1
|
Rachwal N, Idris R, Dreyer V, Richter E, Wichelhaus TA, Niemann S, Wetzstein N, Götsch U. Pathogen and host determinants of extrapulmonary tuberculosis among 1035 patients in Frankfurt am Main, Germany, 2008-2023. Clin Microbiol Infect 2024:S1198-743X(24)00535-4. [PMID: 39528087 DOI: 10.1016/j.cmi.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Extrapulmonary tuberculosis (EPTB) presents with nonspecific symptoms which can pose a significant diagnostic challenge. Various factors, including age, sex, and HIV status, have been associated with an increased risk of developing EPTB. However, the influence of the lineage of the infecting Mycobacterium tuberculosis complex (Mtbc) strain remains controversial. METHODS Between 2008 and 2023, comprehensive clinical data from 1035 cases, along with whole genome sequencing (WGS) data of the respective Mtbc strains have been collected. To examine the association between Mtbc lineage and EPTB, we calculated crude and adjusted odds ratios (OR) using logistic regression and performed propensity score matching with a subset of the cohort. RESULTS Of the 1035 patients, 272 had exclusively extrapulmonary disease and 138 had both pulmonary and extrapulmonary disease. Patients infected with a lineage 1 strain had the highest odds of developing EPTB in the univariate analysis (OR: 3.30, 95% CI: 1.97-5.49). However, Mtbc lineage was not a significant predictor in the multivariable model, while the odds of developing extrapulmonary disease were higher among patients born in the South-East Asian region (adjusted OR: 6.00, 95% CI: 3.41-10.69) and the Eastern Mediterranean Region (adjusted OR: 5.95, 95% CI: 3.61-9.96) compared to those born in the European region. Further, female sex and age were significant positive predictors for EPTB. CONCLUSIONS Our results demonstrate that host factors, such as geographic origin, age and sex are stronger predictors for EPTB than infection with a Mtbc strain of a particular lineage. Further investigation of this host-pathogen interaction is needed.
Collapse
Affiliation(s)
- Natalia Rachwal
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden; Municipal Health Authority Frankfurt am Main, Frankfurt am Main, Germany
| | - Raja Idris
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; Goethe University Frankfurt, Mycobacterial Infection Research Unit (MIRU), Frankfurt am Main, Germany
| | - Viola Dreyer
- Research Center Borstel, Leibniz Lung Center, Molecular and Experimental Mycobacteriology, Borstel, Germany; German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Elvira Richter
- Laboratory Dr Limbach and Colleagues, Heidelberg, Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Stefan Niemann
- Research Center Borstel, Leibniz Lung Center, Molecular and Experimental Mycobacteriology, Borstel, Germany; German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Nils Wetzstein
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany; Goethe University Frankfurt, Mycobacterial Infection Research Unit (MIRU), Frankfurt am Main, Germany; Research Center Borstel, Leibniz Lung Center, Molecular and Experimental Mycobacteriology, Borstel, Germany; German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
| | - Udo Götsch
- Municipal Health Authority Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Putera I, Ten Berge JCEM, Thiadens AAHJ, Dik WA, Agrawal R, van Hagen PM, La Distia Nora R, Rombach SM. Clinical Features and Predictors of Treatment Outcome in Patients with Ocular Tuberculosis from the Netherlands and Indonesia: The OculaR TB in Low versus High Endemic Countries (ORTEC) Study. Ocul Immunol Inflamm 2024:1-12. [PMID: 38820475 DOI: 10.1080/09273948.2024.2359614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
PURPOSE To describe and compare clinical features, treatment approaches, and treatment outcomes of ocular tuberculosis (OTB) patients in the Netherlands, a low tuberculosis (TB)-endemic country, and Indonesia, a high TB-endemic country. We also aimed to identify predictors of treatment outcomes. METHODS A medical chart review of 339 OTB patients (n = 93 from the Netherlands and n = 246 from Indonesia) was performed. The primary outcome was response to treatment, whether with or without anti-tubercular treatment, after six months of treatment initiation (good versus poor responders). RESULTS Indonesian OTB patients displayed a higher prevalence of chest radiograph findings indicative of TB infection (p < 0.001) and concurrent active systemic TB (p = 0.011). Indonesian cohort exhibited a more acute and severe disease profile, including uveitis duration ≤ 3 months (p < 0.001), blindness (p < 0.001), anterior chamber (AC) cells ≥ 2+ (p < 0.001), and posterior synechiae (p < 0.001). Overall proportions of good responders to treatment were 67.6% in the Netherlands and 71.5% in Indonesia. Presence of AC cell ≥ 2+ (adjusted odds ratio (aOR): 2.12, 95% CI: 1.09-4.14), choroidal lesions other than serpiginous-like choroiditis (SLC) or tuberculoma (aOR: 4.47, 95% CI: 1.18-16.90), and retinal vasculitis (aOR: 2.32, 95% CI: 1.10-4.90) at baseline were predictors for poor response to treatment. CONCLUSIONS Despite a more severe initial clinical presentation in the Indonesian cohort, the overall treatment outcomes of OTB was comparable in both cohorts. Three baseline clinical features were identified as predictors of treatment outcomes.
Collapse
Affiliation(s)
- Ikhwanuliman Putera
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Clinical and Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | | - Alberta A H J Thiadens
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Willem A Dik
- Department of Immunology, Clinical and Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rupesh Agrawal
- Lee Kong Chian School of Medicine, Nanyang Technological University of Singapore, Singapore
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
- Duke NUS Medical School, Singapore, Singapore
- Ocular Infections and Antimicrobial Group, Singapore Eye Research Institute, Singapore, Singapore
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - P Martin van Hagen
- Department of Internal Medicine Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Clinical and Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rina La Distia Nora
- Department of Immunology, Clinical and Laboratory Medical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Saskia M Rombach
- Department of Internal Medicine Section Allergy and Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Putera I, Ten Berge JCEM, Thiadens AAHJ, Dik WA, Agrawal R, van Hagen PM, La Distia Nora R, Rombach SM. Relapse in ocular tuberculosis: relapse rate, risk factors and clinical management in a non-endemic country. Br J Ophthalmol 2024:bjo-2024-325207. [PMID: 38609164 DOI: 10.1136/bjo-2024-325207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
AIMS To assess the risk of uveitis relapse in ocular tuberculosis (OTB) following clinical inactivity, to analyse clinical factors associated with relapses and to describe the management strategies for relapses. METHODS A retrospective study was conducted on a 10-year patient registry of patients with OTB diagnosed at Erasmus MC in Rotterdam, The Netherlands. Time-to-relapse of uveitis was evaluated with Kaplan-Meier curve and risk factors for relapses were analysed. RESULTS 93 OTB cases were identified, of which 75 patients achieved clinical inactivity following treatment. The median time to achieve uveitis inactivity was 3.97 months. During a median follow-up of 20.7 months (Q1-Q3: 5.2-81.2) after clinical inactivity, uveitis relapse occurred in 25 of these 75 patients (33.3%). Patients who were considered poor treatment responders for their initial uveitis episode had a significantly higher risk of relapse after achieving clinical inactivity than good responders (adjusted HR=3.84, 95% CI: 1.28 to 11.51). 13 of the 25 relapsed patients experienced multiple uveitis relapse episodes, accounting for 78 eye-relapse episodes during the entire observation period. Over half (46 out of 78, 59.0%) of these episodes were anterior uveitis. A significant number of uveitis relapse episodes (31 episodes, 39.7%) were effectively managed with topical corticosteroids. CONCLUSIONS Our results suggest that approximately one-third of patients with OTB will experience relapse after achieving clinical inactivity. The initial disease course and poor response to treatment predict the likelihood of relapse in the long-term follow-up. Topical corticosteroids were particularly effective in relapse presenting as anterior uveitis.
Collapse
Affiliation(s)
- Ikhwanuliman Putera
- Department of Ophthalmology, Faculty of Medicine, University of Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Department of Ophthalmology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Internal Medicine Section Allergy and Clinical Immunology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Alberta A H J Thiadens
- Department of Ophthalmology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University of Singapore, Singapore
- Duke NUS Medical School, Singapore
| | - P Martin van Hagen
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Internal Medicine Section Allergy and Clinical Immunology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Rina La Distia Nora
- Department of Ophthalmology, Faculty of Medicine, University of Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Saskia M Rombach
- Department of Internal Medicine Section Allergy and Clinical Immunology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Schiff HF, Walker NF, Ugarte-Gil C, Tebruegge M, Manousopoulou A, Garbis SD, Mansour S, Wong PH(M, Rockett G, Piazza P, Niranjan M, Vallejo AF, Woelk CH, Wilkinson RJ, Tezera LB, Garay-Baquero D, Elkington P. Integrated plasma proteomics identifies tuberculosis-specific diagnostic biomarkers. JCI Insight 2024; 9:e173273. [PMID: 38512356 PMCID: PMC11141874 DOI: 10.1172/jci.insight.173273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUNDNovel biomarkers to identify infectious patients transmitting Mycobacterium tuberculosis are urgently needed to control the global tuberculosis (TB) pandemic. We hypothesized that proteins released into the plasma in active pulmonary TB are clinically useful biomarkers to distinguish TB cases from healthy individuals and patients with other respiratory infections.METHODSWe applied a highly sensitive non-depletion tandem mass spectrometry discovery approach to investigate plasma protein expression in pulmonary TB cases compared to healthy controls in South African and Peruvian cohorts. Bioinformatic analysis using linear modeling and network correlation analyses identified 118 differentially expressed proteins, significant through 3 complementary analytical pipelines. Candidate biomarkers were subsequently analyzed in 2 validation cohorts of differing ethnicity using antibody-based proximity extension assays.RESULTSTB-specific host biomarkers were confirmed. A 6-protein diagnostic panel, comprising FETUB, FCGR3B, LRG1, SELL, CD14, and ADA2, differentiated patients with pulmonary TB from healthy controls and patients with other respiratory infections with high sensitivity and specificity in both cohorts.CONCLUSIONThis biomarker panel exceeds the World Health Organization Target Product Profile specificity criteria for a triage test for TB. The new biomarkers have potential for further development as near-patient TB screening assays, thereby helping to close the case-detection gap that fuels the global pandemic.FUNDINGMedical Research Council (MRC) (MR/R001065/1, MR/S024220/1, MR/P023754/1, and MR/W025728/1); the MRC and the UK Foreign Commonwealth and Development Office; the UK National Institute for Health Research (NIHR); the Wellcome Trust (094000, 203135, and CC2112); Starter Grant for Clinical Lecturers (Academy of Medical Sciences UK); the British Infection Association; the Program for Advanced Research Capacities for AIDS in Peru at Universidad Peruana Cayetano Heredia (D43TW00976301) from the Fogarty International Center at the US NIH; the UK Technology Strategy Board/Innovate UK (101556); the Francis Crick Institute, which receives funding from UKRI-MRC (CC2112); Cancer Research UK (CC2112); and the NIHR Biomedical Research Centre of Imperial College NHS.
Collapse
Affiliation(s)
- Hannah F. Schiff
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, Southampton, United Kingdom
| | - Naomi F. Walker
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Cesar Ugarte-Gil
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Epidemiology, School of Public and Population Health, University of Texas Medical Branch, Galveston, Texas, USA
| | - Marc Tebruegge
- Department of Infection, Immunity & Inflammation, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Paediatrics, Klinik Ottakring, Wiener Gesundheitsverbund, Vienna, Austria
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Antigoni Manousopoulou
- Proteas Bioanalytics, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Spiros D. Garbis
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Proteas Bioanalytics, The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Salah Mansour
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, Southampton, United Kingdom
| | | | - Gabrielle Rockett
- Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Paolo Piazza
- Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Mahesan Niranjan
- Institute for Life Sciences, Southampton, United Kingdom
- Electronics and Computer Sciences, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Andres F. Vallejo
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Robert J. Wilkinson
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, and
- Department of Medicine, University of Cape Town, Observatory, Republic of South Africa
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Liku B. Tezera
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, Southampton, United Kingdom
| | - Diana Garay-Baquero
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, Southampton, United Kingdom
| | - Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, Southampton, United Kingdom
| |
Collapse
|
5
|
Hailu E, Cantillon D, Madrazo C, Rose G, Wheeler PR, Golby P, Adnew B, Gagneux S, Aseffa A, Gordon SV, Comas I, Young DB, Waddell SJ, Larrouy-Maumus G, Berg S. Lack of methoxy-mycolates characterizes the geographically restricted lineage 7 of Mycobacterium tuberculosis complex. Microb Genom 2023; 9:mgen001011. [PMID: 37171244 PMCID: PMC10272862 DOI: 10.1099/mgen.0.001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/07/2023] [Indexed: 05/13/2023] Open
Abstract
Lineage 7 (L7) emerged in the phylogeny of the Mycobacterium tuberculosis complex (MTBC) subsequent to the branching of 'ancient' lineage 1 and prior to the Eurasian dispersal of 'modern' lineages 2, 3 and 4. In contrast to the major MTBC lineages, the current epidemiology suggests that prevalence of L7 is highly confined to the Ethiopian population, or when identified outside of Ethiopia, it has mainly been in patients of Ethiopian origin. To search for microbiological factors that may contribute to its restricted distribution, we compared the genome of L7 to the genomes of globally dispersed MTBC lineages. The frequency of predicted functional mutations in L7 was similar to that documented in other lineages. These include mutations characteristic of modern lineages - such as constitutive expression of nitrate reductase - as well as mutations in the VirS locus that are commonly found in ancient lineages. We also identified and characterized multiple lineage-specific mutations in L7 in biosynthesis pathways of cell wall lipids, including confirmed deficiency of methoxy-mycolic acids due to a stop-gain mutation in the mmaA3 gene that encodes a methoxy-mycolic acid synthase. We show that the abolished biosynthesis of methoxy-mycolates of L7 alters the cell structure and colony morphology on selected growth media and impacts biofilm formation. The loss of these mycolic acid moieties may change the host-pathogen dynamic for L7 isolates, explaining the limited geographical distribution of L7 and contributing to further understanding the spread of MTBC lineages across the globe.
