1
|
Clarke LL, Mead DG, Ruder MG, Howerth EW, Stallknecht D. North American Arboviruses and White-Tailed Deer ( Odocoileus virginianus): Associated Diseases and Role in Transmission. Vector Borne Zoonotic Dis 2022; 22:425-442. [PMID: 35867036 DOI: 10.1089/vbz.2022.0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Arboviral disease is of increasing concern to human and animal health professionals as emerging and re-emerging arboviruses are more frequently recognized. Wildlife species are known to play a role in the transmission and maintenance of arboviruses and infections can result in morbidity and mortality in wildlife hosts. Materials and Methods: In this review, we detail existing evidence of white-tailed deer (Odocoileus virginianus) as an important host to a diverse collection of arboviruses and evaluate the utility of this species as a resource to better understand the epidemiology of related viral diseases. Results: Relevant veterinary and zoonotic viral pathogens endemic to North America include epizootic hemorrhagic disease virus, bluetongue virus, orthobunyaviruses, vesicular stomatitis virus, Eastern equine encephalitis virus, West Nile virus, and Powassan virus. Exotic viral pathogens that may infect white-tailed deer are also identified with an emphasis on zoonotic disease risks. The utility of this species is attributed to the high degree of contact with humans and domestic livestock and evidence of preferential feeding by various insect vectors. Conclusions: There is mounting evidence that white-tailed deer are a useful, widely available source of information regarding arboviral circulation, and that surveillance and monitoring of deer populations would be of value to the understanding of certain viral transmission dynamics, with implications for improving human and domestic animal health.
Collapse
Affiliation(s)
- Lorelei L Clarke
- Wisconsin Veterinary Diagnostic Laboratory, Madison, Wisconsin, USA
| | - Daniel G Mead
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Kopanke J, Carpenter M, Lee J, Reed K, Rodgers C, Burton M, Lovett K, Westrich JA, McNulty E, McDermott E, Barbera C, Cavany S, Rohr JR, Perkins TA, Mathiason CK, Stenglein M, Mayo C. Bluetongue Research at a Crossroads: Modern Genomics Tools Can Pave the Way to New Insights. Annu Rev Anim Biosci 2022; 10:303-324. [PMID: 35167317 DOI: 10.1146/annurev-animal-051721-023724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bluetongue virus (BTV) is an arthropod-borne, segmented double-stranded RNA virus that can cause severe disease in both wild and domestic ruminants. BTV evolves via several key mechanisms, including the accumulation of mutations over time and the reassortment of genome segments.Additionally, BTV must maintain fitness in two disparate hosts, the insect vector and the ruminant. The specific features of viral adaptation in each host that permit host-switching are poorly characterized. Limited field studies and experimental work have alluded to the presence of these phenomena at work, but our understanding of the factors that drive or constrain BTV's genetic diversification remains incomplete. Current research leveraging novel approaches and whole genome sequencing applications promises to improve our understanding of BTV's evolution, ultimately contributing to the development of better predictive models and management strategies to reduce future impacts of bluetongue epizootics.
