1
|
Pilgrim-Morris JH, Collier GJ, Takigawa M, Strickland S, Thompson R, Norquay G, Stewart NJ, Wild JM. Mapping the amplitude and phase of dissolved 129Xe red blood cell signal oscillations with keyhole spectroscopic lung imaging. Magn Reson Med 2024. [PMID: 39423219 DOI: 10.1002/mrm.30296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 08/28/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE To assess the regional amplitude and phase of dissolved 129Xe red blood cell (RBC) signal oscillations in the lung vasculature with keyhole spectroscopic imaging and to compare with previous methodology, which does not account for oscillation phase. METHODS 129Xe gas transfer was measured with a four-echo 3D radial spectroscopic imaging sequence. Keyhole reconstruction-based RBC signal oscillation amplitude mapping was applied retrospectively to data acquired from 28 healthy volunteers, 4 chronic thromboembolic pulmonary hypertension (CTEPH) patients, and 5 patients who were hospitalized due to COVID-19 pneumonia and had residual lung abnormalities. Using a sliding window keyhole reconstruction, maps of RBC oscillation amplitude were corrected for regional phase difference. Repeatability of the phase-adjusted oscillation amplitude was assessed in 8 healthy volunteers across three scans. RESULTS With sliding window keyhole reconstruction, regional phase differences were observed in the RBC signal oscillations: mean phase = (0.27 ± 0.19) rad in healthy volunteers, (0.24 ± 0.13) rad in CTEPH patients, and (0.33 ± 0.19) rad in patients with post-COVID-19 residual lung abnormality. The oscillation amplitude and phase maps were more heterogeneous (i.e., they showed increased coefficient of variation) for the CTEPH patients. The RBC oscillation amplitude was repeatable, and the mean three-scan coefficient of variation was smaller when the phase adjustment was made (0.07 ± 0.04 compared with 0.16 ± 0.05). CONCLUSION Sliding window keyhole reconstruction of radial dissolved 129Xe imaging reveals regional phase differences in the RBC oscillations, which are not captured when performing two phase keyhole reconstruction. This regional phase information may reflect the hemodynamic effect of the cardiac pulse wave in the pulmonary microvasculature.
Collapse
Affiliation(s)
- Jemima H Pilgrim-Morris
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Mika Takigawa
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Scarlett Strickland
- Biomedical Research Centre, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals, Sheffield, UK
| | - Roger Thompson
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Sheffield Teaching Hospitals, Sheffield, UK
| | - Graham Norquay
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Neil J Stewart
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Lavis P, Garabet A, Cardozo AK, Bondue B. The fibroblast activation protein alpha as a biomarker of pulmonary fibrosis. Front Med (Lausanne) 2024; 11:1393778. [PMID: 39364020 PMCID: PMC11446883 DOI: 10.3389/fmed.2024.1393778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare, chronic, and progressive interstitial lung disease with an average survival of approximately 3 years. The evolution of IPF is unpredictable, with some patients presenting a relatively stable condition with limited progression over time, whereas others deteriorate rapidly. In addition to IPF, other interstitial lung diseases can lead to pulmonary fibrosis, and up to a third have a progressive phenotype with the same prognosis as IPF. Clinical, biological, and radiological risk factors of progression were identified, but no specific biomarkers of fibrogenesis are currently available. A recent interest in the fibroblast activation protein alpha (FAPα) has emerged. FAPα is a transmembrane serine protease with extracellular activity. It can also be found in a soluble form, also named anti-plasmin cleaving enzyme (APCE). FAPα is specifically expressed by activated fibroblasts, and quinoline-based specific inhibitors (FAPI) were developed, allowing us to visualize its distribution in vivo by imaging techniques. In this review, we discuss the use of FAPα as a useful biomarker for the progression of lung fibrosis, by both its assessment in human fluids and/or its detection by imaging techniques and immunohistochemistry.
Collapse
Affiliation(s)
- Philomène Lavis
- Department of Pathology, Hôpital universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
- IRIBHM, Université libre de Bruxelles, Brussels, Belgium
| | - Ani Garabet
- Inflammation and Cell Death Signalling Group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Alessandra Kupper Cardozo
- Inflammation and Cell Death Signalling Group, Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- IRIBHM, Université libre de Bruxelles, Brussels, Belgium
- Department of Pneumology, Hôpital universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
- European Reference Network for Rare Pulmonary Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
3
|
Mummy D, Zhang S, Bechtel A, Lu J, Mammarappallil J, Leewiwatwong S, Costelle A, Swaminathan A, Driehuys B. Functional gas exchange measures on 129Xe MRI and spectroscopy are associated with age, sex, and BMI in healthy subjects. Front Med (Lausanne) 2024; 11:1342499. [PMID: 38651062 PMCID: PMC11033479 DOI: 10.3389/fmed.2024.1342499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Hyperpolarized 129Xe MRI and spectroscopy is a rapidly growing technique for assessing lung function, with applications in a wide range of obstructive, restrictive, and pulmonary vascular disease. However, normal variations in 129Xe measures of gas exchange across healthy subjects are not well characterized, presenting an obstacle to differentiating disease processes from the consequences of expected physiological heterogeneity. Here, we use multivariate models to evaluate the role of age, sex, and BMI in a range of commonly used 129Xe measures of gas exchange. Materials and methods Healthy subjects (N = 40, 16F, age 44.3 ± 17.8 yrs., min-max 22-87 years) with no history of cardiopulmonary disease underwent 129Xe gas exchange MRI and spectroscopy. We used multivariate linear models to assess the associations of age, sex, and body mass index (BMI) with the RBC:Membrane (RBC:M), membrane to gas (Mem:Gas), and red blood cell to gas (RBC:Gas) ratios, as well as measurements of RBC oscillation amplitude and RBC chemical shift. Results Age, sex, and BMI were all significant covariates in the RBC:M model. Each additional 10 years of age was associated with a 0.05 decrease in RBC:M (p < 0.001), each additional 10 points of BMI was associated with a decrease of 0.07 (p = 0.02), and males were associated with a 0.17 higher RBC:M than females (p < 0.001). For Mem:Gas, male sex was associated with a decrease and BMI was associated with an increase. For RBC:Gas, age was associated with a decrease and male sex was associated with an increase. RBC oscillation amplitude increased with age and RBC chemical shift was not associated with any of the three covariates. Discussion 129Xe MRI and spectroscopy measurements in healthy subjects, particularly the widely used RBC:M measurement, exhibit heterogeneity associated in part with variations in subject age, sex, and BMI. Elucidating the contributions of these and other factors to 129Xe gas exchange measurements is a critical component for differentiating disease processes from expected variation in healthy subjects. Notably, the Mem:Gas and RBC chemical shift appear to be stable with aging, suggesting that unexplained deviations in these metrics may be signs of underlying abnormalities.
Collapse
Affiliation(s)
- David Mummy
- Department of Radiology, Duke University, Durham, NC, United States
| | - Shuo Zhang
- Department of Radiology, Duke University, Durham, NC, United States
| | - Aryil Bechtel
- Department of Radiology, Duke University, Durham, NC, United States
| | - Junlan Lu
- Medical Physics Graduate Program, Duke University, Durham, NC, United States
| | | | | | - Anna Costelle
- Medical Physics Graduate Program, Duke University, Durham, NC, United States
| | | | - Bastiaan Driehuys
- Department of Radiology, Duke University, Durham, NC, United States
- Medical Physics Graduate Program, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Wild JM, Gleeson FV, Svenningsen S, Grist JT, Saunders LC, Collier GJ, Sharma M, Tcherner S, Mozaffaripour A, Matheson AM, Parraga G. Review of Hyperpolarized Pulmonary Functional 129 Xe MR for Long-COVID. J Magn Reson Imaging 2024; 59:1120-1134. [PMID: 37548112 DOI: 10.1002/jmri.28940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
The respiratory consequences of acute COVID-19 infection and related symptoms tend to resolve 4 weeks post-infection. However, for some patients, new, recurrent, or persisting symptoms remain beyond the acute phase and persist for months, post-infection. The symptoms that remain have been referred to as long-COVID. A number of research sites employed 129 Xe magnetic resonance imaging (MRI) during the pandemic and evaluated patients post-infection, months after hospitalization or home-based care as a way to better understand the consequences of infection on 129 Xe MR gas-exchange and ventilation imaging. A systematic review and comprehensive search were employed using MEDLINE via PubMed (April 2023) using the National Library of Medicine's Medical Subject Headings and key words: post-COVID-19, MRI, 129 Xe, long-COVID, COVID pneumonia, and post-acute COVID-19 syndrome. Fifteen peer-reviewed manuscripts were identified including four editorials, a single letter to the editor, one review article, and nine original research manuscripts (2020-2023). MRI and MR spectroscopy results are summarized from these prospective, controlled studies, which involved small sample sizes ranging from 9 to 76 participants. Key findings included: 1) 129 Xe MRI gas-exchange and ventilation abnormalities, 3 months post-COVID-19 infection, and 2) a combination of MRI gas-exchange and ventilation abnormalities alongside persistent symptoms in patients hospitalized and not hospitalized for COVID-19, 1-year post-infection. The persistence of respiratory symptoms and 129 Xe MRI abnormalities in the context of normal or nearly normal pulmonary function test results and chest computed tomography (CT) was consistent. Longitudinal improvements were observed in long-term follow-up of long-COVID patients but mean 129 Xe gas-exchange, ventilation heterogeneity values and symptoms remained abnormal, 1-year post-infection. Pulmonary functional MRI using inhaled hyperpolarized 129 Xe gas has played a role in detecting gas-exchange and ventilation abnormalities providing complementary information that may help develop our understanding of the root causes of long-COVID. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Jim M Wild
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Fergus V Gleeson
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| | - Sarah Svenningsen
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - James T Grist
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| | - Laura C Saunders
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Maksym Sharma
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Sam Tcherner
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Ali Mozaffaripour
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Alexander M Matheson
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Division of Respirology, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Kim JS, Montesi SB, Adegunsoye A, Humphries SM, Salisbury ML, Hariri LP, Kropski JA, Richeldi L, Wells AU, Walsh S, Jenkins RG, Rosas I, Noth I, Hunninghake GM, Martinez FJ, Podolanczuk AJ. Approach to Clinical Trials for the Prevention of Pulmonary Fibrosis. Ann Am Thorac Soc 2023; 20:1683-1693. [PMID: 37703509 PMCID: PMC10704236 DOI: 10.1513/annalsats.202303-188ps] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Affiliation(s)
- John S. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Ayodeji Adegunsoye
- Department of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | | | - Margaret L. Salisbury
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, and
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Luca Richeldi
- Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Athol U. Wells
- Department of Radiology, and
- Interstitial Lung Disease Service, Royal Brompton Hospital, London, United Kingdom
| | - Simon Walsh
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - R. Gisli Jenkins
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ivan Rosas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Gary M. Hunninghake
- Pulmonary and Critical Care Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Anna J. Podolanczuk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
6
|
Bechtel A, Lu J, Mummy D, Bier E, Leewiwatwong S, Mugler J, Kabir S, Church A, Driehuys B. Establishing a hemoglobin adjustment for 129 Xe gas exchange MRI and MRS. Magn Reson Med 2023; 90:1555-1568. [PMID: 37246900 PMCID: PMC10524939 DOI: 10.1002/mrm.29712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE 129 Xe MRI and MRS signals from airspaces, membrane tissues (M), and red blood cells (RBCs) provide measurements of pulmonary gas exchange. However, 129 Xe MRI/MRS studies have yet to account for hemoglobin concentration (Hb), which is expected to affect the uptake of 129 Xe in the membrane and RBC compartments. We propose a framework to adjust the membrane and RBC signals for Hb and use this to assess sex-specific differences in RBC/M and establish a Hb-adjusted healthy reference range for the RBC/M ratio. METHODS We combined the 1D model of xenon gas exchange (MOXE) with the principle of TR-flip angle equivalence to establish scaling factors that normalize the dissolved-phase signals with respect to a standardH b 0 $$ H{b}^0 $$ (14 g/dL). 129 Xe MRI/MRS data from a healthy, young cohort (n = 18, age = 25.0± $$ \pm $$ 3.4 years) were used to validate this model and assess the impact of Hb adjustment on M/gas and RBC/gas images and RBC/M. RESULTS Adjusting for Hb caused RBC/M to change by up to 20% in healthy individuals with normal Hb and had marked impacts on M/gas and RBC/gas distributions in 3D gas-exchange maps. RBC/M was higher in males than females both before and after Hb adjustment (p < 0.001). After Hb adjustment, the healthy reference value for RBC/M for a consortium-recommended acquisition of TR = 15 ms and flip = 20° was 0.589± $$ \pm $$ 0.083 (mean± $$ \pm $$ SD). CONCLUSION MOXE provides a useful framework for evaluating the Hb dependence of the membrane and RBC signals. This work indicates that adjusting for Hb is essential for accurately assessing 129 Xe gas-exchange MRI/MRS metrics.
Collapse
Affiliation(s)
- Aryil Bechtel
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
| | - Junlan Lu
- Medical Physics Graduate Program, Duke University, Durham, North Carolina
| | - David Mummy
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
| | - Elianna Bier
- Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | | | - John Mugler
- Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Sakib Kabir
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
| | - Alex Church
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
| | - Bastiaan Driehuys
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
- Medical Physics Graduate Program, Duke University, Durham, North Carolina
- Biomedical Engineering, Duke University, Durham, North Carolina, United States
| |
Collapse
|
7
|
Bayat S, Wild J, Winkler T. Lung functional imaging. Breathe (Sheff) 2023; 19:220272. [PMID: 38020338 PMCID: PMC10644108 DOI: 10.1183/20734735.0272-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary functional imaging modalities such as computed tomography, magnetic resonance imaging and nuclear imaging can quantitatively assess regional lung functional parameters and their distributions. These include ventilation, perfusion, gas exchange at the microvascular level and biomechanical properties, among other variables. This review describes the rationale, strengths and limitations of the various imaging modalities employed for lung functional imaging. It also aims to explain some of the most commonly measured parameters of regional lung function. A brief review of evidence on the role and utility of lung functional imaging in early diagnosis, accurate lung functional characterisation, disease phenotyping and advancing the understanding of disease mechanisms in major respiratory disorders is provided.
