1
|
Mulkareddy V, Roman J. Pulmonary manifestations of alpha 1 antitrypsin deficiency. Am J Med Sci 2024; 368:1-8. [PMID: 38599244 DOI: 10.1016/j.amjms.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Alpha 1 antitrypsin deficiency is a widely under recognized autosomal codominant condition caused by genetic mutations in the SERPINA 1 gene, which encodes for alpha 1 antitrypsin (AAT), a serine protease inhibitor. The SERPINA 1 gene contains 120 variants and mutations in the gene may decrease AAT protein levels or result in dysfunctional proteins. This deficiency leads to unopposed protease activity in tissues, thereby promoting pulmonary and hepatic disease. The most common genotype associated with pulmonary disease is the ZZ genotype, and the most frequent pulmonary manifestation is emphysema. Although its pathophysiology may differ from cigarette smoking related chronic obstructive pulmonary disease, smoking itself can hasten lung decline in alpha 1 antitrypsin deficiency (AATD). The diagnosis of AATD is made through AAT protein testing along with genotyping. AATD patients with obstructive airflow limitation may qualify for intravenous augmentation with AAT. However, there is ongoing research to allow for earlier detection and treatment. This review describes in general terms the genetic mechanisms of AATD; its pathogenesis and the impact of cigarette smoke; and its clinical manifestations, diagnosis, treatment, and prognosis. We hope to stimulate research in the field, but mostly we wish to enhance awareness to promote early diagnosis and treatment in those eligible for intervention.
Collapse
Affiliation(s)
- Vani Mulkareddy
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and The Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine and The Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Piloni D, Ottaviani S, Saderi L, Corda L, Baderna P, Barzon V, Balderacchi AM, Seebacher C, Balbi B, Albicini F, Corino A, Mennitti MC, Tirelli C, Spreafico F, Bosio M, Mariani F, Sotgiu G, Corsico AG, Ferrarotti I. Comparison among populations with severe and intermediate alpha1-antitrypsin deficiency and chronic obstructive pulmonary disease. Minerva Med 2024; 115:23-31. [PMID: 37021471 DOI: 10.23736/s0026-4806.22.08266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
BACKGROUND Severe alpha1-antitrypsin (AAT) deficiency (AATD) is associated with a high risk of airflow obstruction and emphysema. The risk of lung disease in those with intermediate AAT deficiency is unclear. Our aims were to compare pulmonary function, time of onset of symptoms, and indicators of quality of life among patients with severe AATD (PI*ZZ), patients with intermediate AATD (PI*MZ) from the Italian Registry of AATD with a chronic obstructive pulmonary disease (COPD) cohort of patients without AATD (PI*MM). METHODS We considered a total of 613 patients: 330 with the PI*ZZ genotype, 183 with the PI*MZ genotype and 100 with the PI*MM genotype. Radiological exams, pulmonary function test, and measurement of quality of life have been performed on all cohorts of patients. RESULTS The three populations differ significantly in terms of age at COPD/AATD diagnosis (P=0.00001), respiratory function (FEV1, FVC, DLCO P<0.001), quality of life (P=0.0001) and smoking history (P<0.0001). PI*ZZ genotype had 24.9 times a higher likelihood of developing airflow obstruction. The MZ genotype is not associated with a significant early risk of airflow obstruction. CONCLUSIONS The comparison of populations with PI*ZZ, MZ and MM genotypes allows to delineate the role of alpha1-antitrypsin deficiency on respiratory function and on the impact on quality of life, in relation to other risk factors. These results highlight the crucial role of primary and secondary prevention on smoking habits in PI*MZ subjects and the importance of an early diagnosis.
Collapse
Affiliation(s)
- Davide Piloni
- Section of Pneumology, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy
- Department of Internal Medicine, and Therapeutics, Center for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, IRCCS San Matteo Polyclinic Foundation, University of Pavia, Pavia, Italy
| | - Stefania Ottaviani
- Section of Pneumology, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy
- Department of Internal Medicine, and Therapeutics, Center for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, IRCCS San Matteo Polyclinic Foundation, University of Pavia, Pavia, Italy
| | - Laura Saderi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Luciano Corda
- First Division of Medicine, ASST Spedali Civili, Brescia, Italy
| | | | - Valentina Barzon
- Department of Internal Medicine, and Therapeutics, Center for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, IRCCS San Matteo Polyclinic Foundation, University of Pavia, Pavia, Italy
| | - Alice M Balderacchi
- Department of Internal Medicine, and Therapeutics, Center for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, IRCCS San Matteo Polyclinic Foundation, University of Pavia, Pavia, Italy
| | | | - Bruno Balbi
- Division of Pneumology, IRCCS Maugeri Scientific Clinical Institutes, Veruno, Novara, Italy
| | - Federica Albicini
- Section of Pneumology, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy
| | - Alessandra Corino
- Section of Pneumology, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy
| | - Maria C Mennitti
- Section of Pneumology, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy
| | - Claudio Tirelli
- Section of Pneumology, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy
| | - Fabio Spreafico
- First Division of Medicine, ASST Spedali Civili, Brescia, Italy
| | - Matteo Bosio
- Section of Pneumology, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy
| | - Francesca Mariani
- Section of Pneumology, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy
- Department of Internal Medicine, and Therapeutics, Center for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, IRCCS San Matteo Polyclinic Foundation, University of Pavia, Pavia, Italy
| | - Giovanni Sotgiu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Angelo G Corsico
- Section of Pneumology, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy
- Department of Internal Medicine, and Therapeutics, Center for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, IRCCS San Matteo Polyclinic Foundation, University of Pavia, Pavia, Italy
- AATD Core Network of European Reference Network LUNG, Frankfurt am Main, Germany
| | - Ilaria Ferrarotti
- Department of Internal Medicine, and Therapeutics, Center for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, IRCCS San Matteo Polyclinic Foundation, University of Pavia, Pavia, Italy -
- AATD Core Network of European Reference Network LUNG, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Papiris SA, Veith M, Papaioannou AI, Apollonatou V, Ferrarotti I, Ottaviani S, Tzouvelekis A, Tzilas V, Rovina N, Stratakos G, Gerogianni I, Daniil Z, Kolilekas L, Dimakou K, Pitsidianakis G, Tzanakis N, Tryfon S, Fragopoulos F, Antonogiannaki EM, Lazaratou A, Fouka E, Papakosta D, Emmanouil P, Anagnostopoulos N, Karampitsakos T, Vlami K, Kallieri M, Lyberopoulos P, Loukides S, Bouros D, Bush A, Balduyck M, Lombard C, Cottin V, Mornex JF, Vogelmeier CF, Greulich T, Manali ED. Alpha1-antitrypsin deficiency in Greece: Focus on rare variants. Pulmonology 2024; 30:43-52. [PMID: 36797151 DOI: 10.1016/j.pulmoe.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 02/16/2023] Open
Abstract
PURPOSE A1Antitrypsin deficiency (AATD) pathogenic mutations are expanding beyond the PI*Z and PI*S to a multitude of rare variants. AIM to investigate genotype and clinical profile of Greeks with AATD. METHODS Symptomatic adult-patients with early-emphysema defined by fixed airway obstruction and computerized-tomography scan and lower than normal serum AAT levels were enrolled from reference centers all over Greece. Samples were analyzed in the AAT Laboratory, University of Marburg-Germany. RESULTS Included are 45 adults, 38 homozygous or compound heterozygous for pathogenic variants and 7 heterozygous. Homozygous were 57.9% male, 65.8% ever-smokers, median (IQR) age 49.0(42.5-58.5) years, AAT-levels 0.20(0.08-0.26) g/L, FEV1(%predicted) 41.5(28.8-64.5). PI*Z, PI*Q0, and rare deficient allele's frequency was 51.3%, 32.9%,15.8%, respectively. PI*ZZ genotype was 36.8%, PI*Q0Q0 21.1%, PI*MdeficientMdeficient 7.9%, PI*ZQ0 18.4%, PI*Q0Mdeficient 5.3% and PI*Zrare-deficient 10.5%. Genotyping by Luminex detected: p.(Pro393Leu) associated with MHeerlen (M1Ala/M1Val); p.(Leu65Pro) with MProcida; p.(Lys241Ter) with Q0Bellingham; p.(Leu377Phefs*24) with Q0Mattawa (M1Val) and Q0Ourem (M3); p.(Phe76del) with MMalton (M2), MPalermo (M1Val), MNichinan (V) and Q0LaPalma (S); p.(Asp280Val) with PLowell (M1Val); PDuarte (M4), YBarcelona (p.Pro39His). Gene-sequencing (46.7%) detected Q0GraniteFalls, Q0Saint-Etienne, Q0Amersfoort(M1Ala), MWürzburg, NHartfordcity and one novel-variant (c.1A>G) named Q0Attikon.Heterozygous included PI*MQ0Amersfoort(M1Ala), PI*MMProcida, PI*Mp.(Asp280Val), PI*MOFeyzin. AAT-levels were significantly different between genotypes (p = 0.002). CONCLUSION Genotyping AATD in Greece, a multiplicity of rare variants and a diversity of rare combinations, including unique ones were observed in two thirds of patients, expanding knowledge regarding European geographical trend in rare variants. Gene sequencing was necessary for genetic diagnosis. In the future the detection of rare genotypes may add to personalize preventive and therapeutic measures.
Collapse
Affiliation(s)
- S A Papiris
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece.
| | - M Veith
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), UKGM, Marburg, Germany
| | - A I Papaioannou
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - V Apollonatou
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - I Ferrarotti
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumonology Unit, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
| | - S Ottaviani
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumonology Unit, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
| | - A Tzouvelekis
- Department of Respiratory Medicine, General Hospital of Patras, University of Patras, Greece
| | - V Tzilas
- 5th Pulmonary Department, Athens Chest Hospital "Sotiria", Athens Greece
| | - N Rovina
- 1st Department of Pulmonary Medicine and Intensive Care Unit, Medical School, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - G Stratakos
- 1st Respiratory Medicine Department of the National, Kapodistrian University of Athens, Athens, Greece
| | - I Gerogianni
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa Greece
| | - Z Daniil
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa Greece
| | - L Kolilekas
- 7thPulmonary Department, Athens Chest Hospital "Sotiria", Athens Greece
| | - K Dimakou
- 5th Pulmonary Department, Athens Chest Hospital "Sotiria", Athens Greece
| | - G Pitsidianakis
- Department of Thoracic Medicine, University Hospital, University of Crete, Heraklion, Crete 71110, Greece
| | - N Tzanakis
- Department of Thoracic Medicine, University Hospital, University of Crete, Heraklion, Crete 71110, Greece
| | - S Tryfon
- General Hospital "G. Papanikolaou", Thessaloniki, Greece
| | - F Fragopoulos
- Pulmonary Department, General Hospital of Nicosia, Cyprus
| | - E M Antonogiannaki
- 4th Pulmonary Department, Athens Chest Hospital "Sotiria", Athens Greece
| | - A Lazaratou
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - E Fouka
- A Department of Pulmonary Medicine, Aristotle University of Thessaloniki, "G. Papanikolaou" Hospital, Exochi, Thessaloniki, Greece
| | - D Papakosta
- A Department of Pulmonary Medicine, Aristotle University of Thessaloniki, "G. Papanikolaou" Hospital, Exochi, Thessaloniki, Greece
| | | | - N Anagnostopoulos
- 1st Respiratory Medicine Department of the National, Kapodistrian University of Athens, Athens, Greece
| | - T Karampitsakos
- Department of Respiratory Medicine, General Hospital of Patras, University of Patras, Greece
| | - K Vlami
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - M Kallieri
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - P Lyberopoulos
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - S Loukides
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - D Bouros
- Iatriko Medical Center, Athens, Greece; School of Medicine, National and Kapodistrian University of Athens, Athens Greece
| | - A Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London, United Kingdom
| | - M Balduyck
- laboratoire de Biochimie et Biologie Moléculaire (HMNO), Centre de Biologie Pathologie, Faculté de pharmacie et EA 7364 RADEME, Laboratoire de Biochimie et Biologie Moléculaire, CHU de Lille, Université de Lille, Lille, France
| | - C Lombard
- Laboratoire d'Immunologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon and Université Claude Bernard-Lyon 1, Lyon, France
| | - V Cottin
- Service de pneumologie, Centre National Coordinateur de Référence des Maladies Pulmonaires Rares, Hôpital Louis Pradel, Hospices Civils de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR754 INRA, IVPC, Lyon, France
| | - J F Mornex
- Service de pneumologie, Centre National Coordinateur de Référence des Maladies Pulmonaires Rares, Hôpital Louis Pradel, Hospices Civils de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR754 INRA, IVPC, Lyon, France
| | - C F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), UKGM, Marburg, Germany
| | - T Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), UKGM, Marburg, Germany
| | - E D Manali
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| |
Collapse
|
4
|
Mornex JF, Balduyck M, Bouchecareilh M, Cuvelier A, Epaud R, Kerjouan M, Le Rouzic O, Pison C, Plantier L, Pujazon MC, Reynaud-Gaubert M, Toutain A, Trumbic B, Willemin MC, Zysman M, Brun O, Campana M, Chabot F, Chamouard V, Dechomet M, Fauve J, Girerd B, Gnakamene C, Lefrançois S, Lombard JN, Maitre B, Maynié-François C, Moerman A, Payancé A, Reix P, Revel D, Revel MP, Schuers M, Terrioux P, Theron D, Willersinn F, Cottin V, Mal H. [French clinical practice guidelines for the diagnosis and management of lung disease with alpha 1-antitrypsin deficiency]. Rev Mal Respir 2022; 39:633-656. [PMID: 35906149 DOI: 10.1016/j.rmr.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Affiliation(s)
- J-F Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, 69007 Lyon, France; Centre de référence coordonnateur des maladies pulmonaires rares, hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, 69500 Bron, France.
