ, Cebral JR, Fujimura S, Takao H, Karmonik C, Elias S, Cancelliere NM, Najafi M, Steinman DA, Pereira VM, Piskin S, Finol EA, Pravdivtseva M, Velvaluri P, Rajabzadeh-Oghaz H, Paliwal N, Meng H, Seshadhri S, Venguru S, Shojima M, Sindeev S, Frolov S, Qian Y, Wu YA, Carlson KD, Kallmes DF, Dragomir-Daescu D, Beuing O. Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)-phase II: rupture risk assessment. Int J Comput Assist Radiol Surg 2019; 14:1795-1804. [PMID: 31054128 DOI: 10.1007/s11548-019-01986-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/23/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE Assessing the rupture probability of intracranial aneurysms (IAs) remains challenging. Therefore, hemodynamic simulations are increasingly applied toward supporting physicians during treatment planning. However, due to several assumptions, the clinical acceptance of these methods remains limited. METHODS To provide an overview of state-of-the-art blood flow simulation capabilities, the Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH) was conducted. Seventeen research groups from all over the world performed segmentations and hemodynamic simulations to identify the ruptured aneurysm in a patient harboring five IAs. Although simulation setups revealed good similarity, clear differences exist with respect to the analysis of aneurysm shape and blood flow results. Most groups (12/71%) included morphological and hemodynamic parameters in their analysis, with aspect ratio and wall shear stress as the most popular candidates, respectively. RESULTS The majority of groups (7/41%) selected the largest aneurysm as being the ruptured one. Four (24%) of the participating groups were able to correctly select the ruptured aneurysm, while three groups (18%) ranked the ruptured aneurysm as the second most probable. Successful selections were based on the integration of clinically relevant information such as the aneurysm site, as well as advanced rupture probability models considering multiple parameters. Additionally, flow characteristics such as the quantification of inflow jets and the identification of multiple vortices led to correct predictions. CONCLUSIONS MATCH compares state-of-the-art image-based blood flow simulation approaches to assess the rupture risk of IAs. Furthermore, this challenge highlights the importance of multivariate analyses by combining clinically relevant metadata with advanced morphological and hemodynamic quantification.
Collapse
Affiliation(s)
| | - Samuel Voß
- University of Magdeburg, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | - Benjamin Csippa
- Budapest University of Technology and Economics, Budapest, Hungary
| | - György Paál
- Budapest University of Technology and Economics, Budapest, Hungary
| | - Gábor Závodszky
- Budapest University of Technology and Economics, Budapest, Hungary
| | | | | | | | | | | | | | - Saba Elias
- Houston Methodist Research Institute, Houston, TX, USA
| | | | | | | | | | - Senol Piskin
- The University of Texas at San Antonio, San Antonio, TX, USA
| | - Ender A Finol
- The University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | | | | - Hui Meng
- State University of New York, Buffalo, NY, USA
| | | | | | | | | | | | - Yi Qian
- Macquarie University, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Novel feature-based visualization of the unsteady blood flow in intracranial aneurysms with the help of proper orthogonal decomposition (POD). Comput Med Imaging Graph 2019; 73:30-38. [DOI: 10.1016/j.compmedimag.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/07/2018] [Accepted: 01/11/2019] [Indexed: 11/22/2022]
|