Collapse
Affiliation(s)
- Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, STROBE Laboratory, INSERM UA07, Grenoble, France
| | - Jim Wild
- POLARIS, Imaging Group, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Saunders LC, Collier GJ, Chan HF, Hughes PJC, Smith LJ, Watson JGR, Meiring JE, Gabriel Z, Newman T, Plowright M, Wade P, Eaden JA, Thomas S, Strickland S, Gustafsson L, Bray J, Marshall H, Capener DA, Armstrong L, Rodgers J, Brook M, Biancardi AM, Rao MR, Norquay G, Rodgers O, Munro R, Ball JE, Stewart NJ, Lawrie A, Jenkins RG, Grist JT, Gleeson F, Schulte RF, Johnson KM, Wilson FJ, Cahn A, Swift AJ, Rajaram S, Mills GH, Watson L, Collini PJ, Lawson R, Thompson AAR, Wild JM. Longitudinal Lung Function Assessment of Patients Hospitalized With COVID-19 Using 1H and 129Xe Lung MRI. Chest 2023; 164:700-716. [PMID: 36965765 PMCID: PMC10036146 DOI: 10.1016/j.chest.2023.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Microvascular abnormalities and impaired gas transfer have been observed in patients with COVID-19. The progression of pulmonary changes in these patients remains unclear. RESEARCH QUESTION Do patients hospitalized with COVID-19 without evidence of architectural distortion on structural imaging exhibit longitudinal improvements in lung function measured by using 1H and 129Xe MRI between 6 and 52 weeks following hospitalization? STUDY DESIGN AND METHODS Patients who were hospitalized with COVID-19 pneumonia underwent a pulmonary 1H and 129Xe MRI protocol at 6, 12, 25, and 51 weeks following hospital admission in a prospective cohort study between November 2020 and February 2022. The imaging protocol was as follows: 1H ultra-short echo time, contrast-enhanced lung perfusion, 129Xe ventilation, 129Xe diffusion-weighted, and 129Xe spectroscopic imaging of gas exchange. RESULTS Nine patients were recruited (age 57 ± 14 [median ± interquartile range] years; six of nine patients were male). Patients underwent MRI at 6 (n = 9), 12 (n = 9), 25 (n = 6), and 51 (n = 8) weeks following hospital admission. Patients with signs of interstitial lung damage were excluded. At 6 weeks, patients exhibited impaired 129Xe gas transfer (RBC to membrane fraction), but lung microstructure was not increased (apparent diffusion coefficient and mean acinar airway dimensions). Minor ventilation abnormalities present in four patients were largely resolved in the 6- to 25-week period. At 12 weeks, all patients with lung perfusion data (n = 6) showed an increase in both pulmonary blood volume and flow compared with 6 weeks, although this was not statistically significant. At 12 weeks, significant improvements in 129Xe gas transfer were observed compared with 6-week examinations; however, 129Xe gas transfer remained abnormally low at weeks 12, 25, and 51. INTERPRETATION 129Xe gas transfer was impaired up to 1 year following hospitalization in patients who were hospitalized with COVID-19 pneumonia, without evidence of architectural distortion on structural imaging, whereas lung ventilation was normal at 52 weeks.
Collapse
Affiliation(s)
- Laura C Saunders
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Guilhem J Collier
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Ho-Fung Chan
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Paul J C Hughes
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Laurie J Smith
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - J G R Watson
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - James E Meiring
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Zoë Gabriel
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Thomas Newman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Phillip Wade
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - James A Eaden
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Siby Thomas
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | | | - Lotta Gustafsson
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Jody Bray
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Helen Marshall
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - David A Capener
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Leanne Armstrong
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Jennifer Rodgers
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Martin Brook
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Alberto M Biancardi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Madhwesha R Rao
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Graham Norquay
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Oliver Rodgers
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Ryan Munro
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - James E Ball
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Neil J Stewart
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - R Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, England
| | - James T Grist
- Department of Radiology, Oxford University Hospitals, Oxford, England; Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, England; Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, England
| | - Fergus Gleeson
- Department of Oncology, University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England
| | | | - Kevin M Johnson
- Department of Medical Physics, University of Madison, Madison, WI, USA
| | | | | | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Smitha Rajaram
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Gary H Mills
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Lisa Watson
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Paul J Collini
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England
| | - Rod Lawson
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - A A Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, England
| | - Jim M Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, England.
| |
Collapse
|
9
|
Eaden JA, Weatherley ND, Chan HF, Collier G, Norquay G, Swift AJ, Rajaram S, Smith LJ, Bartholmai BJ, Bianchi SM, Wild JM. Hyperpolarised xenon-129 diffusion-weighted magnetic resonance imaging for assessing lung microstructure in idiopathic pulmonary fibrosis. ERJ Open Res 2023; 9:00048-2023. [PMID: 37650085 PMCID: PMC10463035 DOI: 10.1183/23120541.00048-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/12/2023] [Indexed: 09/01/2023] Open
Abstract
Background Hyperpolarised 129-xenon (129Xe) magnetic resonance imaging (MRI) shows promise in monitoring the progression of idiopathic pulmonary fibrosis (IPF) due to the lack of ionising radiation and the ability to quantify functional impairment. Diffusion-weighted (DW)-MRI with hyperpolarised gases can provide information about lung microstructure. The aims were to compare 129Xe DW-MRI measurements with pulmonary function tests (PFTs), and to assess whether they can detect early signs of disease progression in patients with newly diagnosed IPF. Methods This is a prospective, single-centre, observational imaging study of patients presenting with IPF to Northern General Hospital (Sheffield, UK). Hyperpolarised 129Xe DW-MRI was performed at 1.5 T on a whole-body General Electric HDx scanner and PFTs were performed on the same day as the MRI scan. Results There was an increase in global 129Xe apparent diffusion coefficient (ADC) between the baseline and 12-month visits (mean 0.043 cm2·s-1, 95% CI 0.040-0.047 cm2·s-1 versus mean 0.045 cm2·s-1, 95% CI 0.040-0.049 cm2·s-1; p=0.044; n=20), with no significant change in PFTs over the same time period. There was also an increase in 129Xe ADC in the lower zone (p=0.027), and an increase in 129Xe mean acinar dimension in the lower zone (p=0.033) between the baseline and 12-month visits. 129Xe DW-MRI measurements correlated strongly with diffusing capacity of the lung for carbon monoxide (% predicted), transfer coefficient of the lung for carbon monoxide (KCO) and KCO (% predicted). Conclusions 129Xe DW-MRI measurements appear to be sensitive to early changes of microstructural disease that are consistent with progression in IPF at 12 months. As new drug treatments are developed, the ability to quantify subtle changes using 129Xe DW-MRI could be particularly valuable.
Collapse
Affiliation(s)
- James A. Eaden
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Nicholas D. Weatherley
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ho-Fung Chan
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem Collier
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Graham Norquay
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew J. Swift
- Department of Academic Radiology, University of Sheffield, Sheffield, UK
| | - Smitha Rajaram
- Department of Academic Radiology, University of Sheffield, Sheffield, UK
| | - Laurie J. Smith
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | | - Stephen M. Bianchi
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jim M. Wild
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute for In-Silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Garrison WJ, Qing K, He M, Zhao L, Tustison NJ, Patrie JT, Mata JF, Shim YM, Ropp AM, Altes TA, Mugler JP, Miller GW. Lung Volume Dependence and Repeatability of Hyperpolarized 129Xe MRI Gas Uptake Metrics in Healthy Volunteers and Participants with COPD. Radiol Cardiothorac Imaging 2023; 5:e220096. [PMID: 37404786 PMCID: PMC10316289 DOI: 10.1148/ryct.220096] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 07/06/2023]
Abstract
Purpose To assess the effect of lung volume on measured values and repeatability of xenon 129 (129Xe) gas uptake metrics in healthy volunteers and participants with chronic obstructive pulmonary disease (COPD). Materials and Methods This Health Insurance Portability and Accountability Act-compliant prospective study included data (March 2014-December 2015) from 49 participants (19 with COPD [mean age, 67 years ± 9 (SD)]; nine women]; 25 older healthy volunteers [mean age, 59 years ± 10; 20 women]; and five young healthy women [mean age, 23 years ± 3]). Thirty-two participants underwent repeated 129Xe and same-breath-hold proton MRI at residual volume plus one-third forced vital capacity (RV+FVC/3), with 29 also undergoing one examination at total lung capacity (TLC). The remaining 17 participants underwent imaging at TLC, RV+FVC/3, and residual volume (RV). Signal ratios between membrane, red blood cell (RBC), and gas-phase compartments were calculated using hierarchical iterative decomposition of water and fat with echo asymmetry and least-squares estimation (ie, IDEAL). Repeatability was assessed using coefficient of variation and intraclass correlation coefficient, and volume relationships were assessed using Spearman correlation and Wilcoxon rank sum tests. Results Gas uptake metrics were repeatable at RV+FVC/3 (intraclass correlation coefficient = 0.88 for membrane/gas; 0.71 for RBC/gas, and 0.88 for RBC/membrane). Relative ratio changes were highly correlated with relative volume changes for membrane/gas (r = -0.97) and RBC/gas (r = -0.93). Membrane/gas and RBC/gas measured at RV+FVC/3 were significantly lower in the COPD group than the corresponding healthy group (P ≤ .001). However, these differences lessened upon correction for individual volume differences (P = .23 for membrane/gas; P = .09 for RBC/gas). Conclusion Dissolved-phase 129Xe MRI-derived gas uptake metrics were repeatable but highly dependent on lung volume during measurement.Keywords: Blood-Air Barrier, MRI, Chronic Obstructive Pulmonary Disease, Pulmonary Gas Exchange, Xenon Supplemental material is available for this article © RSNA, 2023.
Collapse
Affiliation(s)
- William J. Garrison
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Kun Qing
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Mu He
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Li Zhao
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Nicholas J. Tustison
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - James T. Patrie
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Jaime F. Mata
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Y. Michael Shim
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Alan M. Ropp
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Talissa A. Altes
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - John P. Mugler
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - G. Wilson Miller
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| |
Collapse
|
11
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Collier GJ, Schulte RF, Rao M, Norquay G, Ball J, Wild JM. Imaging gas-exchange lung function and brain tissue uptake of hyperpolarized 129 Xe using sampling density-weighted MRSI. Magn Reson Med 2023; 89:2217-2226. [PMID: 36744585 DOI: 10.1002/mrm.29602] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE Imaging of the different resonances of hyperpolarized 129 Xe in the brain and lungs was performed using a 3D sampling density-weighted MRSI technique in healthy volunteers. METHODS Four volunteers underwent dissolved-phase hyperpolarized 129 Xe imaging in the lung with the MRSI technique, which was designed to improve the point-spread function while preserving SNR (1799 phase-encoding steps, 14-s breath hold, 2.1-cm isotropic resolution). A frequency-tailored RF excitation pulse was implemented to reliably excite both the 129 Xe gas and dissolved phase (tissue/blood signal) with 0.1° and 10° flip angles, respectively. Images of xenon gas in the lung airspaces and xenon dissolved in lung tissue/blood were used to generate quantitative signal ratio maps. The method was also optimized and used for imaging dissolved resonances of 129 Xe in the brain in 2 additional volunteers. RESULTS High-quality regional spectra of hyperpolarized 129 Xe were achieved in both the lung and the brain. Ratio maps of the different xenon resonances were obtained in the lung with sufficient SNR (> 10) at both 1.5 T and 3 T, making a triple Lorentzian fit possible and enabling the measurement of relaxation times and xenon frequency shifts on a voxel-wise basis. The imaging technique was successfully adapted for brain imaging, resulting in the first demonstration of 3D xenon brain images with a 2-cm isotropic resolution. CONCLUSION Density-weighted MRSI is an SNR and encoding-efficient way to image 129 Xe resonances in the lung and the brain, providing a valuable tool to quantify regional spectroscopic information.
Collapse
Affiliation(s)
- Guilhem J Collier
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK.,INSIGNEO institute, University of Sheffield, Sheffield, UK
| | | | - Madhwesha Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - James Ball
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK.,INSIGNEO institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Tibiletti M, Eaden JA, Naish JH, Hughes PJC, Waterton JC, Heaton MJ, Chaudhuri N, Skeoch S, Bruce IN, Bianchi S, Wild JM, Parker GJM. Imaging biomarkers of lung ventilation in interstitial lung disease from 129Xe and oxygen enhanced 1H MRI. Magn Reson Imaging 2023; 95:39-49. [PMID: 36252693 DOI: 10.1016/j.mri.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE To compare imaging biomarkers from hyperpolarised 129Xe ventilation MRI and dynamic oxygen-enhanced MRI (OE-MRI) with standard pulmonary function tests (PFT) in interstitial lung disease (ILD) patients. To evaluate if biomarkers can separate ILD subtypes and detect early signs of disease resolution or progression. STUDY TYPE Prospective longitudinal. POPULATION Forty-one ILD (fourteen idiopathic pulmonary fibrosis (IPF), eleven hypersensitivity pneumonitis (HP), eleven drug-induced ILD (DI-ILD), five connective tissue disease related-ILD (CTD-ILD)) patients and ten healthy volunteers imaged at visit 1. Thirty-four ILD patients completed visit 2 (eleven IPF, eight HP, ten DIILD, five CTD-ILD) after 6 or 26 weeks. FIELD STRENGTH/SEQUENCE MRI was performed at 1.5 T, including inversion recovery T1 mapping, dynamic MRI acquisition with varying oxygen levels, and hyperpolarised 129Xe ventilation MRI. Subjects underwent standard spirometry and gas transfer testing. ASSESSMENT Five 1H MRI and two 129Xe MRI ventilation metrics were compared with spirometry and gas transfer measurements. STATISTICAL TEST To evaluate differences at visit 1 among subgroups: ANOVA or Kruskal-Wallis rank tests with correction for multiple comparisons. To assess the relationships between imaging biomarkers, PFT, age and gender, at visit 1 and for the change between visit 1 and 2: Pearson correlations and multilinear regression models. RESULTS The global PFT tests could not distinguish ILD subtypes. Percentage ventilated volumes were lower in ILD patients than in HVs when measured with 129Xe MRI (HV 97.4 ± 2.6, CTD-ILD: 91.0 ± 4.8 p = 0.017, DI-ILD 90.1 ± 7.4 p = 0.003, HP 92.6 ± 4.0 p = 0.013, IPF 88.1 ± 6.5 p < 0.001), but not with OE-MRI. 129Xe reported more heterogeneous ventilation in DI-ILD and IPF than in HV, and OE-MRI reported more heterogeneous ventilation in DI-ILD and IPF than in HP or CTD-ILD. The longitudinal changes reported by the imaging biomarkers did not correlate with the PFT changes between visits. DATA CONCLUSION Neither 129Xe ventilation nor OE-MRI biomarkers investigated in this study were able to differentiate between ILD subtypes, suggesting that ventilation-only biomarkers are not indicated for this task. Limited but progressive loss of ventilated volume as measured by 129Xe-MRI may be present as the biomarker of focal disease progresses. OE-MRI biomarkers are feasible in ILD patients and do not correlate strongly with PFT. Both OE-MRI and 129Xe MRI revealed more spatially heterogeneous ventilation in DI-ILD and IPF.