| | - M Balduyck
- CHU de Lille, centre de biologie pathologie, laboratoire de biochimie et biologie moléculaire HMNO, faculté de pharmacie, EA 7364 RADEME, université de Lille, service de biochimie et biologie moléculaire, Lille, France
| | - M Bouchecareilh
- Université de Bordeaux, CNRS, Inserm U1053 BaRITon, Bordeaux, France
| | - A Cuvelier
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, Rouen, France; Groupe de recherche sur le handicap ventilatoire et neurologique (GRHVN), université Normandie Rouen, Rouen, France
| | - R Epaud
- Centre de références des maladies respiratoires rares, site de Créteil, Créteil, France
| | - M Kerjouan
- Service de pneumologie, CHU Pontchaillou, Rennes, France
| | - O Le Rouzic
- CHU Lille, service de pneumologie et immuno-allergologie, Lille, France; Université de Lille, CNRS, Inserm, institut Pasteur de Lille, U1019, UMR 9017, CIIL, OpInfIELD team, Lille, France
| | - C Pison
- Service de pneumologie physiologie, pôle thorax et vaisseaux, CHU de Grenoble, Grenoble, France; Université Grenoble Alpes, Saint-Martin-d'Hères, France
| | - L Plantier
- Service de pneumologie et explorations fonctionnelles respiratoires, CHRU de Tours, Tours, France; Université de Tours, CEPR, Inserm UMR1100, Tours, France
| | - M-C Pujazon
- Service de pneumologie et allergologie, pôle clinique des voies respiratoires, hôpital Larrey, Toulouse, France
| | - M Reynaud-Gaubert
- Service de pneumologie, centre de compétence pour les maladies pulmonaires rares, AP-HM, CHU Nord, Marseille, France; Aix-Marseille université, IHU-Méditerranée infection, Marseille, France
| | - A Toutain
- Service de génétique, CHU de Tours, Tours, France; UMR 1253, iBrain, université de Tours, Inserm, Tours, France
| | | | - M-C Willemin
- Service de pneumologie et oncologie thoracique, CHU d'Angers, hôpital Larrey, Angers, France
| | - M Zysman
- Service de pneumologie, CHU Haut-Lévèque, Bordeaux, France; Université de Bordeaux, centre de recherche cardiothoracique, Inserm U1045, CIC 1401, Pessac, France
| | - O Brun
- Centre de pneumologie et d'allergologie respiratoire, Perpignan, France
| | - M Campana
- Service de pneumologie, CHR d'Orléans, Orléans, France
| | - F Chabot
- Département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France; Inserm U1116, université de Lorraine, Vandœuvre-lès-Nancy, France
| | - V Chamouard
- Service pharmaceutique, hôpital cardiologique, GHE, HCL, Bron, France
| | - M Dechomet
- Service d'immunologie biologique, centre de biologie sud, centre hospitalier Lyon Sud, HCL, Pierre-Bénite, France
| | - J Fauve
- Cabinet médical, Bollène, France
| | - B Girerd
- Université Paris-Saclay, faculté de médecine, Le Kremlin-Bicêtre, France; AP-HP, centre de référence de l'hypertension pulmonaire, service de pneumologie et soins intensifs respiratoires, hôpital Bicêtre, Le Kremlin-Bicêtre, France; Inserm UMR_S 999, hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - C Gnakamene
- Service de pneumologie, CH de Montélimar, GH Portes de Provence, Montélimar, France
| | | | | | - B Maitre
- Service de pneumologie, centre hospitalier intercommunal, Créteil, France; Inserm U952, UFR de santé, université Paris-Est Créteil, Créteil, France
| | - C Maynié-François
- Université de Lyon, collège universitaire de médecine générale, Lyon, France; Université Claude-Bernard Lyon 1, laboratoire de biométrie et biologie évolutive, UMR5558, Villeurbanne, France
| | - A Moerman
- CHRU de Lille, hôpital Jeanne-de-Flandre, Lille, France; Cabinet de médecine générale, Lille, France
| | - A Payancé
- Service d'hépatologie, CHU Beaujon, AP-HP, Clichy, France; Filière de santé maladies rares du foie de l'adulte et de l'enfant (FilFoie), CHU Saint-Antoine, Paris, France
| | - P Reix
- Service de pneumologie pédiatrique, allergologie, mucoviscidose, hôpital Femme-Mère-Enfant, HCL, Bron, France; UMR 5558 CNRS équipe EMET, université Claude-Bernard Lyon 1, Villeurbanne, France
| | - D Revel
- Université Claude-Bernard Lyon 1, Lyon, France; Hospices civils de Lyon, Lyon, France
| | - M-P Revel
- Université Paris Descartes, Paris, France; Service de radiologie, hôpital Cochin, AP-HP, Paris, France
| | - M Schuers
- Université de Rouen Normandie, département de médecine générale, Rouen, France; Sorbonne université, LIMICS U1142, Paris, France
| | | | - D Theron
- Asten santé, Isneauville, France
| | | | - V Cottin
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, 69007 Lyon, France; Centre de référence coordonnateur des maladies pulmonaires rares, hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, 69500 Bron, France
| | - H Mal
- Service de pneumologie B, hôpital Bichat-Claude-Bernard, AP-HP, Paris, France; Inserm U1152, université Paris Diderot, site Xavier Bichat, Paris, France
| |
Collapse
|
5
|
Genetic Variants Associated with Chronic Obstructive Pulmonary Disease Risk: Cumulative Epidemiological Evidence from Meta-Analyses and Genome-Wide Association Studies. Can Respir J 2022; 2022:3982335. [PMID: 35721789 PMCID: PMC9203202 DOI: 10.1155/2022/3982335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Background Last two decades, many association studies on genetic variants and chronic obstructive pulmonary disease (COPD) risk have been published. But results from different studies are inconsistent. Therefore, we performed this article to systematically evaluate results from previous meta-analyses and genome-wide association studies (GWASs). Material and Methods. Firstly, we retrieved meta-analyses in PubMed, Embase, and China National Knowledge Infrastructure and GWASs in PubMed and GWAS catalog on or before April 7th, 2022. Then, data were extracted and screened. Finally, two main methods—Venice criteria and false-positive report probability test—were used to evaluate significant associations. Results As a result, eighty-eight meta-analyses and 5 GWASs were deemed eligible for inclusion. Fifty variants in 26 genes obtained from meta-analyses were significantly associated with COPD risk. Cumulative epidemiological evidence of an association was graded as strong for 10 variants in 8 genes (GSTM1, CHRNA, ADAM33, SP-D, TNF-α, VDBP, HMOX1, and HHIP), moderate for 6 variants in 5 genes (PI, GSTM1, ADAM33, TNF-α, and VDBP), and weak for 40 variants in 23 genes. Five variants in 4 genes showed convincing evidence of no association with COPD risk in meta-analyses. Additionally, 29 SNPs identified in GWASs were proved to be noteworthy based on the FPRP test. Conclusion In summary, more than half (52.38%) of genetic variants reported in previous meta-analyses showed no association with COPD risk. However, 13 variants in 9 genes had moderate to strong evidence for an association. This article can serve as a useful reference for further studies.
Collapse
|
6
|
Genetic testing of allelic variants of PIZ (GLU342Lys, RS28929474) and PIS (GLU264Val, RS17580) of SERPINA1 gene in children with bronchial asthma. EUREKA: LIFE SCIENCES 2022. [DOI: 10.21303/2504-5695.2022.002415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
According to world publications, mutations in the SERPINA1 gene may be a genetic risk factor for severe chronic obstructive pulmonary disease and, consequently, rapid progression of respiratory dysfunction. This disease leads to a decrease in the level of alpha-1-antitrypsin protein. It is inherited by autosomal recessive type, but there are registered cases of codominance. In the absence of treatment, diseases of the respiratory system become chronic and lead to disability in adulthood.
Early diagnosis of AAT deficiency is important to prevent complications and reduce mortality among people with this pathology. Due to these factors, genetic testing of SERPINA1 gene mutations in children with chronic lung diseases is appropriate to detect and prevent severe complications, associated with AATD.
The aim of this work is to improve the effectiveness of early diagnosis of AAT deficiency in children with bronchial asthma and recurrent obstructive bronchitis by identifying different genotypes and phenotypes of A1AT deficiency, studying their relationship with the clinical course of respiratory diseases in children
Collapse
|
7
|
Ghosh AJ, Hobbs BD, Moll M, Saferali A, Boueiz A, Yun JH, Sciurba F, Barwick L, Limper AH, Flaherty K, Criner G, Brown KK, Wise R, Martinez FJ, Lomas D, Castaldi PJ, Carey VJ, DeMeo DL, Cho MH, Silverman EK, Hersh CP. Alpha-1 Antitrypsin MZ Heterozygosity Is an Endotype of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 205:313-323. [PMID: 34762809 PMCID: PMC8886988 DOI: 10.1164/rccm.202106-1404oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
Rationale: Multiple studies have demonstrated an increased risk of chronic obstructive pulmonary disease (COPD) in heterozygous carriers of the AAT (alpha-1 antitrypsin) Z allele. However, it is not known if MZ subjects with COPD are phenotypically different from noncarriers (MM genotype) with COPD. Objectives: To assess if MZ subjects with COPD have different clinical features compared with MM subjects with COPD. Methods: Genotypes of SERPINA1 were ascertained by using whole-genome sequencing data in three independent studies. We compared outcomes between MM subjects with COPD and MZ subjects with COPD in each study and combined the results in a meta-analysis. We performed longitudinal and survival analyses to compare outcomes in MM and MZ subjects with COPD over time. Measurements and Main Results: We included 290 MZ subjects with COPD and 6,184 MM subjects with COPD across the three studies. MZ subjects had a lower FEV1% predicted and greater quantitative emphysema on chest computed tomography scans compared with MM subjects. In a meta-analysis, the FEV1 was 3.9% lower (95% confidence interval [CI], -6.55% to -1.26%) and emphysema (the percentage of lung attenuation areas <-950 HU) was 4.14% greater (95% CI, 1.44% to 6.84%) in MZ subjects. We found one gene, PGF (placental growth factor), to be differentially expressed in lung tissue from one study between MZ subjects and MM subjects. Conclusions: Carriers of the AAT Z allele (those who were MZ heterozygous) with COPD had lower lung function and more emphysema than MM subjects with COPD. Taken with the subtle differences in gene expression between the two groups, our findings suggest that MZ subjects represent an endotype of COPD.
Collapse
Affiliation(s)
- Auyon J. Ghosh
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Brian D. Hobbs
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Matthew Moll
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Adel Boueiz
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jeong H. Yun
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Andrew H. Limper
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin Flaherty
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Gerard Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
| | - Kevin K. Brown
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Robert Wise
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - David Lomas
- University College London Respiratory Division of Medicine, University College London, London, United Kingdom
| | - Peter J. Castaldi
- Channing Division of Network Medicine and
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Vincent J. Carey
- Channing Division of Network Medicine and
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Dawn L. DeMeo
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Michael H. Cho
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Edwin K. Silverman
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Craig P. Hersh
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| |
Collapse
|
8
|
Martinez-González C, Blanco I, Diego I, Bueno P, Miravitlles M. Estimated Prevalence and Number of PiMZ Genotypes of Alpha-1 Antitrypsin in Seventy-Four Countries Worldwide. Int J Chron Obstruct Pulmon Dis 2021; 16:2617-2630. [PMID: 34556982 PMCID: PMC8455519 DOI: 10.2147/copd.s327803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The α-1 antitrypsin (AAT) protease inhibitor PiMZ is a moderately deficient genotype, until recently considered of little or negligible risk. However, a growing number of studies show that MZ carriers have an increased risk of developing lung and liver diseases, if exposed to smoking or other airborne or industrial pollutants, and hepatotoxic substances. METHODS We used the epidemiological studies performed to determine the frequencies of PiM and PiZ worldwide, based on the following criteria: 1) samples representative of the general population; 2) AAT phenotyping or genotyping characterized by adequate methods, including isoelectric focusing and polymerase chain reaction; and 3) studies with reliable results assessed with a coefficient of variation calculated from the sample size and 95% confidence intervals, to measure the precision of the results in terms of dispersion of the data around the mean. RESULTS The present review reveals an impressive number of MZs of more than 35 million in 74 countries of the world with available data. Seventy-five percent of them are people of Caucasian European heritage, mostly living in Europe, America, Australia and New Zealand. Twenty percent of the remaining MZs live in Asia, with the highest concentrations in the Middle East, Eastern¸ Southern, and South-eastern regions of the Asian continent. The remaining five percent are Africans residing in Western and Eastern Africa. CONCLUSION Considering the high rate of smoking, the outdoor and the indoor air pollution from solid fuels used in cooking and heating, and the exposure to industrial dusts and chemicals in many of these countries, these figures are very worrying, and hence the importance of adequately assessing MZ subjects, recommending them rigorous preventive measures based on the adoption of healthy lifestyles, including avoidance of smoking and alcohol.