Collapse
Affiliation(s)
- Elena Hailu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Daire Cantillon
- Brighton and Sussex Centre for Global Health Research, Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer, UK
- Present address: Department of Tropical Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carlos Madrazo
- Biomedicine Institute of Valencia, Spanish Research Council (IBV-CSIC), Valencia, Spain
| | - Graham Rose
- Francis Crick Institute, London, UK
- Present address: North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children, London, UK
| | | | - Paul Golby
- Animal and Plant Health Agency, Weybridge, UK
| | | | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Stephen V. Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Iñaki Comas
- Biomedicine Institute of Valencia, Spanish Research Council (IBV-CSIC), Valencia, Spain
| | - Douglas B. Young
- Francis Crick Institute, London, UK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Simon J. Waddell
- Brighton and Sussex Centre for Global Health Research, Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Stefan Berg
- Animal and Plant Health Agency, Weybridge, UK
- Present address: Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
6
|
Saelens JW, Sweeney MI, Viswanathan G, Xet-Mull AM, Jurcic Smith KL, Sisk DM, Hu DD, Cronin RM, Hughes EJ, Brewer WJ, Coers J, Champion MM, Champion PA, Lowe CB, Smith CM, Lee S, Stout JE, Tobin DM. An ancestral mycobacterial effector promotes dissemination of infection. Cell 2022; 185:4507-4525.e18. [PMID: 36356582 PMCID: PMC9691622 DOI: 10.1016/j.cell.2022.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/27/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Abstract
The human pathogen Mycobacterium tuberculosis typically causes lung disease but can also disseminate to other tissues. We identified a M. tuberculosis (Mtb) outbreak presenting with unusually high rates of extrapulmonary dissemination and bone disease. We found that the causal strain carried an ancestral full-length version of the type VII-secreted effector EsxM rather than the truncated version present in other modern Mtb lineages. The ancestral EsxM variant exacerbated dissemination through enhancement of macrophage motility, increased egress of macrophages from established granulomas, and alterations in macrophage actin dynamics. Reconstitution of the ancestral version of EsxM in an attenuated modern strain of Mtb altered the migratory mode of infected macrophages, enhancing their motility. In a zebrafish model, full-length EsxM promoted bone disease. The presence of a derived nonsense variant in EsxM throughout the major Mtb lineages 2, 3, and 4 is consistent with a role for EsxM in regulating the extent of dissemination.
Collapse
Affiliation(s)
- Joseph W Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mollie I Sweeney
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gopinath Viswanathan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ana María Xet-Mull
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kristen L Jurcic Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dana M Sisk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Daniel D Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rachel M Cronin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Erika J Hughes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - W Jared Brewer
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia A Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sunhee Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jason E Stout
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC 27710, USA.
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Shankaran D, Arumugam P, Vasanthakumar RP, Singh A, Bothra A, Gandotra S, Rao V. Modern Clinical Mycobacterium tuberculosisStrains Leverage Type I IFN Pathway for a Proinflammatory Response in the Host. THE JOURNAL OF IMMUNOLOGY 2022; 209:1736-1745. [DOI: 10.4049/jimmunol.2101029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 08/16/2022] [Indexed: 11/15/2022]
|
8
|
Hussien B, Zewude A, Wondale B, Hailu A, Ameni G. Spoligotyping of Clinical Isolates of Mycobacterium tuberculosis Complex Species in the Oromia Region of Ethiopia. Front Public Health 2022; 10:808626. [PMID: 35372211 PMCID: PMC8970530 DOI: 10.3389/fpubh.2022.808626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background Tuberculosis (TB) is a leading cause of morbidity and mortality in Ethiopia. Investigation of the Mycobacterium tuberculosis complex (MTBC) species circulating in the Ethiopian population would contribute to the efforts made to control TB in the country. Therefore, this study was conducted to investigate the MTBC species and spoligo patterns in the Oromia region (central) of Ethiopia. Methods A cross-sectional study design was used to recruit 450 smear positive pulmonary TB (PTB) cases from the Oromia region between September 2017 and August 2018. Mycobacteria were isolated from sputum samples on the Lowenstein Jensen (LJ) medium. Molecular identification of the isolates was performed by spoligotyping. The results of spoligotyping were transferred into a query box in the SITVIT2 database and Run TB-Lineage in the TB Insight website for the identification of spoligo international type (SIT) number and linages of the isolates, respectively. Statistical Product and Service Solutions (SPSS) 20 was applied for statistical analysis. Results Three hundred and fifteen isolates were grouped under 181 different spoligotype patterns. The most dominantly isolated spoligotype pattern was SIT149 and it consisted of 23 isolates. The majority of the isolates were grouped under Euro-American (EA), East-African-Indian (EAI), and Indo-Oceanic (IO) lineages. These lineages consisted of 79.4, 9.8, and 9.8% of the isolates, respectively. One hundred and sixty-five of the isolates were classified under 31 clustered spoligotypes whereas the remaining 150 were singleton types. Furthermore, 91.1% of the total isolates were classified as orphan types. Clustering of spoligotypes was associated (p < 0.001) with EAI lineage. Conclusion SIT149 and EA lineage were predominantly isolated from the Oromia region substantiating the findings of the similar studies conducted in other regions of Ethiopia. The observation of significant number of singleton and orphan spoligotypes warrants for additional genetic typing of the isolates using method(s) with a better discriminatory power than spoligotyping.
Collapse
Affiliation(s)
- Bedru Hussien
- Department of Public Health, Goba Referral Hospital, Madda Walabu University, Goba, Ethiopia
| | - Aboma Zewude
- Malaria and Neglected Tropical Diseases Research Team, Ethiopian Public Health Institute, Ministry of Health, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Biniam Wondale
- Department of Biology, Arba Minch University, Arba Minch, Ethiopia
| | - Awraris Hailu
- Department of Public Health, College of Health Sciences, Debre Birhan University, Debre Birhan, Ethiopia
| | - Gobena Ameni
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Epidemiology of Mycobacterium tuberculosis lineages and strain clustering within urban and peri-urban settings in Ethiopia. PLoS One 2021; 16:e0253480. [PMID: 34252107 PMCID: PMC8274931 DOI: 10.1371/journal.pone.0253480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/06/2021] [Indexed: 11/25/2022] Open
Abstract
Background Previous work has shown differential predominance of certain Mycobacterium tuberculosis (M. tb) lineages and sub-lineages among different human populations in diverse geographic regions of Ethiopia. Nevertheless, how strain diversity is evolving under the ongoing rapid socio-economic and environmental changes is poorly understood. The present study investigated factors associated with M. tb lineage predominance and rate of strain clustering within urban and peri-urban settings in Ethiopia. Methods Pulmonary Tuberculosis (PTB) and Cervical tuberculous lymphadenitis (TBLN) patients who visited selected health facilities were recruited in the years of 2016 and 2017. A total of 258 M. tb isolates identified from 163 sputa and 95 fine-needle aspirates (FNA) were characterized by spoligotyping and compared with international M.tb spoligotyping patterns registered at the SITVIT2 databases. The molecular data were linked with clinical and demographic data of the patients for further statistical analysis. Results From a total of 258 M. tb isolates, 84 distinct spoligotype patterns that included 58 known Shared International Type (SIT) patterns and 26 new or orphan patterns were identified. The majority of strains belonged to two major M. tb lineages, L3 (35.7%) and L4 (61.6%). The observed high percentage of isolates with shared patterns (n = 200/258) suggested a substantial rate of overall clustering (77.5%). After adjusting for the effect of geographical variations, clustering rate was significantly lower among individuals co-infected with HIV and other concomitant chronic disease. Compared to L4, the adjusted odds ratio and 95% confidence interval (AOR; 95% CI) indicated that infections with L3 M. tb strains were more likely to be associated with TBLN [3.47 (1.45, 8.29)] and TB-HIV co-infection [2.84 (1.61, 5.55)]. Conclusion Despite the observed difference in strain diversity and geographical distribution of M. tb lineages, compared to earlier studies in Ethiopia, the overall rate of strain clustering suggests higher transmission and warrant more detailed investigations into the molecular epidemiology of TB and related factors.
Collapse
|
10
|
Asare-Baah M, Séraphin MN, Salmon LAT, Lauzardo M. Effect of mixed strain infections on clinical and epidemiological features of tuberculosis in Florida. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 87:104659. [PMID: 33276149 PMCID: PMC7855629 DOI: 10.1016/j.meegid.2020.104659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Mixed infections with genetically distinct Mycobacterium tuberculosis (MTB) strains within a single host have been documented in different settings; however, this phenomenon is rarely considered in the management and care of new and relapse tuberculosis (T.B.) cases. This study aims to establish the epidemiological and clinical features of mixed infections among culture-confirmed T.B. patients enrolled in tuberculosis care at the Florida Department of Health (FDOH) and measure its association with T.B. mortality. We analyzed de-identified surveillance data of T.B. cases enrolled in T.B. care from April 2008 to January 2018. Mixed MTB infection was determined by the presence of more than one Copy Number Variant (CNV) in at least one locus, based on the genotype profile pattern of at least one isolate using 24-locus Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR). The prevalence of mixed MTB infections among the 4944 culture-confirmed TB cases included in this analysis was 2.6% (129). Increased odds of mixed infections were observed among middle-aged patients, 45-64 years (AOR = 2.38; 95% CI: 0.99, 5.69; p = 0.0513), older adults 65 years and above (AOR = 3.95; 95% CI: 1.63, 9.58; p = 0.0023) and patients with diabetes (OR = 1.77; 95% CI: 1.12, 2.80; p = 0.0150). There was no significant association between mixed infections and death. Our study provides insight into the epidemiological and clinical characteristics of patients with mixed MTB infections, which is essential in the management of T.B. patients.
Collapse
Affiliation(s)
- Michael Asare-Baah
- Department of Epidemiology, University of Florida, College of Public Health and Health Professions, College of Medicine, 2004 Mowry Road, P.O. Box 100231, Gainesville, FL 32610, United States; Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, United States.
| | - Marie Nancy Séraphin
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, United States; Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, 2055 Mowry Road, P.O. Box 103600, Gainesville, FL 32610, United States
| | - LaTweika A T Salmon
- Florida Department of Health, Bureau of Tuberculosis Control, 4052 Bald Cypress Way, Bin A-20, Tallahassee, FL 32399, United States
| | - Michael Lauzardo
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, United States; Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, 2055 Mowry Road, P.O. Box 103600, Gainesville, FL 32610, United States
| |
Collapse
|
11
|
Molecular epidemiology of clinical Mycobacterium tuberculosis complex isolates in South Omo, Southern Ethiopia. BMC Infect Dis 2020; 20:750. [PMID: 33050903 PMCID: PMC7557052 DOI: 10.1186/s12879-020-05394-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is caused by Mycobacterium tuberculosis complex (MTBC). Mapping the genetic diversity of MTBC in high TB burden country like Ethiopia is important to understand principles of the disease transmission and to strengthen the regional TB control program. The aim of this study was to investigate the genetic diversity of Mycobacterium tuberculosis complex (MTBC) isolates circulating in the South Omo, southern Ethiopia. METHODS MTBC isolates (N = 156) were genetically analyzed using spacer oligotyping (spoligotyping) and mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) typing. Major lineages and lineages were identified using MTBC databases. Logistic regression was used to correlate patient characteristics with strain clustering. RESULTS The study identified Euro-American (EA), East-African-Indian (EAI), Indo-Oceanic (IO), Lineage_7/Aethiops vertus, Mycobacterium bovis and Mycobacterium africanum major lineages in proportions of 67.3% (105/156), 22.4% (35/156), 6.4% (10/156), 1.9% (3/156), 1.3% (2/156) and 0.6% (1/156), respectively. Lineages identified were Delhi/CAS 23.9% (37/155), Ethiopia_2 20.6% (32/155), Haarlem 14.2% (22/155), URAL 14.2%(22/155), Ethiopia_3 8.4% (13/155), TUR 6.5% (10/155), Lineage_7/Aethiops vertus 1.9% (3/155), Bovis 1.3% (2/155), LAM 1.3% (2/155), EAI 0.6% (1/155), X 0.6% (1/155) and Ethiopia H37Rv-like strain 0.6% (1/155). Of the genotyped isolates 5.8% (9/155) remained unassigned. The recent transmission index (RTI) was 3.9%. Orphan strains compared to shared types (AOR: 0.09, 95% CI: 0.04-0.25) were associated with reduced odds of clustering. The dominant TB lineage in pastoral areas was EAI and in non-pastoral areas was EA. CONCLUSION The epidemiological data, highly diverse MTBC strains and a low RTI in South Omo, provide information contributing to the TB Control Program of the country.