Collapse
Affiliation(s)
- Marta Tibiletti
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom
| | - James A Eaden
- POLARIS, University of Sheffield MRI Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Josephine H Naish
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom; MCMR, Manchester University NHS Foundation Trust, Wythenshawe, Manchester, UK
| | - Paul J C Hughes
- POLARIS, University of Sheffield MRI Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - John C Waterton
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom; Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Matthew J Heaton
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom
| | - Nazia Chaudhuri
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Sarah Skeoch
- Royal National Hospital for Rheumatic Diseases, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Ian N Bruce
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK; Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen Bianchi
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jim M Wild
- POLARIS, University of Sheffield MRI Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK; Insigneo Insititute for in silico medicine, Sheffield, UK
| | - Geoff J M Parker
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| |
Collapse
|
14
|
Hahn AD, Carey KJ, Barton GP, Torres LA, Kammerman J, Cadman RV, Lee KE, Schiebler ML, Sandbo N, Fain SB. Hyperpolarized 129Xe MR Spectroscopy in the Lung Shows 1-year Reduced Function in Idiopathic Pulmonary Fibrosis. Radiology 2022; 305:688-696. [PMID: 35880982 PMCID: PMC9713448 DOI: 10.1148/radiol.211433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 11/11/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a temporally and spatially heterogeneous lung disease. Identifying whether IPF in a patient is progressive or stable is crucial for treatment regimens. Purpose To assess the role of hyperpolarized (HP) xenon 129 (129Xe) MRI measures of ventilation and gas transfer in IPF generally and as an early signature of future IPF progression. Materials and Methods In a prospective study, healthy volunteers and participants with IPF were consecutively recruited between December 2015 and August 2019 and underwent baseline HP 129Xe MRI and chest CT. Participants with IPF were followed up with forced vital capacity percent predicted (FVC%p), diffusing capacity of the lungs for carbon monoxide percent predicted (DLco%p), and clinical outcome at 1 year. IPF progression was defined as reduction in FVC%p by at least 10%, reduction in DLco%p by at least 15%, or admission to hospice care. CT and MRI were spatially coregistered and a measure of pulmonary gas transfer (red blood cell [RBC]-to-barrier ratio) and high-ventilation percentage of lung volume were compared across groups and across fibrotic versus normal-appearing regions at CT by using Wilcoxon signed rank tests. Results Sixteen healthy volunteers (mean age, 57 years ± 14 [SD]; 10 women) and 22 participants with IPF (mean age, 71 years ± 9; 15 men) were evaluated, as follows: nine IPF progressors (mean age, 72 years ± 7; five women) and 13 nonprogressors (mean age, 70 years ± 10; 11 men). Reduction of high-ventilation percent (13% ± 6.1 vs 8.2% ± 5.9; P = .03) and RBC-to-barrier ratio (0.26 ± 0.06 vs 0.20 ± 0.06; P = .03) at baseline were associated with progression of IPF. Participants with progressive disease had reduced RBC-to-barrier ratio in structurally normal-appearing lung at CT (0.21 ± 0.07 vs 0.28 ± 0.05; P = .01) but not in fibrotic regions of the lung (0.15 ± 0.09 vs 0.14 ± 0.04; P = .62) relative to the nonprogressive group. Conclusion In this preliminary study, functional measures of gas transfer and ventilation measured with xenon 129 MRI and the extent of fibrotic structure at CT were associated with idiopathic pulmonary fibrosis disease progression. Differences in gas transfer were found in regions of nonfibrotic lung. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Gleeson and Fraser in this issue.
Collapse
Affiliation(s)
- Andrew D. Hahn
- From the Departments of Medical Physics (A.D.H., K.J.C., G.P.B.,
L.A.T., J.K., R.V.C., S.B.F.), Medicine (R.V.C., N.S.), Biostatistics and
Medical Informatics (K.E.L.), and Radiology (M.L.S.), University of
Wisconsin–Madison, 1111 Highland Ave, Room 1005, Madison, WI 53705;
Department of Medicine, University of Texas Southwestern Medical Center, Dallas,
Tex (G.P.B.); and Department of Radiology, University of Iowa, Iowa City, Iowa
(A.D.H., S.B.F.)
| | - Katie J. Carey
- From the Departments of Medical Physics (A.D.H., K.J.C., G.P.B.,
L.A.T., J.K., R.V.C., S.B.F.), Medicine (R.V.C., N.S.), Biostatistics and
Medical Informatics (K.E.L.), and Radiology (M.L.S.), University of
Wisconsin–Madison, 1111 Highland Ave, Room 1005, Madison, WI 53705;
Department of Medicine, University of Texas Southwestern Medical Center, Dallas,
Tex (G.P.B.); and Department of Radiology, University of Iowa, Iowa City, Iowa
(A.D.H., S.B.F.)
| | - Gregory P. Barton
- From the Departments of Medical Physics (A.D.H., K.J.C., G.P.B.,
L.A.T., J.K., R.V.C., S.B.F.), Medicine (R.V.C., N.S.), Biostatistics and
Medical Informatics (K.E.L.), and Radiology (M.L.S.), University of
Wisconsin–Madison, 1111 Highland Ave, Room 1005, Madison, WI 53705;
Department of Medicine, University of Texas Southwestern Medical Center, Dallas,
Tex (G.P.B.); and Department of Radiology, University of Iowa, Iowa City, Iowa
(A.D.H., S.B.F.)
| | - Luis A. Torres
- From the Departments of Medical Physics (A.D.H., K.J.C., G.P.B.,
L.A.T., J.K., R.V.C., S.B.F.), Medicine (R.V.C., N.S.), Biostatistics and
Medical Informatics (K.E.L.), and Radiology (M.L.S.), University of
Wisconsin–Madison, 1111 Highland Ave, Room 1005, Madison, WI 53705;
Department of Medicine, University of Texas Southwestern Medical Center, Dallas,
Tex (G.P.B.); and Department of Radiology, University of Iowa, Iowa City, Iowa
(A.D.H., S.B.F.)
| | - Jeff Kammerman
- From the Departments of Medical Physics (A.D.H., K.J.C., G.P.B.,
L.A.T., J.K., R.V.C., S.B.F.), Medicine (R.V.C., N.S.), Biostatistics and
Medical Informatics (K.E.L.), and Radiology (M.L.S.), University of
Wisconsin–Madison, 1111 Highland Ave, Room 1005, Madison, WI 53705;
Department of Medicine, University of Texas Southwestern Medical Center, Dallas,
Tex (G.P.B.); and Department of Radiology, University of Iowa, Iowa City, Iowa
(A.D.H., S.B.F.)
| | - Robert V. Cadman
- From the Departments of Medical Physics (A.D.H., K.J.C., G.P.B.,
L.A.T., J.K., R.V.C., S.B.F.), Medicine (R.V.C., N.S.), Biostatistics and
Medical Informatics (K.E.L.), and Radiology (M.L.S.), University of
Wisconsin–Madison, 1111 Highland Ave, Room 1005, Madison, WI 53705;
Department of Medicine, University of Texas Southwestern Medical Center, Dallas,
Tex (G.P.B.); and Department of Radiology, University of Iowa, Iowa City, Iowa
(A.D.H., S.B.F.)
| | - Kristine E. Lee
- From the Departments of Medical Physics (A.D.H., K.J.C., G.P.B.,
L.A.T., J.K., R.V.C., S.B.F.), Medicine (R.V.C., N.S.), Biostatistics and
Medical Informatics (K.E.L.), and Radiology (M.L.S.), University of
Wisconsin–Madison, 1111 Highland Ave, Room 1005, Madison, WI 53705;
Department of Medicine, University of Texas Southwestern Medical Center, Dallas,
Tex (G.P.B.); and Department of Radiology, University of Iowa, Iowa City, Iowa
(A.D.H., S.B.F.)
| | - Mark L. Schiebler
- From the Departments of Medical Physics (A.D.H., K.J.C., G.P.B.,
L.A.T., J.K., R.V.C., S.B.F.), Medicine (R.V.C., N.S.), Biostatistics and
Medical Informatics (K.E.L.), and Radiology (M.L.S.), University of
Wisconsin–Madison, 1111 Highland Ave, Room 1005, Madison, WI 53705;
Department of Medicine, University of Texas Southwestern Medical Center, Dallas,
Tex (G.P.B.); and Department of Radiology, University of Iowa, Iowa City, Iowa
(A.D.H., S.B.F.)
| | - Nathan Sandbo
- From the Departments of Medical Physics (A.D.H., K.J.C., G.P.B.,
L.A.T., J.K., R.V.C., S.B.F.), Medicine (R.V.C., N.S.), Biostatistics and
Medical Informatics (K.E.L.), and Radiology (M.L.S.), University of
Wisconsin–Madison, 1111 Highland Ave, Room 1005, Madison, WI 53705;
Department of Medicine, University of Texas Southwestern Medical Center, Dallas,
Tex (G.P.B.); and Department of Radiology, University of Iowa, Iowa City, Iowa
(A.D.H., S.B.F.)
| | - Sean B. Fain
- From the Departments of Medical Physics (A.D.H., K.J.C., G.P.B.,
L.A.T., J.K., R.V.C., S.B.F.), Medicine (R.V.C., N.S.), Biostatistics and
Medical Informatics (K.E.L.), and Radiology (M.L.S.), University of
Wisconsin–Madison, 1111 Highland Ave, Room 1005, Madison, WI 53705;
Department of Medicine, University of Texas Southwestern Medical Center, Dallas,
Tex (G.P.B.); and Department of Radiology, University of Iowa, Iowa City, Iowa
(A.D.H., S.B.F.)
| |
Collapse
|
15
|
Wild JM, Collier G. 129Xe Pulmonary MRI for Individuals with Post-acute COVID-19 Syndrome. Radiology 2022; 305:477-478. [PMID: 35762895 PMCID: PMC9272687 DOI: 10.1148/radiol.221361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Jim M. Wild
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Royal Hallamshire Hospital, Glossop Rd, Floor C, Sheffield S10 2JF, UK
| | - Guilhem Collier
- From the Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Royal Hallamshire Hospital, Glossop Rd, Floor C, Sheffield S10 2JF, UK
| |
Collapse
|
16
|
Gleeson F, Fraser E. Hyperpolarized Xenon MRI, Further Evidence of Its Use in Progressive Pulmonary Fibrosis? Radiology 2022; 305:697-698. [PMID: 35880988 DOI: 10.1148/radiol.221381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fergus Gleeson
- From the Departments of Radiology and Oncology (F.G.) and Oxford Interstitial Lung Disease Service (E.F.), Oxford University Hospitals NHS Trust, Old Road, Headington, Oxford 0X3 7DQ, UK
| | - Emily Fraser
- From the Departments of Radiology and Oncology (F.G.) and Oxford Interstitial Lung Disease Service (E.F.), Oxford University Hospitals NHS Trust, Old Road, Headington, Oxford 0X3 7DQ, UK
| |
Collapse
|
17
|
Alenezi F, Covington TA, Mukherjee M, Mathai SC, Yu PB, Rajagopal S. Novel Approaches to Imaging the Pulmonary Vasculature and Right Heart. Circ Res 2022; 130:1445-1465. [PMID: 35482838 PMCID: PMC9060389 DOI: 10.1161/circresaha.121.319990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is an increased appreciation for the importance of the right heart and pulmonary circulation in several disease states across the spectrum of pulmonary hypertension and left heart failure. However, assessment of the structure and function of the right heart and pulmonary circulation can be challenging, due to the complex geometry of the right ventricle, comorbid pulmonary airways and parenchymal disease, and the overlap of hemodynamic abnormalities with left heart failure. Several new and evolving imaging modalities interrogate the right heart and pulmonary circulation with greater diagnostic precision. Echocardiographic approaches such as speckle-tracking and 3-dimensional imaging provide detailed assessments of regional systolic and diastolic function and volumetric assessments. Magnetic resonance approaches can provide high-resolution views of cardiac structure/function, tissue characterization, and perfusion through the pulmonary vasculature. Molecular imaging with positron emission tomography allows an assessment of specific pathobiologically relevant targets in the right heart and pulmonary circulation. Machine learning analysis of high-resolution computed tomographic lung scans permits quantitative morphometry of the lung circulation without intravenous contrast. Inhaled magnetic resonance imaging probes, such as hyperpolarized 129Xe magnetic resonance imaging, report on pulmonary gas exchange and pulmonary capillary hemodynamics. These approaches provide important information on right ventricular structure and function along with perfusion through the pulmonary circulation. At this time, the majority of these developing technologies have yet to be clinically validated, with few studies demonstrating the utility of these imaging biomarkers for diagnosis or monitoring disease. These technologies hold promise for earlier diagnosis and noninvasive monitoring of right heart failure and pulmonary hypertension that will aid in preclinical studies, enhance patient selection and provide surrogate end points in clinical trials, and ultimately improve bedside care.
