1
|
Duan K, Xiang Y, Deng Y, Chen J, Liu P. Detection of serum CC16 by a rapid and ultrasensitive magnetic chemiluminescence immunoassay for lung disease diagnosis. Clin Chem Lab Med 2024; 0:cclm-2024-0724. [PMID: 39072498 DOI: 10.1515/cclm-2024-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES It has been reported that serum Clara cell secreted protein 16 (CC16) is a potential biomarker for lung injury diseases, but currently, there is no other method that is faster, more accurate, or more sensitive being applied in clinical practice apart from ELISA. The current study was designed to established a magnetic nanoparticles chemiluminescence immunoassay (MNPs-CLIA) for highly sensitive automated detection of serum Clara cell secretory protein 16 (CC16), and validated its diagnostic performance for lung disease. METHODS The study included the expression of CC16 recombinant protein, the preparation and screening of its monoclonal antibody (MAb), as well as the construction, optimization and analytical evaluation of the MNPs-CLIA method. The clinical application value of this method was investigated by detecting CC16 level in 296 serum samples. RESULTS The linear range of the MNPs-CLIA assay system was 0.2-50 ng/mL, and the limit of detection was 0.037 ng/mL. Performance parameters such as specificity, recovery rate, and precision can meet the industry standards of in vitro diagnostic reagents. The established method reveals consistent results with ELISA (R2=0.9962) currently used clinically, and it also exhibits satisfactory diagnostic efficacy of silicosis, chronic obstructive pulmonary disease (COPD), and pulmonary sarcoidosis, with areas under the curve (AUC) of 0.9748, 0.8428 and 0.9128, respectively. CONCLUSIONS Our established MNPs-CLIA method has the advantages of automation, high throughput, rapidity, and simplicity, and can be promoted for widely popularized in clinical applications. MNPs-CLIA detection of serum CC16 has efficient diagnostic potentiality for predicting and diagnosing lung diseases.
Collapse
Affiliation(s)
- Kaili Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), 12550 College of Laboratory Medicine, Chongqing Medical University , Chongqing, China
| | - Yu Xiang
- Department of Laboratory Medicine, 12550 The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Yilong Deng
- Bioscience (Tianjin) Diagnostic Technology Co., Ltd, Tianjin, China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), 12550 College of Laboratory Medicine, Chongqing Medical University , Chongqing, China
| | - Ping Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), 12550 College of Laboratory Medicine, Chongqing Medical University , Chongqing, China
| |
Collapse
|
2
|
Liu Z, Xiong Y, Min J, Zhu Y. Dexmedetomidine improves lung injury after one-lung ventilation in esophageal cancer patients by inhibiting inflammatory response and oxidative stress. Toxicol Res (Camb) 2024; 13:tfae041. [PMID: 38617713 PMCID: PMC11007265 DOI: 10.1093/toxres/tfae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024] Open
Abstract
Aim To explore the effect of Dexmedetomidine (DEX) on lung injury in patients undergoing One-lung ventilation (OLV). Methods Esophageal cancer patients undergoing general anesthesia with OLV were randomly divided into the DEX group and control group, with 30 cases in each group. Mean arterial pressure (MAP), heart rate (HR), arterial partial pressure of oxygen (PO2), and arterial partial pressure of nitrogen dioxide (PCO2) were recorded at the time points after anesthesia induction and before OLV (T1), OLV 30 min (T2), OLV 60 min (T3), OLV 120 min (T4), OLV end before (T5) and before leaving the room (T6) in both groups. Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) was applied to detect the levels of CC16 mRNA. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum CC16 protein levels. The content of malondialdehyde (MDA) in serum was determined by thio barbituric acid (TBA) method. ELISA was used to measure the concentrations of TNF-α (tumor necrosis factor-alpha)/and IL-6 (interleukin 6). Results DEX treatment slowed down HR at time points T1-T6 and increased PO2 and PCO2 at time points T2-T5 compared with the control group. Moreover, at time points T2-T6, DEX treatment reduced the levels of club cell secretory protein-16 (CC16) mRNA and serum CC16 protein levels. Furthermore, DEX treatment caused the reduction of MDA, TNF-α and IL-6 concentrations in serum of patients. Conclusion During the OLV process, DEX could reduce serum CC16 protein levels, inhibit inflammatory reactions and oxidative stress, and improve oxygenation index, indicating a protective effect on lung injury during OLV.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zheng Street, Donghu District, Nanchang, Jiangxi Province 330006, P.R. China
| | - Yingfen Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zheng Street, Donghu District, Nanchang, Jiangxi Province 330006, P.R. China
| | - Jia Min
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zheng Street, Donghu District, Nanchang, Jiangxi Province 330006, P.R. China
| | - Yunsheng Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zheng Street, Donghu District, Nanchang, Jiangxi Province 330006, P.R. China
| |
Collapse
|
3
|