Collapse
|
12
|
Tiew PY, Ko FWS, Narayana JK, Poh ME, Xu H, Neo HY, Loh LC, Ong CK, Mac Aogáin M, Tan JHY, Kamaruddin NH, Sim GJH, Lapperre TS, Koh MS, Hui DSC, Abisheganaden JA, Tee A, Tsaneva-Atanasova K, Chotirmall SH. "High-Risk" Clinical and Inflammatory Clusters in COPD of Chinese Descent. Chest 2020; 158:145-156. [PMID: 32092320 PMCID: PMC7339237 DOI: 10.1016/j.chest.2020.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/10/2019] [Accepted: 01/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND COPD is a heterogeneous disease demonstrating inter-individual variation. A high COPD prevalence in Chinese populations is described, but little is known about disease clusters and prognostic outcomes in the Chinese population across Southeast Asia. We aim to determine if clusters of Chinese patients with COPD exist and their association with systemic inflammation and clinical outcomes. RESEARCH QUESTION We aim to determine if clusters of Chinese patients with COPD exist and their association with clinical outcomes and inflammation. STUDY DESIGN AND METHODS Chinese patients with stable COPD were prospectively recruited into two cohorts (derivation and validation) from six hospitals across three Southeast Asian countries (Singapore, Malaysia, and Hong Kong; n = 1,480). Each patient was followed more than 2 years. Clinical data (including co-morbidities) were employed in unsupervised hierarchical clustering (followed by validation) to determine the existence of patient clusters and their prognostic outcome. Accompanying systemic cytokine assessments were performed in a subset (n = 336) of patients with COPD to determine if inflammatory patterns and associated networks characterized the derived clusters. RESULTS Five patient clusters were identified including: (1) ex-TB, (2) diabetic, (3) low comorbidity: low-risk, (4) low comorbidity: high-risk, and (5) cardiovascular. The cardiovascular and ex-TB clusters demonstrate highest mortality (independent of Global Initiative for Chronic Obstructive Lung Disease assessment) and illustrate diverse cytokine patterns with complex inflammatory networks. INTERPRETATION We describe clusters of Chinese patients with COPD, two of which represent high-risk clusters. The cardiovascular and ex-TB patient clusters exhibit high mortality, significant inflammation, and complex cytokine networks. Clinical and inflammatory risk stratification of Chinese patients with COPD should be considered for targeted intervention to improve disease outcomes.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Fanny Wai San Ko
- Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong
| | - Jayanth Kumar Narayana
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Indian Institute of Science Education and Research, Pune, India
| | - Mau Ern Poh
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Huiying Xu
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Han Yee Neo
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Li-Cher Loh
- Department of Medicine, RCSI-UCD Malaysia Campus, Georgetown, Penang, Malaysia
| | - Choo Khoon Ong
- Department of Medicine, RCSI-UCD Malaysia Campus, Georgetown, Penang, Malaysia
| | - Micheál Mac Aogáin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | | | - Gerald Jiong Hui Sim
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore
| | - Therese S Lapperre
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore; Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Mariko Siyue Koh
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - David Shu Cheong Hui
- Department of Medicine and Therapeutics The Chinese University of Hong Kong, Hong Kong
| | | | - Augustine Tee
- Department of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute and Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK; PSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
13
|
McGuire E, Rajagopal S, Vaikunthanathan T, Krutikov M, Burman M, Rahman A, White V, Tiberi S, Rosmarin C, Kunst H. Extraspinal articular tuberculosis: An 11-year retrospective study of demographic features and clinical outcomes in East London. J Infect 2020; 81:383-389. [PMID: 32579987 DOI: 10.1016/j.jinf.2020.06.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To describe demographic features, clinical outcomes and diagnostic delay amongst patients with extra-spinal articular tuberculosis (TB) in a low-incidence setting. METHODS Cases of TB treated at our institution between 2004 and 2014 were identified via the London TB register (LTBR). Demographic features of extra-spinal articular TB cases were compared to controls with TB at all other sites. For articular cases (excluding individuals <16 years or with spinal TB without peripheral joint involvement) clinical data were retrospectively collected. RESULTS 6,146 TB patients were identified over the study period; 146 (2.4%) cases had extra-spinal articular infection. There was no difference in median age between extra-spinal articular TB cases and controls with TB at other sites (31 vs 32 years, p = 0.57). Articular cases were more likely to be male (70.6% vs 59.5%, p = 0.007), Bangladeshi (28.7% vs 18.0%) or Pakistani (24.0% vs 16.1%) and were less likely to be Black-African (9.5% vs 19.8%) (p < 0.001). 93 cases were included in the case series; 85 (88.5%) were migrants and 83 (89.2%) were South Asian. Knee and elbow joints were affected in 22 (23.7%) and 18 (19.4%) cases respectively. The median durations of pre-healthcare and healthcare associated delay were 16 and 6 weeks respectively. Where mycobacterial culture was performed, 57/75 (76%) were positive for Mycobacterium tuberculosis. 86 (92.5%) cases received standard quadruple therapy for a median of 6 months (IQR 6-9). Recurrence of TB infection occurred in 4 (4.3%) cases and there were no TB related deaths. Seven (7.6%) cases required surgical intervention. CONCLUSIONS Extra-spinal articular TB more commonly affected men and people of South Asian ethnicity. Significant diagnostic delays were identified, including avoidable healthcare-associated delays.
Collapse
Affiliation(s)
- Emma McGuire
- Division of Infection, Barts Health NHS Trust, London, United Kingdom.
| | - Swathi Rajagopal
- Division of Infection, Barts Health NHS Trust, London, United Kingdom
| | | | - Maria Krutikov
- Division of Infection, Barts Health NHS Trust, London, United Kingdom
| | - Matthew Burman
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ananna Rahman
- Department of Respiratory Medicine, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom; Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Veronica White
- Department of Respiratory Medicine, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Simon Tiberi
- Division of Infection, Barts Health NHS Trust, London, United Kingdom
| | - Caryn Rosmarin
- Division of Infection, Barts Health NHS Trust, London, United Kingdom
| | - Heinke Kunst
- Department of Respiratory Medicine, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom; Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
14
|
Chai Q, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci 2020; 77:1859-1878. [PMID: 31720742 PMCID: PMC11104961 DOI: 10.1007/s00018-019-03353-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), remains the leading cause of death worldwide from a single infectious pathogen. Mtb is a paradigmatic intracellular pathogen that primarily invades the lungs after host inhalation of bacteria-containing droplets via the airway. However, the majority of Mtb-exposed individuals can spontaneously control the infection by virtue of a robust immune defense system. The mucosal barriers of the respiratory tract shape the first-line defense against Mtb through various mucosal immune responses. After arriving at the alveoli, the surviving mycobacteria further encounter a set of host innate immune cells that exert multiple cellular bactericidal functions. Adaptive immunity, predominantly mediated by a range of different T cell and B cell subsets, is subsequently activated and participates in host anti-mycobacterial defense. During Mtb infection, host bactericidal immune responses are exquisitely adjusted and balanced by multifaceted mechanisms, including genetic and epigenetic regulation, metabolic regulation and neuroendocrine regulation, which are indispensable for maintaining host immune efficiency and avoiding excessive tissue injury. A better understanding of the integrated and equilibrated host immune defense system against Mtb will contribute to the development of rational TB treatment regimens especially novel host-directed therapeutics.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Kargarpour Kamakoli M, Farmanfarmaei G, Masoumi M, Khanipour S, Gharibzadeh S, Sola C, Fateh A, Siadat SD, Refregier G, Vaziri F. Prediction of the hidden genotype of mixed infection strains in Iranian tuberculosis patients. Int J Infect Dis 2020; 95:22-27. [PMID: 32251801 DOI: 10.1016/j.ijid.2020.03.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Patients with mixed-strain Mycobacterium tuberculosis infections may be at a high risk of poor treatment outcomes. However, the mechanisms through which mixed infections affect the clinical manifestations are not well recognized. Evidence suggests that failure to detect the pathogen diversity within the host can influence the clinical results. We aimed to investigate the effects of different genotypes in mixed infections and determine their relationship with heteroresistance in the treatment of Iranian tuberculosis patients. METHODS One of the genotypes was identified in the culture and another genotype pattern in the mixed infection was predicted by comparing the pattern of MIRU-VNTR between the clinical specimens and their respective cultures in each patient. For all patients, the drug susceptibility testing was carried out on three single colonies from each clinical sample. The follow-up of patients was carried out during six months of treatment. RESULTS Based on MIRU-VNTR profiles of clinical samples, we showed that 55.6% (25/45) of the Iranian patients included in the study had mixed infections. Patients with mixed infections had a higher rate of treatment failure, compared to others (P=0.03). By comparing clinical sample profiles to profiles obtained after culture, we were able to distinguish between major and hidden genotypes. Among hidden genotypes, Haarlem (L4.1.2) and Beijing (L2) were associated to treatment failure (6/8 patients). CONCLUSIONS To conclude, we propose a procedure using the MIRU-VNTR method to identify the different genotypes in mixed infections. The present findings suggest that genotypes with potentially higher pathogenicity may not be detected when performing experimental culture in patients with mixed infections.
Collapse
Affiliation(s)
- Mansour Kargarpour Kamakoli
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ghazaleh Farmanfarmaei
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Masoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sharareh Khanipour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Christophe Sola
- Institut for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Guislaine Refregier
- Institut for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
16
|
Correa-Macedo W, Cambri G, Schurr E. The Interplay of Human and Mycobacterium Tuberculosis Genomic Variability. Front Genet 2019; 10:865. [PMID: 31620169 PMCID: PMC6759583 DOI: 10.3389/fgene.2019.00865] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB), caused by the human pathogens Mycobacterium tuberculosis (Mtb) and Mycobacterium africanum, has plagued humanity for millennia and remains the deadliest infectious disease in the modern world. Mycobacterium tuberculosis and M. africanum can be subdivided phylogenetically into seven lineages exhibiting a low but significant degree of genomic diversity and preferential geographic distributions. Human genetic variability impacts all stages of TB pathogenesis ranging from susceptibility to infection with Mtb, progression of infection to disease, and the development of distinct clinical subtypes. The genetic study of severe childhood TB identified strong inborn single-gene errors revealing crucial pathways of vulnerability to TB. However, the identification of major TB-susceptibility genes on the population level has remained elusive. In particular, the replication of findings from candidate and genome-wide association studies across distinct human populations has proven difficult, thus hampering the characterization of reliable host molecular markers of susceptibility. Among the possible confounding factors of genetic association studies is Mtb genomic variability, which generally was not taken into account by human genetic studies. In support of this possibility, Mtb lineage was found to be a contributing factor to clinical presentation of TB and epidemiological spread of Mtb in exposed populations. The confluence of pathogen and human host genetic variability to TB pathogenesis led to the consideration of a possible coadaptation of Mtb strains and their human hosts, which should reveal itself in significant interaction effects between Mtb strain and TB-susceptibility/resistance alleles. Here, we present some of the most consistent findings of genetic susceptibility factors in human TB and review studies that point to genome-to-genome interaction between humans and Mtb lineages. The limited results available so far suggest that analyses considering joint human–Mtb genomic variability may provide improved power for the discovery of pathogenic drivers of the ongoing TB epidemic.
Collapse
Affiliation(s)
- Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Geison Cambri
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, Research Institute, McGill University Health Centre, Montreal, QC, Canada.,The McGill International TB Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Departments of Human Genetics and Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Alelign A, Petros B, Ameni G. Smear positive tuberculosis and genetic diversity of M. tuberculosis isolates in individuals visiting health facilities in South Gondar Zone, northwest Ethiopia. PLoS One 2019; 14:e0216437. [PMID: 31393882 PMCID: PMC6687116 DOI: 10.1371/journal.pone.0216437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 11/18/2022] Open
Abstract
Background Tuberculosis (TB), a bacterial infectious disease, continues to be a public health concern in many developing countries. However, lack of data concerning the public health burden and potential risk factors for the disease hampers control programs in target areas. Therefore, the aims of present study were to determine the prevalence of TB and genetic diversity of M. tuberculosis isolates from individuals visiting health facilities in South Gondar Zone, northwest Ethiopia. Methods A cross-sectonal study was conducted between March 2015 and April 2017. Bacteriological examination, region of difference (RD) 9 based polymerase chain reaction (PCR) and spoligotyping were used. Results The overall prevalence of all smear positive TB was 6.3% (186/2953). Extra pulmonary TB (EPTB) was clinically characterized in about 62.4% (116/186) TB-positive cases. Some demographic characteristics, such as patients' origin (districts where patients were recruited) [patients’ origin (chi-square (χ2) value; 62.8,p<0.001) were found to be significantly associated risk factors for the occurrence of TB in the study area. All the mycobacterial isolates were found to be M. tuberculosis. Among the 35 different spoligotype patterns identified, 22 patterns were shared types.The three dominantly identified families were T, CAS and Manu, each consisting of 46.9%, 24.0% and 10.4% of the isolates, respectively. Conclusion The present study revealed that TB continues to be a public health problem in South Gondar Zone which suggests a need of implementing effective disease control strategies.
Collapse
Affiliation(s)
- Amir Alelign
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- College of Natural Sciences, Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- College of Natural and Computational Sciences, Department of Biology, Debrebrhan University, Debrebrhan, Ethiopia
- * E-mail:
| | - Beyene Petros
- College of Natural Sciences, Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
18
|
Demographic risk factors for extra-pulmonary tuberculosis among adolescents and adults in Saudi Arabia. PLoS One 2019; 14:e0213846. [PMID: 30917151 PMCID: PMC6436801 DOI: 10.1371/journal.pone.0213846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/02/2019] [Indexed: 12/18/2022] Open
Abstract
Despite low infectious potential of extrapulmonary tuberculosis (EPTB), it poses significant clinical challenges in terms of diagnosis and treatment monitoring. Understanding the main demographical risk factors for disease characteristics of EPTB plays a crucial role in speeding up diagnosis process and improving overall clinical experience. The aim of this study was to investigate the main demographical and clinical risk factors for EPTB among adults and adolescents for the first time in Saudi Arabia. A cross-sectional multicenter study was carried out on a collection of 902 extrapulmonary Mycobacterium tuberculosis complex (MTBC) isolates with demographical and clinical data. All isolates were subjected to spoligotyping and 24-loci based MIRU-VNTR typing. The association between two potential variables was assessed using odd ratios (OR) calculations. Independent risk factors for EPTB and diseases characteristics of EPTB were identified using multivariate regression model analyses. Gender was found to be significantly associated with lymph node, gastrointestinal, central nervous system and urogenital TB. Lymph node TB showed statistical association to age group below 25 years, non-Saudis and South East Asian ethnicity. While gastrointestinal TB demonstrated an association with patients above 60 years old, and Saudis. Multivariate analysis showed that gender is an independent risk factor to urogenital TB (p 0.03) and lymph node TB (p 0.005). On the other hands, South Asian (p 0.01) and South East Asian (p 0.03) ethnicities were both identified as independent risk factors significantly associated with EPTB. MTBC lineages, site of infections, gender, HIV and smear positivity showed no significant association. Nationwide qualitative-studies are highly warranted in the future to further understand the main demographic risk factors for disease characteristics of EPTB.
Collapse
|
19
|
Saelens JW, Viswanathan G, Tobin DM. Mycobacterial Evolution Intersects With Host Tolerance. Front Immunol 2019; 10:528. [PMID: 30967867 PMCID: PMC6438904 DOI: 10.3389/fimmu.2019.00528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past 200 years, tuberculosis (TB) has caused more deaths than any other infectious disease, likely infecting more people than it has at any other time in human history. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, is an obligate human pathogen that has evolved through the millennia to become an archetypal human-adapted pathogen. This review focuses on the evolutionary framework by which Mtb emerged as a specialized human pathogen and applies this perspective to the emergence of specific lineages that drive global TB burden. We consider how evolutionary pressures, including transmission dynamics, host tolerance, and human population patterns, may have shaped the evolution of diverse mycobacterial genomes.