Collapse
Affiliation(s)
- Fawaz Alenezi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | | | | | - Steve C. Mathai
- Johns Hopkins Division of Pulmonary and Critical Care Medicine, Baltimore, MD
| | - Paul B. Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| |
Collapse
|
18
|
Stewart NJ, Smith LJ, Chan HF, Eaden JA, Rajaram S, Swift AJ, Weatherley ND, Biancardi A, Collier GJ, Hughes D, Klafkowski G, Johns CS, West N, Ugonna K, Bianchi SM, Lawson R, Sabroe I, Marshall H, Wild JM. Lung MRI with hyperpolarised gases: current & future clinical perspectives. Br J Radiol 2022; 95:20210207. [PMID: 34106792 PMCID: PMC9153706 DOI: 10.1259/bjr.20210207] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of pulmonary MRI in a clinical setting has historically been limited. Whilst CT remains the gold-standard for structural lung imaging in many clinical indications, technical developments in ultrashort and zero echo time MRI techniques are beginning to help realise non-ionising structural imaging in certain lung disorders. In this invited review, we discuss a complementary technique - hyperpolarised (HP) gas MRI with inhaled 3He and 129Xe - a method for functional and microstructural imaging of the lung that has great potential as a clinical tool for early detection and improved understanding of pathophysiology in many lung diseases. HP gas MRI now has the potential to make an impact on clinical management by enabling safe, sensitive monitoring of disease progression and response to therapy. With reference to the significant evidence base gathered over the last two decades, we review HP gas MRI studies in patients with a range of pulmonary disorders, including COPD/emphysema, asthma, cystic fibrosis, and interstitial lung disease. We provide several examples of our experience in Sheffield of using these techniques in a diagnostic clinical setting in challenging adult and paediatric lung diseases.
Collapse
Affiliation(s)
- Neil J Stewart
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Laurie J Smith
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ho-Fung Chan
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - James A Eaden
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Smitha Rajaram
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Nicholas D Weatherley
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alberto Biancardi
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - David Hughes
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | - Christopher S Johns
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Noreen West
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Kelechi Ugonna
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Stephen M Bianchi
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Rod Lawson
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Ian Sabroe
- Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | - Helen Marshall
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
19
|
Matheson AM, Cunningham RSP, Bier E, Lu J, Dreihuys B, Pickering JG, Diamantouros P, Islam A, Nicholson JM, Parraga G, Blissett S. Hyperpolarized 129Xe Pulmonary MRI and Asymptomatic Atrial Septal Defect. Chest 2022; 161:e199-e202. [PMID: 35396051 DOI: 10.1016/j.chest.2021.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/31/2022] Open
Abstract
In an asymptomatic 19-year-old who regularly underwent cardiopulmonary fitness testing for national lifeguard-accreditation, 129Xe MRI unexpectedly revealed an abnormally augmented RBC signal and RBC-to-alveolar-capillary-tissue ratio with spatially homogeneous ventilation, tissue barrier, and RBC images. Pulmonary function was normal, but cardiopulmonary follow-up including transthoracic and transesophageal echocardiogram, heart catheterization, and contrast-enhanced cardiac CT imaging led to the diagnosis of a large (20 × 27 mm) secundum atrial septal defect (ASD) with a net right-to-left shunt (Qp:Qs = 0.5) and normal pulmonary pressures. This novel, unexpected case revealed that 129Xe RBC signal intensity likely reflected erythrocytosis, compensatory to the abnormal cardiovascular hemodynamics that resulted from a large congenital ASD. Unlike ASD cases that present with dyspnea and exercise limitation, this 129Xe MRI abnormality was detected in an asymptomatic teenager. This is the first report of asymptomatic adult congenital heart disease diagnosed subsequent to novel 129Xe MRI that led to early intervention, avoiding long-term complications of cyanosis, including ventricular fibrosis and thromboembolic and bleeding risks.
Collapse
Affiliation(s)
- Alexander M Matheson
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Robin S P Cunningham
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Elianna Bier
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC
| | - Junlan Lu
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC
| | - Bastiaan Dreihuys
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC
| | - J Geoffrey Pickering
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Division of Cardiology, Department of Medicine, Western University, London, Canada
| | | | - Ali Islam
- Department of Medical Imaging, Western University, London, Canada
| | - J Michael Nicholson
- Division of Respirology, Department of Medicine, Western University, London, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Medical Imaging, Western University, London, Canada; Division of Respirology, Department of Medicine, Western University, London, Canada.
| | - Sarah Blissett
- Division of Cardiology, Department of Medicine, Western University, London, Canada
| |
Collapse
|
20
|
Niedbalski PJ, Lu J, Hall CS, Castro M, Mugler JP, Shim YM, Driehuys B. Utilizing flip angle/TR equivalence to reduce breath hold duration in hyperpolarized 129 Xe 1-point Dixon gas exchange imaging. Magn Reson Med 2022; 87:1490-1499. [PMID: 34644815 PMCID: PMC8776583 DOI: 10.1002/mrm.29040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE To reduce scan duration in hyperpolarized 129 Xe 1-point Dixon gas exchange imaging by utilizing flip angle (FA)/TR equivalence. METHODS Images were acquired in 12 subjects (n = 3 radiation therapy, n = 1 unexplained dyspnea, n = 8 healthy) using both standard (TR = 15 ms, FA = 20°, duration = 15 s, 998 projections) and "fast" (TR = 5.4 ms, FA = 12°, duration = 11.3 s, 2100 projections) acquisition parameters. For the fast acquisition, 3 image sets were reconstructed using subsets of 1900, 1500, and 1000 projections. From the resulting ventilation, tissue ("barrier"), and red blood cell (RBC) images, image metrics and biomarkers were compared to assess agreement between methods. RESULTS Images acquired using both FA/TR settings had similar qualitative appearance. There were no significant differences in SNR, image mean, or image SD between images. Moreover, the percentage of the lungs in "defect", "normal", and "high" bins for each image (ventilation, RBC, barrier) was not significantly different among the acquisition types. After registration, comparison of 3D image metrics (Dice, volume similarity, average distance) agreed well between bins. Images using 1000 projections for reconstruction had no significant differences from images using all projections. CONCLUSION Using flip angle/TR equivalence, hyperpolarized 129 Xe gas exchange images can be acquired via the 1-point Dixon technique in as little as 6 s, compared to ~15 s for previously reported parameter settings. The resulting images from this accelerated scan have no significant differences from the standard method in qualitative appearance or quantitative metrics.
Collapse
Affiliation(s)
- Peter J. Niedbalski
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA,Corresponding Author: Peter J. Niedbalski, 3901 Rainbow Blvd. Lied 3043, Kansas City, KS 66160, 913-588-2271,
| | - Junlan Lu
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
| | - Chase S. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - John P. Mugler
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Yun M. Shim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Bastiaan Driehuys
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
21
|
Niedbalski PJ, Hall CS, Castro M, Eddy RL, Rayment JH, Svenningsen S, Parraga G, Zanette B, Santyr GE, Thomen RP, Stewart NJ, Collier GJ, Chan HF, Wild JM, Fain SB, Miller GW, Mata JF, Mugler JP, Driehuys B, Willmering MM, Cleveland ZI, Woods JC. Protocols for multi-site trials using hyperpolarized 129 Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: A position paper from the 129 Xe MRI clinical trials consortium. Magn Reson Med 2021; 86:2966-2986. [PMID: 34478584 DOI: 10.1002/mrm.28985] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
Hyperpolarized (HP) 129 Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129 Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129 Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129 Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129 Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129 Xe MRI. Recommendations are described for the most common HP gas MRI techniques-calibration, ventilation, alveolar-airspace size, and gas exchange-across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129 Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129 Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129 Xe MRI for multi-site pulmonary research.
Collapse
Affiliation(s)
- Peter J Niedbalski
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chase S Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rachel L Eddy
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan H Rayment
- Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Svenningsen
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giles E Santyr
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Robert P Thomen
- Departments of Radiology and Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - Neil J Stewart
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ho-Fung Chan
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Sean B Fain
- Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - G Wilson Miller
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Jaime F Mata
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - John P Mugler
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Bastiaan Driehuys
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics (Pulmonary Medicine) and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics (Pulmonary Medicine) and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
22
|
Wild JM, Porter JC, Molyneaux PL, George PM, Stewart I, Allen RJ, Aul R, Baillie JK, Barratt SL, Beirne P, Bianchi SM, Blaikley JF, Brooke J, Chaudhuri N, Collier G, Denneny EK, Docherty A, Fabbri L, Gibbons MA, Gleeson FV, Gooptu B, Hall IP, Hanley NA, Heightman M, Hillman TE, Johnson SR, Jones MG, Khan F, Lawson R, Mehta P, Mitchell JA, Platé M, Poinasamy K, Quint JK, Rivera-Ortega P, Semple M, Simpson AJ, Smith DJF, Spears M, Spencer LIG, Stanel SC, Thickett DR, Thompson AAR, Walsh SLF, Weatherley ND, Weeks ME, Wootton DG, Brightling CE, Chambers RC, Ho LP, Jacob J, Piper Hanley K, Wain LV, Jenkins RG. Understanding the burden of interstitial lung disease post-COVID-19: the UK Interstitial Lung Disease-Long COVID Study (UKILD-Long COVID). BMJ Open Respir Res 2021; 8:e001049. [PMID: 34556492 PMCID: PMC8461362 DOI: 10.1136/bmjresp-2021-001049] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The COVID-19 pandemic has led to over 100 million cases worldwide. The UK has had over 4 million cases, 400 000 hospital admissions and 100 000 deaths. Many patients with COVID-19 suffer long-term symptoms, predominantly breathlessness and fatigue whether hospitalised or not. Early data suggest potentially severe long-term consequence of COVID-19 is development of long COVID-19-related interstitial lung disease (LC-ILD). METHODS AND ANALYSIS The UK Interstitial Lung Disease Consortium (UKILD) will undertake longitudinal observational studies of patients with suspected ILD following COVID-19. The primary objective is to determine ILD prevalence at 12 months following infection and whether clinically severe infection correlates with severity of ILD. Secondary objectives will determine the clinical, genetic, epigenetic and biochemical factors that determine the trajectory of recovery or progression of ILD. Data will be obtained through linkage to the Post-Hospitalisation COVID platform study and community studies. Additional substudies will conduct deep phenotyping. The Xenon MRI investigation of Alveolar dysfunction Substudy will conduct longitudinal xenon alveolar gas transfer and proton perfusion MRI. The POST COVID-19 interstitial lung DiseasE substudy will conduct clinically indicated bronchoalveolar lavage with matched whole blood sampling. Assessments include exploratory single cell RNA and lung microbiomics analysis, gene expression and epigenetic assessment. ETHICS AND DISSEMINATION All contributing studies have been granted appropriate ethical approvals. Results from this study will be disseminated through peer-reviewed journals. CONCLUSION This study will ensure the extent and consequences of LC-ILD are established and enable strategies to mitigate progression of LC-ILD.