Axelsson GT, Jonmundsson T, Woo Y, Frick EA, Aspelund T, Loureiro JJ, Orth AP, Jennings LL, Gudmundsson G, Emilsson V, Gudmundsdottir V, Gudnason V. Proteomic associations with forced expiratory volume: a Mendelian randomisation study. Respir Res 2024; 25:44. [PMID: 38238732 PMCID: PMC10797790 DOI: 10.1186/s12931-023-02587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND A decline in forced expiratory volume (FEV1) is a hallmark of respiratory diseases that are an important cause of morbidity among the elderly. While some data exist on biomarkers that are related to FEV1, we sought to do a systematic analysis of causal relations of biomarkers with FEV1. METHODS Data from the population-based AGES-Reykjavik study were used. Serum proteomic measurements were done using 4782 DNA aptamers (SOMAmers). Data from 1479 participants with spirometric data were used to assess the association of SOMAmer measurements with FEV1 using linear regression. Bi-directional two-sample Mendelian randomisation (MR) analyses were done to assess causal relations of observationally associated SOMAmers with FEV1, using genotype and SOMAmer data from 5368 AGES-Reykjavik participants and genetic associations with FEV1 from a publicly available GWAS (n = 400,102). RESULTS In observational analyses, 530 SOMAmers were associated with FEV1 after multiple testing adjustment (FDR < 0.05). The most significant were Retinoic Acid Receptor Responder 2 (RARRES2), R-Spondin 4 (RSPO4) and Alkaline Phosphatase, Placental Like 2 (ALPPL2). Of the 257 SOMAmers with genetic instruments available, eight were associated with FEV1 in MR analyses. Three were directionally consistent with the observational estimate, Thrombospondin 2 (THBS2), Endoplasmic Reticulum Oxidoreductase 1 Beta (ERO1B) and Apolipoprotein M (APOM). THBS2 was further supported by a colocalization analysis. Analyses in the reverse direction, testing whether changes in SOMAmer levels were caused by changes in FEV1, were performed but no significant associations were found after multiple testing adjustments. CONCLUSIONS In summary, this large scale proteogenomic analyses of FEV1 reveals circulating protein markers of FEV1, as well as several proteins with potential causality to lung function.
Collapse
Affiliation(s)
- Gisli Thor Axelsson
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Department of Internal Medicine, Landspitali University Hospital, 101, Reykjavik, Iceland
| | - Thorarinn Jonmundsson
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Youngjae Woo
- Novartis Biomedical Research, Cambridge, MA, 02139, USA
| | | | - Thor Aspelund
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | | | - Anthony P Orth
- Novartis Institutes for Biomedical Research, San Diego, CA, 92121, USA
| | | | - Gunnar Gudmundsson
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
- Department of Respiratory Medicine and Sleep, Landspitali University Hospital, 108, Reykjavik, Iceland
| | - Valur Emilsson
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| | - Vilmundur Gudnason
- Icelandic Heart Association, Holtasmari 1, 201, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
4
|
Voraphani N, Stern DA, Ledford JG, Spangenberg AL, Zhai J, Wright AL, Morgan WJ, Kraft M, Sherrill DL, Curtin JA, Murray CS, Custovic A, Kull I, Hallberg J, Bergström A, Herrera-Luis E, Halonen M, Martinez FD, Simpson A, Melén E, Guerra S. Circulating CC16 and Asthma: A Population-based, Multicohort Study from Early Childhood through Adult Life. Am J Respir Crit Care Med 2023; 208:758-769. [PMID: 37523710 PMCID: PMC10563188 DOI: 10.1164/rccm.202301-0041oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023] Open
Abstract
Rationale: Club cell secretory protein (CC16) is an antiinflammatory protein highly expressed in the airways. CC16 deficiency has been associated with lung function deficits, but its role in asthma has not been established conclusively. Objectives: To determine 1) the longitudinal association of circulating CC16 with the presence of active asthma from early childhood through adult life and 2) whether CC16 in early childhood predicts the clinical course of childhood asthma into adult life. Methods: We assessed the association of circulating CC16 and asthma in three population-based birth cohorts: the Tucson Children's Respiratory Study (years 6-36; total participants, 814; total observations, 3,042), the Swedish Barn/Children, Allergy, Milieu, Stockholm, Epidemiological survey (years 8-24; total participants, 2,547; total observations, 3,438), and the UK Manchester Asthma and Allergy Study (years 5-18; total participants, 745; total observations, 1,626). Among 233 children who had asthma at the first survey in any of the cohorts, baseline CC16 was also tested for association with persistence of symptoms. Measurements and Main Results: After adjusting for covariates, CC16 deficits were associated with increased risk for the presence of asthma in all cohorts (meta-analyzed adjusted odds ratio per 1-SD CC16 decrease, 1.20; 95% confidence interval [CI], 1.12-1.28; P < 0.0001). The association was particularly strong for asthma with frequent symptoms (meta-analyzed adjusted relative risk ratio, 1.40; 95% CI, 1.24-1.57; P < 0.0001), was confirmed for both atopic and nonatopic asthma, and was independent of lung function impairment. After adjustment for known predictors of persistent asthma, children with asthma in the lowest CC16 tertile had a nearly fourfold increased risk for having frequent symptoms persisting into adult life compared with children with asthma in the other two CC16 tertiles (meta-analyzed adjusted odds ratio, 3.72; 95% CI, 1.78-7.76; P < 0.0001). Conclusions: Circulating CC16 deficits are associated with the presence of asthma with frequent symptoms from childhood through midadult life and predict the persistence of asthma symptoms into adulthood. These findings support a possible protective role of CC16 in asthma and its potential use for risk stratification.