Collapse
Affiliation(s)
- Joseph W. Saelens
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Gopinath Viswanathan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
20
|
Woodman M, Haeusler IL, Grandjean L. Tuberculosis Genetic Epidemiology: A Latin American Perspective. Genes (Basel) 2019; 10:genes10010053. [PMID: 30654542 PMCID: PMC6356704 DOI: 10.3390/genes10010053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
There are an estimated 10 million new cases of tuberculosis worldwide annually, with 282,000 new or relapsed cases each year reported from the Americas. With improvements in genome sequencing technology, it is now possible to study the genetic diversity of tuberculosis with much greater resolution. Although tuberculosis bacteria do not engage in horizontal gene transfer, the genome is far more variable than previously thought. The study of genome-wide variation in tuberculosis has improved our understanding of the evolutionary origins of tuberculosis, the arrival of tuberculosis in Latin America, the genetic determinants of drug resistance, and lineage-specific associations with important clinical phenotypes. This article reviews what is known about the arrival of tuberculosis in Latin America, the genetic diversity of tuberculosis in Latin America, and the genotypic determinants of clinical phenotypes.
Collapse
Affiliation(s)
- Marc Woodman
- Institute of Child Health, University College London, London WC1N 3JH, UK.
| | - Ilsa L Haeusler
- Institute of Child Health, University College London, London WC1N 3JH, UK.
| | - Louis Grandjean
- Institute of Child Health, University College London, London WC1N 3JH, UK.
- Department of Medicine, Imperial College London, London W2 1NY, UK.
- Great Ormond Street Hospital, Institute of Child Health, University College London, London WC1N 3JH, UK.
- Laboratorio de Investigacion y Desarollo, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres 15102, Lima, Peru.
| |
Collapse
|
21
|
Varghese B, Enani M, Alrajhi A, Al Johani S, Albarak A, Althawadi S, Elkhizzi N, AlGhafli H, Shoukri M, Al-Hajoj S. Impact of Mycobacterium tuberculosis complex lineages as a determinant of disease phenotypes from an immigrant rich moderate tuberculosis burden country. Respir Res 2018; 19:259. [PMID: 30587190 PMCID: PMC6307224 DOI: 10.1186/s12931-018-0966-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/16/2018] [Indexed: 02/04/2023] Open
Abstract
Background Growing evidences suggested that the Mycobacterium tuberculosis complex (MTBC) lineages can determine the clinical outcome of pulmonary and extra-pulmonary tuberculosis. However, limited data only available revealing such association of bacterial genotypes and clinical phenotypes from immigrant rich countries. Methods A multicenter study has been carried out on a collection of 2092 (1003 extrapulmonary and 1089 pulmonary) MTBC isolates. Genotyping of all the isolates were carried out by spoligotyping and 24 loci based MIRU-VNTR typing. Results Demographically domination of young Saudi nationals (61.4%) and men (61.2%) were found in this cohort. Lymph nodes (62.4%) and gastrointestinal sites (16.7%) were the most common anatomical sites of infection. The predominant lineages were Delhi/CAS (26.9%), EAI (14.2%) and Ghana (9.9%). Mycobacterium africanum type I and II were reported for the first time in the country among extrapulmonary cases. ‘Ancestral’ lineages M.bovis (OR-5.22; 95% CI-2.23-8.22, p- < 0.001) and Delhi/CAS (OR-0.57; 95% CI-0.411-0.734, p- < 0.001) were directly associated with lymph node tuberculosis and gastrointestinal tuberculosis (M. bovis-OR-0.33; 95% CI-0.085-0.567, p-0.001 and Delhi/CAS-OR-1.87; 95% CI-1.22-2.53, p- < 0.001) respectively. Among the ‘Modern’ lineages, EAI showed significant association to central nervous system tuberculosis (OR-1.98; 95% CI-0.76-3.19, p-0.04) and Uganda-I to gastrointestinal tuberculosis (OR-2.41; 95% CI-0.77-4.06, p-0.02). Conclusions The findings substantially contribute to the emerging evidences that MTBC lineages influence disease phenotypes and epidemiological consequences. Electronic supplementary material The online version of this article (10.1186/s12931-018-0966-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bright Varghese
- Department of Infection and Immunity, MBC-03, King Faisal Specialist Hospital and Research Centre, Post Box # 3354, Riyadh, 11211, Saudi Arabia
| | - Mushira Enani
- Medical Specialties Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulrahman Alrajhi
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sameera Al Johani
- Department of Microbiology, King Abdul Aziz Medical City, Riyadh, Saudi Arabia
| | - Ali Albarak
- Department of Medicine, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Sahar Althawadi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Noura Elkhizzi
- Department of Microbiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hawra AlGhafli
- Department of Infection and Immunity, MBC-03, King Faisal Specialist Hospital and Research Centre, Post Box # 3354, Riyadh, 11211, Saudi Arabia
| | - Mohammed Shoukri
- National Biotechnology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sahal Al-Hajoj
- Department of Infection and Immunity, MBC-03, King Faisal Specialist Hospital and Research Centre, Post Box # 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
22
|
Genetic diversity of Mycobacterium tuberculosis isolates causing pulmonary and extrapulmonary tuberculosis in the capital of Iran. Mol Phylogenet Evol 2018; 132:46-52. [PMID: 30513341 DOI: 10.1016/j.ympev.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Evaluation of the genetic diversity of Mycobacterium tuberculosis (M.tb) and determining if the association between a specific genotype and the site of infection is crucial. Accordingly, the current study aimed at comparing predominant M.tb genotypes in pulmonary (PTB) and extrapulmonary tuberculosis (EPTB) isolates circulating in the capital of Iran. METHODS The genetic diversity of culture-confirmed PTB and EPTB isolates were evaluated by Spoligotyping and MIRU-VNTR (mycobacterial interspersed repetitive-unit-variable-number tandem-repeat) typing methods. Genotyping data were analyzed with SITVIT, MIRU-VNTRplus, and TBminer databases. To assess adjusted associations, chi-square/the Fisher exact test and multiple logistic regression model were applied. RESULTS URAL2 (NEW-1) (28/88; 31.8%) and CAS1-DELHI (25/84; 29.8%) genotypes were predominant in EPTB and PTB strains, respectively. Based on MIRU-VNTR typing, 158 different MIRU-VNTR patterns were identified. Clustering rate and minimum estimate of the proportion of TB caused by recent transmission was 4.1% and 8.1%, respectively. CONCLUSIONS The current study provided new insight into circulating genotypes of M.tb in PTB and EPTB patients in Tehran, Iran. This low percentage of TB transmission rate, demonstrated that mode of TB transmission was mainly associated with reactivation of latent TB rather than recently transmitted infection in this region. There was no significant difference in the association between the genotypes of M.tb strains and the site of the disease.
Collapse
|
23
|
Nahid P, Jarlsberg LG, Kato-Maeda M, Segal MR, Osmond DH, Gagneux S, Dobos K, Gold M, Hopewell PC, Lewinsohn DM. Interplay of strain and race/ethnicity in the innate immune response to M. tuberculosis. PLoS One 2018; 13:e0195392. [PMID: 29787561 PMCID: PMC5963792 DOI: 10.1371/journal.pone.0195392] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/21/2018] [Indexed: 11/19/2022] Open
Abstract
Background The roles of host and pathogen factors in determining innate immune responses to M. tuberculosis are not fully understood. In this study, we examined host macrophage immune responses of 3 race/ethnic groups to 3 genetically and geographically diverse M. tuberculosis lineages. Methods Monocyte-derived macrophages from healthy Filipinos, Chinese and non-Hispanic White study participants (approximately 45 individuals/group) were challenged with M. tuberculosis whole cell lysates of clinical strains Beijing HN878 (lineage 2), Manila T31 (lineage 1), CDC1551 (lineage 4), the reference strain H37Rv (lineage 4), as well as with Toll-like receptor 2 agonist lipoteichoic acid (TLR2/LTA) and TLR4 agonist lipopolysaccharide (TLR4/LPS). Following overnight incubation, multiplex assays for nine cytokines: IL-1β, IL-2, IL-6, IL-8, IL-10, IL-12p70, IFNγ, TNFα, and GM-CSF, were batch applied to supernatants. Results Filipino macrophages produced less IL-1, IL-6, and more IL-8, compared to macrophages from Chinese and Whites. Race/ethnicity had only subtle effects or no impact on the levels of IL-10, IL-12p70, TNFα and GM-CSF. In response to the Toll-like receptor 2 agonist lipoteichoic acid (TLR2/LTA), Filipino macrophages again had lower IL-1 and IL-6 responses and a higher IL-8 response, compared to Chinese and Whites. The TLR2/LTA-stimulated Filipino macrophages also produced lower amounts of IL-10, TNFα and GM-CSF. Race/ethnicity had no impact on IL-12p70 levels released in response to TLR2/LTA. The responses to TLR4 agonist lipopolysaccharide (TLR4/LPS) were similar to the TLR2/LTA responses, for IL-1, IL-6, IL-8, and IL-10. However, TLR4/LPS triggered the release of less IL-12p70 from Filipino macrophages, and less TNFα from White macrophages. Conclusions Both host race/ethnicity and pathogen strain influence the innate immune response. Such variation may have implications for the development of new tools across TB therapeutics, immunodiagnostics and vaccines.
Collapse
Affiliation(s)
- P. Nahid
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, University of California, San Francisco, United States of America
- * E-mail: (PN); (DML)
| | - L. G. Jarlsberg
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, University of California, San Francisco, United States of America
| | - M. Kato-Maeda
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, University of California, San Francisco, United States of America
| | - M. R. Segal
- Department of Epidemiology & Biostatistics, University of California, San Francisco, United States of America
| | - D. H. Osmond
- Department of Epidemiology & Biostatistics, University of California, San Francisco, United States of America
| | - S. Gagneux
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, University of Basel, Basel, Switzerland
| | - K. Dobos
- Colorado State University, Department of Microbiology, Immunology & Pathology, Fort Collins, CO, United States of America
| | - M. Gold
- Department of Research, Veterans Affairs Portland Health Care Center, Portland, Oregon, United States of America
| | - P. C. Hopewell
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, University of California, San Francisco, United States of America
| | - D. M. Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health and Sciences University, Portland, Oregon
- Department of Research, Veterans Affairs Portland Health Care Center, Portland, Oregon, United States of America
- * E-mail: (PN); (DML)
| |
Collapse
|
24
|
Murthy SE, Chatterjee F, Crook A, Dawson R, Mendel C, Murphy ME, Murray SR, Nunn AJ, Phillips PPJ, Singh KP, McHugh TD, Gillespie SH. Pretreatment chest x-ray severity and its relation to bacterial burden in smear positive pulmonary tuberculosis. BMC Med 2018; 16:73. [PMID: 29779492 PMCID: PMC5961483 DOI: 10.1186/s12916-018-1053-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/09/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chest radiographs are used for diagnosis and severity assessment in tuberculosis (TB). The extent of disease as determined by smear grade and cavitation as a binary measure can predict 2-month smear results, but little has been done to determine whether radiological severity reflects the bacterial burden at diagnosis. METHODS Pre-treatment chest x-rays from 1837 participants with smear-positive pulmonary TB enrolled into the REMoxTB trial (Gillespie et al., N Engl J Med 371:1577-87, 2014) were retrospectively reviewed. Two clinicians blinded to clinical details using the Ralph scoring system performed separate readings. An independent reader reviewed discrepant results for quality assessment and cavity presence. Cavitation presence was plotted against time to positivity (TTP) of sputum liquid cultures (MGIT 960). The Wilcoxon rank sum test was performed to calculate the difference in average TTP for these groups. The average lung field affected was compared to log 10 TTP by linear regression. Baseline markers of disease severity and patient characteristics were added in univariable regression analysis against radiological severity and a multivariable regression model was created to explore their relationship. RESULTS For 1354 participants, the median TTP was 117 h (4.88 days), being 26 h longer (95% CI 16-30, p < 0.001) in patients without cavitation compared to those with cavitation. The median percentage of lung-field affected was 18.1% (IQR 11.3-28.8%). For every 10-fold increase in TTP, the area of lung field affected decreased by 11.4%. Multivariable models showed that serum albumin decreased significantly as the percentage of lung field area increased in both those with and without cavitation. In addition, BMI and logged TTP had a small but significant effect in those with cavitation and the number of severe TB symptoms in the non-cavitation group also had a small effect, whilst other factors found to be significant on univariable analysis lost this effect in the model. CONCLUSIONS The radiological severity of disease on chest x-ray prior to treatment in smear positive pulmonary TB patients is weakly associated with the bacterial burden. When compared against other variables at diagnosis, this effect is lost in those without cavitation. Radiological severity does reflect the overall disease severity in smear positive pulmonary TB, but we suggest that clinicians should be cautious in over-interpreting the significance of radiological disease extent at diagnosis.