Collapse
Affiliation(s)
- Jim M Wild
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Joanna C Porter
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK,Respiratory Medicine, University College London Hospitals NHS Foundation Trust, London, UK,Department of Respiratory Medicine, University College London, London, UK
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College London, London, UK,Department of Interstitial Lung Disease, Royal Brompton and Harefield Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Peter M George
- National Heart and Lung Institute, Imperial College London, London, UK,Department of Interstitial Lung Disease, Royal Brompton and Harefield Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Iain Stewart
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Raminder Aul
- Respiratory Medicine, St George's Hospital NHS Foundation Trust, London, UK
| | | | - Shaney L Barratt
- Bristol Interstitial Lung Diseases Service, North Bristol NHS Trust, Bristol, UK
| | - Paul Beirne
- Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Stephen M Bianchi
- Academic Department of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - John F Blaikley
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jonathan Brooke
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK,School of Medicine, University of Nottingham, Nottingham, UK
| | - Nazia Chaudhuri
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK,Respiratory Department, University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| | - Guilhem Collier
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Emma K Denneny
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK,Respiratory Medicine, University College London Hospitals NHS Foundation Trust, London, UK,Department of Respiratory Medicine, University College London, London, UK
| | - Annemarie Docherty
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Laura Fabbri
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Michael A Gibbons
- Respiratory Medicine, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK,College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Bibek Gooptu
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK,Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian P Hall
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK,School of Medicine, University of Nottingham, Nottingham, UK
| | - Neil A Hanley
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK,Wythenshaw Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Melissa Heightman
- Respiratory Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Toby E Hillman
- Respiratory Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon R Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK,School of Medicine, University of Nottingham, Nottingham, UK
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK,Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Fasihul Khan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK,School of Medicine, University of Nottingham, Nottingham, UK
| | - Rod Lawson
- Academic Department of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Puja Mehta
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK,School of Life & Medical Sciences, UCL, London, UK
| | - Jane A Mitchell
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK,UCL Respiratory, UCL, London, UK
| | | | - Jennifer K Quint
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Pilar Rivera-Ortega
- Respiratory Department, University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| | | | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - DJF Smith
- National Heart and Lung Institute, Imperial College London, London, UK,Department of Interstitial Lung Disease, Royal Brompton and Harefield Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Mark Spears
- Respiratory Medicine, Perth Royal Infirmary, NHS Tayside, Perth, UK,School of Medicine, University of Dundee, Dundee, UK
| | - LIsa G Spencer
- Respiratory Medicine, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Stefan C Stanel
- Respiratory Department, University Hospital of South Manchester NHS Foundation Trust, Manchester, UK,Division of Diabetes, Endocrinology & Gastroenterology, The University of Manchester, Manchester, UK
| | - David R Thickett
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, UK,Acute and Respiratory Medicine, University Hospitals Birmingham Foundation Trust, Birmingham, uk
| | - A A Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Simon LF Walsh
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicholas D Weatherley
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | | | - Dan G Wootton
- Respiratory Medicine, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK,Institute of Infection Veterinary and Ecological Science, University of Liverpool, Liverpool, UK
| | - Chris E Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine Oncology, Oxford, UK,Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, UK
| | - Joseph Jacob
- Department of Respiratory Medicine, University College London, London, UK,Centre for Medical Imaging and Computing, University College London, London, UK
| | - Karen Piper Hanley
- Division of Diabetes, Endocrinology & Gastroenterology, The University of Manchester, Manchester, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK,Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - R Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK,Department of Interstitial Lung Disease, Royal Brompton and Harefield Hospital, Guys and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
23
|
Wild JM. Abnormal Gas Exchange in Nonspecific Interstitial Pneumonia at Xenon MRI. Radiology 2021; 301:221-222. [PMID: 34313476 DOI: 10.1148/radiol.2021211524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- James M Wild
- From the University of Sheffield MRI Unit, Royal Hallamshire Hospital, MRI Unit C Floor, Sheffield S10 2JF, England
| |
Collapse
|
24
|
Mummy DG, Bier EA, Wang Z, Korzekwinski J, Morrison L, Barkauskas C, McAdams HP, Tighe RM, Driehuys B, Mammarappallil JG. Hyperpolarized 129Xe MRI and Spectroscopy of Gas-Exchange Abnormalities in Nonspecific Interstitial Pneumonia. Radiology 2021; 301:211-220. [PMID: 34313473 DOI: 10.1148/radiol.2021204149] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Recent studies demonstrate that antifibrotic drugs previously reserved for idiopathic pulmonary fibrosis (IPF) may slow progression in other interstitial lung diseases (ILDs), creating an urgent need for tools that can sensitively assess disease activity, progression, and therapy response across ILDs. Hyperpolarized xenon 129 (129Xe) MRI and spectroscopy have provided noninvasive measurements of regional gas-exchange abnormalities in IPF. Purpose To assess gas exchange function using 129Xe MRI in a group of study participants with nonspecific interstitial pneumonia (NSIP) compared with healthy control participants. Materials and Methods In this prospective study, participants with NSIP and healthy control participants were enrolled between November 2017 and February 2020 and underwent 129Xe MRI and spectroscopy. Quantitative imaging provided three-dimensional maps of ventilation, interstitial barrier uptake, and transfer into the red blood cell (RBC) compartment. Spectroscopy provided parameters of the static RBC and barrier uptake compartments, as well as cardiogenic oscillations in RBC signal amplitude and chemical shift. Differences between NSIP and healthy control participants were assessed using the Wilcoxon rank-sum test. Results Thirty-six participants with NSIP (mean age, 57 years ± 11 [standard deviation]; 27 women) and 15 healthy control participants (mean age, 39 years ± 18; two women) were evaluated. Participants with NSIP had no difference in ventilation compared with healthy control participants (median, 4.4% [first quartile, 1.5%; third quartile, 8.7%] vs 6.0% [first quartile, 2.8%; third quartile, 6.9%]; P = .91), but they had a higher barrier uptake (median, 6.2% [first quartile, 1.8%; third quartile, 23.9%] vs 0.53% [first quartile, 0.33%; third quartile, 2.9%]; P = .003) and an increased RBC transfer defect (median, 20.6% [first quartile, 11.6%; third quartile, 27.8%] vs 2.8% [first quartile, 2.3%; third quartile, 4.9%]; P < .001). NSIP participants also had a reduced ratio of RBC-to-barrier peaks (median, 0.24 [first quartile, 0.19; third quartile, 0.31] vs 0.57 [first quartile, 0.52; third quartile, 0.67]; P < .001) and a reduced RBC chemical shift (median, 217.5 ppm [first quartile, 217.0 ppm; third quartile, 218.0 ppm] vs 218.2 ppm [first quartile, 217.9 ppm; third quartile, 218.6 ppm]; P = .001). Conclusion Participants with nonspecific interstitial pneumonia had increased barrier uptake and decreased red blood cell (RBC) transfer compared with healthy controls measured using xenon 129 gas-exchange MRI and reduced RBC-to-barrier ratio and RBC chemical shift measured using spectroscopy. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wild in this issue.
Collapse
Affiliation(s)
- David G Mummy
- From the Department of Radiology (D.G.M., J.K., B.D., J.G.M.), Center for In Vivo Microscopy (D.G.M., B.D.), Department of Biomedical Engineering (E.A.B., Z.W., B.D.), Department of Medicine (L.M., C.B., H.P.M., R.T.), and Department of Medical Physics (B.D.), Duke University, DUMC Box 3302, Durham, NC 27710
| | - Elianna A Bier
- From the Department of Radiology (D.G.M., J.K., B.D., J.G.M.), Center for In Vivo Microscopy (D.G.M., B.D.), Department of Biomedical Engineering (E.A.B., Z.W., B.D.), Department of Medicine (L.M., C.B., H.P.M., R.T.), and Department of Medical Physics (B.D.), Duke University, DUMC Box 3302, Durham, NC 27710
| | - Ziyi Wang
- From the Department of Radiology (D.G.M., J.K., B.D., J.G.M.), Center for In Vivo Microscopy (D.G.M., B.D.), Department of Biomedical Engineering (E.A.B., Z.W., B.D.), Department of Medicine (L.M., C.B., H.P.M., R.T.), and Department of Medical Physics (B.D.), Duke University, DUMC Box 3302, Durham, NC 27710
| | - Jennifer Korzekwinski
- From the Department of Radiology (D.G.M., J.K., B.D., J.G.M.), Center for In Vivo Microscopy (D.G.M., B.D.), Department of Biomedical Engineering (E.A.B., Z.W., B.D.), Department of Medicine (L.M., C.B., H.P.M., R.T.), and Department of Medical Physics (B.D.), Duke University, DUMC Box 3302, Durham, NC 27710
| | - Lake Morrison
- From the Department of Radiology (D.G.M., J.K., B.D., J.G.M.), Center for In Vivo Microscopy (D.G.M., B.D.), Department of Biomedical Engineering (E.A.B., Z.W., B.D.), Department of Medicine (L.M., C.B., H.P.M., R.T.), and Department of Medical Physics (B.D.), Duke University, DUMC Box 3302, Durham, NC 27710
| | - Christina Barkauskas
- From the Department of Radiology (D.G.M., J.K., B.D., J.G.M.), Center for In Vivo Microscopy (D.G.M., B.D.), Department of Biomedical Engineering (E.A.B., Z.W., B.D.), Department of Medicine (L.M., C.B., H.P.M., R.T.), and Department of Medical Physics (B.D.), Duke University, DUMC Box 3302, Durham, NC 27710
| | - H Page McAdams
- From the Department of Radiology (D.G.M., J.K., B.D., J.G.M.), Center for In Vivo Microscopy (D.G.M., B.D.), Department of Biomedical Engineering (E.A.B., Z.W., B.D.), Department of Medicine (L.M., C.B., H.P.M., R.T.), and Department of Medical Physics (B.D.), Duke University, DUMC Box 3302, Durham, NC 27710
| | - Robert M Tighe
- From the Department of Radiology (D.G.M., J.K., B.D., J.G.M.), Center for In Vivo Microscopy (D.G.M., B.D.), Department of Biomedical Engineering (E.A.B., Z.W., B.D.), Department of Medicine (L.M., C.B., H.P.M., R.T.), and Department of Medical Physics (B.D.), Duke University, DUMC Box 3302, Durham, NC 27710
| | - Bastiaan Driehuys
- From the Department of Radiology (D.G.M., J.K., B.D., J.G.M.), Center for In Vivo Microscopy (D.G.M., B.D.), Department of Biomedical Engineering (E.A.B., Z.W., B.D.), Department of Medicine (L.M., C.B., H.P.M., R.T.), and Department of Medical Physics (B.D.), Duke University, DUMC Box 3302, Durham, NC 27710
| | - Joseph G Mammarappallil
- From the Department of Radiology (D.G.M., J.K., B.D., J.G.M.), Center for In Vivo Microscopy (D.G.M., B.D.), Department of Biomedical Engineering (E.A.B., Z.W., B.D.), Department of Medicine (L.M., C.B., H.P.M., R.T.), and Department of Medical Physics (B.D.), Duke University, DUMC Box 3302, Durham, NC 27710
| |
Collapse
|
25
|
Brooke JP, Hall IP. Novel Thoracic MRI Approaches for the Assessment of Pulmonary Physiology and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:123-145. [PMID: 34019267 DOI: 10.1007/978-3-030-68748-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Excessive pulmonary inflammation can lead to damage of lung tissue, airway remodelling and established structural lung disease. Novel therapeutics that specifically target inflammatory pathways are becoming increasingly common in clinical practice, but there is yet to be a similar stepwise change in pulmonary diagnostic tools. A variety of thoracic magnetic resonance imaging (MRI) tools are currently in development, which may soon fulfil this emerging clinical need for highly sensitive assessments of lung structure and function. Given conventional MRI techniques are poorly suited to lung imaging, alternate strategies have been developed, including the use of inhaled contrast agents, intravenous contrast and specialized lung MR sequences. In this chapter, we discuss technical challenges of performing MRI of the lungs and how they may be overcome. Key thoracic MRI modalities are reviewed, namely, hyperpolarized noble gas MRI, oxygen-enhanced MRI (OE-MRI), ultrashort echo time (UTE) MRI and dynamic contrast-enhanced (DCE) MRI. Finally, we consider potential clinical applications of these techniques including phenotyping of lung disease, evaluation of novel pulmonary therapeutic efficacy and longitudinal assessment of specific patient groups.
Collapse
Affiliation(s)
- Jonathan P Brooke
- Department of Respiratory Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK.
| | - Ian P Hall
- Department of Respiratory Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK.
| |
Collapse
|
26
|
Grist JT, Chen M, Collier GJ, Raman B, AbuEid G, McIntyre A, Matthews V, Fraser E, Ho LP, Wild JM, Gleeson F. Hyperpolarized 129Xe MRI Abnormalities in Dyspneic Participants 3 Months after COVID-19 Pneumonia: Preliminary Results. Radiology 2021; 301:E353-E360. [PMID: 34032513 PMCID: PMC8168952 DOI: 10.1148/radiol.2021210033] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background SARS-CoV-2 targets angiotensin-converting enzyme 2 (ACE2) expressing
cells in the respiratory tract. There are reports of breathlessness in
patients many months post-infection. Purpose This study aimed to determine if hyperpolarized 129Xe MRI
(XeMRI) imaging could identify the possible cause of breathlessness in
patients three months after hospital discharge following COVID-19
infection. Materials and Methods This prospective study was undertaken between August and December 2020,
with patients and healthy control volunteers enrolled. All patients
underwent: lung function tests; ventilation and dissolved phase XeMRI,
with the mean Red Blood Cell (RBC):Tissue Plasma (TP) ratio to be
calculated; and a low dose chest CT scored for the degree of
post-COVID-19 abnormalities. Healthy controls underwent XeMRI. The
intraclass correlation coefficient was calculated for volunteer and
patient scans, to assess repeatability. A Wilcoxon rank-sum test and
Cohen's effect size calculated to assess for differences between
RBC:TP in patient and controls. Results 9 patients (mean age 57±7 years, Male = 6) and 5 volunteers
(29 ± 3 years, Female = 5) were enrolled. Patient mean
time from hospital discharge was 169, range 116-254 days. There was a
difference in RBC:TP between patients and controls (0.3 ± 0.1
versus 0.5 ± 0.1, respectively, p = 0.001, effect size
= 1.36). There was significant difference between the RBC and gas
phase spectral full width at half maximum (FWHM) between volunteers and
patients (median ± 95 % confidence interval, 567 ±
1 vs 507 ± 81, p = 0.002 and 104 ± 2 vs 122
± 17, p = 0.004, respectively). Results were reproducible
with Intraclass Correlation Coefficients of 0.82 and 0.88 for patients
and volunteers respectively. Participants had normal or near normal CT
scans, mean 7/25, range 0-10/25. Conclusion Xe MRI showed alveolar-capillary diffusion limitation in all 9 post
COVID-19 pneumonia patients despite normal or nearly normal CT
scans. See also the editorial by Dietrich.
Collapse
Affiliation(s)
- James T Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford.,Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford.,Department of Radiology, The Churchill Hospital, Oxford NHS Foundation Trust, Oxford.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham
| | - Mitchell Chen
- Department of Radiology, The Churchill Hospital, Oxford NHS Foundation Trust, Oxford
| | - Guilhem J Collier
- POLARIS, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford
| | - Gabriele AbuEid
- Department of Radiology, The Churchill Hospital, Oxford NHS Foundation Trust, Oxford
| | - Anthony McIntyre
- Department of Radiology, The Churchill Hospital, Oxford NHS Foundation Trust, Oxford
| | - Violet Matthews
- Department of Radiology, The Churchill Hospital, Oxford NHS Foundation Trust, Oxford
| | - Emily Fraser
- Oxford Interstitial Lung Disease Service, Oxford NHS Foundation Trust
| | - Ling-Pei Ho
- MRC Human Immunology Unit, University of Oxford.,Oxford Interstitial Lung Disease Service, Oxford NHS Foundation Trust
| | - Jim M Wild
- POLARIS, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield
| | - Fergus Gleeson
- Department of Radiology, The Churchill Hospital, Oxford NHS Foundation Trust, Oxford.,Department of Oncology, University of Oxford, Oxford
| |
Collapse
|
27
|
van Beek EJR, Wild JM. Xenon MRI for Future Assessment of Lung Function and Treatment Response: A Commentary. J Magn Reson Imaging 2021; 54:1363-1364. [PMID: 34028138 DOI: 10.1002/jmri.27737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Edwin J R van Beek
- Edinburgh Imaging facility Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jim M Wild
- University of Sheffield MRI Unit, University of Sheffield, Sheffield, UK
| |
Collapse
|
28
|
Tanaka Y, Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Iwase A, Fukuba T, Hattori H, Murayama K, Yoshikawa T, Takenaka D, Koyama H, Toyama H. State-of-the-art MR Imaging for Thoracic Diseases. Magn Reson Med Sci 2021; 21:212-234. [PMID: 33952785 PMCID: PMC9199970 DOI: 10.2463/mrms.rev.2020-0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
Collapse
Affiliation(s)
- Yumi Tanaka
- Department of Radiology, Fujita Health University School of Medicine
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital
| | - Takashi Fukuba
- Department of Radiology, Fujita Health University Hospital
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | | | | | | | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine
| |
Collapse
|
29
|
Gefter WB, Lee KS, Schiebler ML, Parraga G, Seo JB, Ohno Y, Hatabu H. Pulmonary Functional Imaging: Part 2-State-of-the-Art Clinical Applications and Opportunities for Improved Patient Care. Radiology 2021; 299:524-538. [PMID: 33847518 DOI: 10.1148/radiol.2021204033] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pulmonary functional imaging may be defined as the regional quantification of lung function by using primarily CT, MRI, and nuclear medicine techniques. The distribution of pulmonary physiologic parameters, including ventilation, perfusion, gas exchange, and biomechanics, can be noninvasively mapped and measured throughout the lungs. This information is not accessible by using conventional pulmonary function tests, which measure total lung function without viewing the regional distribution. The latter is important because of the heterogeneous distribution of virtually all lung disorders. Moreover, techniques such as hyperpolarized xenon 129 and helium 3 MRI can probe lung physiologic structure and microstructure at the level of the alveolar-air and alveolar-red blood cell interface, which is well beyond the spatial resolution of other clinical methods. The opportunities, challenges, and current stage of clinical deployment of pulmonary functional imaging are reviewed, including applications to chronic obstructive pulmonary disease, asthma, interstitial lung disease, pulmonary embolism, and pulmonary hypertension. Among the challenges to the deployment of pulmonary functional imaging in routine clinical practice are the need for further validation, establishment of normal values, standardization of imaging acquisition and analysis, and evidence of patient outcomes benefit. When these challenges are addressed, it is anticipated that pulmonary functional imaging will have an expanding role in the evaluation and management of patients with lung disease.