Collapse
Affiliation(s)
- Cristina Martinez-González
- Pulmonology Department, University Central Hospital of Asturias, Universidad de Oviedo, Instituto de Investigación del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ignacio Blanco
- Alpha1-Antitrypsin Deficiency Spanish Registry (REDAAT), Spanish Society of Pneumology and Thoracic Surgery (SEPAR), Barcelona, Spain
| | - Isidro Diego
- Materials and Energy Department, School of Mining Engineering, Oviedo University, Oviedo, Spain
| | - Patricia Bueno
- Internal Medicine Department, County Hospital of Jarrio, Jarrio, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d’Hebron/Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| |
Collapse
|
9
|
Anderson JL, Kruisselbrink TM, Lisi EC, Hughes TM, Steyermark JM, Winkler EM, Berg CM, Vierkant RA, Gupta R, Ali AH, Faubion SS, Aoudia SL, McAllister TM, Farrugia G, Stewart AK, Lazaridis KN. Clinically Actionable Findings Derived From Predictive Genomic Testing Offered in a Medical Practice Setting. Mayo Clin Proc 2021; 96:1407-1417. [PMID: 33890576 DOI: 10.1016/j.mayocp.2020.08.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To assess the presence of clinically actionable results and other genetic findings in an otherwise healthy population of adults seen in a medical practice setting and offered "predictive" genomic testing. PATIENTS AND METHODS In 2014, a predictive genomics clinic for generally healthy adults was launched through the Mayo Clinic Executive Health Program. Self-identified interested patients met with a genomic nurse and genetic counselor for pretest advice and education. Two genome sequencing platforms and one gene panel-based health screen were offered. Posttest genetic counseling was available for patients who elected testing. From March 1, 2014, through June 1, 2019, 1281 patients were seen and 301 (23.5%) chose testing. Uptake rates increased to 36.3% [70 of 193]) in 2019 from 11.8% [2 of 17] in 2014. Clinically actionable results and genetic findings were analyzed using descriptive statistics. RESULTS Clinically actionable results were detected in 11.6% of patients (35 of 301), and of those, 51.7% (15 of 29) with a cancer or cardiovascular result = did not have a personal or family history concerning for a hereditary disorder. The most common actionable results were in the BCHE, BRCA2, CHEK2, LDLR, MUTYH, and MYH7 genes. A carrier of at least one recessive condition was found in 53.8% of patients (162 of 301). At least one variant associated with multifactorial disease was found in 44.5% (134 of 301) (eg, 25 patients were heterozygous for the F5 factor V Leiden variant associated with thrombophilia risk). CONCLUSION Our predictive screening revealed that 11.6% of individuals will test positive for a clinically actionable, likely pathogenic/pathogenic variant. This finding suggests that wider knowledge and adoption of predictive genomic services could be beneficial in medical practice, although additional studies are needed.
Collapse
Affiliation(s)
| | | | - Emily C Lisi
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | | | - Erin M Winkler
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Corinne M Berg
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Robert A Vierkant
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Ruchi Gupta
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Ahmad H Ali
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | - Stacy L Aoudia
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - A Keith Stewart
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Konstantinos N Lazaridis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
10
|
Barjaktarevic I, Miravitlles M. Alpha-1 antitrypsin (AAT) augmentation therapy in individuals with the PI*MZ genotype: a pro/con debate on a working hypothesis. BMC Pulm Med 2021; 21:99. [PMID: 33757485 PMCID: PMC7989144 DOI: 10.1186/s12890-021-01466-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a significantly under-diagnosed genetic condition caused by reduced levels and/or functionality of alpha-1 antitrypsin (AAT), predisposing individuals to lung, liver or other systemic diseases. The management of individuals with the PI*MZ genotype, characterized by mild or moderate AAT deficiency, is less clear than of those with the most common severe deficiency genotype (PI*ZZ). Recent genetic data suggest that the PI*MZ genotype may be significantly more prevalent than currently thought. The only specific treatment for lung disease associated with severe AATD is the intravenous infusion of AAT augmentation therapy, which has been shown to slow disease progression in PI*ZZ individuals. There is no specific evidence for the clinical benefit of AAT therapy in PI*MZ individuals, and the risk of emphysema development in this group remains controversial. As such, current guidelines do not support the use of AAT augmentation in PI*MZ individuals. Here, we discuss the limited data on the PI*MZ genotype and offer pro and con perspectives on pursuing an AAT-specific therapeutic strategy in PI*MZ individuals with lung disease. Ultimately, further research to demonstrate the safety, risk/benefit balance and efficacy of AAT therapy in PI*MZ individuals is needed.
Collapse
Affiliation(s)
- Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall D'Hebron, Vall D'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
11
|
Rangaraju M, Turner AM. Why is Disease Penetration so Variable in Alpha-1 Antitrypsin Deficiency? The Contribution of Environmental Factors. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:280-289. [PMID: 32698254 DOI: 10.15326/jcopdf.7.3.2019.0177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Environmental influences on clinical phenotype in alpha-1 antitrypsin deficiency (AATD) include cigarette smoke, occupational exposures, airway/sputum bacteria and outdoor air pollution. This narrative review describes the impact of the major environmental exposures and summarizes their effect on clinical phenotype and outcomes. In general, patients with AATD are more susceptible to pulmonary damage as a result of the relatively unopposed action of neutrophil elastase, in the context of neutrophilic inflammation stimulated by environmental factors. However, the amount of phenotypic variability explicable by environmental factors is insufficient to account for the wide range of clinical presentations observed, suggesting that a combination of genetic and environmental factors is likely to be responsible.
Collapse
Affiliation(s)
- Madhu Rangaraju
- University Hospitals, Birmingham National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Alice M Turner
- University Hospitals, Birmingham National Health Service Foundation Trust, Birmingham, United Kingdom.,Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Scarlata S, Santangelo S, Ferrarotti I, Corsico AG, Ottaviani S, Finamore P, Fontana D, Miravitlles M, Incalzi RA. Electrophoretic α1-globulin for screening of α1-antitrypsin deficient variants. Clin Chem Lab Med 2020; 58:1837-1845. [DOI: 10.1515/cclm-2020-0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Abstract
Background
Available screening procedures for the detection of α1-antitrypsin-deficient (AATD) mutations have suboptimal cost-effectiveness ratios. The aim in this study was to evaluate and compare the viability of a composite approach, primarily based on the α1-globulin fraction, in identifying AAT genetic analysis eligible patients against standard screening procedures, based on clinically compatible profiling and circulating AAT < 1 g/L.
Methods
A total of 21,094 subjects were screened for AATD and deemed eligible when meeting one of these criteria: α1-globulin ≤2.6%; α1-globulin 2.6%–2.9% and AST: >37 U/L and ALT: > 78 U/L; α1-globulin %: 2.9–4.6% and AST: >37 U/L and ALT: >78 U/L and erythrocyte sedimentation rate (ESR) >34 mm/h and C-reactive protein (CRP) >3 mg/L. Subjects were genotyped for the AAT gene mutation. Detection rates, including those of the rarest variants, were compared with results from standard clinical screenings. Siblings of mutated subjects were included in the study, and their results compared.
Results
Eighty-two subjects were identified. Among these, 51.2% were found to carry some Pi*M variant versus 15.9% who were clinically screened. The detection rates of the screening, including relatives, were: 50.5% for the proposed algorithm and 18.9% for the clinically-based screening. Pi*M variant prevalence in the screened population was in line with previous studies. Interestingly, 46% of subjects with Pi*M variants had an AAT plasma level above the 1 g/L threshold.
Conclusions
A composite algorithm primarily based on the α1-globulin fraction could effectively identify carriers of Pi*M gene mutation. This approach, not requiring clinical evaluation or AAT serum determination, seems suitable for clinical and epidemiological purposes.
Collapse
Affiliation(s)
- Simone Scarlata
- Unit of Respiratory Pathophysiology and Thoracic Endoscopy – Geriatrics, Department of Medicine , Campus Bio-Medico University and Teaching Hospital , Rome , Italy
| | - Simona Santangelo
- Unit of Respiratory Pathophysiology and Thoracic Endoscopy – Geriatrics, Department of Medicine , Campus Bio-Medico University and Teaching Hospital , Rome , Italy
| | - Ilaria Ferrarotti
- Center for Diagnosis of Inherited α 1 -Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, Fondazione IRCCS Policlinico San Matteo , Università di Pavia , Pavia , Italy
| | - Angelo Guido Corsico
- Center for Diagnosis of Inherited α 1 -Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, Fondazione IRCCS Policlinico San Matteo , Università di Pavia , Pavia , Italy
| | - Stefania Ottaviani
- Center for Diagnosis of Inherited α 1 -Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, Fondazione IRCCS Policlinico San Matteo , Università di Pavia , Pavia , Italy
| | - Panaiotis Finamore
- Unit of Respiratory Pathophysiology and Thoracic Endoscopy – Geriatrics, Department of Medicine , Campus Bio-Medico University and Teaching Hospital , Rome , Italy
| | - Davide Fontana
- Unit of Respiratory Pathophysiology and Thoracic Endoscopy – Geriatrics, Department of Medicine , Campus Bio-Medico University and Teaching Hospital , Rome , Italy
| | - Marc Miravitlles
- Pneumology Department Hospital Universitari Vall d’Hebron/Vall d’Hebron Research Institute Barcelona , Barcelona , Spain
| | - Raffaele Antonelli Incalzi
- Unit of Respiratory Pathophysiology and Thoracic Endoscopy – Geriatrics, Department of Medicine , Campus Bio-Medico University and Teaching Hospital , Rome , Italy
| |
Collapse
|
13
|
Carreto L, Morrison M, Donovan J, Finch S, Tan GL, Fardon T, Wilson R, Furrie E, Loebinger M, Chalmers JD. Utility of routine screening for alpha-1 antitrypsin deficiency in patients with bronchiectasis. Thorax 2020; 75:592-593. [PMID: 32303623 PMCID: PMC7361016 DOI: 10.1136/thoraxjnl-2019-214195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 11/13/2022]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a cause of bronchiectasis. Guidelines for bronchiectasis from the British Thoracic Society do not recommend to routinely test patients for AATD. In contrast, guidelines for AATD recommend routine screening. This contradiction, in part, results from the lack of data from large studies performing comprehensive screening. We screened 1600 patients with bronchiectasis at two centres in the UK from 2012 to 2016. In total, only eight individuals with AATD were identified representing 0.5% of the overall population. We conclude that routine screening for AATD in bronchiectasis in the UK has a low rate of detection. Further studies are required in different geographical regions, which may have a higher prevalence of AATD.
Collapse
Affiliation(s)
- Luis Carreto
- Respiratory Medicine, Hospital Professor Fernando Fonseca (HFF), Lisbon, Portugal
| | | | - Jackie Donovan
- Biochemistry, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Simon Finch
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Gan Liang Tan
- Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Tom Fardon
- Respiratory Medicine, University of Dundee, Dundee, UK.,Respiratory Medicine, NHS Tayside, Dundee, UK
| | - Robert Wilson
- Host Defence Unit, Division of Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Elisabeth Furrie
- Department of Immunology, Department of Medicine, Ninewells Hospital, Dundee, UK
| | - Michael Loebinger
- Host Defence Unit, Division of Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
14
|
Dummer J, Dobler CC, Holmes M, Chambers D, Yang IA, Parkin L, Smith S, Wark P, Dev A, Hodge S, Dabscheck E, Gooi J, Samuel S, Knowles S, Holland AE. Diagnosis and treatment of lung disease associated with alpha one-antitrypsin deficiency: A position statement from the Thoracic Society of Australia and New Zealand. Respirology 2020; 25:321-335. [PMID: 32030868 PMCID: PMC7078913 DOI: 10.1111/resp.13774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/27/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022]
Abstract
AATD is a common inherited disorder associated with an increased risk of developing pulmonary emphysema and liver disease. Many people with AATD-associated pulmonary emphysema remain undiagnosed and therefore without access to care and counselling specific to the disease. AAT augmentation therapy is available and consists of i.v. infusions of exogenous AAT protein harvested from pooled blood products. Its clinical efficacy has been the subject of some debate and the use of AAT augmentation therapy was recently permitted by regulators in Australia and New Zealand, although treatment is not presently subsidized by the government in either country. The purpose of this position statement is to review the evidence for diagnosis and treatment of AATD-related lung disease with reference to the Australian and New Zealand population. The clinical efficacy and adverse events of AAT augmentation therapy were evaluated by a systematic review, and the GRADE process was employed to move from evidence to recommendation. Other sections address the wide range of issues to be considered in the care of the individual with AATD-related lung disease: when and how to test for AATD, changing diagnostic techniques, monitoring of progression, disease in heterozygous AATD and pharmacological and non-pharmacological therapy including surgical options for severe disease. Consideration is also given to broader issues in AATD that respiratory healthcare staff may encounter: genetic counselling, patient support groups, monitoring for liver disease and the need to establish national registries for people with AATD in Australia and New Zealand.