Collapse
Affiliation(s)
- S E Murthy
- UCL Centre for Clinical Microbiology, Department of Infection, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| | - F Chatterjee
- Department of Radiology, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Road, London, E1 1BB, UK
| | - A Crook
- Medical Research Council UK Clinical Trials Unit at University College London, Aviation House, 125 Kingsway, London, WC2B 6NH, UK
| | - R Dawson
- University of Cape Town Lung Institute, George Street, Mowbray, Cape Town, South Africa
| | - C Mendel
- Global Alliance for Tuberculosis Drug Development, New York, NY, 10005, USA
| | - M E Murphy
- UCL Centre for Clinical Microbiology, Department of Infection, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - S R Murray
- Global Alliance for Tuberculosis Drug Development, New York, NY, 10005, USA
| | - A J Nunn
- Medical Research Council UK Clinical Trials Unit at University College London, Aviation House, 125 Kingsway, London, WC2B 6NH, UK
| | - P P J Phillips
- Medical Research Council UK Clinical Trials Unit at University College London, Aviation House, 125 Kingsway, London, WC2B 6NH, UK
| | - Kasha P Singh
- UCL Centre for Clinical Microbiology, Department of Infection, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - T D McHugh
- UCL Centre for Clinical Microbiology, Department of Infection, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - S H Gillespie
- Medical and Biological Sciences, School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
| | | |
Collapse
|
25
|
Hayward S, Harding RM, McShane H, Tanner R. Factors influencing the higher incidence of tuberculosis among migrants and ethnic minorities in the UK. F1000Res 2018; 7:461. [PMID: 30210785 PMCID: PMC6107974 DOI: 10.12688/f1000research.14476.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
Migrants and ethnic minorities in the UK have higher rates of tuberculosis (TB) compared with the general population. Historically, much of the disparity in incidence between UK-born and migrant populations has been attributed to differential pathogen exposure, due to migration from high-incidence regions and the transnational connections maintained with TB endemic countries of birth or ethnic origin. However, focusing solely on exposure fails to address the relatively high rates of progression to active disease observed in some populations of latently infected individuals. A range of factors that disproportionately affect migrants and ethnic minorities, including genetic susceptibility, vitamin D deficiency and co-morbidities such as diabetes mellitus and HIV, also increase vulnerability to infection with
Mycobacterium tuberculosis (M.tb) or reactivation of latent infection. Furthermore, ethnic socio-economic disparities and the experience of migration itself may contribute to differences in TB incidence, as well as cultural and structural barriers to accessing healthcare. In this review, we discuss both biological and anthropological influences relating to risk of pathogen exposure, vulnerability to infection or development of active disease, and access to treatment for migrant and ethnic minorities in the UK.
Collapse
Affiliation(s)
- Sally Hayward
- St John's College, University of Oxford, Oxford, OX1 3JP, UK
| | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, OX1 3PS, UK
| | - Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, OX1 3PS, UK
| |
Collapse
|
26
|
Hayward S, Harding RM, McShane H, Tanner R. Factors influencing the higher incidence of tuberculosis among migrants and ethnic minorities in the UK. F1000Res 2018; 7:461. [PMID: 30210785 PMCID: PMC6107974 DOI: 10.12688/f1000research.14476.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2018] [Indexed: 09/04/2023] Open
Abstract
Migrants and ethnic minorities in the UK have higher rates of tuberculosis (TB) compared with the general population. Historically, much of the disparity in incidence between UK-born and migrant populations has been attributed to differential pathogen exposure, due to migration from high-incidence regions and the transnational connections maintained with TB endemic countries of birth or ethnic origin. However, focusing solely on exposure fails to address the relatively high rates of progression to active disease observed in some populations of latently infected individuals. A range of factors that disproportionately affect migrants and ethnic minorities, including genetic susceptibility, vitamin D deficiency and co-morbidities such as diabetes mellitus and HIV, also increase vulnerability to infection with Mycobacterium tuberculosis (M.tb) or reactivation of latent infection. Furthermore, ethnic socio-economic disparities and the experience of migration itself may contribute to differences in TB incidence, as well as cultural and structural barriers to accessing healthcare. In this review, we discuss both biological and anthropological influences relating to risk of pathogen exposure, vulnerability to infection or development of active disease, and access to treatment for migrant and ethnic minorities in the UK.
Collapse
Affiliation(s)
- Sally Hayward
- St John’s College, University of Oxford, Oxford, OX1 3JP, UK
| | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, OX1 3PS, UK
| | - Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, OX1 3PS, UK
| |
Collapse
|
27
|
Rosser A, Richardson M, Wiselka MJ, Free RC, Woltmann G, Mukamolova GV, Pareek M. A nested case-control study of predictors for tuberculosis recurrence in a large UK Centre. BMC Infect Dis 2018; 18:94. [PMID: 29486715 PMCID: PMC5830048 DOI: 10.1186/s12879-017-2933-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Background Tuberculosis (TB) recurrence represents a challenge to control programs. In low incidence countries, the prevailing risk factors leading to recurrence are poorly characterised. Methods We conducted a nested case–control study using the Leicester TB service TBIT database. Cases were identified from database notifications between 1994 and 2014. Controls had one episode and were matched to cases on a ratio of two to one by the date of notification. Multiple imputation was used to account for missing data. Multivariate conditional logistic regression analysis was employed to identify clinical, sociodemographic and TB specific risk factors for recurrence. Results From a cohort of 4628 patients, 82 TB recurrences occurred (1.8%). Nineteen of 82 patients had paired isolates with MIRU-VNTR strain type profiles available, of which 84% were relapses and 16% reinfections. On multivariate analysis, smoking (OR 3.8; p = 0.04), grade 3/4 adverse drug reactions (OR 5.6; p = 0.02), ethnicity ‘Indian subcontinent’ (OR 8.5; p = <0.01), ethnicity ‘other’ (OR 31.2; p = 0.01) and receipt of immunosuppressants (OR 6.8; p = <0.01) were independent predictors of TB recurrence. Conclusions Within this UK setting, the rate of TB recurrence was low, predominantly due to relapse. The identification of an elevated recurrence risk amongst the ethnic group contributing most cases to the national TB burden presents an opportunity to improve individual and population health. Electronic supplementary material The online version of this article (10.1186/s12879-017-2933-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Rosser
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE1 7RH, UK.,Department of Infection and Tropical Medicine, University Hospitals Leicester NHS Trust, Leicester, UK
| | - Matthew Richardson
- Department of Infection, Respiratory Biomedical Research Centre, Institute for Lung Health, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Martin J Wiselka
- Department of Infection and Tropical Medicine, University Hospitals Leicester NHS Trust, Leicester, UK
| | - Robert C Free
- Department of Infection, Respiratory Biomedical Research Centre, Institute for Lung Health, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Gerrit Woltmann
- Department of Infection, Respiratory Biomedical Research Centre, Institute for Lung Health, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Galina V Mukamolova
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE1 7RH, UK
| | - Manish Pareek
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE1 7RH, UK. .,Department of Infection and Tropical Medicine, University Hospitals Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
28
|
Large-scale genomic analysis shows association between homoplastic genetic variation in Mycobacterium tuberculosis genes and meningeal or pulmonary tuberculosis. BMC Genomics 2018; 19:122. [PMID: 29402222 PMCID: PMC5800017 DOI: 10.1186/s12864-018-4498-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/28/2018] [Indexed: 12/03/2022] Open
Abstract
Background Meningitis is the most severe manifestation of tuberculosis. It is largely unknown why some people develop pulmonary TB (PTB) and others TB meningitis (TBM); we examined if the genetic background of infecting M. tuberculosis strains may be relevant. Methods We whole-genome sequenced M. tuberculosis strains isolated from 322 HIV-negative tuberculosis patients from Indonesia and compared isolates from patients with TBM (n = 106) and PTB (n = 216). Using a phylogeny-adjusted genome-wide association method to count homoplasy events we examined phenotype-related changes at specific loci or genes in parallel branches of the phylogenetic tree. Enrichment scores for the TB phenotype were calculated on single nucleotide polymorphism (SNP), gene, and pathway level. Genetic associations were validated in an independent set of isolates. Results Strains belonged to the East-Asian lineage (36.0%), Euro-American lineage (61.5%), and Indo-Oceanic lineage (2.5%). We found no association between lineage and phenotype (Chi-square = 4.556; p = 0.207). Large genomic differences were observed between isolates; the minimum pairwise genetic distance varied from 17 to 689 SNPs. Using the phylogenetic tree, based on 28,544 common variable positions, we selected 54 TBM and 54 PTB isolates in terminal branch sets with distinct phenotypes. Genetic variation in Rv0218, and absence of Rv3343c, and nanK were significantly associated with disease phenotype in these terminal branch sets, and confirmed in the validation set of 214 unpaired isolates. Conclusions Using homoplasy counting we identified genetic variation in three separate genes to be associated with the TB phenotype, including one (Rv0218) which encodes a secreted protein that could play a role in host-pathogen interaction by altering pathogen recognition or acting as virulence effector. Electronic supplementary material The online version of this article (10.1186/s12864-018-4498-z) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Ankrah AO, Glaudemans AWJM, Maes A, Van de Wiele C, Dierckx RAJO, Vorster M, Sathekge MM. Tuberculosis. Semin Nucl Med 2017; 48:108-130. [PMID: 29452616 DOI: 10.1053/j.semnuclmed.2017.10.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is currently the world's leading cause of infectious mortality. Imaging plays an important role in the management of this disease. The complex immune response of the human body to Mycobacterium tuberculosis results in a wide array of clinical manifestations, making clinical and radiological diagnosis challenging. 18F-FDG-PET/CT is very sensitive in the early detection of TB in most parts of the body; however, the lack of specificity is a major limitation. 18F-FDG-PET/CT images the whole body and provides a pre-therapeutic metabolic map of the infection, enabling clinicians to accurately assess the burden of disease. It enables the most appropriate site of biopsy to be selected, stages the infection, and detects disease in previously unknown sites. 18F-FDG-PET/CT has recently been shown to be able to identify a subset of patients with latent TB infection who have subclinical disease. Lung inflammation as detected by 18F-FDG-PET/CT has shown promising signs that it may be a useful predictor of progression from latent to active infection. A number of studies have identified imaging features that might improve the specificity of 18F-FDG-PET/CT at some sites of extrapulmonary TB. Other PET tracers have also been investigated for their use in TB, with some promising results. The potential role and future perspectives of PET/CT in imaging TB is considered. Literature abounds on the very important role of 18F-FDG-PET/CT in assessing therapy response in TB. The use of 18F-FDG for monitoring response to treatment is addressed in a separate review.
Collapse
Affiliation(s)
- Alfred O Ankrah
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa; Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Alex Maes
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa; Department of Nuclear Medicine, AZ Groeninge, Kortrijk, Belgium; Department of Morphology and Medical Imaging, University Hospital Leuven, Leuven, Belgium
| | - Christophe Van de Wiele
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa; Department of Nuclear Medicine and Radiology, University of Ghent, Ghent, Belgium
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, South Africa.
| |
Collapse
|
30
|
Stein CM, Sausville L, Wejse C, Sobota RS, Zetola NM, Hill PC, Boom WH, Scott WK, Sirugo G, Williams SM. Genomics of human pulmonary tuberculosis: from genes to pathways. CURRENT GENETIC MEDICINE REPORTS 2017; 5:149-166. [PMID: 29805915 DOI: 10.1007/s40142-017-0130-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose of review Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a major public health threat globally. Several lines of evidence support a role for host genetic factors in resistance/susceptibility to TB disease and MTB infection. However, results across candidate gene and genome-wide association studies (GWAS) are largely inconsistent, so a cohesive genetic model underlying TB risk has not emerged. Recent Findings Despite the difficulties in identifying consistent genetic associations, genetic studies of TB and MTB infection have revealed a few well-documented loci. These well validated genes are presented in this review, but there remains a large gap in how these genes translate into better understanding of TB. To address this, we present a pathway based extension of standard association analyses, seeding the results with the best validated genes from candidate gene and GWAS studies. Summary Several pathways were significantly enriched using pathway analyses that may help to explain population patterns of TB risk. In conclusion, we advocate for novel approaches to the study of host genetic analysis of TB that extend traditional association approaches.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Cleveland, OH.,Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH
| | - Lindsay Sausville
- Department of Population and Quantitative Health Sciences, Cleveland, OH
| | - Christian Wejse
- Dept of Infectious Diseases/Center for Global Health, Aarhus University, Aarhus, Denmark
| | - Rafal S Sobota
- The Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, IL
| | - Nicola M Zetola
- Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA 19104, USA.,Botswana-UPenn Partnership, Gaborone, Botswana.,Department of Medicine, University of Botswana, Gaborone, Botswana
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - W Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH
| | - William K Scott
- Department of Human Genetics and Genomics, University of Miami School of Medicine, Miami, FL
| | - Giorgio Sirugo
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Cleveland, OH
| |
Collapse
|
31
|
Séraphin MN, Doggett R, Johnston L, Zabala J, Gerace AM, Lauzardo M. Association between Mycobacterium tuberculosis lineage and site of disease in Florida, 2009-2015. INFECTION GENETICS AND EVOLUTION 2017; 55:366-371. [PMID: 28993293 DOI: 10.1016/j.meegid.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis is characterized into four global lineages with strong geographical restriction. To date one study in the United States has investigated M. tuberculosis lineage association with tuberculosis (TB) disease presentation (extra-pulmonary versus pulmonary). We update this analysis using recent (2009-2015) data from the State of Florida to measure lineage association with pulmonary TB, the infectious form of the disease. METHODS M. tuberculosis lineage was assigned based on the spacer oligonucleotide typing (spoligotyping) patterns. TB disease site was defined as exclusively pulmonary or extra-pulmonary. We used ORs to measure the association between M. tuberculosis lineages and pulmonary compared to extra-pulmonary TB. The final multivariable model was adjusted for patient socio-demographics, HIV and diabetes status. RESULTS We analyzed 3061 cases, 83.4% were infected with a Euro-American lineage, 8.4% Indo-Oceanic and 8.2% East-Asian lineage. The majority of the cases (86.0%) were exclusively pulmonary. Compared to the Indo-Oceanic lineage, infection with a Euro-American (AOR=1.87, 95% CI: 1.21, 2.91) or an East-Asian (AOR=2.11, 95% CI: 1.27, 3.50) lineage favored pulmonary disease compared to extra-pulmonary. In a sub-analysis among pulmonary cases, strain lineage was not associated with sputum smear positive status, indicating that the observed association with pulmonary disease is independent of host contagiousness. CONCLUSION As an obligate pathogen, M. tuberculosis' fitness is directly correlated to its transmission potential. In this analysis, we show that M. tuberculosis lineage is associated with pulmonary disease presentation. This association may explain the predominance in a region of certain lineages compared to others.