Collapse
Affiliation(s)
- Warren B Gefter
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Kyung Soo Lee
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Mark L Schiebler
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Grace Parraga
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Joon Beom Seo
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Yoshiharu Ohno
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Hiroto Hatabu
- From the Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, South Korea (K.S.L.); Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Departments of Medicine and Medical Biophysics, Robarts Research Institute, Western University, London, Canada (G.P.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Radiology and Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); and Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| |
Collapse
|
30
|
Wang Z, Rankine L, Bier EA, Mummy D, Lu J, Church A, Tighe RM, Swaminathan A, Huang YCT, Que LG, Mammarappallil JG, Rajagopal S, Driehuys B. Using hyperpolarized 129Xe gas-exchange MRI to model the regional airspace, membrane, and capillary contributions to diffusing capacity. J Appl Physiol (1985) 2021; 130:1398-1409. [PMID: 33734831 DOI: 10.1152/japplphysiol.00702.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Hyperpolarized 129Xe MRI has emerged as a novel means to evaluate pulmonary function via 3D mapping of ventilation, interstitial barrier uptake, and RBC transfer. However, the physiological interpretation of these measurements has yet to be firmly established. Here, we propose a model that uses the three components of 129Xe gas-exchange MRI to estimate accessible alveolar volume (VA), membrane conductance, and capillary blood volume contributions to DLCO. 129Xe ventilated volume (VV) was related to VA by a scaling factor kV = 1.47 with 95% confidence interval [1.42, 1.52], relative 129Xe barrier uptake (normalized by the healthy reference value) was used to estimate the membrane-specific conductance coefficient kB = 10.6 [8.6, 13.6] mL/min/mmHg/L, whereas normalized RBC transfer was used to calculate the capillary blood volume-specific conductance coefficient kR = 13.6 [11.4, 16.7] mL/min/mmHg/L. In this way, the barrier and RBC transfer per unit volume determined the transfer coefficient KCO, which was then multiplied by image-estimated VA to obtain DLCO. The model was built on a cohort of 41 healthy subjects and 101 patients with pulmonary disorders. The resulting 129Xe-derived DLCO correlated strongly (R2 = 0.75, P < 0.001) with the measured values, a finding that was preserved within each individual disease cohort. The ability to use 129Xe MRI measures of ventilation, barrier uptake, and RBC transfer to estimate each of the underlying constituents of DLCO clarifies the interpretation of these images while enabling their use to monitor these aspects of gas exchange independently and regionally.NEW & NOTEWORTHY The diffusing capacity for carbon monoxide (DLCO) is perhaps one of the most comprehensive physiological measures used in pulmonary medicine. Here, we spatially resolve and estimate its key components-accessible alveolar volume, membrane, and capillary blood volume conductances-using hyperpolarized 129Xe MRI of ventilation, interstitial barrier uptake, and red blood cell transfer. This image-derived DLCO correlates strongly with measured values in 142 subjects with a broad range of pulmonary disorders.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.,Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
| | - Leith Rankine
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina.,Medical Physics Graduate Program, Duke University, Durham, North Carolina
| | - Elianna A Bier
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.,Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
| | - David Mummy
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
| | - Junlan Lu
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina.,Medical Physics Graduate Program, Duke University, Durham, North Carolina
| | - Alex Church
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Aparna Swaminathan
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Yuh-Chin T Huang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Loretta G Que
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Bastiaan Driehuys
- Department of Biomedical Engineering, Duke University, Durham, North Carolina.,Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina.,Medical Physics Graduate Program, Duke University, Durham, North Carolina.,Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
31
|
Marshall H, Stewart NJ, Chan HF, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:42-62. [PMID: 33632417 PMCID: PMC7933823 DOI: 10.1016/j.pnmrs.2020.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 05/28/2023]
Abstract
Hyperpolarised gas lung MRI using xenon-129 can provide detailed 3D images of the ventilated lung airspaces, and can be applied to quantify lung microstructure and detailed aspects of lung function such as gas exchange. It is sensitive to functional and structural changes in early lung disease and can be used in longitudinal studies of disease progression and therapy response. The ability of 129Xe to dissolve into the blood stream and its chemical shift sensitivity to its local environment allow monitoring of gas exchange in the lungs, perfusion of the brain and kidneys, and blood oxygenation. This article reviews the methods and applications of in vivo129Xe MR in humans, with a focus on the physics of polarisation by optical pumping, radiofrequency coil and pulse sequence design, and the in vivo applications of 129Xe MRI and MRS to examine lung ventilation, microstructure and gas exchange, blood oxygenation, and perfusion of the brain and kidneys.
Collapse
Affiliation(s)
- Helen Marshall
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Neil J Stewart
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ho-Fung Chan
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
32
|
129Xenon Gas Exchange Magnetic Resonance Imaging as a Potential Prognostic Marker for Progression of Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc 2021; 17:121-125. [PMID: 31593488 DOI: 10.1513/annalsats.201905-413rl] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
33
|
Barnes PJ, Anderson GP, Fagerås M, Belvisi MG. Chronic lung diseases: prospects for regeneration and repair. Eur Respir Rev 2021; 30:30/159/200213. [PMID: 33408088 PMCID: PMC9488945 DOI: 10.1183/16000617.0213-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
COPD and idiopathic pulmonary fibrosis (IPF) together represent a considerable unmet medical need, and advances in their treatment lag well behind those of other chronic conditions. Both diseases involve maladaptive repair mechanisms leading to progressive and irreversible damage. However, our understanding of the complex underlying disease mechanisms is incomplete; with current diagnostic approaches, COPD and IPF are often discovered at an advanced stage and existing definitions of COPD and IPF can be misleading. To halt or reverse disease progression and achieve lung regeneration, there is a need for earlier identification and treatment of these diseases. A precision medicine approach to treatment is also important, involving the recognition of disease subtypes, or endotypes, according to underlying disease mechanisms, rather than the current “one-size-fits-all” approach. This review is based on discussions at a meeting involving 38 leading global experts in chronic lung disease mechanisms, and describes advances in the understanding of the pathology and molecular mechanisms of COPD and IPF to identify potential targets for reversing disease degeneration and promoting tissue repair and lung regeneration. We also discuss limitations of existing disease measures, technical advances in understanding disease pathology, and novel methods for targeted drug delivery. Treatment outcomes with COPD and IPF are suboptimal. Better understanding of the diseases, such as targetable repair mechanisms, may generate novel therapies, and earlier diagnosis and treatment is needed to stop or even reverse disease progression.https://bit.ly/2Ga8J1g
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Gary P Anderson
- Lung Health Research Centre, University of Melbourne, Melbourne, Australia
| | | | - Maria G Belvisi
- National Heart & Lung Institute, Imperial College London, London, UK.,Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
34
|
Li H, Zhao X, Wang Y, Lou X, Chen S, Deng H, Shi L, Xie J, Tang D, Zhao J, Bouchard LS, Xia L, Zhou X. Damaged lung gas exchange function of discharged COVID-19 patients detected by hyperpolarized 129Xe MRI. SCIENCE ADVANCES 2021; 7:eabc8180. [PMID: 33219111 PMCID: PMC7775756 DOI: 10.1126/sciadv.abc8180] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/02/2020] [Indexed: 05/28/2023]
Abstract
The recovery process of COVID-19 patients is unclear. Some recovered patients complain of continued shortness of breath. Vasculopathy has been reported in COVID-19, stressing the importance of probing pulmonary microstructure and function at the alveolar-capillary interface. While computed tomography (CT) detects structural abnormalities, little is known about the impact of disease on lung function. 129Xe magnetic resonance imaging (MRI) is a technique uniquely capable of assessing ventilation, microstructure, and gas exchange. Using 129Xe MRI, we found that COVID-19 patients show a higher rate of ventilation defects (5.9% versus 3.7%), unchanged microstructure, and longer gas-blood exchange time (43.5 ms versus 32.5 ms) compared with healthy individuals. These findings suggest that regional ventilation and alveolar airspace dimensions are relatively normal around the time of discharge, while gas-blood exchange function is diminished. This study establishes the feasibility of localized lung function measurements in COVID-19 patients and their potential usefulness as a supplement to structural imaging.
Collapse
Affiliation(s)
- Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Yujin Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Shizhen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - He Deng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Lei Shi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Junshuai Xie
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Dazhong Tang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Jianping Zhao
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Louis-S Bouchard
- Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, California NanoSystems Institute, Departments of Chemistry and Biochemistry and of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Liming Xia
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China.
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.
| |
Collapse
|
35
|
Peñate Medina T, Kolb JP, Hüttmann G, Huber R, Peñate Medina O, Ha L, Ulloa P, Larsen N, Ferrari A, Rafecas M, Ellrichmann M, Pravdivtseva MS, Anikeeva M, Humbert J, Both M, Hundt JE, Hövener JB. Imaging Inflammation - From Whole Body Imaging to Cellular Resolution. Front Immunol 2021; 12:692222. [PMID: 34248987 PMCID: PMC8264453 DOI: 10.3389/fimmu.2021.692222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/31/2023] Open
Abstract
Imaging techniques have evolved impressively lately, allowing whole new concepts like multimodal imaging, personal medicine, theranostic therapies, and molecular imaging to increase general awareness of possiblities of imaging to medicine field. Here, we have collected the selected (3D) imaging modalities and evaluated the recent findings on preclinical and clinical inflammation imaging. The focus has been on the feasibility of imaging to aid in inflammation precision medicine, and the key challenges and opportunities of the imaging modalities are presented. Some examples of the current usage in clinics/close to clinics have been brought out as an example. This review evaluates the future prospects of the imaging technologies for clinical applications in precision medicine from the pre-clinical development point of view.
Collapse
Affiliation(s)
- Tuula Peñate Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- *Correspondence: Tuula Peñate Medina, ; Jan-Bernd Hövener,
| | - Jan Philip Kolb
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Gießen, Germany
| | - Robert Huber
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Oula Peñate Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Institute for Experimental Cancer Research (IET), University of Kiel, Kiel, Germany
| | - Linh Ha
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein Lübeck (UKSH), Lübeck, Germany
| | - Patricia Ulloa
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Arianna Ferrari
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
| | - Magdalena Rafecas
- Institute of Medical Engineering (IMT), University of Lübeck, Lübeck, Germany
| | - Mark Ellrichmann
- Interdisciplinary Endoscopy, Medical Department1, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mariya S. Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mariia Anikeeva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
| | - Jana Humbert
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jennifer E. Hundt
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- *Correspondence: Tuula Peñate Medina, ; Jan-Bernd Hövener,
| |
Collapse
|
36
|
Weatherley ND, Eaden JA, Hughes PJC, Austin M, Smith L, Bray J, Marshall H, Renshaw S, Bianchi SM, Wild JM. Quantification of pulmonary perfusion in idiopathic pulmonary fibrosis with first pass dynamic contrast-enhanced perfusion MRI. Thorax 2020; 76:144-151. [PMID: 33273022 PMCID: PMC7815896 DOI: 10.1136/thoraxjnl-2019-214375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 01/07/2023]
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a fatal disease of lung scarring. Many patients later develop raised pulmonary vascular pressures, sometimes disproportionate to the interstitial disease. Previous therapeutic approaches that have targeted pulmonary vascular changes have not demonstrated clinical efficacy, and quantitative assessment of regional pulmonary vascular involvement using perfusion imaging may provide a biomarker for further therapeutic insights. Methods We studied 23 participants with IPF, using dynamic contrast-enhanced MRI (DCE-MRI) and pulmonary function tests, including forced vital capacity (FVC), transfer factor (TLCO) and coefficient (KCO) of the lungs for carbon monoxide. DCE-MRI parametric maps were generated including the full width at half maximum (FWHM) of the bolus transit time through the lungs. Key metrics used were mean (FWHMmean) and heterogeneity (FWHMIQR). Nineteen participants returned at 6 months for repeat assessment. Results Spearman correlation coefficients were identified between TLCO and FWHMIQR (r=−0.46; p=0.026), KCO and FWHMmean (r=−0.42; p=0.047) and KCO and FWHMIQR (r=−0.51; p=0.013) at baseline. No statistically significant correlations were seen between FVC and DCE-MRI metrics. Follow-up at 6 months demonstrated statistically significant decline in FVC (p=0.040) and KCO (p=0.014), with an increase in FWHMmean (p=0.040), but no significant changes in TLCO (p=0.090) nor FWHMIQR (p=0.821). Conclusions DCE-MRI first pass perfusion demonstrates correlations with existing physiological gas exchange metrics, suggesting that capillary perfusion deficit (as well as impaired interstitial diffusion) may contribute to gas exchange limitation in IPF. FWHMmean showed a significant increase over a 6-month period and has potential as a quantitative biomarker of pulmonary vascular disease progression in IPF.