Collapse
Affiliation(s)
- Nipasiri Voraphani
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Debra A. Stern
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Amber L. Spangenberg
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Jing Zhai
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Anne L. Wright
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Wayne J. Morgan
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Monica Kraft
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Duane L. Sherrill
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - John A. Curtin
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre and National Institute for Health and Care Research Biomedical Research Centre, Manchester University Hospitals National Health Service Foundation Trust, Manchester, United Kingdom
| | - Clare S. Murray
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre and National Institute for Health and Care Research Biomedical Research Centre, Manchester University Hospitals National Health Service Foundation Trust, Manchester, United Kingdom
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Inger Kull
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Stockholm, Sweden
| | - Jenny Hallberg
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Stockholm, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; and
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Spain
| | - Marilyn Halonen
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Fernando D. Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Angela Simpson
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre and National Institute for Health and Care Research Biomedical Research Centre, Manchester University Hospitals National Health Service Foundation Trust, Manchester, United Kingdom
| | - Erik Melén
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs’ Children and Youth Hospital, Stockholm, Sweden
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
5
|
Bloom CI, Adcock IM. CC16: A Treatable Trait in Asthma? Am J Respir Crit Care Med 2023; 208:745-746. [PMID: 37582203 PMCID: PMC10563192 DOI: 10.1164/rccm.202307-1255ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023] Open
Affiliation(s)
- Chloe I Bloom
- National Heart and Lung Institute Imperial College London London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute Imperial College London London, United Kingdom
| |
Collapse
|
6
|
Axelsson GT, Jonmundsson T, Woo YJ, Frick EA, Aspelund T, Loureiro JJ, Orth AP, Jennings LL, Gudmundsson G, Emilsson V, Gudmundsdottir V, Gudnason V. Proteomic associations with forced expiratory volume - a Mendelian randomisation study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.30.23292035. [PMID: 37425696 PMCID: PMC10327250 DOI: 10.1101/2023.06.30.23292035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A decline in forced expiratory volume (FEV1) is a hallmark of obstructive respiratory diseases, an important cause of morbidity among the elderly. While some data exist on biomarkers that are related to FEV1, we sought to do a systematic analysis of causal relations of biomarkers with FEV1. Data from the general population-based AGES-Reykjavik study were used. Proteomic measurements were done using 4,782 DNA aptamers (SOMAmers). Data from 1,648 participants with spirometric data were used to assess the association of SOMAmer measurements with FEV1 using linear regression. Bi-directional Mendelian randomisation (MR) analyses were done to assess causal relations of observationally associated SOMAmers with FEV1, using genotype and SOMAmer data from 5,368 AGES-Reykjavik participants and genetic associations with FEV1 from a publicly available GWAS (n = 400,102). In observational analyses, 473 SOMAmers were associated with FEV1 after multiple testing adjustment. The most significant were R-Spondin 4, Alkaline Phosphatase, Placental Like 2 and Retinoic Acid Receptor Responder 2. Of the 235 SOMAmers with genetic data, eight were associated with FEV1 in MR analyses. Three were directionally consistent with the observational estimate, Thrombospondin 2 (THBS2), Endoplasmic Reticulum Oxidoreductase 1 Beta and Apolipoprotein M. THBS2 was further supported by a colocalization analysis. Analyses in the reverse direction, testing whether changes in SOMAmer levels were caused by changes in FEV1, were performed but no significant associations were found after multiple testing adjustments. In summary, this large scale proteogenomic analyses of FEV1 reveals protein markers of FEV1, as well as several proteins with potential causality to lung function.
Collapse
|
7
|
Li X, Guerra S, Ledford JG, Kraft M, Li H, Hastie AT, Castro M, Denlinger LC, Erzurum SC, Fahy JV, Gaston B, Israel E, Jarjour NN, Levy BD, Mauger DT, Moore WC, Zein J, Kaminski N, Wenzel SE, Woodruff PG, Meyers DA, Bleecker ER. Low CC16 mRNA Expression Levels in Bronchial Epithelial Cells Are Associated with Asthma Severity. Am J Respir Crit Care Med 2023; 207:438-451. [PMID: 36066606 PMCID: PMC9940145 DOI: 10.1164/rccm.202206-1230oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: CC16 is a protein mainly produced by nonciliated bronchial epithelial cells (BECs) that participates in host defense. Reduced CC16 protein concentrations in BAL and serum are associated with asthma susceptibility. Objectives: Few studies have investigated the relationship between CC16 and asthma progression, and none has focused on BECs. In this study, we sought to determine if CC16 mRNA expression levels in BECs are associated with asthma severity. Methods: Association analyses between CC16 mRNA expression levels in BECs (242 asthmatics and 69 control subjects) and asthma-related phenotypes in Severe Asthma Research Program were performed using a generalized linear model. Measurements and Main Results: Low CC16 mRNA expression levels in BECs were significantly associated with asthma susceptibility and asthma severity, high systemic corticosteroids use, high retrospective and prospective asthma exacerbations, and low pulmonary function. Low CC16 mRNA expression levels were significantly associated with high T2 inflammation biomarkers (fractional exhaled nitric oxide and sputum eosinophils). CC16 mRNA expression levels were negatively correlated with expression levels of Th2 genes (IL1RL1, POSTN, SERPINB2, CLCA1, NOS2, and MUC5AC) and positively correlated with expression levels of Th1 and inflammation genes (IL12A and MUC5B). A combination of two nontraditional T2 biomarkers (CC16 and IL-6) revealed four asthma endotypes with different characteristics of T2 inflammation, obesity, and asthma severity. Conclusions: Our findings indicate that low CC16 mRNA expression levels in BECs are associated with asthma susceptibility, severity, and exacerbations, partially through immunomodulation of T2 inflammation. CC16 is a potential nontraditional T2 biomarker for asthma development and progression.