Collapse
Affiliation(s)
- Jack Dummer
- Department of Medicine, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Claudia C. Dobler
- Institute for Evidence‐Based HealthcareBond University and Gold Coast University HospitalGold CoastQLDAustralia
- Department of Respiratory MedicineLiverpool HospitalSydneyNSWAustralia
| | - Mark Holmes
- Department of Thoracic MedicineRoyal Adelaide HospitalAdelaideSAAustralia
- Faculty of MedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Daniel Chambers
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- Queensland Lung Transplant ProgramThe Prince Charles HospitalBrisbaneQLDAustralia
| | - Ian A. Yang
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- Department of Thoracic MedicineThe Prince Charles HospitalBrisbaneQLDAustralia
| | - Lianne Parkin
- Department of Preventive and Social Medicine, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Sheree Smith
- School of Nursing and MidwiferyWestern Sydney UniversitySydneyNSWAustralia
| | - Peter Wark
- Centre for Healthy LungsUniversity of NewcastleNewcastleNSWAustralia
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNew LambtonNSWAustralia
| | - Anouk Dev
- Department of GastroenterologyMonash HealthMelbourneVICAustralia
| | - Sandra Hodge
- Department of Thoracic MedicineRoyal Adelaide HospitalAdelaideSAAustralia
- Faculty of MedicineThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Eli Dabscheck
- Department of Respiratory MedicineAlfred HospitalMelbourneVICAustralia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Julian Gooi
- Department of Cardiothoracic SurgeryAlfred HospitalMelbourneVICAustralia
| | - Sameh Samuel
- Department of Respiratory MedicineWollongong HospitalWollongongNSWAustralia
- School of Medicine, University of WollongongWollongongNSWAustralia
| | | | - Anne E. Holland
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
- Department of PhysiotherapyAlfred HealthMelbourneVICAustralia
- Institute for Breathing and SleepMelbourneVICAustralia
| |
Collapse
|
15
|
Ortega VE, Li X, O’Neal WK, Lackey L, Ampleford E, Hawkins GA, Grayeski PJ, Laederach A, Barjaktarevic I, Barr RG, Cooper C, Couper D, Han MK, Kanner RE, Kleerup EC, Martinez FJ, Paine R, Peters SP, Pirozzi C, Rennard SI, Woodruff PG, Hoffman EA, Meyers DA, Bleecker ER. The Effects of Rare SERPINA1 Variants on Lung Function and Emphysema in SPIROMICS. Am J Respir Crit Care Med 2020; 201:540-554. [PMID: 31661293 PMCID: PMC7047460 DOI: 10.1164/rccm.201904-0769oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/24/2019] [Indexed: 01/07/2023] Open
Abstract
Rationale: The role of PI (protease inhibitor) type Z heterozygotes and additional rare variant genotypes in the gene encoding alpha-1 antitrypsin, SERPINA1 (serpin peptidase inhibitor, clade A, member 1), in determining chronic obstructive pulmonary disease risk and severity is controversial.Objectives: To comprehensively evaluate the effects of rare SERPINA1 variants on lung function and emphysema phenotypes in subjects with significant tobacco smoke exposure using deep gene resequencing and alpha-1 antitrypsin concentrations.Methods: DNA samples from 1,693 non-Hispanic white individuals, 385 African Americans, and 90 Hispanics with ≥20 pack-years smoking were resequenced for the identification of rare variants (allele frequency < 0.05) in 16.9 kB of SERPINA1.Measurements and Main Results: White PI Z heterozygotes confirmed by sequencing (MZ; n = 74) had lower post-bronchodilator FEV1 (P = 0.007), FEV1/FVC (P = 0.003), and greater computed tomography-based emphysema (P = 0.02) compared with 1,411 white individuals without PI Z, S, or additional rare variants denoted as VR. PI Z-containing compound heterozygotes (ZS/ZVR; n = 7) had lower FEV1/FVC (P = 0.02) and forced expiratory flow, midexpiratory phase (P = 0.009). Nineteen white heterozygotes for five non-S/Z coding variants associated with lower alpha-1 antitrypsin had greater computed tomography-based emphysema compared with those without rare variants. In African Americans, a 5' untranslated region insertion (rs568223361) was associated with lower alpha-1 antitrypsin and functional small airway disease (P = 0.007).Conclusions: In this integrative deep sequencing study of SERPINA1 with alpha-1 antitrypsin concentrations in a heavy smoker and chronic obstructive pulmonary disease cohort, we confirmed the effects of PI Z heterozygote and compound heterozygote genotypes. We demonstrate the cumulative effects of multiple SERPINA1 variants on alpha-1 antitrypsin deficiency, lung function, and emphysema, thus significantly increasing the frequency of SERPINA1 variation associated with respiratory disease in at-risk smokers.
Collapse
Affiliation(s)
- Victor E. Ortega
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xingnan Li
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - Wanda K. O’Neal
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Lela Lackey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Elizabeth Ampleford
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Gregory A. Hawkins
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Philip J. Grayeski
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Igor Barjaktarevic
- Department of Medicine, David Geffen School of Medicine, Los Angeles, California
| | - R. Graham Barr
- Columbia University Medical Center, New York City, New York
| | - Christopher Cooper
- Department of Medicine, David Geffen School of Medicine, Los Angeles, California
| | - David Couper
- University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Richard E. Kanner
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Eric C. Kleerup
- Department of Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College of Cornell University, New York City, New York
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Stephen P. Peters
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Cheryl Pirozzi
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Stephen I. Rennard
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Nebraska, Omaha, Nebraska
- Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California; and
| | - Eric A. Hoffman
- Department of Radiology
- Department of Medicine, and
- Department of Biomedical Engineering, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | | |
Collapse
|
16
|
Mount S, Cirillo E, Stewart K, Coort S, Evelo CT, Wesselius A, Zeegers MP, Schols AMWJ. Network Analysis of Genome-Wide Association Studies for Chronic Obstructive Pulmonary Disease in the Context of Biological Pathways. Am J Respir Crit Care Med 2019; 200:1439-1441. [DOI: 10.1164/rccm.201904-0902le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sarah Mount
- Maastricht University Medical Centre MaastrichtMaastricht, the Netherlands
| | - Elisa Cirillo
- Maastricht University Medical Centre MaastrichtMaastricht, the Netherlands
| | - Kelly Stewart
- Maastricht University Medical Centre MaastrichtMaastricht, the Netherlands
| | - Susan Coort
- Maastricht University Medical Centre MaastrichtMaastricht, the Netherlands
| | - Chris T. Evelo
- Maastricht University Medical Centre MaastrichtMaastricht, the Netherlands
| | - Anke Wesselius
- Maastricht University Medical Centre MaastrichtMaastricht, the Netherlands
| | - Maurice P. Zeegers
- Maastricht University Medical Centre MaastrichtMaastricht, the Netherlands
| | | |
Collapse
|
17
|
Abstract
Although chronic obstructive pulmonary disease (COPD) risk is strongly influenced by cigarette smoking, genetic factors are also important determinants of COPD. In addition to Mendelian syndromes such as alpha-1 antitrypsin deficiency, many genomic regions that influence COPD susceptibility have been identified in genome-wide association studies. Similarly, multiple genomic regions associated with COPD-related phenotypes, such as quantitative emphysema measures, have been found. Identifying the functional variants and key genes within these association regions remains a major challenge. However, newly identified COPD susceptibility genes are already providing novel insights into COPD pathogenesis. Network-based approaches that leverage these genetic discoveries have the potential to assist in decoding the complex genetic architecture of COPD.
Collapse
Affiliation(s)
- Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
18
|
Affiliation(s)
- Brian K Alverson
- From the Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI (B.K.A.); and the Departments of Radiology (A.K.), Pediatrics (A.M.F.), and Pathology (A.R.S.), Massachusetts General Hospital, and the Departments of Radiology (A.K.), Pediatrics (A.M.F.), and Pathology (A.R.S.), Harvard Medical School - both in Boston
| | - Aoife Kilcoyne
- From the Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI (B.K.A.); and the Departments of Radiology (A.K.), Pediatrics (A.M.F.), and Pathology (A.R.S.), Massachusetts General Hospital, and the Departments of Radiology (A.K.), Pediatrics (A.M.F.), and Pathology (A.R.S.), Harvard Medical School - both in Boston
| | - Alison M Friedmann
- From the Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI (B.K.A.); and the Departments of Radiology (A.K.), Pediatrics (A.M.F.), and Pathology (A.R.S.), Massachusetts General Hospital, and the Departments of Radiology (A.K.), Pediatrics (A.M.F.), and Pathology (A.R.S.), Harvard Medical School - both in Boston
| | - Aliyah R Sohani
- From the Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI (B.K.A.); and the Departments of Radiology (A.K.), Pediatrics (A.M.F.), and Pathology (A.R.S.), Massachusetts General Hospital, and the Departments of Radiology (A.K.), Pediatrics (A.M.F.), and Pathology (A.R.S.), Harvard Medical School - both in Boston
| |
Collapse
|
19
|
What Do Alpha-1 Antitrypsin Levels Tell Us About Chronic Inflammation in COPD? Arch Bronconeumol 2019; 56:72-73. [PMID: 31340890 DOI: 10.1016/j.arbres.2019.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
|
20
|
Lopes AP, Mineiro MA, Costa F, Gomes J, Santos C, Antunes C, Maia D, Melo R, Canotilho M, Magalhães E, Vicente I, Valente C, Gonçalves BG, Conde B, Guimarães C, Sousa C, Amado J, Brandão ME, Sucena M, Oliveira MJ, Seixas S, Teixeira V, Telo L. Portuguese consensus document for the management of alpha-1-antitrypsin deficiency. Pulmonology 2019; 24 Suppl 1:1-21. [PMID: 30473034 DOI: 10.1016/j.pulmoe.2018.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 01/08/2023] Open
Abstract
Alpha-1-antitrypsin deficiency (AATD) is a genetic autosomal codominant disorder caused by mutations in SERPINA1 gene. It is one of the most prevalent genetic disorders, although it remains underdiagnosed. Whereas at international level there are several areas of consensus on this disorder, in Portugal, inter-hospital heterogeneity in clinical practice and resources available have been adding difficulties in reaching a diagnosis and in making therapeutic decisions in this group of patients. This raised a need to draft a document expressing a national consensus for AATD. To this end, a group of experts in this field was created within the Portuguese Pulmonology Society - Study group on AATD, in order to elaborate the current manuscript. The authors reviewed the existing literature and provide here general guidance and extensive recommendations for the diagnosis and management of AATD that can be adopted by Portuguese clinicians from different areas of Medicine. This article is part of a supplement entitled "Portuguese consensus document for the management of alpha-1-antitrypsin deficiency" which is sponsored by Sociedade Portuguesa de Pneumologia.
Collapse
Affiliation(s)
- A P Lopes
- Centro Hospitalar e Universitário de Coimbra (HUC); Alpha-1-antitrypsin deficiency study group coordinator.
| | | | - F Costa
- Centro Hospitalar e Universitário de Coimbra (HG)
| | | | | | | | - D Maia
- Centro Hospital Lisboa Central
| | - R Melo
- Hospital Prof. Doutor Fernando da Fonseca
| | | | | | | | | | | | - B Conde
- Centro Hospitalar de Trás os Montes e Alto Douro
| | | | - C Sousa
- Centro Hospitalar de São João
| | - J Amado
- Unidade Local de Saúde de Matosinhos
| | - M E Brandão
- Centro Hospitalar de Trás os Montes e Alto Douro
| | | | | | - S Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S); Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)
| | - V Teixeira
- Serviço de Saúde da Região Autónoma da Madeira (SESARAM)
| | - L Telo
- Centro Hospitalar Lisboa Norte
| |
Collapse
|
21
|
Hersh CP. Pharmacogenomics of chronic obstructive pulmonary disease. Expert Rev Respir Med 2019; 13:459-470. [PMID: 30925849 PMCID: PMC6482089 DOI: 10.1080/17476348.2019.1601559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/27/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition, which presents the opportunity for precision therapy based on genetics or other biomarkers. Areas covered: Alpha-1 antitrypsin deficiency, a genetic form of emphysema, provides an example of this precision approach to diagnosis and therapy. To date, research in COPD pharmacogenomics has been limited by small sample sizes, lack of accessible target tissue, failure to consider COPD subtypes, and different outcomes relevant for various medications. There have been several published genome-wide association studies and other omics studies in COPD pharmacogenomics; however, clinical implementation remains far away. There is a growing evidence base for precision prescription of inhaled corticosteroids in COPD, based on clinical phenotypes and blood biomarkers, but not yet based on pharmacogenomics. Expert opinion: At this time, there is insufficient evidence for clinical implementation of COPD pharmacogenomics. Additional genome-wide studies will be required to discover predictors of drug response and to identify genomic biomarkers of COPD subtypes, which could be targeted with subtype-directed therapies.