Collapse
Affiliation(s)
- Nicholas D Weatherley
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK.,Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, Sheffield, UK
| | - James A Eaden
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Paul J C Hughes
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Matthew Austin
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Laurie Smith
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Jody Bray
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Helen Marshall
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| | - Stephen Renshaw
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, Sheffield, UK
| | - Stephen M Bianchi
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, Sheffield, UK
| | - Jim M Wild
- Polaris, Imaging group, Dept IICD, University of Sheffield, Sheffield, UK
| |
Collapse
|
37
|
Collier GJ, Eaden JA, Hughes PJC, Bianchi SM, Stewart NJ, Weatherley ND, Norquay G, Schulte RF, Wild JM. Dissolved
129
Xe lung MRI with four‐echo 3D radial spectroscopic imaging: Quantification of regional gas transfer in idiopathic pulmonary fibrosis. Magn Reson Med 2020; 85:2622-2633. [DOI: 10.1002/mrm.28609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Guilhem J. Collier
- POLARIS, Department of Infection Immunity & Cardiovascular Disease University of Sheffield Sheffield United Kingdom
| | - James A. Eaden
- POLARIS, Department of Infection Immunity & Cardiovascular Disease University of Sheffield Sheffield United Kingdom
| | - Paul J. C. Hughes
- POLARIS, Department of Infection Immunity & Cardiovascular Disease University of Sheffield Sheffield United Kingdom
| | - Stephen M. Bianchi
- Academic Directorate of Respiratory Medicine Sheffield Teaching Hospitals NHS Foundation Trust Sheffield United Kingdom
| | - Neil J. Stewart
- POLARIS, Department of Infection Immunity & Cardiovascular Disease University of Sheffield Sheffield United Kingdom
| | - Nicholas D. Weatherley
- POLARIS, Department of Infection Immunity & Cardiovascular Disease University of Sheffield Sheffield United Kingdom
| | - Graham Norquay
- POLARIS, Department of Infection Immunity & Cardiovascular Disease University of Sheffield Sheffield United Kingdom
| | | | - Jim M. Wild
- POLARIS, Department of Infection Immunity & Cardiovascular Disease University of Sheffield Sheffield United Kingdom
| |
Collapse
|
38
|
Plummer JW, Emami K, Dummer A, Woods JC, Walkup LL, Cleveland ZI. A semi-empirical model to optimize continuous-flow hyperpolarized 129Xe production under practical cryogenic-accumulation conditions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 320:106845. [PMID: 33070086 PMCID: PMC7655637 DOI: 10.1016/j.jmr.2020.106845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 05/05/2023]
Abstract
Continuous-flow spin exchange optical pumping (SEOP) with cryogenic accumulation is a powerful technique to generate multiple, large volumes of hyperpolarized (HP) 129Xe in rapid succession. It enables a range of studies, from dark matter tracking to preclinical and clinical MRI. Multiple analytical models based on first principles atomic physics and device-specific design features have been proposed for individual processes within HP 129Xe production. However, the modeling efforts have not yet integrated all the steps involved in practical, large volume HP 129Xe production process (e.g., alkali vapor generation, continuous-flow SEOP, and cryogenic accumulation). Here, we use a simplified analytical model that couples both SEOP and cryogenic accumulation, incorporating only two system-specific empirical parameters: the longitudinal relaxation time of the polycrystalline 129Xe "snow', T1snow, generated during cryogenic accumulation, and 2) the average Rb density during active, continuous-flow polarization. By fitting the model to polarization data collected from >140 L of 129Xe polarized across a range of flow and volume conditions, the estimates for Rb density and T1snow were 1.6 ± 0.1 × 1013 cm-3 and 84 ± 5 min, respectively - each notably less than expected based on previous literature. Together, these findings indicate that 1) earlier polarization predictions were hindered by miscalculated Rb densities, and 2) polarization is not optimized by maximizing SEOP efficiency with a low concentration 129Xe, but rather by using richer 129Xe-buffer gas blends that enable faster accumulation. Accordingly, modeling and experimentation revealed the optimal fraction of 129Xe, f, in the 129Xe-buffer gas blend was ~2%. Further, if coupled with modest increases in laser power, the model predicts liter volumes of HP 129Xe with polarizations exceeding 60% could be generated routinely in only tens of minutes.
Collapse
Affiliation(s)
- Joseph W Plummer
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | | | | | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
39
|
Hatabu H, Ohno Y, Gefter WB, Parraga G, Madore B, Lee KS, Altes TA, Lynch DA, Mayo JR, Seo JB, Wild JM, van Beek EJR, Schiebler ML, Kauczor HU. Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders: Fleischner Society Position Paper. Radiology 2020; 297:286-301. [PMID: 32870136 DOI: 10.1148/radiol.2020201138] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulmonary MRI provides structural and quantitative functional images of the lungs without ionizing radiation, but it has had limited clinical use due to low signal intensity from the lung parenchyma. The lack of radiation makes pulmonary MRI an ideal modality for pediatric examinations, pregnant women, and patients requiring serial and longitudinal follow-up. Fortunately, recent MRI techniques, including ultrashort echo time and zero echo time, are expanding clinical opportunities for pulmonary MRI. With the use of multicoil parallel acquisitions and acceleration methods, these techniques make pulmonary MRI practical for evaluating lung parenchymal and pulmonary vascular diseases. The purpose of this Fleischner Society position paper is to familiarize radiologists and other interested clinicians with these advances in pulmonary MRI and to stratify the Society recommendations for the clinical use of pulmonary MRI into three categories: (a) suggested for current clinical use, (b) promising but requiring further validation or regulatory approval, and (c) appropriate for research investigations. This position paper also provides recommendations for vendors and infrastructure, identifies methods for hypothesis-driven research, and suggests opportunities for prospective, randomized multicenter trials to investigate and validate lung MRI methods.
Collapse
Affiliation(s)
- Hiroto Hatabu
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Yoshiharu Ohno
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Warren B Gefter
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Grace Parraga
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Bruno Madore
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Kyung Soo Lee
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Talissa A Altes
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - David A Lynch
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - John R Mayo
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Joon Beom Seo
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Jim M Wild
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Edwin J R van Beek
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Mark L Schiebler
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | - Hans-Ulrich Kauczor
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| | -
- From the Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115 (H.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass (B.M.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, University of Missouri, Columbia, Mo (T.A.A.); Department of Radiology, National Jewish Health, Denver, Colo (D.A.L.); Department of Radiology, Vancouver General Hospital and University of British Colombia, Vancouver, Canada (J.R.M.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Section of Academic Radiology, University of Sheffield, Sheffield, England, United Kingdom (J.M.W.); Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (E.J.R.v.B.); Department of Radiology, UW Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); and Diagnostic and Interventional Radiology, University Hospital Heidelberg, Translational Lung Research Center Heidelberg, member of the German Center of Lung Research, Heidelberg, Germany (H.U.K.)
| |
Collapse
|
40
|
Niedbalski PJ, Bier EA, Wang Z, Willmering MM, Driehuys B, Cleveland ZI. Mapping cardiopulmonary dynamics within the microvasculature of the lungs using dissolved 129Xe MRI. J Appl Physiol (1985) 2020; 129:218-229. [PMID: 32552429 PMCID: PMC7473944 DOI: 10.1152/japplphysiol.00186.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Magnetic resonance (MR) imaging and spectroscopy using dissolved hyperpolarized (HP) 129Xe have expanded the ability to probe lung function regionally and noninvasively. In particular, HP 129Xe imaging has been used to quantify impaired gas uptake by the pulmonary tissues. Whole-lung spectroscopy has also been used to assess global cardiogenic oscillations in the MR signal intensity originating from 129Xe dissolved in the red blood cells of pulmonary capillaries. Herein, we show that the magnitude of these cardiogenic dynamics can be mapped three dimensionally using radial MRI, because dissolved 129Xe dynamics are encoded directly in the raw imaging data. Specifically, 1-point Dixon imaging is combined with postacquisition keyhole image reconstruction to assess regional blood volume fluctuations within the pulmonary microvasculature throughout the cardiac cycle. This "oscillation mapping" was applied in healthy subjects (mean amplitude 9% of total RBC signal) and patients with pulmonary arterial hypertension (PAH; mean 4%) and idiopathic pulmonary fibrosis (IPF; mean 14%). Whole-lung mean values from these oscillation maps correlated strongly with spectroscopy and clinical pulmonary function testing, but exhibited significant regional heterogeneity, including gravitationally dependent gradients in healthy subjects. Moreover, regional oscillations were found to be sensitive to disease state. Greater percentages of the lungs exhibit low-amplitude oscillations in PAH patients, and longitudinal imaging shows high-amplitude oscillations increase significantly over time (4-14 mo, P = 0.02) in IPF patients. This technique enables regional dynamics within the pulmonary capillary bed to be measured, and in doing so, provides insight into the origin and progression of pathophysiology within the lung microvasculature.NEW & NOTEWORTHY Spatially heterogeneous abnormalities within the lung microvasculature contribute to pathology in various cardiopulmonary diseases but are difficult to assess noninvasively. Hyperpolarized 129Xe MRI is a noninvasive method to probe lung function, including regional gas exchange between pulmonary air spaces and capillaries. We show that cardiogenic oscillations in the raw dissolved 129Xe MRI signal from pulmonary capillary red blood cells can be imaged using a postacquisition reconstruction technique, providing a new means of assessing regional lung microvasculature function and disease state.
Collapse
Affiliation(s)
- Peter J Niedbalski
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Elianna A Bier
- Departement of Biomedical Engineering, Duke University, Durham, North Carolina
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
| | - Ziyi Wang
- Departement of Biomedical Engineering, Duke University, Durham, North Carolina
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Bastiaan Driehuys
- Departement of Biomedical Engineering, Duke University, Durham, North Carolina
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
41
|
Ruscitti F, Ravanetti F, Bertani V, Ragionieri L, Mecozzi L, Sverzellati N, Silva M, Ruffini L, Menozzi V, Civelli M, Villetti G, Stellari FF. Quantification of Lung Fibrosis in IPF-Like Mouse Model and Pharmacological Response to Treatment by Micro-Computed Tomography. Front Pharmacol 2020; 11:1117. [PMID: 32792953 PMCID: PMC7385278 DOI: 10.3389/fphar.2020.01117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive degenerative lung disease leading to respiratory failure and death. Although anti-fibrotic drugs are now available for treating IPF, their clinical efficacy is limited and lung transplantation remains the only modality to prolong survival of IPF patients. Despite its limitations, the bleomycin (BLM) animal model remains the best characterized experimental tool for studying disease pathogenesis and assessing efficacy of novel potential drugs. In the present study, the effects of oropharyngeal (OA) and intratracheal (IT) administration of BLM were compared in C57BL/6 mice. The development of lung fibrosis was followed in vivo for 28 days after BLM administration by micro-computed tomography and ex vivo by histological analyses (bronchoalveolar lavage, histology in the left lung to stage fibrosis severity and hydroxyproline determination in the right lung). In a separate study, the antifibrotic effect of Nintedanib was investigated after oral administration (60 mg/kg for two weeks) in the OA BLM model. Lung fibrosis severity and duration after BLM OA and IT administration was comparable. However, a more homogeneous distribution of fibrotic lesions among lung lobes was apparent after OA administration. Quantification of fibrosis by micro-CT based on % of poorly aerated tissue revealed that this readout correlated significantly with the standard histological methods in the OA model. These findings were further confirmed in a second study in the OA model, evaluating Nintedanib anti-fibrotic effects. Indeed, compared to the BLM group, Nintedanib inhibited significantly the increase in % of poorly aerated areas (26%) and reduced ex vivo histological lesions and hydroxyproline levels by 49 and 41%, respectively. This study indicated that micro-computed tomography is a valuable in vivo technology for lung fibrosis quantification, which will be very helpful in the future to better evaluate new anti-fibrotic drug candidates.
Collapse
Affiliation(s)
| | | | - Valeria Bertani
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Luisa Ragionieri
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Laura Mecozzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Mario Silva
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Livia Ruffini
- Department Nuclear Medicine, Academic Hospital of Parma, Parma, Italy
| | | | - Maurizio Civelli
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Gino Villetti
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | | |
Collapse
|
42
|
Saunders LC, Eaden JA, Bianchi SM, Swift AJ, Wild JM. Free breathing lung T 1 mapping using image registration in patients with idiopathic pulmonary fibrosis. Magn Reson Med 2020; 84:3088-3102. [PMID: 32557890 DOI: 10.1002/mrm.28342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE To assess the use of image registration for correcting respiratory motion in free breathing lung T1 mapping acquisition in patients with idiopathic pulmonary fibrosis (IPF). THEORY AND METHODS The method presented used image registration to synthetic images during postprocessing to remove respiratory motion. Synthetic images were generated from a model of the inversion recovery signal of the acquired images that incorporated a periodic lung motion model. Ten healthy volunteers and 19 patients with IPF underwent 2D Look-Locker T1 mapping acquisition at 1.5T during inspiratory breath-hold and free breathing. Eight healthy volunteers and seven patients with IPF underwent T1 mapping acquisition during expiratory breath-hold. Fourteen patients had follow-up scanning at 6 months. Dice similarity coefficient (DSC) was used to evaluate registration efficacy. RESULTS Image registration increased image DSC (P < .001) in the free breathing inversion recovery images. Lung T1 measured during a free breathing acquisition was lower in patients with IPF when compared with healthy controls (inspiration: P = .238; expiration: P = .261; free breathing: P = .021). Measured lung T1 was higher in expiration breath-hold than inspiration breath-hold in healthy volunteers (P < .001) but not in patients with IPF (P = .645). There were no other significant differences between lung T1 values within subject groups. CONCLUSIONS The registration technique significantly reduced motion in the Look-Locker images acquired during free breathing and may improve the robustness of lung T1 mapping in patients who struggle to hold their breath. Lung T1 measured during a free breathing acquisition was significantly lower in patients with IPF when compared with healthy controls.