Collapse
Affiliation(s)
- Xingnan Li
- Division of Genetics, Genomics, and Precision Medicine, and
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Monica Kraft
- Asthma and Airway Disease Research Center, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Huashi Li
- Division of Genetics, Genomics, and Precision Medicine, and
| | - Annette T. Hastie
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kansas
| | - Loren C. Denlinger
- Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin
| | - Serpil C. Erzurum
- Lerner Research Institute and the Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - John V. Fahy
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Benjamin Gaston
- Wells Center for Pediatric Research and Riley Hospital for Children, Indiana University, Indianapolis, Indiana
| | - Elliot Israel
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nizar N. Jarjour
- Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin
| | - Bruce D. Levy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - David T. Mauger
- Department of Public Health Sciences, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Wendy C. Moore
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Joe Zein
- Lerner Research Institute and the Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Naftali Kaminski
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut; and
| | - Sally E. Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of California at San Francisco, San Francisco, California
| | | | | |
Collapse
|
8
|
Martinu T, Todd JL, Gelman AE, Guerra S, Palmer SM. Club Cell Secretory Protein in Lung Disease: Emerging Concepts and Potential Therapeutics. Annu Rev Med 2023; 74:427-441. [PMID: 36450281 PMCID: PMC10472444 DOI: 10.1146/annurev-med-042921-123443] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Club cell secretory protein (CCSP), also known as secretoglobin 1A1 (gene name SCGB1A1), is one of the most abundant proteins in the lung, primarily produced by club cells of the distal airway epithelium. At baseline, CCSP is found in large concentrations in lung fluid specimens and can also be detected in the blood and urine. Obstructive lung diseases are generally associated with reduced CCSP levels, thought to be due to decreased CCSP production or club cell depletion. Conversely, several restrictive lung diseases have been found to have increased CCSP levels both in the lung and in the circulation, likely related to club cell dysregulation as well as increasedlung permeability. Recent studies demonstrate multiple mechanisms by which CCSP dampens acute and chronic lung inflammation. Given these anti-inflammatory effects, CCSP represents a novel potential therapeutic modality in lung disease.
Collapse
Affiliation(s)
- Tereza Martinu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada;
- Division of Respirology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Jamie L Todd
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Scott M Palmer
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
9
|
Gribben KC, Wyss AB, Poole JA, Farazi PA, Wichman C, Richards-Barber M, Beane Freeman LE, Henneberger PK, Umbach DM, London SJ, LeVan TD, Gribben KC. CC16 polymorphisms in asthma, asthma subtypes, and asthma control in adults from the Agricultural Lung Health Study. Respir Res 2022; 23:305. [PMID: 36352422 PMCID: PMC9644514 DOI: 10.1186/s12931-022-02211-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The club cell secretory protein (CC16) has anti-inflammatory and antioxidant effects and is a potential early biomarker of lung damage. The CC16 single nucleotide polymorphism (SNP) rs3741240 risk allele (A) has been inconsistently linked to asthma; other tagging SNPs in the gene have not been explored. The aim was to determine whether CC16 tagging polymorphisms are associated with adult asthma, asthma subtypes or asthma control in the Agricultural Lung Health Study (ALHS). METHODS The ALHS is an asthma case-control study nested in the Agricultural Health Study cohort. Asthma cases were individuals with current doctor diagnosed asthma, likely undiagnosed asthma, or asthma-COPD overlap defined by questionnaire. We also examined asthma subtypes and asthma control. Five CC16 tagging SNPs were imputed to 1000 Genomes Integrated phase 1 reference panel. Logistic regression was used to estimate associations between CC16 SNPs and asthma outcomes adjusted for covariates. RESULTS The sample included 1120 asthma cases and 1926 controls of European ancestry, with a mean age of 63 years. The frequency of the risk genotype (AA) for rs3741240 was 12.5% (n = 382). CC16 rs3741240 was not associated with adult asthma outcomes. A tagging SNP in the CC16 gene, rs12270961 was associated with uncontrolled asthma (n = 208, ORadj= 1.4, 95% CI 1.0, 1.9; p = 0.03). CONCLUSION This study, the largest study to investigate associations between CC16 tagging SNPs and asthma phenotypes in adults, did not confirm an association of rs3741240 with adult asthma. A tagging SNP in CC16 suggests a potential relationship with asthma control.