Collapse
Affiliation(s)
- Marie Nancy Séraphin
- Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, 2055 Mowry Road, P.O. Box 103600, Gainesville, FL 32610, USA; Emerging Pathogen Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA.
| | - Richard Doggett
- Florida Department of Health, Bureau of Public Health Laboratories, 1217 N. Pearl Street, Jacksonville, FL, 32202, USA.
| | - Lori Johnston
- Florida Department of Health, Bureau of Tuberculosis Control, 4052 Bald Cypress Way, Bin A-20, Tallahassee, FL 32399.
| | - Jose Zabala
- Florida Department of Health, Bureau of Tuberculosis Control, 4052 Bald Cypress Way, Bin A-20, Tallahassee, FL 32399.
| | - Alexandra M Gerace
- Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, 2055 Mowry Road, P.O. Box 103600, Gainesville, FL 32610, USA; Emerging Pathogen Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA.
| | - Michael Lauzardo
- Division of Infectious Diseases and Global Medicine, University of Florida, College of Medicine, 2055 Mowry Road, P.O. Box 103600, Gainesville, FL 32610, USA; Emerging Pathogen Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA.
| |
Collapse
|
32
|
Chen H, He L, Huang H, Shi C, Ni X, Dai G, Ma L, Li W. Mycobacterium tuberculosis Lineage Distribution in Xinjiang and Gansu Provinces, China. Sci Rep 2017; 7:1068. [PMID: 28432321 PMCID: PMC5430859 DOI: 10.1038/s41598-017-00720-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/09/2017] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) genotyping has dramatically improved the understanding of the epidemiology of tuberculosis (TB). In this study, 187 M. tuberculosis isolates from Xinjiang Uygur Autonomous Region (Xinjiang) and Gansu province in China were genotyped using large sequence polymorphisms (LSPs) and variable number tandem repeats (VNTR). Ten isolates, which represent major nodes of VNTR-based minimum spanning tree, were selected and subsequently subjected to multi-locus sequence analyses (MLSA) that include 82 genes. Based on a robust lineage assignment, we tested the association between lineages and clinical characteristics by logistic regression. There are three major lineages of M. tuberculosis prevalent in Xinjiang, viz. the East Asian Lineage 2 (42.1%; 56/133), the Euro-American Lineage 4 (33.1%; 44/133), and the Indian and East African Lineage 3 (24.8%; 33/133); two lineages prevalent in Gansu province, which are the Lineage 2 (87%; 47/54) and the Lineage 4 (13%; 7/54). The topological structures of the MLSA-based phylogeny support the LSP-based identification of M. tuberculosis lineages. The statistical results suggest an association between the Lineage 2 and the hemoptysis/bloody sputum symptom, fever in Uygur patients. The pathogenicity of the Lineage 2 remains to be further investigated.
Collapse
Affiliation(s)
- Haixia Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, China
- National Tuberculosis Clinical Lab of China, Beijing Tuberculosis and Thoracic Tumor Research Institute; Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Li He
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hairong Huang
- National Tuberculosis Clinical Lab of China, Beijing Tuberculosis and Thoracic Tumor Research Institute; Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Chengmin Shi
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xumin Ni
- Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Guangming Dai
- National Tuberculosis Clinical Lab of China, Beijing Tuberculosis and Thoracic Tumor Research Institute; Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Liang Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weimin Li
- National Tuberculosis Clinical Lab of China, Beijing Tuberculosis and Thoracic Tumor Research Institute; Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital MedicalUniversity, Beijing, 100069, China.
| |
Collapse
|
33
|
Biological and Epidemiological Consequences of MTBC Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:95-116. [PMID: 29116631 DOI: 10.1007/978-3-319-64371-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis is caused by different groups of bacteria belonging to the Mycobacterium tuberculosis complex (MTBC). The combined action of human factors, environmental conditions and bacterial virulence determine the extent and form of human disease. MTBC virulence is a composite of different clinical phenotypes such as transmission rate and disease severity among others. Clinical phenotypes are also influenced by cellular and immunological phenotypes. MTBC phenotypes are determined by the genotype, therefore finding genotypes responsible for clinical phenotypes would allow discovering MTBC virulence factors. Different MTBC strains display different cellular and clinical phenotypes. Strains from Lineage 5 and Lineage 6 are metabolically different, grow slower, and are less virulent. Also, at least certain groups of Lineage 2 and Lineage 4 strains are more virulent in terms of disease severity and human-to-human transmission. Because phenotypic differences are ultimately caused by genotypic differences, different genomic loci have been related to various cellular and clinical phenotypes. However, defining the impact of specific bacterial genomic loci on virulence when other bacterial determinants, human and environmental factors are also impacting the phenotype would contribute to a better knowledge of tuberculosis virulence and ultimately benefit tuberculosis control.
Collapse
|
34
|
Pilarski A, Penn N, Ratnakumar S, Barker RD, Milburn HJ. Variation in vitamin D deficiency among tuberculosis patients by ethnic group and geographical region of birth: evidence from a diverse south London population. Eur Respir J 2016; 48:1507-1510. [PMID: 27799393 DOI: 10.1183/13993003.00057-2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 07/16/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Adam Pilarski
- King's College London School of Medicine, London, UK
| | - Nicole Penn
- King's College London School of Medicine, London, UK
| | | | - Richard D Barker
- Dept of Respiratory Medicine, King's College Hospital, London, UK
| | - Heather J Milburn
- King's College London School of Medicine, London, UK .,Dept of Respiratory Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
35
|
A Clinico-Pathological Study of Cervical Lymph Nodes. Indian J Otolaryngol Head Neck Surg 2016; 68:508-510. [PMID: 27833880 DOI: 10.1007/s12070-016-1015-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022] Open
Abstract
Cervical lymphadenopathy is one of the commonest presenting complaint of patient in ENT OPD Fine Needle Aspiration Cytology (FNAC) is one of the most reliable, less expensive, and basic diagnostic procedure for the definitive and conclusive diagnosis for the immune system which reciprocates in the form of enlarged lymph nodes. A study was conducted in ENT Department of Santosh Medical College, Ghazibad from August 2015 to May 2016 on 64 patients with enlarged cervical lymph nodes. FNAC was done to make the diagnosis. Out of 64 patients (51.5 %) was reactive non-specific, 28 % tubercular, 3.1 % lymphoma and 17 % were malignant. FNAC is one of the most dependable diagnostic tools in case of cervical lymphadenopathy for early diagnosis and detection for the better management.
Collapse
|
36
|
Tientcheu LD, Haks MC, Agbla SC, Sutherland JS, Adetifa IM, Donkor S, Quinten E, Daramy M, Antonio M, Kampmann B, Ottenhoff THM, Dockrell HM, Ota MO. Host Immune Responses Differ between M. africanum- and M. tuberculosis-Infected Patients following Standard Anti-tuberculosis Treatment. PLoS Negl Trop Dis 2016; 10:e0004701. [PMID: 27192147 PMCID: PMC4871581 DOI: 10.1371/journal.pntd.0004701] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/19/2016] [Indexed: 11/19/2022] Open
Abstract
Epidemiological differences exist between Mycobacterium africanum (Maf)- and Mycobacterium tuberculosis (Mtb)-infected patients, but to date, contributing host factors have not been characterised. We analysed clinical outcomes, as well as soluble markers and gene expression profiles in unstimulated, and ESAT6/CFP-10-, whole-Maf- and Mtb-stimulated blood samples of 26 Maf- and 49 Mtb-HIV-negative tuberculosis patients before, and after 2 and 6 months of anti-tuberculosis therapy. Before treatment, both groups had similar clinical parameters, but differed in few cytokines concentration and gene expression profiles. Following treatment the body mass index, skinfold thickness and chest X-ray scores showed greater improvement in the Mtb- compared to Maf-infected patients, after adjusting for age, sex and ethnicity (p = 0.02; 0.04 and 0.007, respectively). In addition, in unstimulated blood, IL-12p70, IL12A and TLR9 were significantly higher in Maf-infected patients, while IL-15, IL-8 and MIP-1α were higher in Mtb-infected patients. Overnight stimulation with ESAT-6/CFP-10 induced significantly higher levels of IFN-γ and TNF-α production, as well as gene expression of CCL4, IL1B and TLR4 in Mtb- compared to Maf-infected patients. Our study confirms differences in clinical features and immune genes expression and concentration of proteins associated with inflammatory processes between Mtb- and Maf-infected patients following anti-tuberculosis treatment These findings have public health implications for treatment regimens, and biomarkers for tuberculosis diagnosis and susceptibility.
Collapse
Affiliation(s)
- Leopold D. Tientcheu
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
- * E-mail: ;
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Schadrac C. Agbla
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
- Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jayne S. Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
| | - Ifedayo M. Adetifa
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia, Fajara, The Gambia
- Department of Infectious Diseases Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Simon Donkor
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
| | - Edwin Quinten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mohammed Daramy
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
| | - Martin Antonio
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Hazel M. Dockrell
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin O. Ota
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
- World Health Organization Regional Office for Africa, Brazzaville, Congo
| |
Collapse
|
37
|
Nnadi CD, Anderson LF, Armstrong LR, Stagg HR, Pedrazzoli D, Pratt R, Heilig CM, Abubakar I, Moonan PK. Mind the gap: TB trends in the USA and the UK, 2000-2011. Thorax 2016; 71:356-63. [PMID: 26907187 DOI: 10.1136/thoraxjnl-2015-207915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/05/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND TB remains a major public health concern, even in low-incidence countries like the USA and the UK. Over the last two decades, cases of TB reported in the USA have declined, while they have increased substantially in the UK. We examined factors associated with this divergence in TB trends between the two countries. METHODS We analysed all cases of TB reported to the US and UK national TB surveillance systems from 1 January 2000 through 31 December 2011. Negative binominal regression was used to assess potential demographic, clinical and risk factor variables associated with differences in observed trends. FINDINGS A total of 259,609 cases were reported. From 2000 to 2011, annual TB incidence rates declined from 5.8 to 3.4 cases per 100,000 in the USA, whereas in the UK, TB incidence increased from 11.4 to 14.4 cases per 100,000. The majority of cases in both the USA (56%) and the UK (64%) were among foreign-born persons. The number of foreign-born cases reported in the USA declined by 15% (7731 in 2000 to 6564 in 2011) while native-born cases fell by 54% (8442 in 2000 to 3883 in 2011). In contrast, the number of foreign-born cases reported in the UK increased by 80% (3380 in 2000 to 6088 in 2011), while the number of native-born cases remained largely unchanged (2158 in 2000 to 2137 in 2011). In an adjusted negative binomial regression model, significant differences in trend were associated with sex, age, race/ethnicity, site of disease, HIV status and previous history of TB (p<0.01). Among the foreign-born, significant differences in trend were also associated with time since UK or US entry (p<0.01). INTERPRETATION To achieve TB elimination in the UK, a re-evaluation of current TB control policies and practices with a focus on foreign-born are needed. In the USA, maintaining and strengthening control practices are necessary to sustain the progress made over the last 20 years.
Collapse
Affiliation(s)
- Chimeremma D Nnadi
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Lori R Armstrong
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Helen R Stagg
- Research Department of Infection and Population Health, University College London, London, UK
| | - Debora Pedrazzoli
- TB Modelling Group, TB Centre and CMMID, London School of Hygiene and Tropical Medicine, Faculty of Epidemiology and Population Health, London, UK
| | - Robert Pratt
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Charles M Heilig
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ibrahim Abubakar
- Tuberculosis Section, Public Health England, London, UK Research Department of Infection and Population Health, University College London, London, UK
| | - Patrick K Moonan
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
38
|
Culture-positive Pediatric Tuberculosis in Toronto, Ontario: Sources of Infection and Relationship of Birthplace and Mycobacterial Lineage to Phenotype. Pediatr Infect Dis J 2016; 35:13-8. [PMID: 26379168 DOI: 10.1097/inf.0000000000000915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Few data relate Mycobacterium tuberculosis (Mtb) lineage and disease phenotype in the pediatric population or examine the contribution of travel to the tuberculosis (TB)-endemic country in North America. We examined clinical, demographic and Mtb genotype data from patients with TB who were treated in Toronto between 2002 and 2012. METHODS Consecutive Mtb culture-positive, pediatric patients were included. Clinical data were collected from a prospectively populated clinical database. Mtb case isolate genotypes were identified using Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeat (MIRU-VNTR) and spoligotyping and were categorized into phylogeographic lineages for analysis. RESULTS The 77 patients included 30.4% of all culture-positive pediatric TB cases in Ontario from 2002 to 2012. Seventy-six (99%) patients were first or second generation Canadians. Foreign-born patients were more likely to have extrathoracic disease [odds ratios (OR) = 3.0; 95% confidence interval (CI): 1.04-8.71; P < 0.05] and less likely to have a genotype match in the Public Health Ontario Laboratories database [OR = 0.32 (95% CI: 0.11-0.90); P < 0.05] than Canadian-born patients. For those without a known TB contact, Canadian-born patients were more likely to have travelled to a TB-endemic country [OR = 13.0 (95% CI: 2.5-78.5); P < 0.001]. Extrathoracic disease was less likely in patients infected with the East Asian Mtb lineage [OR = 0.1 (95% CI: 0.01-0.9); P < 0.05] and more likely in those infected with the Indo-Oceanic Mtb lineage [OR = 5.4 (95% CI: 1.5-19.2); P < 0.05]. CONCLUSIONS Travel to TB-endemic countries likely plays an important part in the etiology of pediatric TB infection and disease, especially in Canadian-born children. Mtb lineage seems to contribute to disease phenotype in children as it has been described in adults.
Collapse
|
39
|
Khandkar C, Harrington Z, Jelfs PJ, Sintchenko V, Dobler CC. Epidemiology of Peripheral Lymph Node Tuberculosis and Genotyping of M. tuberculosis Strains: A Case-Control Study. PLoS One 2015; 10:e0132400. [PMID: 26177546 PMCID: PMC4503442 DOI: 10.1371/journal.pone.0132400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/13/2015] [Indexed: 11/19/2022] Open
Abstract
Background This study examined potential risk factors of lymph node tuberculosis (LNTB), including phylogenetic lineages of Mycobacterium tuberculosis (MTB), in comparison to pulmonary tuberculosis (PTB) in a setting with an ethnically diverse population. Methods We conducted a case-control study at a major tuberculosis clinic in Sydney, Australia, which included all patients with peripheral LNTB seen at the clinic between 2000 and 2012. Controls were randomly selected patients with PTB seen at the same clinic during the study period. Epidemiological data were extracted from the hospital electronic database and medical records. Associations between LNTB and age, sex, ethnicity, comorbidities and phylogenetic lineages of MTB in comparison to PTB were examined using logistic regression in univariate and multivariate analyses. Results There were 212 cases with LNTB and 424 randomly selected controls with PTB. Among patients with LNTB, 74% were female and the mean age (standard deviation, SD) was 42 (16) years. Among patients with PTB, 43% were female and the mean age was 44 (22) years. Females, 45 to 64-year-olds and Southern Asians had an increased risk for LNTB (OR 3.13, 95% CI 2.10-4.67; OR 2.50, 95% CI 1.29-4.84; OR 3.95, 95% CI 1.54-10.12 respectively). Patients with diabetes were at a higher risk of PTB (OR 0.40, 95% CI 0.19 – 0.83 for LNTB). A subset analysis showed that patients infected with the East African Indian strain of MTB were more likely to develop LNTB (OR 10.07, 95% CI 2.37-42.77). Conclusions An increased risk for LNTB (but still lower rates than for PTB) was found among females, people aged 45 to 64 years and people born in Southern Asia. An increased risk for PTB was found among patients with diabetes. The East African Indian strain of MTB was significantly associated with a higher likelihood of LNTB compared to other MTB strains.