Collapse
Affiliation(s)
- Craig P Hersh
- a Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
22
|
Felisbino MB, Fernandes FLA, Nucci MCNMD, Pinto RMDC, Pizzichini E, Cukier A. The patient profile of individuals with Alpha-1 antitrypsine gene mutations at a referral center in Brazil. ACTA ACUST UNITED AC 2019; 44:383-389. [PMID: 30517339 PMCID: PMC6467596 DOI: 10.1590/s1806-37562017000000420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/26/2018] [Indexed: 11/22/2022]
Abstract
Objective: The clinical, functional, radiological and genotypic descriptions of patients with an alpha-1 antitrypsin (A1AT) gene mutation in a referral center for COPD in Brazil. Methods: A cross-sectional study of patients with an A1AT gene mutation compatible with deficiency. We evaluated the A1AT dosage and genotypic, demographic, clinical, tomographic, and functional characteristics of these patients. Results: Among the 43 patients suspected of A1AT deficiency (A1ATD), the disease was confirmed by genotyping in 27 of them. The A1AT median dosage was 45 mg/dL, and 4 patients (15%) had a normal dosage. Median age was 54, 63% of the patients were male, and the respiratory symptoms started at the age of 40. The median FEV1 was 1.37L (43% predicted). Tomographic emphysema was found in 77.8% of the individuals. The emphysema was panlobular in 76% of them and 48% had lower lobe predominance. The frequency of bronchiectasis was 52% and the frequency of bronchial thickening was 81.5%. The most common genotype was Pi*ZZ in 40.7% of participants. The other genotypes found were: Pi*SZ (18.5%), PiM1Z (14.8%), Pi*M1S (7.4%), Pi*M2Z (3.7%), Pi*M1I (3.7%), Pi*ZMnichinan (3.7%), Pi*M3Plowell (3.7%), and Pi*SF (3.7%). We did not find any significant difference in age, smoking load, FEV1, or the presence of bronchiectasis between the groups with a normal and a reduced A1AT dosage, neither for 1 nor 2-allele mutation for A1ATD. Conclusions: Our patients presented a high frequency of emphysema, bronchiectasis and bronchial thickening, and early-beginning respiratory symptoms. The most frequent genotype was Pi*ZZ. Heterozygous genotypes and normal levels of A1AT also manifested significant lung disease.
Collapse
Affiliation(s)
- Manuela Brisot Felisbino
- . Post-graduate Program in Medical Sciences, Universidade Federal de Santa Catarina, Florianópolis (SC) Brazil
| | - Frederico Leon Arrabal Fernandes
- . Pulmonology Division, Instituto do Coração, Hospital das Clínicas, School of Medicine, Universidade de São Paulo, São Paulo (SP) Brazil
| | | | - Regina Maria de Carvalho Pinto
- . Pulmonology Division, Instituto do Coração, Hospital das Clínicas, School of Medicine, Universidade de São Paulo, São Paulo (SP) Brazil
| | - Emilio Pizzichini
- . Post-graduate Program in Medical Sciences, Universidade Federal de Santa Catarina, Florianópolis (SC) Brazil
| | - Alberto Cukier
- . Pulmonology Division, Instituto do Coração, Hospital das Clínicas, School of Medicine, Universidade de São Paulo, São Paulo (SP) Brazil
| |
Collapse
|
23
|
Ferkingstad E, Oddsson A, Gretarsdottir S, Benonisdottir S, Thorleifsson G, Deaton AM, Jonsson S, Stefansson OA, Norddahl GL, Zink F, Arnadottir GA, Gunnarsson B, Halldorsson GH, Helgadottir A, Jensson BO, Kristjansson RP, Sveinbjornsson G, Sverrisson DA, Masson G, Olafsson I, Eyjolfsson GI, Sigurdardottir O, Holm H, Jonsdottir I, Olafsson S, Steingrimsdottir T, Rafnar T, Bjornsson ES, Thorsteinsdottir U, Gudbjartsson DF, Sulem P, Stefansson K. Genome-wide association meta-analysis yields 20 loci associated with gallstone disease. Nat Commun 2018; 9:5101. [PMID: 30504769 PMCID: PMC6269469 DOI: 10.1038/s41467-018-07460-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/01/2018] [Indexed: 01/07/2023] Open
Abstract
Gallstones are responsible for one of the most common diseases in the Western world and are commonly treated with cholecystectomy. We perform a meta-analysis of two genome-wide association studies of gallstone disease in Iceland and the UK, totaling 27,174 cases and 736,838 controls, uncovering 21 novel gallstone-associated variants at 20 loci. Two distinct low frequency missense variants in SLC10A2, encoding the apical sodium-dependent bile acid transporter (ASBT), associate with an increased risk of gallstone disease (Pro290Ser: OR = 1.36 [1.25-1.49], P = 2.1 × 10-12, MAF = 1%; Val98Ile: OR = 1.15 [1.10-1.20], P = 1.8 × 10-10, MAF = 4%). We demonstrate that lower bile acid transport by ASBT is accompanied by greater risk of gallstone disease and highlight the role of the intestinal compartment of the enterohepatic circulation of bile acids in gallstone disease susceptibility. Additionally, two low frequency missense variants in SERPINA1 and HNF4A and 17 common variants represent novel associations with gallstone disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Florian Zink
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | | | | | | | | | | | | | | | | | - Gisli Masson
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspítali University Hospital, Reykjavik, 101, Iceland
| | | | - Olof Sigurdardottir
- Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, 600, Iceland
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, 101, Iceland
| | - Sigurdur Olafsson
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, 101, Iceland
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Department of Obstetrics and Gynecology, Landspitali University Hospital, Reykjavik, 101, Iceland
| | | | - Einar S Bjornsson
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
- Department of Internal Medicine, Landspitali University Hospital, Reykjavik, 101, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, 101, Iceland
| | - Patrick Sulem
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland.
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, 101, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland.
| |
Collapse
|
24
|
Suárez-Lorenzo I, de Castro FR, Cruz-Niesvaara D, Herrera-Ramos E, Rodríguez-Gallego C, Carrillo-Diaz T. Alpha 1 antitrypsin distribution in an allergic asthmatic population sensitized to house dust mites. Clin Transl Allergy 2018; 8:44. [PMID: 30410723 PMCID: PMC6214172 DOI: 10.1186/s13601-018-0231-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/27/2018] [Indexed: 02/13/2023] Open
Abstract
Background and objective Severe alpha1 antitrypsin deficiency has been clearly associated with pulmonary emphysema, but its relationship with bronchial asthma remains controversial. Some deficient alpha 1 antitrypsin (AAT) genotypes seem to be associated with asthma development. The objective of this study was to analyze the distribution of AAT genotypes in asthmatic patients allergic to house dust mites (HDM), and to asses a possible association between these genotypes and severe asthma. Methods A cross-sectional cohort study of 648 patients with HDM allergic asthma was carried out. Demographic, clinical and analytical variables were collected. PI*S and PI*Z AAT deficient alleles of the SERPINA1 gene were assayed by real-time PCR. Results Asthma was intermittent in 253 patients and persistent in 395 patients (246 mild, 101 moderate and 48 severe). One hundred and forty-five asthmatic patients (22.4%) with at least one mutated allele (S or Z) were identified. No association between the different genotypes and asthma severity was found. No significant differences in all clinical and functional tests, as well as nasal eosinophils, IgA and IgE serum levels were observed. Peripheral eosinophils were significantly lower in patients with the PI*MS genotype (p = 0.0228). Neither association between deficient AAT genotypes or serum ATT deficiency (AATD) and development of severe asthma, or correlation between ATT levels and FEV1 was observed. Conclusion In conclusion, the distribution of AAT genotypes in HDM allergic asthmatic patients did not differ from those found in Spanish population. Neither severe ATTD or deficient AAT genotypes appear to confer different clinical expression of asthma.
Collapse
Affiliation(s)
- I Suárez-Lorenzo
- 1Postgraduate and Doctoral School, Universidad de Las Palmas de Gran Canaria, Camino Real de San Roque, 1, 35015 Las Palmas de Gran Canaria, Las Palmas Spain
| | - F Rodríguez de Castro
- 2Pneumology Unit, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - D Cruz-Niesvaara
- Allergy Unit, Hospital General de Fuerteventura, Puerto del Rosario, Spain
| | - E Herrera-Ramos
- 4Immunology Unit, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - C Rodríguez-Gallego
- 4Immunology Unit, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - T Carrillo-Diaz
- 5Allergy Unit, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
25
|
Baranovski BM, Schuster R, Nisim O, Brami I, Lior Y, Lewis EC. Alpha-1 Antitrypsin Substitution for Extrapulmonary Conditions in Alpha-1 Antitrypsin Deficient Patients. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2018; 5:267-276. [PMID: 30723784 DOI: 10.15326/jcopdf.5.4.2017.0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder which most commonly manifests as pulmonary emphysema. Accordingly, alpha-1 antitrypsin (AAT) augmentation therapy aims to reduce the progression of emphysema, as achieved by life-long weekly slow-drip infusions of plasma-derived affinity-purified human AAT. However, not all AATD patients will receive this therapy, due to either lack of medical coverage or low patient compliance. To circumvent these limitations, attempts are being made to develop lung-directed therapies, including inhaled AAT and locally-delivered AAT gene therapy. Lung transplantation is also an ultimate therapy option. Although less common, AATD patients also present with disease manifestations that extend beyond the lung, including vasculitis, diabetes and panniculitis, and appear to experience longer and more frequent hospitalization times and more frequent pneumonia bouts. In the past decade, new mechanism-based clinical indications for AAT therapy have surfaced, depicting a safe, anti-inflammatory, immunomodulatory and tissue-protective agent. Introduced to non-AATD individuals, AAT appears to provide relief from steroid-refractory graft-versus-host disease, from bacterial infections in cystic fibrosis and from autoimmune diabetes; preclinical studies show benefit also in multiple sclerosis, ulcerative colitis, rheumatoid arthritis, acute myocardial infarction and stroke, as well as ischemia-reperfusion injury and aberrant wound healing processes. While the current augmentation therapy is targeted towards treatment of emphysema, it is suggested that AATD patients may benefit from AAT augmentation therapy geared towards extrapulmonary pathologies as well. Thus, development of mechanism-based, context-specific AAT augmentation therapy protocols is encouraged. In the current review, we will discuss extrapulmonary manifestations of AATD and the potential of AAT augmentation therapy for these conditions.
Collapse
Affiliation(s)
- Boris M Baranovski
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronen Schuster
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Omer Nisim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ido Brami
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yotam Lior
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eli C Lewis
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
26
|
Genotype is associated with smoking and other key health behaviors among individuals with alpha-1 antitrypsin deficiency-associated lung disease. Respir Med 2018; 143:48-55. [PMID: 30261992 DOI: 10.1016/j.rmed.2018.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To examine the association of genotype with smoking and other key health behaviors among individuals with alpha-1 antitrypsin deficiency (AATD) associated lung disease. METHODS Self-reported data were analyzed from 3506 individuals with AATD-associated lung disease. All data were collected upon enrollment in a disease management program designed for individuals who have been prescribed augmentation therapy. Multivariate logistic regression was utilized to examine the extent to which genotype was associated with smoking and other key health behaviors (i.e., getting a pneumonia vaccine, getting a flu vaccine, exercising, and maintaining a healthy weight). We hypothesized that MZs and SZs are more likely than ZZs to be current smokers, and that genotype is associated with additional health behaviors. RESULTS MZs and SZs had higher odds of being a current smoker than ZZs (MZ versus ZZ OR = 2.73, p < .001; SZ versus ZZ OR = 4.34, p < .001). For every additional health behavior examined, MZs had higher odds of unhealthy behavior than ZZs (ORs ranged from 1.35 to 1.98, p < .05). SZs had higher odds of unhealthy behavior than ZZs with regard to lack of exercise (OR = 1.52, p = .003) and failure to maintain a healthy weight (underweight OR = 1.93, p = .028; overweight OR = 1.43, p = .015). CONCLUSIONS Among individuals who have been prescribed augmentation therapy for lung disease due to AATD, genotype is associated with smoking and additional health behaviors that are central to managing lung disease.
Collapse
|
27
|
Torres-Durán M, Lopez-Campos JL, Barrecheguren M, Miravitlles M, Martinez-Delgado B, Castillo S, Escribano A, Baloira A, Navarro-Garcia MM, Pellicer D, Bañuls L, Magallón M, Casas F, Dasí F. Alpha-1 antitrypsin deficiency: outstanding questions and future directions. Orphanet J Rare Dis 2018; 13:114. [PMID: 29996870 PMCID: PMC6042212 DOI: 10.1186/s13023-018-0856-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
Background Alpha-1 antitrypsin deficiency (AATD) is a rare hereditary condition that leads to decreased circulating alpha-1 antitrypsin (AAT) levels, significantly increasing the risk of serious lung and/or liver disease in children and adults, in which some aspects remain unresolved. Methods In this review, we summarise and update current knowledge on alpha-1 antitrypsin deficiency in order to identify and discuss areas of controversy and formulate questions that need further research. Results 1) AATD is a highly underdiagnosed condition. Over 120,000 European individuals are estimated to have severe AATD and more than 90% of them are underdiagnosed. Conclusions 2) Several clinical and etiological aspects of the disease are yet to be resolved. New strategies for early detection and biomarkers for patient outcome prediction are needed to reduce morbidity and mortality in these patients; 3) Augmentation therapy is the only specific approved therapy that has shown clinical efficacy in delaying the progression of emphysema. Regrettably, some countries reject registration and reimbursement for this treatment because of the lack of larger randomised, placebo-controlled trials. 4) Alternative strategies are currently being investigated, including the use of gene therapy or induced pluripotent stem cells, and non-augmentation strategies to prevent AAT polymerisation inside hepatocytes.