Collapse
Affiliation(s)
- KC Gribben
- Department of Epidemiology, University of Nebraska Medical Center, 68198 Omaha, NE USA
| | - AB Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC USA
| | - JA Poole
- Department of Internal Medicine, Division of Allergy and Immunology, University of Nebraska Medical Center, 68198 Omaha, NE USA
| | - PA Farazi
- Department of Epidemiology, University of Nebraska Medical Center, 68198 Omaha, NE USA
| | - C Wichman
- Department of Biostatistics, University of Nebraska Medical Center, 68198 Omaha, NE USA
| | | | - LE Beane Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD USA
| | - PK Henneberger
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV USA
| | - DM Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC USA
| | - SJ London
- Epidemiology Branch, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC USA
| | - TD LeVan
- Department of Epidemiology, University of Nebraska Medical Center, 68198 Omaha, NE USA
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep, University of Nebraska Medical Center, 68198 Omaha, NE USA
| | - Kelli C. Gribben
- Department of Epidemiology, University of Nebraska Medical Center, 68198 Omaha, NE USA
| |
Collapse
|
10
|
Ke Y, Zhu Y, Chen S, Hu J, Chen R, Li W, Liu S. Clinical Utility of Circulating Pneumoproteins as Diagnostic and Prognostic Biomarkers in COVID-19: A Systematic Review and Meta-analysis. Infect Dis Ther 2022; 11:1981-1998. [PMID: 36006559 PMCID: PMC9403970 DOI: 10.1007/s40121-022-00686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION This study explored circulating pneumoproteins in the diagnosis, severity, and prognosis of COVID-19 by meta-analysis. METHODS We searched five databases and other sources until December 16, 2021. Standardized mean difference (SMD) and 95% confidence interval (CI) were the overall outcomes. RevMan 5.3, Stata 16, and Meta-DiSc 1.4 were utilized for pooled analysis. RESULTS A total of 2432 subjects from 26 studies were included. Patients with COVID-19 had higher circulating KL-6, SP-D, and SP-A levels (SMD 1.34, 95% CI [0.60, 2.08]; SMD 1.74, 95% CI [0.64, 2.84]; SMD 3.42, 95% CI [1.31, 5.53], respectively) than healthy individuals. Circulating SP-D levels were not significantly different in survivors and non-survivors (SMD - 0.19, 95% CI [- 0.78, 0.40]). Circulating KL-6, SP-D, and RAGE levels in patients with mild to moderate COVID-19 were significantly lower (SMD - 0.93, 95% CI [- 1.22, - 0.65]; SMD - 1.32, 95% CI [- 2.34, - 0.29]; SMD - 1.17, 95% CI [- 2.06, - 0.28], respectively) than in patients with severe COVID-19. Subgroup analysis suggested that country and total number may be related to the heterogeneity when analyzing SP-D in patients with mild to moderate vs. severe COVID-19. The meta-analysis of diagnostic accuracy including KL-6 for severity, KL-6 for mortality, and SP-D for severity demonstrated that they all had limited diagnostic value. CONCLUSION Therefore, circulating pneumoproteins (KL-6, SP-D, and RAGEs) reflect the diagnosis, severity, and prognosis of COVID-19, and follow-up studies are still needed.
Collapse
Affiliation(s)
- Yani Ke
- The Second Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang, China
| | - Yuqing Zhu
- The First Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang, China
| | - Shuaihang Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang, China
| | - Jie Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang, China.
| | - Ruilin Chen
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Wu Li
- Department of Clinical Evaluation Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Shan Liu
- Department of Clinical Evaluation Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
11
|
Zhai J, Emond MJ, Spangenberg A, Stern DA, Vasquez MM, Blue EE, Buckingham KJ, Sherrill DL, Halonen M, Gibson RL, Rosenfeld M, Sagel SD, Bamshad MJ, Morgan WJ, Guerra S. Club cell secretory protein and lung function in children with cystic fibrosis. J Cyst Fibros 2022; 21:811-820. [PMID: 35367162 PMCID: PMC9509401 DOI: 10.1016/j.jcf.2022.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Club cell secretory protein (CC16) exerts anti-inflammatory functions in lung disease. We sought to determine the relation of serum CC16 deficits and genetic variants that control serum CC16 to lung function among children with cystic fibrosis (CF). METHODS We used longitudinal data from CF children (EPIC Study) with no positive cultures for Pseudomonas aeruginosa prior to enrollment. Circulating levels of CC16 and an inflammatory score (generated from CRP, SAA, calprotectin, G-CSF) were compared between participants with the lowest and highest FEV1 levels in adolescence (LLF and HLF groups, respectively; N = 130-per-group). Single nucleotide variants (SNVs) in the SCGB1A1, EHF-APIP loci were tested for association with circulating CC16 and with decline of FEV1 and FEV1/FVC% predicted levels between ages 7-16 using mixed models. RESULTS Compared with the HLF group, the LLF group had lower levels of CC16 (geometric means: 8.2 vs 6.5 ng/ml, respectively; p = 0.0002) and higher levels of the normalized inflammatory score (-0.21 vs 0.21, p = 0.0007). Participants in the lowest CC16 and highest inflammation tertile had the highest odds for having LLF (p<0.0001 for comparison with participants in the highest CC16 and lowest inflammation tertile). Among seven SNVs associated with circulating CC16, the top SNV rs3741240 was associated with decline of FEV1/FVC and, marginally, FEV1 (p = 0.003 and 0.025, respectively; N = 611 participants, 20,801 lung function observations). CONCLUSIONS Serum CC16 deficits are strongly associated with severity of CF lung disease and their effects are additive with systemic inflammation. The rs3741240 A allele is associated with low circulating CC16 and, possibly, accelerated lung function decline in CF.