Collapse
Affiliation(s)
- Chinmay Khandkar
- South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| | - Zinta Harrington
- South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter J. Jelfs
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Sydney, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, New South Wales, Australia
| | - Claudia C. Dobler
- South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Tientcheu LD, Maertzdorf J, Weiner J, Adetifa IM, Mollenkopf HJ, Sutherland JS, Donkor S, Kampmann B, Kaufmann SHE, Dockrell HM, Ota MO. Differential transcriptomic and metabolic profiles of M. africanum- and M. tuberculosis-infected patients after, but not before, drug treatment. Genes Immun 2015; 16:347-55. [PMID: 26043170 PMCID: PMC4515549 DOI: 10.1038/gene.2015.21] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/15/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
The epidemiology of Mycobacterium tuberculosis (Mtb) and M. africanum (Maf) suggest differences in their virulence, but the host immune profile to better understand the pathogenesis of tuberculosis (TB) have not been studied. We compared the transcriptomic and metabolic profiles between Mtb and Maf-infected TB cases to identify host biomarkers associated with lineages-specific pathogenesis and response to anti-TB chemotherapy. Venous blood samples from Mtb- and Maf-infected patients obtained before and after anti-TB treatment were analysed for cell composition, gene expression and metabolic profiles. Prior to treatment, similar transcriptomic profiles were seen in Maf- and Mtb-infected patients. In contrast, post-treatment, over 1600 genes related to immune responses and metabolic diseases were differentially expressed between the groups. Notably, the upstream regulator hepatocyte nuclear factor 4-alpha (HNF4α), which regulated 15% of these genes, was markedly enriched. Serum metabolic profiles were similar in both group pre-treatment, but the decline in pro-inflammatory metabolites post-treatment were most pronounced in Mtb-infected patients. Together, the differences in both peripheral blood transcriptomic and serum metabolic profiles between Maf- and Mtb-infected patients observed over the treatment period, might be indicative of intrinsic host factors related to susceptibility to TB and/or differential efficacy of the standard anti-TB treatment on the two lineages.
Collapse
Affiliation(s)
- L D Tientcheu
- 1] Vaccinology Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia [2] Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK [3] Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - J Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - J Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - I M Adetifa
- Disease Control and Elimination Theme, Medical Research Council Unit-The Gambia, Fajara, The Gambia
| | - H-J Mollenkopf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - J S Sutherland
- Vaccinology Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
| | - S Donkor
- Vaccinology Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
| | - B Kampmann
- Vaccinology Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia
| | - S H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - H M Dockrell
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - M O Ota
- 1] Vaccinology Theme, Medical Research Council Unit, The Gambia, Banjul, The Gambia [2] World Health Organization Regional Office for Africa, Brazzaville, Congo
| |
Collapse
|
41
|
Gupta RK, Rice B, Brown AE, Thomas HL, Zenner D, Anderson L, Pedrazzoli D, Pozniak A, Abubakar I, Delpech V, Lipman M. Does antiretroviral therapy reduce HIV-associated tuberculosis incidence to background rates? A national observational cohort study from England, Wales, and Northern Ireland. Lancet HIV 2015; 2:e243-51. [PMID: 26423197 DOI: 10.1016/s2352-3018(15)00063-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Whether the incidence of tuberculosis in HIV-positive people receiving long-term antiretroviral therapy (ART) remains above background population rates is unclear. We compared tuberculosis incidence in people receiving ART with background rates in England, Wales, and Northern Ireland. METHODS We analysed a national cohort of HIV-positive individuals linked to the national tuberculosis register. Tuberculosis incidence in the HIV-positive cohort (2007-11) was stratified by ethnic origin and time on ART and compared with background rates (2009). Ethnic groups were defined as follows: the black African group included all individuals of black African origin, including those born in the UK and overseas; the white ethnic group included all white individuals born in the UK and overseas; the south Asian group included those of Indian, Pakistani, and Bangladeshi origin, born in the UK and overseas; and the other ethnic group included all other ethnic origins, including black Afro-Caribbeans. FINDINGS The HIV-positive cohort comprised 79 919 individuals, in whom there were 1550 incident cases in 231 664 person-years of observation (incidence 6·7 cases per 1000 person-years). Incidence of tuberculosis in the HIV-positive cohort was 13·6 per 1000 person-years in black Africans and 1·7 per 1000 person-years in white individuals. Incidence of tuberculosis during long-term ART (≥5 years) in black Africans with HIV was 2·4 per 1000 person-years, similar to background rates of 1·9 per 1000 person-years in this group (rate ratio 1·2, 95% CI 0·96-1·6; p=0·083); but in white individuals with HIV on long-term ART the incidence of 0·5 per 1000 person-years was higher than the background rate of 0·04 per 1000 person-years (rate ratio 14·5, 9·4-21·3; p<0·0001). The increased incidence relative to background in white HIV-positive individuals persisted when analysis was restricted to person-time accrued on ART with CD4 counts of at least 500 cells per μL and when white HIV-positive individuals born abroad were excluded. INTERPRETATION Tuberculosis incidence is unacceptably high irrespective of HIV status in black Africans. In white individuals with HIV, tuberculosis incidence is significantly higher than background rates in white people despite long-term ART. Expanded testing and treatment for latent tuberculosis infection to all HIV-infected adults, irrespective of ART status and CD4 cell count, might be warranted. FUNDING Public Health England.
Collapse
Affiliation(s)
- Rishi K Gupta
- Division of Medicine, University College London, London, UK; HIV/STI Department, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK.
| | - Brian Rice
- HIV/STI Department, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Alison E Brown
- HIV/STI Department, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - H Lucy Thomas
- TB Section, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Dominik Zenner
- TB Section, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK; Centre for Infectious Disease Epidemiology, University College London, London, UK
| | - Laura Anderson
- TB Section, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Debora Pedrazzoli
- TB Section, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK; Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Anton Pozniak
- Chelsea & Westminster Hospitals NHS Foundation Trust, London, UK
| | - Ibrahim Abubakar
- TB Section, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK; MRC Clinical Trials Unit and Centre for Infectious Disease Epidemiology, University College London, London, UK
| | - Valerie Delpech
- HIV/STI Department, Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | - Marc Lipman
- Division of Medicine, University College London, London, UK
| |
Collapse
|
42
|
Stennis N, Trieu L, Perri B, Anderson J, Mushtaq M, Ahuja S. Disparities in tuberculosis burden among South Asians living in New York City, 2001-2010. Am J Public Health 2015; 105:922-9. [PMID: 25393181 PMCID: PMC4386506 DOI: 10.2105/ajph.2014.302056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVES We have described the characteristics of South Asian-born tuberculosis (TB) patients living in New York City (NYC) and compared them with other foreign-born patients to explore possible explanations for the disproportionate burden of TB in the South Asian population. METHODS We used data on demographic and clinical characteristics for TB patients identified by the NYC Bureau of Tuberculosis Control from 2001 to 2010 to compare South Asian patients with other Asian and other foreign-born patients. We reviewed genotyping and cluster investigation data for South Asian patients to assess the extent of genotype clustering and the possibility of local transmission in this population. RESULTS The observed disparity in TB rates and burden among South Asians was not explained by social or clinical characteristics. A large amount of TB strain diversity was observed among South Asians, and they were less likely than other foreign-born patients to be infected with the same TB strain as another NYC patient. CONCLUSIONS The majority of South Asians were likely infected with TB abroad. South Asians represent a meaningful foreign-born subpopulation for targeted detection and treatment of TB infection in NYC.
Collapse
Affiliation(s)
- Natalie Stennis
- At the time of the study, all of the authors were with the New York City Department of Health and Mental Hygiene, Bureau of Tuberculosis Control, New York, NY
| | | | | | | | | | | |
Collapse
|
43
|
Correlates between models of virulence for Mycobacterium tuberculosis among isolates of the Central Asian lineage: a case for lysozyme resistance testing? Infect Immun 2015; 83:2213-23. [PMID: 25776753 DOI: 10.1128/iai.03080-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/09/2015] [Indexed: 12/30/2022] Open
Abstract
Virulence factors (VFs) contribute to the emergence of new human Mycobacterium tuberculosis strains, are lineage dependent, and are relevant to the development of M. tuberculosis drugs/vaccines. VFs were sought within M. tuberculosis lineage 3, which has the Central Asian (CAS) spoligotype. Three isolates were selected from clusters previously identified as dominant in London, United Kingdom. Strain-associated virulence was studied in guinea pig, monocyte-derived macrophage, and lysozyme resistance assays. Whole-genome sequencing, single nucleotide polymorphism (SNP) analysis, and a literature review contributed to the identification of SNPs of interest. The animal model revealed borderline differences in strain-associated pathogenicity. Ex vivo, isolate C72 exhibited statistically significant differences in intracellular growth relative to C6 and C14. SNP candidates inducing lower fitness levels included 123 unique nonsynonymous SNPs, including three located in genes (lysX, caeA, and ponA2) previously identified as VFs in the laboratory-adapted reference strain H37Rv and shown to confer lysozyme resistance. C72 growth was most affected by lysozyme in vitro. A BLAST search revealed that all three SNPs of interest (C35F, P76Q, and P780R) also occurred in Tiruvallur, India, and in Uganda. Unlike C72, however, no single isolate identified through BLAST carried all three SNPs simultaneously. CAS isolates representative of three medium-sized human clusters demonstrated differential outcomes in models commonly used to estimate strain-associated virulence, supporting the idea that virulence varies within, not just across, M. tuberculosis lineages. Three VF SNPs of interest were identified in two additional locations worldwide, which suggested independent selection and supported a role for these SNPs in virulence. The relevance of lysozyme resistance to strain virulence remains to be established.
Collapse
|
44
|
Berg S, Schelling E, Hailu E, Firdessa R, Gumi B, Erenso G, Gadisa E, Mengistu A, Habtamu M, Hussein J, Kiros T, Bekele S, Mekonnen W, Derese Y, Zinsstag J, Ameni G, Gagneux S, Robertson BD, Tschopp R, Hewinson G, Yamuah L, Gordon SV, Aseffa A. Investigation of the high rates of extrapulmonary tuberculosis in Ethiopia reveals no single driving factor and minimal evidence for zoonotic transmission of Mycobacterium bovis infection. BMC Infect Dis 2015; 15:112. [PMID: 25886866 PMCID: PMC4359574 DOI: 10.1186/s12879-015-0846-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/19/2015] [Indexed: 11/14/2022] Open
Abstract
Background Ethiopia, a high tuberculosis (TB) burden country, reports one of the highest incidence rates of extra-pulmonary TB dominated by cervical lymphadenitis (TBLN). Infection with Mycobacterium bovis has previously been excluded as the main reason for the high rate of extrapulmonary TB in Ethiopia. Methods Here we examined demographic and clinical characteristics of 953 pulmonary (PTB) and 1198 TBLN patients visiting 11 health facilities in distinct geographic areas of Ethiopia. Clinical characteristics were also correlated with genotypes of the causative agent, Mycobacterium tuberculosis. Results No major patient or bacterial strain factor could be identified as being responsible for the high rate of TBLN, and there was no association with HIV infection. However, analysis of the demographic data of involved patients showed that having regular and direct contact with live animals was more associated with TBLN than with PTB, although no M. bovis was isolated from patients with TBLN. Among PTB patients, those infected with Lineage 4 reported “contact with other TB patient” more often than patients infected with Lineage 3 did (OR = 1.6, CI 95% 1.0-2.7; p = 0.064). High fever, in contrast to low and moderate fever, was significantly associated with Lineage 4 (OR = 2.3; p = 0.024). On the other hand, TBLN cases infected with Lineage 4 tended to get milder symptoms overall for the constitutional symptoms than those infected with Lineage 3. Conclusions The study suggests a complex role for multiple interacting factors in the epidemiology of extrapulmonary TB in Ethiopia, including factors that can only be derived from population-based studies, which may prove to be significant for TB control in Ethiopia. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-0846-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Berg
- Animal and Plant Health Agency, TB Research Group, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Esther Schelling
- Swiss Tropical and Public Health Institute, PO Box CH-4002, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Elena Hailu
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Rebuma Firdessa
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia. .,University of Würzburg, Institute for Molecular Infection Biology, Würzburg, Germany.
| | - Balako Gumi
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Girume Erenso
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Endalamaw Gadisa
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Araya Mengistu
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Meseret Habtamu
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Jemal Hussein
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Teklu Kiros
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Shiferaw Bekele
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Wondale Mekonnen
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Yohannes Derese
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, PO Box CH-4002, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia.