Collapse
Affiliation(s)
- María Torres-Durán
- Pulmonary Department, Hospital Álvaro Cunqueiro EOXI, Vigo, Spain.,NeumoVigo I+i Research Group, IIS Galicia Sur, Vigo, Spain
| | - José Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Sevilla, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Miriam Barrecheguren
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Pneumology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Marc Miravitlles
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Pneumology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Beatriz Martinez-Delgado
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Silvia Castillo
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain.,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain
| | - Amparo Escribano
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain.,School of Medicine, Department of Paediatrics, Obstetrics and Gynaecology, University of Valencia, Valencia, Spain.,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain
| | - Adolfo Baloira
- Pneumology Department, Complejo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - María Mercedes Navarro-Garcia
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain.,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain
| | - Daniel Pellicer
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain.,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain
| | - Lucía Bañuls
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain.,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain
| | - María Magallón
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain.,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain
| | - Francisco Casas
- Pneumology Department, Hospital Universitario San Cecilio, Granada, Spain
| | - Francisco Dasí
- Fundación Investigación Hospital Clínico Valencia, Instituto de Investigación Sanitaria INCLIVA, c/Menéndez y Pelayo, 4, 46010, Valencia, Spain. .,School of Medicine, Department of Physiology, Research group on Rare Respiratory Diseases (ERR), University of Valencia, Valencia, Spain.
| |
Collapse
|
28
|
Alpha-1 Antitrypsin PiMZ Genotype Is Associated with Chronic Obstructive Pulmonary Disease in Two Racial Groups. Ann Am Thorac Soc 2018; 14:1280-1287. [PMID: 28380308 DOI: 10.1513/annalsats.201611-838oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RATIONALE Alpha-1 antitrypsin deficiency, caused primarily by homozygosity for the Z allele of the SERPINA1 gene, is a well-established genetic cause of chronic obstructive pulmonary disease (COPD). Whether the heterozygous PiMZ genotype for alpha-1 antitrypsin confers increased risk for COPD has been debated. OBJECTIVES We analyzed 8,271 subjects in the Genetic Epidemiology of COPD (COPDGene) Study, hypothesizing that PiMZ would independently associate with COPD and COPD-related phenotypes. METHODS The COPDGene Study comprises a multiethnic, cross-sectional, observational cohort of non-Hispanic white and African American current and former smokers with at least 10 pack-years of smoking who were enrolled for detailed clinical and genetic studies of COPD and COPD-related traits. We performed multivariate logistic regression analysis for moderate to severe COPD and assessed Pi genotype with other relevant covariates in models stratified by race. We analyzed quantitative characteristics on the basis of volumetric computed tomography with generalized linear models controlling for genotype, scanner type, and similar covariates. RESULTS White PiMZ COPDGene subjects had significantly lower lung function, FEV1 percent predicted (68 ± 28 vs. 75 ± 27; P = 0.0005), and FEV1/FVC ratio (0.59 ± 0.18 vs. 0.63 ± 0.17; P = 0.0008), as well as more radiographic emphysema (P = 0.001), than subjects without alpha-1 antitrypsin Z risk alleles. Similarly, African American PiMZ subjects had lower lung function, FEV1 percent predicted (65 ± 33 vs. 84 ± 25; P = 0.009) and FEV1/FVC (0.61 ± 0.21 vs. 0.71 ± 0.15; P = 0.03). CONCLUSIONS In the COPDGene Study, we demonstrate that PiMZ heterozygous individuals who smoke are at increased risk for COPD and obstructive lung function impairment compared with Z-allele noncarriers, regardless of race. Although severe alpha-1 antitrypsin deficiency is uncommon in African Americans, our study adds further support for initial targeted detection of all subjects with COPD for alpha-1 antitrypsin deficiency, including African Americans. Clinical trial registered with www.clinicaltrials.gov (NCT00608784).
Collapse
|
29
|
Alpha-1 antitrypsin deficiency: From the lung to the heart? Atherosclerosis 2018; 270:166-172. [PMID: 29432934 DOI: 10.1016/j.atherosclerosis.2018.01.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Alpha-1 antitrypsin (A1AT) is the most abundant serine protease inhibitor in human blood and exerts important anti-inflammatory and immune-modulatory effects. In combination with smoking or other long-term noxious exposures such as occupational dust and fumes, genetic A1AT deficiency can cause chronic obstructive pulmonary disease, a condition with elevated cardiovascular risk. The effects of A1AT deficiency on cardiovascular risk have hardly been studied today. METHODS Using data from 2614 adults from the population-based SAPALDIA cohort, we tested associations of serum A1AT and SERPINA1 mutations with carotid intima-media thickness (CIMT, measured by B-mode ultrasonography) or self-reported arterial hypertension or cardiovascular disease in multiple regression models using a Mendelian Randomization like analysis design. Mutations Pi-S and Pi-Z were coded as ordinal genotype score (MM, MS, MZ/SS, SZ and ZZ), according to their progressive biological impact. RESULTS Serum A1AT concentration presented a u-shaped association with CIMT. At the lower end of the A1AT distribution, an analogous, linear association between SERPINA1 score and higher CIMT was observed, resulting in an estimated 1.2% (95%-confidence interval -0.1-2.5) increase in CIMT per unit (p = 0.060). Genotype score was significantly associated with arterial hypertension with an odds ratio (OR) of 1.2 (1.0-1.5) per unit (p = 0.028). The association with cardiovascular disease was not significant (OR 1.3 (0.9-1.9)). CONCLUSIONS Our results support a possible causal relationship between genetic A1AT deficiency and increased cardiovascular risk, which needs to be better taken into account for the management of affected patients and first-degree relatives.
Collapse
|
30
|
Hadzik-Blaszczyk M, Zdral A, Zielonka TM, Rozy A, Krupa R, Falkowski A, Wardyn KA, Chorostowska-Wynimko J, Zycinska K. SERPINA1 Gene Variants in Granulomatosis with Polyangiitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1070:9-18. [PMID: 29460271 DOI: 10.1007/5584_2018_156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Alpha-1 antitrypsin (A1AT) deficiency is one of the most common genetic disorders in Caucasian population. There is a link between granulomatosis with polyangiitis (GPA) and most frequent variants of SERPINA1 gene encoding severe alpha-1 antitripsin deficiency. However, the potential effect of Pi*Z, Pi*S as well as other SERPINA1 variants on clinical course of vasculitis are not well understood. The aim of the study was to analyze the potential effect of A1AT protein phenotype representing the SERPINA1 gene variants on the clinical course of GPA. The study group consisted of 64 subjects with GPA, stratified according to the disease severity: patients in active phase (group I, n = 12), patients during remission on treatment (group II, n = 40) or untreated (group III, n = 12). Normal Pi*MM SERPINA1 genotype was detected by means of real-time polymerase chain reaction (PCR) or direct sequencing in 59 patients, Pi*MZ genotype in 2, and Pi*IM, Pi*MS or Pi*SZ in 1 patient respectively. The patients with abnormal Pi*Z, Pi*S, or Pi*I allele constituted 17% in group I, 5% in group II, and 8% in group III. The serum content of A1AT and high sensitivity C-reactive protein (hsCRP) assessed by nephelometry did not differ between the groups. Interestingly, the mean serum antiPR3-antibodies level detected by Elisa method was significantly greater in the GPA patients with Pi*Z, Pi*S, or Pi*I SERPINA1 variants than in the Pi*MM homozygotes. In summary, heterozygous Pi*MZ, Pi*MS, and Pi*SZ genotype was detected in 7.8% of total group of GPA patients, and in 10.5% of those with lung lesions. The abnormal alleles of Pi*S and Pi*Z may affect the clinical course of the disease.
Collapse
Affiliation(s)
| | - Aneta Zdral
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Tadeusz M Zielonka
- Department of Family Medicine, Internal and Metabolic Diseases, Warsaw Medical University, Warsaw, Poland.
| | - Ada Rozy
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Renata Krupa
- Department of Family Medicine, Internal and Metabolic Diseases, Warsaw Medical University, Warsaw, Poland
| | - Andrzej Falkowski
- Department of Family Medicine, Internal and Metabolic Diseases, Warsaw Medical University, Warsaw, Poland
| | - Kazimierz A Wardyn
- Department of Family Medicine, Internal and Metabolic Diseases, Warsaw Medical University, Warsaw, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Katarzyna Zycinska
- Department of Family Medicine, Internal and Metabolic Diseases, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
31
|
Miravitlles M, Dirksen A, Ferrarotti I, Koblizek V, Lange P, Mahadeva R, McElvaney NG, Parr D, Piitulainen E, Roche N, Stolk J, Thabut G, Turner A, Vogelmeier C, Stockley RA. European Respiratory Society statement: diagnosis and treatment of pulmonary disease in α1-antitrypsin deficiency. Eur Respir J 2017; 50:50/5/1700610. [DOI: 10.1183/13993003.00610-2017] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/16/2017] [Indexed: 11/05/2022]
Abstract
α1-antitrypsin deficiency (AATD) is the most common hereditary disorder in adults. It is associated with an increased risk of developing pulmonary emphysema and liver disease. The pulmonary emphysema in AATD is strongly linked to smoking, but even a proportion of never-smokers develop progressive lung disease. A large proportion of individuals affected remain undiagnosed and therefore without access to appropriate care and treatment.The most recent international statement on AATD was published by the American Thoracic Society and the European Respiratory Society in 2003. Since then there has been a continuous development of novel, more accurate and less expensive genetic diagnostic methods. Furthermore, new outcome parameters have been developed and validated for use in clinical trials and a new series of observational and randomised clinical trials have provided more evidence concerning the efficacy and safety of augmentation therapy, the only specific treatment available for the pulmonary disease associated with AATD.As AATD is a rare disease, it is crucial to organise national and international registries and collect information prospectively about the natural history of the disease. Management of AATD patients must be supervised by national or regional expert centres and inequalities in access to therapies across Europe should be addressed.
Collapse
|
32
|
Abstract
Severe alpha-1 antitrypsin (AAT) deficiency is one of the most common serious genetic diseases in adults of European descent. Individuals with AAT deficiency have a greatly increased risk for emphysema and liver disease. Other manifestations include bronchiectasis, necrotizing panniculitis and granulomatosis with polyangiitis. Despite the frequency and potential severity, AAT deficiency remains under-recognized, and there is often a delay in diagnosis. This review will focus on three recent updates that should serve to encourage testing and diagnosis of AAT deficiency: first, the publication of a randomized clinical trial demonstrating the efficacy of intravenous augmentation therapy in slowing the progression of emphysema in AAT deficiency; second, the mounting evidence showing an increased risk of lung disease in heterozygous PI MZ genotype carriers; last, the recent publication of a clinical practice guideline, outlining diagnosis and management. Though it has been recognized for more than fifty years, AAT deficiency exemplifies the modern paradigm of precision medicine, with a diagnostic test that identifies a genetic subtype of a heterogeneous disease, leading to a targeted treatment.
Collapse
Affiliation(s)
- Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Ave., Boston, MA, 02115, USA.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Zhumagaliyeva A, Ottaviani S, Greulich T, Gorrini M, Vogelmeier C, Karazhanova L, Nurgazina G, DeSilvestri A, Kotke V, Barzon V, Zorzetto M, Corsico A, Ferrarotti I. Case-finding for alpha1-antitrypsin deficiency in Kazakh patients with COPD. Multidiscip Respir Med 2017; 12:23. [PMID: 29090095 PMCID: PMC5655868 DOI: 10.1186/s40248-017-0104-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/24/2017] [Indexed: 11/19/2022] Open
Abstract
Background Alpha-1-antitrypsin deficiency (AATD) is an under-diagnosed condition in patients with chronic obstructive pulmonary disease (COPD). The aim of this study was to screen for AATD in Kazakh patients with COPD using dried blood spot specimens. Methods The alpha1-antitrypsin (AAT) concentration was determined by nephelometry, PCR was used to detect PiS and PiZ alleles; and isoelectric focusing was used to confirm questionable genotype results and detect rare AAT variants. Results To this aim, 187 Kazakh subjects with COPD were recruited. Blood samples were collected as dried blood spot. Genotyping of 187 samples revealed 3 (1.6%) PI*MZ and 1 (0.53%) PI*MS, Phenotyping identified also two sample (1.1%) with phenotype PiMI. Allelic frequencies of pathological mutations Z, S and I resulted 0.8%, 0.3%, 0.5%, respectively, in COPD Kazakh population. Conclusion This study proved that AATD is present in the Kazakh population. These results support the general concept of targeted screening for AAT deficiency in countries like Kazakhstan, with a large population of COPD patients and low awareness among care-givers about this genetic condition.