Collapse
Affiliation(s)
- Jing Zhai
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Mary J Emond
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Amber Spangenberg
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Debra A Stern
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Monica M Vasquez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States; Brotman-Baty Institute for Precision Medicine, Seattle, WA, United States
| | - Kati J Buckingham
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Duane L Sherrill
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Marilyn Halonen
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Ronald L Gibson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Scott D Sagel
- Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael J Bamshad
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, United States; Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, United States; Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Wayne J Morgan
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States; Department of Pediatrics, University of Arizona, Tucson, AZ, United States.
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States; Department of Medicine, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
12
|
Uysal P. Novel Applications of Biomarkers in Chronic Obstructive Pulmonary Disease. Biomark Med 2022. [DOI: 10.2174/9789815040463122010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an important health
problem and an increasing cause of morbidity and mortality worldwide. Currently,
COPD is considered a multisystem disease. Although it primarily affects the lungs,
structural and functional changes occur in other organs due to systemic inflammation.
It is stated that in patients with COPD, airway and systemic inflammatory markers are
increased and that these markers are high are associated with a faster decline in lung
functions. In recent years, numerous articles have been published on the discovery and
evaluation of biomarkers in COPD. Many markers have also been studied to accurately
assess COPD exacerbations and provide effective treatment. However, based on the
evidence from published studies, a single molecule has not been adequately validated
for broad clinical use.
Collapse
Affiliation(s)
- Pelin Uysal
- Department of Chest Diseases, Faculty of Medicine, Mehmet Ali Aydınlar University, Atakent
Hospital, Istanbul, Turkey
| |
Collapse
|
13
|
Agustí A, Melén E, DeMeo DL, Breyer-Kohansal R, Faner R. Pathogenesis of chronic obstructive pulmonary disease: understanding the contributions of gene-environment interactions across the lifespan. THE LANCET. RESPIRATORY MEDICINE 2022; 10:512-524. [PMID: 35427533 PMCID: PMC11428195 DOI: 10.1016/s2213-2600(21)00555-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
The traditional view of chronic obstructive pulmonary disease (COPD) as a self-inflicted disease caused by tobacco smoking in genetically susceptible individuals has been challenged by recent research findings. COPD can instead be understood as the potential end result of the accumulation of gene-environment interactions encountered by an individual over the life course. Integration of a time axis in pathogenic models of COPD is necessary because the biological responses to and clinical consequences of different exposures might vary according to both the age of an individual at which a given gene-environment interaction occurs and the cumulative history of previous gene-environment interactions. Future research should aim to understand the effects of dynamic interactions between genes (G) and the environment (E) by integrating information from basic omics (eg, genomics, epigenomics, proteomics) and clinical omics (eg, phenomics, physiomics, radiomics) with exposures (the exposome) over time (T)-an approach that we refer to as GETomics. In the context of this approach, we argue that COPD should be viewed not as a single disease, but as a clinical syndrome characterised by a recognisable pattern of chronic symptoms and structural or functional impairments due to gene-environment interactions across the lifespan that influence normal lung development and ageing.