Collapse
Affiliation(s)
- Laura C Saunders
- POLARIS, Imaging Sciences, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - James A Eaden
- POLARIS, Imaging Sciences, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Stephen M Bianchi
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Andrew J Swift
- POLARIS, Imaging Sciences, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
43
|
Wang Z, Bier EA, Swaminathan A, Parikh K, Nouls J, He M, Mammarappallil JG, Luo S, Driehuys B, Rajagopal S. Diverse cardiopulmonary diseases are associated with distinct xenon magnetic resonance imaging signatures. Eur Respir J 2019; 54:13993003.00831-2019. [PMID: 31619473 DOI: 10.1183/13993003.00831-2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND As an increasing number of patients exhibit concomitant cardiac and pulmonary disease, limitations of standard diagnostic criteria are more frequently encountered. Here, we apply noninvasive 129Xe magnetic resonance imaging (MRI) and spectroscopy to identify patterns of regional gas transfer impairment and haemodynamics that are uniquely associated with chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), left heart failure (LHF) and pulmonary arterial hypertension (PAH). METHODS Healthy volunteers (n=23) and patients with COPD (n=8), IPF (n=12), LHF (n=6) and PAH (n=10) underwent 129Xe gas transfer imaging and dynamic spectroscopy. For each patient, three-dimensional maps were generated to depict ventilation, barrier uptake (129Xe dissolved in interstitial tissue) and red blood cell (RBC) transfer (129Xe dissolved in RBCs). Dynamic 129Xe spectroscopy was used to quantify cardiogenic oscillations in the RBC signal amplitude and frequency shift. RESULTS Compared with healthy volunteers, all patient groups exhibited decreased ventilation and RBC transfer (both p≤0.01). Patients with COPD demonstrated more ventilation and barrier defects compared with all other groups (both p≤0.02). In contrast, IPF patients demonstrated elevated barrier uptake compared with all other groups (p≤0.007), and increased RBC amplitude and shift oscillations compared with healthy volunteers (p=0.007 and p≤0.01, respectively). Patients with COPD and PAH both exhibited decreased RBC amplitude oscillations (p=0.02 and p=0.005, respectively) compared with healthy volunteers. LHF was distinguishable from PAH by enhanced RBC amplitude oscillations (p=0.01). CONCLUSION COPD, IPF, LHF and PAH each exhibit unique 129Xe MRI and dynamic spectroscopy signatures. These metrics may help with diagnostic challenges in cardiopulmonary disease and increase understanding of regional lung function and haemodynamics at the alveolar-capillary level.
Collapse
Affiliation(s)
- Ziyi Wang
- Dept of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA.,These two authors are joint first authors
| | - Elianna A Bier
- Dept of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA.,These two authors are joint first authors
| | - Aparna Swaminathan
- Division of Pulmonary, Allergy, and Critical Care, Dept of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Kishan Parikh
- Division of Pulmonary, Allergy, and Critical Care, Dept of Medicine, Duke University Medical Center, Durham, NC, USA
| | - John Nouls
- Dept of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Mu He
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA.,Dept of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | | | - Sheng Luo
- Dept of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Bastiaan Driehuys
- Dept of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA.,Dept of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Sudarshan Rajagopal
- Division of Cardiology, Dept of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
44
|
Eddy RL, Parraga G. Pulmonary xenon-129 MRI: new opportunities to unravel enigmas in respiratory medicine. Eur Respir J 2019; 55:13993003.01987-2019. [PMID: 31699844 DOI: 10.1183/13993003.01987-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Rachel L Eddy
- Robarts Research Institute, London, ON, Canada.,Dept of Medical Biophysics, Western University, London, ON, Canada
| | - Grace Parraga
- Robarts Research Institute, London, ON, Canada .,Dept of Medical Biophysics, Western University, London, ON, Canada.,Division of Respirology, Dept of Medicine, Western University, London, ON, Canada
| |
Collapse
|
45
|
Lonzetti L, Zanon M, Pacini GS, Altmayer S, Martins de Oliveira D, Rubin AS, Gazzoni FF, Barros MC, Hochhegger B. Magnetic resonance imaging of interstitial lung diseases: A state-of-the-art review. Respir Med 2019; 155:79-85. [PMID: 31323528 DOI: 10.1016/j.rmed.2019.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/31/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023]
Abstract
Magnetic resonance imaging (MRI) has been emerging as an imaging modality to assess interstitial lung diseases (ILD). An optimal chest MRI protocol for ILDs should include non-contrast breath-holding sequences, steady-state free-precession sequences, and contrast-enhanced sequences. One of the main MRI applications in ILDs is the differentiation between areas of active inflammation (i.e. reversible stage) and fibrosis. Alveolitis presents high signal intensity on T2-weighted sequences (WS) and early-enhancement on contrast-enhanced MR sequences, while fibrotic-predominant lesions present low signal and late-enhancement in these sequences, respectively. MRI can be useful in connective tissue diseases, idiopathic pulmonary fibrosis, and sarcoidosis. The aim of this state-of-the-art review was to perform a state-of-the-art review on the use of MRI in ILDs, and propose the optimal MRI protocols for imaging ILDs.
Collapse
Affiliation(s)
- Lilian Lonzetti
- Department of Rheumatology, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, R. Sarmento Leite, 245, 90050-170, Brazil.
| | - Matheus Zanon
- Medical Imaging Research Lab, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil.
| | - Gabriel Sartori Pacini
- Medical Imaging Research Lab, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil.
| | - Stephan Altmayer
- Medical Imaging Research Lab, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil; School of Medicine, Postgraduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Av. Ipiranga, 6681, 90619-900, Brazil.
| | - Diogo Martins de Oliveira
- School of Medicine, Postgraduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Av. Ipiranga, 6681, 90619-900, Brazil.
| | - Adalberto Sperb Rubin
- Department of Pulmonology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil.
| | - Fernando Ferreira Gazzoni
- Medical Imaging Research Lab, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil.
| | - Marcelo Cardoso Barros
- Medical Imaging Research Lab, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil; School of Medicine, Postgraduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Av. Ipiranga, 6681, 90619-900, Brazil; Department of Pulmonology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil.
| | - Bruno Hochhegger
- Medical Imaging Research Lab, LABIMED, Department of Radiology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil; School of Medicine, Postgraduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Av. Ipiranga, 6681, 90619-900, Brazil; Department of Pulmonology, Pavilhão Pereira Filho Hospital, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Av. Independência, 75, 90020160, Brazil.
| |
Collapse
|
46
|
Montesi SB, Caravan P. Novel Imaging Approaches in Systemic Sclerosis-Associated Interstitial Lung Disease. Curr Rheumatol Rep 2019; 21:25. [PMID: 31025121 DOI: 10.1007/s11926-019-0826-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF THE REVIEW Novel imaging approaches, such as quantitative computed tomography (CT), magnetic resonance imaging (MRI), and molecular imaging, are being applied to interstitial lung diseases to provide prognostic, functional, and molecular information. Here, we review such imaging approaches and their applicability to systemic sclerosis-associated interstitial lung disease (SSc-ILD). RECENT FINDINGS Quantitative CT can be used to quantify the radiographic response to SSc-ILD therapy. Due to advances in MRI sequence development, MRI can detect the presence of SSc-ILD with high accuracy. MRI can also be utilized to provide functional information as to SSc-ILD and paired with molecular probes to provide non-invasive molecular information. MRI and ultrasound have promising test characteristics for diagnosing ILD in SSc without the use of ionizing radiation. Novel imaging approaches can detect SSc-ILD without the use of ionizing radiation, provide non-invasive functional and molecular information, and quantify treatment response in SSc-ILD. These techniques hold promise for translation into clinical care and clinical trials.
Collapse
Affiliation(s)
- Sydney B Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Massachusetts General Hospital, 55 Fruit Street, BUL-148, Boston, MA, 02114, USA.
| | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
47
|
Hahn AD, Kammerman J, Evans M, Zha W, Cadman RV, Meyer K, Sandbo N, Fain SB. Repeatability of regional pulmonary functional metrics of Hyperpolarized 129 Xe dissolved-phase MRI. J Magn Reson Imaging 2019; 50:1182-1190. [PMID: 30968993 DOI: 10.1002/jmri.26745] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND MRI of hyperpolarized 129 Xenon (HP 129 Xe) is increasingly utilized for investigating pulmonary function. The solubility of HP 129 Xe in lung tissue, blood plasma (Barrier), and red blood cells (RBC), with unique chemical shifts, enables spectroscopic imaging of potential imaging biomarkers of gas exchange and microstructural pulmonary physiology. PURPOSE To quantify global average and regional repeatability of Barrier:gas, RBC:gas, and RBC:Barrier ratios derived from dissolved-phase 129 Xe imaging and their dependence on intervisit changes in lung inflation volume. STUDY TYPE Prospective. POPULATION Fourteen healthy volunteers. One subject was unable to complete the study resulting in 13 subjects for analysis (eight female, five male, ages 24-69, 53.8 ± 13.9). FIELD STRENGTH 1.5T. ASSESSMENT Subjects were imaged using a 3D radial 1-point Dixon method to separate Barrier and RBC component signals, at two different timepoints, with ~1 month between visits. RBC:Gas, Barrier:Gas, and RBC:Barrier measures were compared across time and with pulmonary function tests (PFTs). STATISTICAL TESTS Repeatablilty was quantified using Bland-Altman plots, coefficient of repeatability, coefficient of variation (CV), and intraclass correlation coefficients (ICCs). Dependence of imaging measures on PFTs and lung volume was evaluated using Spearman and Pearson correlation coefficients, respectively. Statistical significance was determined by F-test for intraclass correlations, and t-test for Spearman correlations and regression. RESULTS Mean RBC:Gas, Barrier:Gas, and RBC:Barrier had CVs of 19.2%, 20.0%, and 11.5%, respectively, and had significant ICCs, equal to 0.78, 0.79, and 0.92, respectively. Intervisit differences in RBC:Barrier were significantly correlated with intervisit differences in DLCO (r = 0.93, P = 0.007). Significant correlations with intervisit lung volume differences and intervisit differences in mean RBC:Gas (r = -0.73, P = 0.005) and Barrier:Gas (r = -0.69, P = 0.009) were found. DATA CONCLUSION Three commonly used 129 Xe MRI-based measures of gas-exchange show good repeatability, particularly the Barrier:RBC ratio, which did not depend on lung inflation volume and was strongly associated with intervisit changes in DLCO . LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:1182-1190.
Collapse
Affiliation(s)
- Andrew D Hahn
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeff Kammerman
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Michael Evans
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - Wei Zha
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Robert V Cadman
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Keith Meyer
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Nathan Sandbo
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
48
|
Weatherley ND, Eaden JA, Stewart NJ, Bartholmai BJ, Swift AJ, Bianchi SM, Wild JM. Experimental and quantitative imaging techniques in interstitial lung disease. Thorax 2019; 74:611-619. [PMID: 30886067 PMCID: PMC6585263 DOI: 10.1136/thoraxjnl-2018-211779] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 01/05/2019] [Accepted: 01/14/2019] [Indexed: 01/19/2023]
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of conditions, with a wide and complex variety of imaging features. Difficulty in monitoring, treating and exploring novel therapies for these conditions is in part due to the lack of robust, readily available biomarkers. Radiological studies are vital in the assessment and follow-up of ILD, but currently CT analysis in clinical practice is qualitative and therefore somewhat subjective. In this article, we report on the role of novel and quantitative imaging techniques across a range of imaging modalities in ILD and consider how they may be applied in the assessment and understanding of ILD. We critically appraised evidence found from searches of Ovid online, PubMed and the TRIP database for novel and quantitative imaging studies in ILD. Recent studies have explored the capability of texture-based lung parenchymal analysis in accurately quantifying several ILD features. Newer techniques are helping to overcome the challenges inherent to such approaches, in particular distinguishing peripheral reticulation of lung parenchyma from pleura and accurately identifying the complex density patterns that accompany honeycombing. Robust and validated texture-based analysis may remove the subjectivity that is inherent to qualitative reporting and allow greater objective measurements of change over time. In addition to lung parenchymal feature quantification, pulmonary vessel volume analysis on CT has demonstrated prognostic value in two retrospective analyses and may be a sign of vascular changes in ILD which, to date, have been difficult to quantify in the absence of overt pulmonary hypertension. Novel applications of existing imaging techniques, such as hyperpolarised gas MRI and positron emission tomography (PET), show promise in combining structural and functional information. Although structural imaging of lung tissue is inherently challenging in terms of conventional proton MRI techniques, inroads are being made with ultrashort echo time, and dynamic contrast-enhanced MRI may be used for lung perfusion assessment. In addition, inhaled hyperpolarised 129Xenon gas MRI may provide multifunctional imaging metrics, including assessment of ventilation, intra-acinar gas diffusion and alveolar-capillary diffusion. PET has demonstrated high standard uptake values (SUVs) of 18F-fluorodeoxyglucose in fibrosed lung tissue, challenging the assumption that these are ‘burned out’ and metabolically inactive regions. Regions that appear structurally normal also appear to have higher SUV, warranting further exploration with future longitudinal studies to assess if this precedes future regions of macroscopic structural change. Given the subtleties involved in diagnosing, assessing and predicting future deterioration in many forms of ILD, multimodal quantitative lung structure-function imaging may provide the means of identifying novel, sensitive and clinically applicable imaging markers of disease. Such imaging metrics may provide mechanistic and phenotypic information that can help direct appropriate personalised therapy, can be used to predict outcomes and could potentially be more sensitive and specific than global pulmonary function testing. Quantitative assessment may objectively assess subtle change in character or extent of disease that can assist in efficacy of antifibrotic therapy or detecting early changes of potentially pneumotoxic drugs involved in early intervention studies.
Collapse
Affiliation(s)
| | - James A Eaden
- Academic Unit of Academic Radiology, University of Sheffield, Sheffield, UK
| | - Neil J Stewart
- Academic Unit of Academic Radiology, University of Sheffield, Sheffield, UK
| | - Brian J Bartholmai
- Department of Radiology, Mayo Clinic Minnesota, Rochester, Minnesota, USA
| | - Andrew J Swift
- Academic Unit of Academic Radiology, University of Sheffield, Sheffield, UK
| | - Stephen Mark Bianchi
- Department of Respiratory Medicine, Sheffield Teaching Hospitals Foundation Trust, Sheffield, UK
| | - Jim M Wild
- Academic Unit of Academic Radiology, University of Sheffield, Sheffield, UK
| |
Collapse
|