Collapse
Affiliation(s)
| | - Stefania Ottaviani
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Dept of Internal Medicine and Therapeutics Pneumology Unit, IRCCS San Matteo Hospital Foundation University of Pavia, Piazza Golgi 1, 27100 Pavia, Italy
| | - Timm Greulich
- University Clinic of Marburg and Gissen, Center for Research alpha-1-antitrypsin deficiency, Marburg, Germany
| | - Marina Gorrini
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Dept of Internal Medicine and Therapeutics Pneumology Unit, IRCCS San Matteo Hospital Foundation University of Pavia, Piazza Golgi 1, 27100 Pavia, Italy
| | - Claus Vogelmeier
- University Clinic of Marburg and Gissen, Center for Research alpha-1-antitrypsin deficiency, Marburg, Germany
| | | | - Gulmira Nurgazina
- Kazakh Medical University of Continuing Education, Almaty, Kazakhstan
| | | | - Victor Kotke
- University Clinic of Marburg and Gissen, Center for Research alpha-1-antitrypsin deficiency, Marburg, Germany
| | - Valentina Barzon
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Dept of Internal Medicine and Therapeutics Pneumology Unit, IRCCS San Matteo Hospital Foundation University of Pavia, Piazza Golgi 1, 27100 Pavia, Italy
| | - Michele Zorzetto
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Dept of Internal Medicine and Therapeutics Pneumology Unit, IRCCS San Matteo Hospital Foundation University of Pavia, Piazza Golgi 1, 27100 Pavia, Italy
| | - Angelo Corsico
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Dept of Internal Medicine and Therapeutics Pneumology Unit, IRCCS San Matteo Hospital Foundation University of Pavia, Piazza Golgi 1, 27100 Pavia, Italy.,Dept of Internal Medicine and Therapeutics, Pneumology Unit, University of Pavia, Pavia, Italy
| | - Ilaria Ferrarotti
- Semey State Medical University, Semey, Kazakhstan.,Dept of Internal Medicine and Therapeutics, Pneumology Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
34
|
Al Ashry HS, Strange C. COPD in individuals with the PiMZ alpha-1 antitrypsin genotype. Eur Respir Rev 2017; 26:26/146/170068. [PMID: 29070580 DOI: 10.1183/16000617.0068-2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 11/05/2022] Open
Abstract
Since the discovery of severe alpha-1 antitrypsin deficiency as a genetic risk factor for emphysema, there has been ongoing debate over whether individuals with intermediate deficiency with one protease inhibitor Z allele (PiMZ, or MZ) are at some risk for emphysema. This is important, because MZ individuals comprise 2-5% of the general population. In this review we summarise the evidence about the risks of the MZ population to develop emphysema or asthma. We discuss the different study designs that have tried to answer this question. The risk of emphysema is more pronounced in case-control than in population-based studies, perhaps due to inadequate power. Carefully designed family studies show an increased risk of emphysema in MZ smokers. This is supported by the rapid decline in lung function of MZ individuals when compared to the general population after massive environmental exposures. The risk of asthma in MZ subjects is less studied, and more literature is needed before firm conclusions can be made. Augmentation therapy in MZ individuals is not supported by any objective studies. MZ smokers are at increased risk for emphysema that is more pronounced when other environmental challenges are present.
Collapse
Affiliation(s)
- Haitham S Al Ashry
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Charlie Strange
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
35
|
Hazari YM, Bashir A, Habib M, Bashir S, Habib H, Qasim MA, Shah NN, Haq E, Teckman J, Fazili KM. Alpha-1-antitrypsin deficiency: Genetic variations, clinical manifestations and therapeutic interventions. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:14-25. [PMID: 28927525 DOI: 10.1016/j.mrrev.2017.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 02/08/2023]
Abstract
Alpha-1-antitrypsin (AAT) is an acute phase secretory glycoprotein that inhibits neutrophil proteases like elastase and is considered as the archetype of a family of structurally related serine-protease inhibitors termed serpins. Serum AAT predominantly originates from liver and increases three to five fold during host response to tissue injury and inflammation. The AAT deficiency is unique among the protein-misfolding diseases in that it causes target organ injury by both loss-of-function and gain-of-toxic function mechanisms. Lack of its antiprotease activity is associated with premature development of pulmonary emphysema and loss-of-function due to accumulation of resultant aggregates in chronic obstructive pulmonary disease (COPD). This' in turn' markedly reduces the amount of AAT that is available to protect lungs against proteolytic attack by the enzyme neutrophil elastase. The coalescence of AAT deficiency, its reduced efficacy, and cigarette smoking or poor ventilation conditions have devastating effect on lung function. On the other hand, the accumulation of retained mutant proteins in the endoplasmic reticulum of hepatocytes in a polymerized form rather than secreted into the blood in its monomeric form is associated with chronic liver disease and predisposition to hepatocellular carcinoma (HCC) by gain- of- toxic function. Liver injury resulting from this gain-of-toxic function mechanism in which mutant AAT retained in the ER initiates a series of pathologic events, eventually culminating at liver cirrhosis and HCC. Here in this review, we underline the structural, genetic, polymorphic, biochemical and pathological advances made in the field of AAT deficiency and further comprehensively emphasize on the therapeutic interventions available for the patient.
Collapse
Affiliation(s)
| | - Arif Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mudasir Habib
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Samirul Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Huma Habib
- The Islamia College of Science & Commerce, Srinagar, Jammu and Kashmir, India
| | - M Abul Qasim
- Department of Chemistry, Indiana University Purdue University Fort Wayne, IN, USA
| | - Naveed Nazir Shah
- Department of Chest Medicine, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Jeffrey Teckman
- Department of Pediatrics, Saint Louis University, St Louis, MO, USA
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
36
|
Deng X, Yuan CH, Chang D. Interactions between single nucleotide polymorphism of SERPINA1 gene and smoking in association with COPD: a case-control study. Int J Chron Obstruct Pulmon Dis 2017; 12:259-265. [PMID: 28138235 PMCID: PMC5238810 DOI: 10.2147/copd.s116313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background SERPINA1 gene has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), while smoking is a known risk factor for COPD. Little is known on the effect of SERPINA1 gene and its interaction with smoking in the Chinese population. In this study, the effect of SERPINA1 gene polymorphisms on COPD risk and its interaction with smoking status has been investigated. Method A total of 120 COPD patients and 481 healthy controls were recruited at The Armed Police Corps Hospital. Data on demographic variables, smoking status, history of occupational dust exposure, and allergies were collected. Genotyping for single nucleotide polymorphism’s (SNP) rs1243160, rs2854254, and rs8004738 was performed in all participants. Results SNP rs8004738 genotype was associated with a significantly higher risk for COPD (odds ratio (OR) =1.835, 95% confidence interval (CI): 1.002–3.360), whereas SNPs rs1243160 and rs2854254 did not exhibit such an association. Smoking habit also significantly increased the risk for COPD (OR =2.306, 95% CI: 1.537–3.459). On stepwise logistic regression analysis, advanced age, smoking, and SNP rs8004738 variant were associated with increased risk for COPD, while female gender and higher educational status decreased the risk. On additive interaction analysis, a significant interactive effect of SNP rs8004738 and smoking was observed in this population (relative excess risk due to interaction =0.478; attributable proportion due to interaction (AP) =0.123; S=1.197). Conclusion SNP rs8004738 of SERPINA1 gene significantly interacted with smoking status and was associated with a higher risk for COPD in the Chinese population.
Collapse
Affiliation(s)
| | | | - De Chang
- Department of Respiratory Medicine, General Hospital of Chinese People's Armed Police Forces, Beijing, People's Republic of China
| |
Collapse
|
37
|
Silverman EK. Risk of Lung Disease in PI MZ Heterozygotes. Current Status and Future Research Directions. Ann Am Thorac Soc 2016; 13 Suppl 4:S341-5. [PMID: 27564671 PMCID: PMC5059493 DOI: 10.1513/annalsats.201507-437kv] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential for increased chronic obstructive pulmonary disease (COPD) risk among PI MZ subjects was initially recognized decades ago. However, despite many studies of this topic, it has remained controversial whether such increased risk exists. Several recent studies in large populations strongly support increased risk for COPD among PI MZ subjects. This increased PI MZ risk will need to be understood in the context of other identified COPD genetic determinants and investigations of COPD phenotypic heterogeneity.
Collapse
Affiliation(s)
- Edwin K Silverman
- Channing Division of Network Medicine, and Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Bashir A, Shah NN, Hazari YM, Habib M, Bashir S, Hilal N, Banday M, Asrafuzzaman S, Fazili KM. Novel variants of SERPIN1A gene: Interplay between alpha1-antitrypsin deficiency and chronic obstructive pulmonary disease. Respir Med 2016; 117:139-49. [DOI: 10.1016/j.rmed.2016.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/18/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022]
|
39
|
Rationale and Design of the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis Study. Alpha-1 Protocol. Ann Am Thorac Soc 2016; 12:1551-60. [PMID: 26153726 DOI: 10.1513/annalsats.201503-143oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Severe deficiency of alpha-1 antitrypsin has a highly variable clinical presentation. The Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis α1 Study is a prospective, multicenter, cross-sectional study of adults older than age 35 years with PiZZ or PiMZ alpha-1 antitrypsin genotypes. It is designed to better understand if microbial factors influence this heterogeneity. Clinical symptoms, pulmonary function testing, computed chest tomography, exercise capacity, and bronchoalveolar lavage (BAL) will be used to define chronic obstructive pulmonary disease (COPD) phenotypes that can be studied with an integrated systems biology approach that includes plasma proteomics; mouth, BAL, and stool microbiome and virome analysis; and blood microRNA and blood mononuclear cell RNA and DNA profiling. We will rely on global genome, transcriptome, proteome, and metabolome datasets. Matched cohorts of PiZZ participants on or off alpha-1 antitrypsin augmentation therapy, PiMZ participants not on augmentation therapy, and control participants from the Subpopulations and Intermediate Outcome Measures in COPD Study who match on FEV1 and age will be compared. In the primary analysis, we will determine if the PiZZ individuals on augmentation therapy have a difference in lower respiratory tract microbes identified compared with matched PiZZ individuals who are not on augmentation therapy. By characterizing the microbiome in alpha-1 antitrypsin deficiency (AATD), we hope to define new phenotypes of COPD that explain some of the diversity of clinical presentations. As a unique genetic cause of COPD, AATD may inform typical COPD pathogenesis, and better understanding of it may illuminate the complex interplay between environment and genetics. Although the biologic approaches are hypothesis generating, the results may lead to development of novel biomarkers, better understanding of COPD phenotypes, and development of novel diagnostic and therapeutic trials in AATD and COPD. Clinical trial registered with www.clinicaltrials.gov (NCT01832220).
Collapse
|
40
|
Aggarwal N, Delgado BM, Salipalli S, Matamala N, Rademacher J, Schwerk N, Welte T, Janciauskiene S, Ringshausen FC. Why do some adults with PiMZ α1-antitrypsin develop bronchiectasis? [corrected]. ERJ Open Res 2016; 2:00021-2016. [PMID: 27730187 PMCID: PMC5005170 DOI: 10.1183/23120541.00021-2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/23/2016] [Indexed: 01/05/2023] Open
Abstract
Bronchiectasis is an aetiologically heterogeneous, chronic and often progressive disease resulting in the permanent dilatation of one or more bronchi or bronchioli. Several reports indicated an association among inherited α1-antitrypsin deficiency (α1-ATD), pulmonary infections and bronchiectasis, with a frequency up to 10% [1, 2]. It has been postulated that in α1-ATD individuals repeated episodes of ordinary bronchitis, of whatever cause, may lead to the development of bronchiectasis [3]. Most reported α1-ATD cases with bronchiectasis are elderly homozygous PiZZ (Glu342Lys) smokers with emphysema. There are only a few historical case reports with bronchiectasis and α1-ATD in the absence of emphysema [4, 5]. Whether there is an increased risk of pulmonary diseases, including bronchiectasis, in heterozygous PiMZ α1-ATD carriers is a matter of debate [6, 7]. Recurrent infections of the upper airways in early life may be a warning sign of inherited α1-antitrypsin deficiencyhttp://ow.ly/iJsF300kbyV
Collapse
Affiliation(s)
- Nupur Aggarwal
- Dept of Respiratory Medicine, University Children's Hospital, Hannover Medical School, Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Beatriz Martinez Delgado
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sandeep Salipalli
- Dept of Respiratory Medicine, University Children's Hospital, Hannover Medical School, Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Nerea Matamala
- Molecular Genetics Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jessica Rademacher
- Dept of Respiratory Medicine, University Children's Hospital, Hannover Medical School, Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Nicolaus Schwerk
- Dept of Pediatric Pneumology, Allergy and Neonatology, University Children's Hospital, Hannover Medical School, Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Tobias Welte
- Dept of Respiratory Medicine, University Children's Hospital, Hannover Medical School, Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Sabina Janciauskiene
- Dept of Respiratory Medicine, University Children's Hospital, Hannover Medical School, Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Felix C Ringshausen
- Dept of Respiratory Medicine, University Children's Hospital, Hannover Medical School, Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
41
|
North TL, Ben-Shlomo Y, Cooper C, Deary IJ, Gallacher J, Kivimaki M, Kumari M, Martin RM, Pattie A, Sayer AA, Starr JM, Wong A, Kuh D, Rodriguez S, Day INM. A study of common Mendelian disease carriers across ageing British cohorts: meta-analyses reveal heterozygosity for alpha 1-antitrypsin deficiency increases respiratory capacity and height. J Med Genet 2016; 53:280-8. [PMID: 26831755 PMCID: PMC4819619 DOI: 10.1136/jmedgenet-2015-103342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/06/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Several recessive Mendelian disorders are common in Europeans, including cystic fibrosis (CFTR), medium-chain-acyl-Co-A-dehydrogenase deficiency (ACADM), phenylketonuria (PAH) and alpha 1-antitrypsin deficiency (SERPINA1). METHODS In a multicohort study of >19,000 older individuals, we investigated the relevant phenotypes in heterozygotes for these genes: lung function (forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC)) for CFTR and SERPINA1; cognitive measures for ACADM and PAH; and physical capability for ACADM, PAH and SERPINA1. RESULTS Findings were mostly negative but lung function in SERPINA1 (protease inhibitor (PI) Z allele, rs28929474) showed enhanced FEV1 and FVC (0.13 z-score increase in FEV1 (p=1.7 × 10(-5)) and 0.16 z-score increase in FVC (p=5.2 × 10(-8))) in PI-MZ individuals. Height adjustment (a known, strong correlate of FEV1 and FVC) revealed strong positive height associations of the Z allele (1.50 cm increase in height (p=3.6 × 10(-10))). CONCLUSIONS The PI-MZ rare (2%) SNP effect is nearly four times greater than the 'top' common height SNP in HMGA2. However, height only partially attenuates the SERPINA1-FEV1 or FVC association (around 50%) and vice versa. Height SNP variants have recently been shown to be positively selected collectively in North versus South Europeans, while the Z allele high frequency is localised to North Europe. Although PI-ZZ is clinically disadvantageous to lung function, PI-MZ increases both height and respiratory function; potentially a balanced polymorphism. Partial blockade of PI could conceivably form part of a future poly-therapeutic approach in very short children. The notion that elastase inhibition should benefit patients with chronic obstructive pulmonary disease may also merit re-evaluation. PI is already a therapeutic target: our findings invite a reconsideration of the optimum level in respiratory care and novel pathway potential for development of agents for the management of growth disorders.