Collapse
Affiliation(s)
- Alvar Agustí
- Càtedra Salut Respiratòria, Universitat Barcelona, Barcelona, Spain; Respiratory Institute, Hospital Clinic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Dawn L DeMeo
- Channing Division of Network Medicine, and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Critical Care Medicine, Clinic Penzing, Vienna, Austria
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
14
|
Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. THE LANCET. RESPIRATORY MEDICINE 2022; 10:485-496. [PMID: 35427534 PMCID: PMC11197974 DOI: 10.1016/s2213-2600(21)00510-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deadly and highly morbid disease. Susceptibility to and heterogeneity of COPD are incompletely explained by environmental factors such as cigarette smoking. Family-based and population-based studies have shown that a substantial proportion of COPD risk is related to genetic variation. Genetic association studies have identified hundreds of genetic variants that affect risk for COPD, decreased lung function, and other COPD-related traits. These genetic variants are associated with other pulmonary and non-pulmonary traits, demonstrate a genetic basis for at least part of COPD heterogeneity, have a substantial effect on COPD risk in aggregate, implicate early-life events in COPD pathogenesis, and often involve genes not previously suspected to have a role in COPD. Additional progress will require larger genetic studies with more ancestral diversity, improved profiling of rare variants, and better statistical methods. Through integration of genetic data with other omics data and comprehensive COPD phenotypes, as well as functional description of causal mechanisms for genetic risk variants, COPD genetics will continue to inform novel approaches to understanding the pathobiology of COPD and developing new strategies for management and treatment.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Alijagic A, Engwall M, Särndahl E, Karlsson H, Hedbrant A, Andersson L, Karlsson P, Dalemo M, Scherbak N, Färnlund K, Larsson M, Persson A. Particle Safety Assessment in Additive Manufacturing: From Exposure Risks to Advanced Toxicology Testing. FRONTIERS IN TOXICOLOGY 2022; 4:836447. [PMID: 35548681 PMCID: PMC9081788 DOI: 10.3389/ftox.2022.836447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Additive manufacturing (AM) or industrial three-dimensional (3D) printing drives a new spectrum of design and production possibilities; pushing the boundaries both in the application by production of sophisticated products as well as the development of next-generation materials. AM technologies apply a diversity of feedstocks, including plastic, metallic, and ceramic particle powders with distinct size, shape, and surface chemistry. In addition, powders are often reused, which may change the particles' physicochemical properties and by that alter their toxic potential. The AM production technology commonly relies on a laser or electron beam to selectively melt or sinter particle powders. Large energy input on feedstock powders generates several byproducts, including varying amounts of virgin microparticles, nanoparticles, spatter, and volatile chemicals that are emitted in the working environment; throughout the production and processing phases. The micro and nanoscale size may enable particles to interact with and to cross biological barriers, which could, in turn, give rise to unexpected adverse outcomes, including inflammation, oxidative stress, activation of signaling pathways, genotoxicity, and carcinogenicity. Another important aspect of AM-associated risks is emission/leakage of mono- and oligomers due to polymer breakdown and high temperature transformation of chemicals from polymeric particles, both during production, use, and in vivo, including in target cells. These chemicals are potential inducers of direct toxicity, genotoxicity, and endocrine disruption. Nevertheless, understanding whether AM particle powders and their byproducts may exert adverse effects in humans is largely lacking and urges comprehensive safety assessment across the entire AM lifecycle-spanning from virgin and reused to airborne particles. Therefore, this review will detail: 1) brief overview of the AM feedstock powders, impact of reuse on particle physicochemical properties, main exposure pathways and protective measures in AM industry, 2) role of particle biological identity and key toxicological endpoints in the particle safety assessment, and 3) next-generation toxicology approaches in nanosafety for safety assessment in AM. Altogether, the proposed testing approach will enable a deeper understanding of existing and emerging particle and chemical safety challenges and provide a strategy for the development of cutting-edge methodologies for hazard identification and risk assessment in the AM industry.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Helen Karlsson
- Department of Health, Medicine and Caring Sciences, Occupational and Environmental Medicine Center in Linköping, Linköping University, Linköping, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lena Andersson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University, Örebro, Sweden
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, Örebro, Sweden
| | | | - Nikolai Scherbak
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | | | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
16
|
Mootz M, Jakwerth CA, Schmidt‐Weber CB, Zissler UM. Secretoglobins in the big picture of immunoregulation in airway diseases. Allergy 2022; 77:767-777. [PMID: 34343347 DOI: 10.1111/all.15033] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
The proteins of the secretoglobin (SCGB) family are expressed by secretory tissues of barrier organs. They are embedded in immunoregulatory and anti-inflammatory processes of airway diseases. This review particularly illustrates the immune regulation of SCGBs by cytokines and their implication in the pathophysiology of airway diseases. The biology of SCGBs is a complex topic of increasing importance, as they are highly abundant in the respiratory tract and can also be detected in malignant tissues and as elements of immune control. In addition, SCGBs react to cytokines, they are embedded in Th1 and Th2 immune responses, and they are expressed in a manner dependent on cell maturation. The big picture of the SCGB family identifies these factors as critical elements of innate immune control at the epithelial barriers and highlights their potential for diagnostic assessment of epithelial activity. Some members of the SCGB family have so far only been superficially examined, but have high potential for translational research.
Collapse
Affiliation(s)
- Martine Mootz
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
- Technical University of Munich (TUM)TUM School of MedicineKlinikum Rechts der Isar Munich Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| |
Collapse
|
17
|
Tiezzi M, Morra S, Seminerio J, Van Muylem A, Godefroid A, Law-Weng-Sam N, Van Praet A, Corbière V, Orte Cano C, Karimi S, Del Marmol V, Bondue B, Benjelloun M, Lavis P, Mascart F, van de Borne P, Cardozo AK. SP-D and CC-16 Pneumoproteins' Kinetics and Their Predictive Role During SARS-CoV-2 Infection. Front Med (Lausanne) 2022; 8:761299. [PMID: 35211479 PMCID: PMC8863171 DOI: 10.3389/fmed.2021.761299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background Surfactant protein D (SP-D) and pulmonary club cell protein 16 (CC-16) are called “pneumoproteins” and are involved in host defense against oxidative stress, inflammation, and viral outbreak. This study aimed to determine the predictive value of these pneumoproteins on the incidence of acute respiratory distress syndrome (ARDS) or death in patients with coronavirus disease-2019 (COVID-19). Methods This retrospective study included 87 patients admitted to an emergency department. Blood samples were collected on three time points (days 1, 5, and 14 from hospital admission). SP-D and CC-16 serum levels were determined, and univariate and multivariate analyses considering confounding variables (age, body mass index, tobacco use, dyspnea, hypertension, diabetes mellitus, neutrophil-to-lymphocyte ratio) were performed. Results Based on the multivariate analysis, SP-D level on D1 was positively and slightly correlated with subsequent development of ARDS, independent of body mass index, dyspnea, and diabetes mellitus. CC-16 level on D1 was modestly and positively correlated with fatal outcome. A rise in SP-D between D1 and D5 and D1 and D14 had a strong negative association with incidence of ARDS. These associations were independent of tobacco use and neutrophil-to-lymphocyte ratio. Conclusions Overall, our data reveal that increase in SP-D levels is a good prognostic factor for patients with COVID-19, and that initial CC-16 levels correlated with slightly higher risk of death. SP-D and CC-16 may prove useful to predict outcomes in patients with COVID-19.