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, PO Box CH-4002, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Brian D Robertson
- Center for Molecular Bacteriology and Infection, Department of Medicine, Flowers building, South Kensington, Imperial College London, London, SW7 2AZ, UK.
| | - Rea Tschopp
- Swiss Tropical and Public Health Institute, PO Box CH-4002, Basel, Switzerland. .,Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia. .,University of Basel, Basel, Switzerland.
| | - Glyn Hewinson
- Animal and Plant Health Agency, TB Research Group, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Lawrence Yamuah
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| | - Stephen V Gordon
- UCD Schools of Veterinary Medicine, Medicine and Medical Science, Biomolecular and Biomedical Science and UCD Conway Institute, University College Dublin, Dublin, Republic of Ireland.
| | - Abraham Aseffa
- Armauer Hansen Research Institute, PO Box 1005, Addis Ababa, Ethiopia.
| |
Collapse
|
45
|
Guerra-Assunção JA, Crampin AC, Houben RMGJ, Mzembe T, Mallard K, Coll F, Khan P, Banda L, Chiwaya A, Pereira RPA, McNerney R, Fine PEM, Parkhill J, Clark TG, Glynn JR. Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. eLife 2015; 4. [PMID: 25732036 PMCID: PMC4384740 DOI: 10.7554/elife.05166] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/22/2015] [Indexed: 11/13/2022] Open
Abstract
To improve understanding of the factors influencing tuberculosis transmission and the
role of pathogen variation, we sequenced all available specimens from patients
diagnosed over 15 years in a whole district in Malawi. Mycobacterium
tuberculosis lineages were assigned and transmission networks
constructed, allowing ≤10 single nucleotide polymorphisms (SNPs) difference.
We defined disease as due to recent infection if the network-determined source was
within 5 years, and assessed transmissibility from forward transmissions resulting in
disease. High-quality sequences were available for 1687 disease episodes (72% of all
culture-positive episodes): 66% of patients linked to at least one other patient. The
between-patient mutation rate was 0.26 SNPs/year (95% CI 0.21–0.31). We showed
striking differences by lineage in the proportion of disease due to recent
transmission and in transmissibility (highest for lineage-2 and lowest for lineage-1)
that were not confounded by immigration, HIV status or drug resistance. Transmissions
resulting in disease decreased markedly over time. DOI:http://dx.doi.org/10.7554/eLife.05166.001 Tuberculosis is an important public health threat around the globe and is
particularly common in developing countries. It is difficult to control the spread of
the disease because the bacteria that cause it can spread when an infected individual
coughs or sneezes. It may take years for an infected individual to develop symptoms
of tuberculosis so it can be hard to trace the source of an outbreak, and people
infected with HIV are particularly susceptible to the disease. The bacterium that causes the majority of cases of tuberculosis is called
Mycobacterium tuberculosis. There are several different varieties
or ‘lineages’ of M. tuberculosis, and it is thought
that they may vary in their ability to spread and cause disease. However, the results
of previous studies have been inconsistent and there also seems to be a lot of
variation between strains within the same lineage. In this study, Guerra-Assunção et al. used an approach called whole
genome sequencing alongside more traditional methods to study the spread of
tuberculosis in Malawi. They sequenced the genomes of every available sample of
M. tuberculosis collected from patients in the Karonga district
of Malawi over a 15-year period. This produced high-quality DNA sequence data about
the bacteria responsible for almost 1700 cases of disease. Using this massive amount of data, Guerra-Assunção et al. constructed
networks that showed how the bacteria had spread in the community. This revealed that
there were differences between the ability of the various M.
tuberculosis lineages to cause disease and to spread in communities. For
example, lineage 1 was less likely than the other lineages to cause disease soon
after infecting an individual and was less able to spread. The data also show that the proportion of cases of disease due to recent infection
declined substantially during the 15-year period. This indicates that the
tuberculosis and HIV control programmes in the area have been successful. Guerra-Assunção et al.'s findings show that it is possible to
understand how tuberculosis is transmitted on a large scale. The next challenge is to
understand why the lineages differ in their ability to cause disease and spread
between individuals. DOI:http://dx.doi.org/10.7554/eLife.05166.002
Collapse
Affiliation(s)
- J A Guerra-Assunção
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - A C Crampin
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - R M G J Houben
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - T Mzembe
- Karonga Prevention Study, Malawi, Malawi
| | - K Mallard
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - F Coll
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - P Khan
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - L Banda
- Karonga Prevention Study, Malawi, Malawi
| | - A Chiwaya
- Karonga Prevention Study, Malawi, Malawi
| | - R P A Pereira
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - R McNerney
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - P E M Fine
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - J Parkhill
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - T G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - J R Glynn
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
46
|
Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 2014; 26:431-44. [PMID: 25453224 PMCID: PMC4314449 DOI: 10.1016/j.smim.2014.09.012] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions.
Collapse
Affiliation(s)
- Mireia Coscolla
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland.
| |
Collapse
|
47
|
Temporal dynamics of Mycobacterium tuberculosis genotypes in New South Wales, Australia. BMC Infect Dis 2014; 14:455. [PMID: 25149181 PMCID: PMC4262242 DOI: 10.1186/1471-2334-14-455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/12/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Molecular epidemiology of Mycobacterium tuberculosis, its transmission dynamics and population structure have become important determinants of targeted tuberculosis control programs. Here we describe recent changes in the distribution of M. tuberculosis genotypes in New South Wales (NSW), Australia and compared strain types with drug resistance, site of disease and demographic data. METHODS We evaluated all culture-confirmed newly identified tuberculosis cases in NSW, Australia, from 2010-2012. M. tuberculosis population structure and clustering rates were assessed using 24-loci Mycobacterial interspersed repetitive unit (MIRU) analysis and compared to MIRU data from 2006-2008. RESULTS Of 1177 tuberculosis cases, 1128 (95.8%) were successfully typed. Beijing and East African Indian (EAI) lineage strains were most common (27.6% and 28.5%, respectively) with EAI strains increasing in relative abundance from 11.8% in 2006-2008 to 28.5% in 2010-2012. Few cases of multi-drug resistant tuberculosis were identified (18; 1.7%). Compared to 12-loci, 24-loci MIRU provided improved cluster resolution with 695 (61.6%) and 227 (20.1%) clustered cases identified, respectively. Detailed analysis of the largest cluster identified (an 11 member Beijing cluster) revealed wide geographic diversity in the absence of documented social contact. CONCLUSIONS EAI strains of M. tuberculosis recently overtook Beijing family as a prevalent cause of tuberculosis in NSW, Australia. This lineage appeared to be less commonly related to multi-drug resistant tuberculosis as compared to Beijing strain lineage. The resolution provided by 24-loci MIRU typing was insufficient for reliable assessment of transmissions, especially of Beijing family strains.
Collapse
|
48
|
White MJ, Tacconelli A, Chen JS, Wejse C, Hill PC, Gomes VF, Velez-Edwards DR, Østergaard LJ, Hu T, Moore JH, Novelli G, Scott WK, Williams SM, Sirugo G. Epiregulin (EREG) and human V-ATPase (TCIRG1): genetic variation, ethnicity and pulmonary tuberculosis susceptibility in Guinea-Bissau and The Gambia. Genes Immun 2014; 15:370-7. [PMID: 24898387 DOI: 10.1038/gene.2014.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 02/07/2023]
Abstract
We analyzed two West African samples (Guinea-Bissau: n=289 cases and 322 controls; The Gambia: n=240 cases and 248 controls) to evaluate single-nucleotide polymorphisms (SNPs) in Epiregulin (EREG) and V-ATPase (T-cell immune regulator 1 (TCIRG1)) using single and multilocus analyses to determine whether previously described associations with pulmonary tuberculosis (PTB) in Vietnamese and Italians would replicate in African populations. We did not detect any significant single locus or haplotype associations in either sample. We also performed exploratory pairwise interaction analyses using Visualization of Statistical Epistasis Networks (ViSEN), a novel method to detect only interactions among multiple variables, to elucidate possible interaction effects between SNPs and demographic factors. Although we found no strong evidence of marginal effects, there were several significant pairwise interactions that were identified in either the Guinea-Bissau or the Gambian samples, two of which replicated across populations. Our results indicate that the effects of EREG and TCIRG1 variants on PTB susceptibility, to the extent that they exist, are dependent on gene-gene interactions in West African populations as detected with ViSEN. In addition, epistatic effects are likely to be influenced by inter- and intra-population differences in genetic or environmental context and/or the mycobacterial lineages causing disease.
Collapse
Affiliation(s)
- M J White
- 1] Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA [2] Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH, USA
| | - A Tacconelli
- Centro di Ricerca, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| | - J S Chen
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH, USA
| | - C Wejse
- 1] Bandim Health Project, Danish Epidemiology Science Centre and Statens Serum Institute, Bissau, Guinea-Bissau [2] Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark [3] Center for Global Health, School of Public Health, Aarhus University, Skejby, Denmark
| | - P C Hill
- 1] Centre for International Health, University of Otago School of Medicine, Dunedin, New Zealand [2] MRC Laboratories, Fajara, The Gambia
| | - V F Gomes
- Bandim Health Project, Danish Epidemiology Science Centre and Statens Serum Institute, Bissau, Guinea-Bissau
| | - D R Velez-Edwards
- 1] Vanderbilt Epidemiology Center, Vanderbilt University, Nashville, TN, USA [2] Institute for Medicine and Public Health, Vanderbilt University, Nashville, TN, USA [3] Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA [4] Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN, USA
| | - L J Østergaard
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
| | - T Hu
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH, USA
| | - J H Moore
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH, USA
| | - G Novelli
- 1] Centro di Ricerca, Ospedale San Pietro Fatebenefratelli, Rome, Italy [2] Dipartimento di Biomedicina e Prevenzione, Sezione di Genetica, Università di Roma 'Tor Vergata', Rome, Italy
| | - W K Scott
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S M Williams
- Department of Genetics and Institute of Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH, USA
| | - G Sirugo
- Centro di Ricerca, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| |
Collapse
|
49
|
Wamala D, Asiimwe B, Kigozi E, Mboowa G, Joloba M, Kallenius G. Clinico-pathological features of tuberculosis due to Mycobacterium tuberculosis Uganda genotype in patients with tuberculous lymphadenitis: a cross sectional study. BMC Clin Pathol 2014; 14:14. [PMID: 24690344 PMCID: PMC3974774 DOI: 10.1186/1472-6890-14-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/27/2014] [Indexed: 12/19/2022] Open
Abstract
Background Tuberculous lymphadenitis is next to pulmonary tuberculosis as the most common cause of tuberculosis. Uganda genotype, one of the sub-lineages of Mycobacterium tuberculosis, is the most prevalent cause of pulmonary tuberculosis in Uganda. We here investigate the clinicopathological characteristics of patients with tuberculous lymphadenitis infected with M. tuberculosis Uganda genotype compared with those infected with M. tuberculosis non-Uganda genotype strains. Methods Between 2010 and 2012, we enrolled 121 patients (mean age 28.5 yrs, male 48%; female 52%) with tuberculous lymphadenitis, and categorized them by their M. tuberculosis genotypes. The clinical features and lymph node cytopathological parameters were compared between patients in the Uganda and non-Uganda categories using a crude and multivariable logistic regression model with adjustment for confounding factors. Results Of the 121participants, 56 (46%) were infected with strains of Uganda genotype. Patients infected with this genotype had significantly lower frequency of abdominal lymphadenopathy (odds ratio 0.4, p = 0.046) after adjusting for sex, age and HIV. Abdominal lymphadenopathy was also significantly associated with abnormal chest X-ray (p = 0.027). Conclusion Tuberculous lymphadenitis patients infected with M. tuberculosis Uganda genotype were significantly less prone to have abdominal lymphadenopathy indicating potential reduced ability to disseminate and supporting the concept that differences in M. tuberculosis genotype may have clinical implications.
Collapse
Affiliation(s)
- Dan Wamala
- Department of Pathology, Mulago Hospital and Makerere University College of Health Sciences, PO Box 7072, Kampala, Uganda.
| | | | | | | | | | | |
Collapse
|
50
|
Kurbatova EV, Cavanaugh JS, Dalton T, Click ES, Cegielski JP. Epidemiology of pyrazinamide-resistant tuberculosis in the United States, 1999-2009. Clin Infect Dis 2013; 57:1081-93. [PMID: 23840002 PMCID: PMC4578633 DOI: 10.1093/cid/cit452] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pyrazinamide (PZA) is essential in tuberculosis treatment. We describe the prevalence, trends, and predictors of PZA resistance in Mycobacterium tuberculosis complex (MTBC) in the United States. METHODS We analyzed culture-positive MTBC cases with reported drug susceptibility tests for PZA in 38 jurisdictions routinely testing for PZA susceptibility from 1999 to 2009. National Tuberculosis Genotyping Service data for 2004-2009 were used to distinguish M. tuberculosis from Mycobacterium bovis and determine phylogenetic lineage. RESULTS Overall 2.7% (2167/79 321) of MTBC cases had PZA resistance, increasing annually from 2.0% to 3.3% during 1999-2009 (P < .001), largely because of an increase in PZA monoresistance. PZA-monoresistant MTBC (vs drug-susceptible) was associated with an age of 0-24 years (adjusted prevalence ratio [aPR],1.50; 95% confidence interval [CI], 1.31-1.71), Hispanic ethnicity (aPR, 3.52; 95% CI, 2.96-4.18), human immunodeficiency virus infection (aPR, 1.43; 95% CI, 1.15-1.77), extrapulmonary disease (aPR, 3.02; 95% CI, 2.60-3.52), and normal chest radiograph (aPR, 1.88; 95% CI, 1.63-2.16) and was inversely associated with Asian (aPR, 0.59; 95% CI, .47-.73) and black (aPR, 0.37; 95% CI, .29-.49) race. Among multidrug-resistant (MDR) cases, 38.0% were PZA-resistant; PZA resistance in MDR MTBC was associated with female sex (aPR, 1.25; 95% CI, 1.08-1.46) and previous tuberculosis diagnosis (aPR, 1.37; 95% CI, 1.16-1.62). Of 28 080 cases with genotyping data, 925 (3.3%) had PZA resistance; 465 of 925 (50.3%) were M. bovis. In non-MDR M. tuberculosis cases, PZA resistance was higher in the Indo-Oceanic than the East Asian lineage (2.2% vs 0.9%, respectively; aPR, 2.26; 95% CI, 1.53-3.36), but in MDR cases it was lower in the Indo-Oceanic lineage (22.0% vs 43.4%, respectively; aPR, 0.54; 95% CI, .32-.90). CONCLUSIONS Specific human and mycobacterial characteristics were associated with PZA-resistant MTBC, reflecting both specific subgroups of the population and phylogenetic lineages of the mycobacteria.
Collapse
Affiliation(s)
- Ekaterina V Kurbatova
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | | |
Collapse
|