Collapse
Affiliation(s)
- Teri-Louise North
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Yoav Ben-Shlomo
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK National Institute for Health Research Nutrition Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK National Institute for Health Research Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - Ian J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - John Gallacher
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, UCL, London, UK
| | - Meena Kumari
- Department of Epidemiology and Public Health, UCL, London, UK ISER, University of Essex, Essex, UK
| | - Richard M Martin
- School of Social and Community Medicine, University of Bristol, Bristol, UK University of Bristol/University Hospitals Bristol NHS Foundation Trust National Institute for Health Research Bristol Nutrition Biomedical Research Unit, University of Bristol, Bristol, UK
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Avan Aihie Sayer
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Santiago Rodriguez
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Ian N M Day
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
42
|
|
43
|
Denden S, Bouden B, Boudawara Keskes N, Knani J, Hassine M, Lefranc G, Ben Chibani J, Haj Khelil A. Aspects de la BPCO chez les porteurs de la mutation déficitaire rare de l’alpha-1 antitrypsine PIMMmalton. Rev Mal Respir 2016; 33:32-40. [DOI: 10.1016/j.rmr.2015.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/27/2015] [Indexed: 11/25/2022]
|
44
|
Hurley K, Reeves EP, Carroll TP, McElvaney NG. Tumor necrosis factor-α driven inflammation in alpha-1 antitrypsin deficiency: a new model of pathogenesis and treatment. Expert Rev Respir Med 2015; 10:207-22. [PMID: 26634397 DOI: 10.1586/17476348.2016.1127759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) has traditionally been thought of as a genetic disorder characterized by lung destruction and early emphysema in a low AAT, and high neutrophil elastase (NE) environment in the lungs of affected individuals. Recently, a growing body of evidence has emerged to support the hypothesis that tumor necrosis factor alpha (TNF-α) is essential in the pathogenesis of both genetic AATD and non-genetic chronic obstructive pulmonary disease (COPD). Reports have highlighted the importance of TNF-α driven immune cell dysfunction in the development of lung disease in AATD. The authors discuss the role of AAT as a key modulator of TNF-α signaling firstly in the setting of AATD and secondly in other conditions where AAT augmentation therapy has potential utility as a novel therapy.
Collapse
Affiliation(s)
- Killian Hurley
- a Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland Education and Research Centre , Beaumont Hospital , Dublin , Ireland
| | - Emer P Reeves
- a Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland Education and Research Centre , Beaumont Hospital , Dublin , Ireland
| | - Tomás P Carroll
- a Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland Education and Research Centre , Beaumont Hospital , Dublin , Ireland
| | - Noel G McElvaney
- a Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland Education and Research Centre , Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
45
|
Sorroche PB, Fernández Acquier M, López Jove O, Giugno E, Pace S, Livellara B, Legal S, Oyhamburu J, Saez MS. Déficit de alfa 1 antitripsina en pacientes con EPOC: estudio de corte transversal. Arch Bronconeumol 2015; 51:539-43. [DOI: 10.1016/j.arbres.2015.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/10/2014] [Accepted: 01/02/2015] [Indexed: 10/23/2022]
|
46
|
|
47
|
Donato LJ, Karras RM, Katzmann JA, Murray DL, Snyder MR. Quantitation of circulating wild-type alpha-1-antitrypsin in heterozygous carriers of the S and Z deficiency alleles. Respir Res 2015; 16:96. [PMID: 26243289 PMCID: PMC4531808 DOI: 10.1186/s12931-015-0256-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/27/2015] [Indexed: 11/23/2022] Open
Abstract
Background Alpha-1-antitrypsin (A1AT) deficiency disease results from mutations in the A1AT gene. Controversy exists in regards to treatment of heterozygous carriers of the S and Z deficiency alleles. Quantitation of allelic expression has not been possible with standard laboratory methods. Here we show that the recently described method for liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of A1AT tryptic peptides can differentiate between mutated (S and Z) and wild-type (non-S and non-Z) proteins allowing for quantitation of circulating allelic expression in heterozygous patients. Methods Serum (244 M/M, 61 M/Z, and 63 M/S) was combined with isotopically labeled peptide standards, digested with trypsin, and quantitated by LC-MS/MS. Total and allele-specific A1AT quantitation was performed by comparison of peptide peak height ratios to a standard curve for each peptide. Linear regression was used to compare results and central 95th percentile intervals were calculated using parametric analysis. Results Quantitation of circulating wild-type A1AT based on the proteotypic and allelic (non-S and non-Z) peptides was validated in M/M patients. Proteotypic peptide concentrations correlated linearly with quantitation by non-Z and non-S peptides [slopes (Spearman correlation coefficient) of 1.09 (0.89) and 0.98 (0.80), respectively]. Allele-specific quantitation showed significant differences in wild-type protein expression in M/Z and M/S patients. Although average total A1AT concentration was lower for M/Z patients, the percentage of wild-type protein in M/Z patients was significantly higher at 82 % (55- > 95 %) compared to 63 % (43-83 %) for M/S heterozygotes. In a cohort of M/Z patients with sufficient total A1AT (≥80 mg/dL), half had insufficient wild-type protein that could have clinical implications for pulmonary dysfunction. Conclusions For the first time, a method to quantitate A1AT allele protein expression is described. Given the wide range of circulating wild-type protein observed in heterozygous patients, this method has the potential to reveal correlations between allele concentration and development and/or severity of clinical symptoms.
Collapse
Affiliation(s)
- L J Donato
- Department of Laboratory Medicine & Pathology Mayo Clinic, Mayo Clinic, 200 First St. SW, 55905, Rochester, MN, USA.
| | - R M Karras
- Present address: University of Minnesota, Minneapolis, MN, USA.
| | - J A Katzmann
- Department of Laboratory Medicine & Pathology Mayo Clinic, Mayo Clinic, 200 First St. SW, 55905, Rochester, MN, USA.
| | - D L Murray
- Department of Laboratory Medicine & Pathology Mayo Clinic, Mayo Clinic, 200 First St. SW, 55905, Rochester, MN, USA.
| | - M R Snyder
- Department of Laboratory Medicine & Pathology Mayo Clinic, Mayo Clinic, 200 First St. SW, 55905, Rochester, MN, USA.
| |
Collapse
|
48
|
Traclet J, Delaval P, Terrioux P, Mornex JF. Augmentation therapy of alpha-1 antitrypsin deficiency associated emphysema. Rev Mal Respir 2015; 32:435-46. [PMID: 25908241 DOI: 10.1016/j.rmr.2014.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/12/2014] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Alpha-1 antitrypsin, secreted by the liver, inhibits neutrophil elastase. Its deficiency favours the development of emphysema. Restoring a "protective" serum level in deficient patients should make it possible to inhibit the development of emphysema. STATE OF THE ART Human plasma-derived alpha-1 antitrypsin is a blood-derived drug sold in France under the name Alfalastin(®). The recommended posology is an I.V. administration of 60 mg/kg once a week. Human plasma-derived alpha-1 antitrypsin restores anti-elastase protection in the lower lung and prevents experimental emphysema induced by the elastasis of human neutrophils in hamster. The low number of patients with alpha-1 antitrypsin deficiency is one of the difficulties to perform sufficiently powerful randomised studies. However, randomised studies have reported the efficacy of human plasma-derived alpha-1 antitrypsin perfusions on mortality, FEV1 decline and the frequency of exacerbations. Randomised control trials have demonstrated the efficacy of human plasma-derived alpha-1 antitrypsin perfusions on the loss of lung density assessed by CT scan. CONCLUSION Augmentation therapy is simple in its conception and implementation, but it is expensive. However, there are currently no other solutions.
Collapse
Affiliation(s)
- J Traclet
- Hospices civils de Lyon, 69000 Lyon, France; Centre de référence des maladies rares pulmonaires, 69000 Lyon, France
| | - P Delaval
- IRSET UMR Inserm U1085, université de Rennes 1, 35000 Rennes, France; Centre hospitalier universitaire de Rennes, 35000 Rennes, France
| | - P Terrioux
- Cabinet de pneumologie, 77100 Meaux, France
| | - J-F Mornex
- Hospices civils de Lyon, 69000 Lyon, France; Centre de référence des maladies rares pulmonaires, 69000 Lyon, France; Université Lyon 1, 69000 Lyon, France; INRA, UMR754, 69000 Lyon, France.
| |
Collapse
|
49
|
Casas F, Blanco I, Martínez MT, Bustamante A, Miravitlles M, Cadenas S, Hernández JM, Lázaro L, Rodríguez E, Rodríguez-Frías F, Torres M, Lara B. Indications for active case searches and intravenous alpha-1 antitrypsin treatment for patients with alpha-1 antitrypsin deficiency chronic pulmonary obstructive disease: an update. Arch Bronconeumol 2015; 51:185-92. [PMID: 25027067 DOI: 10.1016/j.arbres.2014.05.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/10/2014] [Accepted: 05/26/2014] [Indexed: 02/07/2023]
Abstract
The effect of hereditary alpha-1 antitrypsin (AAT) deficiency can manifest clinically in the form of chronic obstructive pulmonary disease (COPD). AAT deficiency (AATD) is defined as a serum concentration lower than 35% of the expected mean value or 50 mg/dl (determined by nephelometry). It is associated in over 95% of cases with Pi*ZZ genotypes, and much less frequently with other genotypes resulting from combinations of Z, S, rare and null alleles. A systematic qualitative review was made of 107 articles, focusing mainly on an active search for AATD in COPD patients and intravenous (iv) treatment with AAT. On the basis of this review, the consultant committee of the Spanish Registry of Patients with AATD recommends that all COPD patients be screened for AATD with the determination of AAT serum concentrations, and when these are low, the evaluation must be completed with phenotyping and, on occasions, genotyping. Patients with severe AATD COPD should receive the pharmacological and non-pharmacological treatment recommended in the COPD guidelines. There is enough evidence from large observational studies and randomized placebo-controlled clinical trials to show that the administration of iv AAT reduces mortality and slows the progression of emphysema, hence its indication in selected cases that meet the inclusion criteria stipulated in international guidelines. The administration of periodic infusions of AAT is the only specific treatment for delaying the progression of emphysema associated with AATD.
Collapse
Affiliation(s)
- Francisco Casas
- Unidad de Gestión Clínica de Neumología, Hospital Universitario San Cecilio, Granada, España
| | - Ignacio Blanco
- Registro Español de pacientes con déficit de alfa-1 antitripsina, Fundación Española de Pulmón, Respira, SEPAR
| | | | - Ana Bustamante
- Servicio de Neumología, Hospital de Sierrallana, Torrelavega, Cantabria, España
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d'Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, España
| | - Sergio Cadenas
- Servicio de Neumología, Hospital Clínico Universitario de Salamanca, Salamanca, España
| | - José M Hernández
- Servicio de Neumología, Hospital General de la Palma, La Palma, Santa Cruz de Tenerife, España
| | - Lourdes Lázaro
- Servicio de Neumología, Hospital Universitario de Burgos, Burgos, España
| | - Esther Rodríguez
- Servicio de Neumología, Hospital Universitari Vall d'Hebron, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, España
| | | | - María Torres
- Servicio de Neumología, Complexo Universitario de Vigo, Pontevedra, España
| | - Beatriz Lara
- Servicio de Neumología, Hospital Universitario Arnau de Vilanova, Lleida, España.
| |
Collapse
|
50
|
Casas F, Blanco I, Martínez MT, Bustamante A, Miravitlles M, Cadenas S, Hernández JM, Lázaro L, Rodríguez E, Rodríguez-Frías F, Torres M, Lara B. Indications for Active Case Searches and Intravenous Alpha-1 Antitrypsin Treatment for Patients With Alpha-1 Antitrypsin Deficiency Chronic Pulmonary Obstructive Disease: An Update. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.arbr.2014.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|