Collapse
Affiliation(s)
- Margherita Tiezzi
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Inflammation and Cell Death Signalling Group, Experimental Gastroenterology Laboratory and Endotools-Medical Faculty, ULB, Brussels, Belgium
| | - Sofia Morra
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Institute for Translational Research in Cardiovascular and Respiratory Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Jimmy Seminerio
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Van Muylem
- Department of Respiratory Medicine, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Audrey Godefroid
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Noémie Law-Weng-Sam
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Van Praet
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Carmen Orte Cano
- Department of Dermatology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sina Karimi
- Department of Internal Medicine, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Del Marmol
- Department of Dermatology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- Department of Respiratory Medicine, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Mariam Benjelloun
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Philomène Lavis
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium.,Immunobiology Clinic, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Institute for Translational Research in Cardiovascular and Respiratory Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Alessandra K Cardozo
- Inflammation and Cell Death Signalling Group, Experimental Gastroenterology Laboratory and Endotools-Medical Faculty, ULB, Brussels, Belgium
| |
Collapse
|
18
|
Gribben KC, Poole JA, Nelson AJ, Farazi PA, Wichman CS, Heires AJ, Romberger DJ, LeVan TD. Relationships of serum CC16 levels with smoking status and lung function in COPD. Respir Res 2022; 23:247. [PMID: 36114505 PMCID: PMC9479424 DOI: 10.1186/s12931-022-02158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The club cell secretory protein (CC16) has anti-inflammatory and antioxidant effects, and low CC16 serum levels have been associated with both risk and progression of COPD, yet the interaction between smoking and CC16 on lung function outcomes remains unknown. METHODS Utilizing cross-sectional data on United States veterans, CC16 serum concentrations were measured by ELISA and log transformed for analyses. Spirometry was conducted and COPD status was defined by post-bronchodilator FEV1/FVC ratio < 0.7. Smoking measures were self-reported on questionnaire. Multivariable logistic and linear regression were employed to examine associations between CC16 levels and COPD, and lung function with adjustment for covariates. Unadjusted Pearson correlations described relationships between CC16 level and lung function measures, pack-years smoked, and years since smoking cessation. RESULTS The study population (N = 351) was mostly male, white, with an average age over 60 years. An interaction between CC16 and smoking status on FEV1/FVC ratio was demonstrated among subjects with COPD (N = 245, p = 0.01). There was a positive correlation among former smokers and negative correlation among current or never smokers with COPD. Among former smokers with COPD, CC16 levels were also positively correlated with years since smoking cessation, and inversely related with pack-years smoked. Increasing CC16 levels were associated with lower odds of COPD (ORadj = 0.36, 95% CI 0.22-0.57, Padj < 0.0001). CONCLUSIONS Smoking status is an important effect modifier of CC16 relationships with lung function. Increasing serum CC16 corresponded to increases in FEV1/FVC ratio in former smokers with COPD versus opposite relationships in current or never smokers. Additional longitudinal studies may be warranted to assess relationship of CC16 with smoking cessation on lung function among subjects with COPD.
Collapse
Affiliation(s)
- Kelli C. Gribben
- grid.266813.80000 0001 0666 4105Department of Epidemiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Jill A. Poole
- grid.266813.80000 0001 0666 4105Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Amy J. Nelson
- grid.266813.80000 0001 0666 4105Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Paraskevi A. Farazi
- grid.266813.80000 0001 0666 4105Department of Epidemiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Christopher S. Wichman
- grid.266813.80000 0001 0666 4105Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Art J. Heires
- grid.266813.80000 0001 0666 4105Division of Pulmonary, Critical Care and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Debra J. Romberger
- grid.266813.80000 0001 0666 4105Division of Pulmonary, Critical Care and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198 USA ,grid.478099.b0000 0004 0420 0296VA Nebraska Western Iowa Healthcare System, Omaha, NE 68105 USA
| | - Tricia D. LeVan
- grid.266813.80000 0001 0666 4105Department of Epidemiology, University of Nebraska Medical Center, Omaha, NE 68198 USA ,grid.266813.80000 0001 0666 4105Division of Pulmonary, Critical Care and Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198 USA ,grid.478099.b0000 0004 0420 0296VA Nebraska Western Iowa Healthcare System, Omaha, NE 68105 USA
| |
Collapse
|