Collapse
Affiliation(s)
- Jennifer Kopanke
- Office of the Campus Veterinarian, Washington State University, Spokane, Washington, USA;
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Justin Lee
- Genomic Sequencing Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Kirsten Reed
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mollie Burton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Kierra Lovett
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Joseph A Westrich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Erin McNulty
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Emily McDermott
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Carly Barbera
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Sean Cavany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| |
Collapse
|
3
|
Saminathan M, Singh KP, Khorajiya JH, Dinesh M, Vineetha S, Maity M, Rahman AF, Misri J, Malik YS, Gupta VK, Singh RK, Dhama K. An updated review on bluetongue virus: epidemiology, pathobiology, and advances in diagnosis and control with special reference to India. Vet Q 2021; 40:258-321. [PMID: 33003985 PMCID: PMC7655031 DOI: 10.1080/01652176.2020.1831708] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bluetongue (BT) is an economically important, non-contagious viral disease of domestic and wild ruminants. BT is caused by BT virus (BTV) and it belongs to the genus Orbivirus and family Reoviridae. BTV is transmitted by Culicoides midges and causes clinical disease in sheep, white-tailed deer, pronghorn antelope, bighorn sheep, and subclinical manifestation in cattle, goats and camelids. BT is a World Organization for Animal Health (OIE) listed multispecies disease and causes great socio-economic losses. To date, 28 serotypes of BTV have been reported worldwide and 23 serotypes have been reported from India. Transplacental transmission (TPT) and fetal abnormalities in ruminants had been reported with cell culture adopted live-attenuated vaccine strains of BTV. However, emergence of BTV-8 in Europe during 2006, confirmed TPT of wild-type/field strains of BTV. Diagnosis of BT is more important for control of disease and to ensure BTV-free trade of animals and their products. Reverse transcription polymerase chain reaction, agar gel immunodiffusion assay and competitive enzyme-linked immunosorbent assay are found to be sensitive and OIE recommended tests for diagnosis of BTV for international trade. Control measures include mass vaccination (most effective method), serological and entomological surveillance, forming restriction zones and sentinel programs. Major hindrances with control of BT in India are the presence of multiple BTV serotypes, high density of ruminant and vector populations. A pentavalent inactivated, adjuvanted vaccine is administered currently in India to control BT. Recombinant vaccines with DIVA strategies are urgently needed to combat this disease. This review is the first to summarise the seroprevalence of BTV in India for 40 years, economic impact and pathobiology.
Collapse
Affiliation(s)
- Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sobharani Vineetha
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Madhulina Maity
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - At Faslu Rahman
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, New Delhi, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Raj Kumar Singh
- Director, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
4
|
Roch FF, Conrady B. Overview of Mitigation Programs for Non-EU-Regulated Cattle Diseases in Austria. Front Vet Sci 2021; 8:689244. [PMID: 34212024 PMCID: PMC8239179 DOI: 10.3389/fvets.2021.689244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The non-regulation of animal diseases due to missing regulation at the European Union (EU) level enables member states to implement mitigation programs based on their own country-specific conditions such as priority settings of the governments, availability of financial resources, and epidemiological situation. This can result in a heterogeneous distribution of mitigation activities and prevalence levels within and/or between countries, which can cause difficulties for intracommunity trade. This article aims to describe the past, current, and future mitigation activities and associated prevalence levels for four non-regulated animal diseases, i.e., enzootic bovine leukosis (EBL), infectious bovine rhinotracheitis/infectious pustular vulvovaginitis (IBR/IPV), bovine viral diarrhea (BVD), and bluetongue disease (BT) for Austria. Over a period of 40 years (1978-2020), regulations concerning EBL, IBR/IPV, BVD, and BT were retraced to analyze the changes of legislation, focusing on sampling, testing, and mitigation activities in Austria, and were linked to the collected diagnostic testing results. The study results clearly demonstrate the adoption of the legislation by the Austrian governments in dependency of the epidemiological situations. Furthermore, our study shows that, related to the forthcoming Animal Health Law on April 21, 2021, Austria has a good initial situation to achieve disease-free status and/or free from infection status based on the current available epidemiological situation and previously implemented mitigation activities. The study results presented here are intended to contribute to a better comparison of the eradication status across the European countries for non-EU-regulated cattle diseases by providing information about the mitigation activities and data of testing results over a period of 40 years.
Collapse
Affiliation(s)
- Franz-Ferdinand Roch
- Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Beate Conrady
- Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Complexity Science Hub Vienna, Vienna, Austria
| |
Collapse
|
5
|
De Clercq K, Vandaele L, Vanbinst T, Riou M, Deblauwe I, Wesselingh W, Pinard A, Van Eetvelde M, Boulesteix O, Leemans B, Gélineau R, Vercauteren G, Van der Heyden S, Beckers JF, Saegerman C, Sammin D, de Kruif A, De Leeuw I. Transmission of Bluetongue Virus Serotype 8 by Artificial Insemination with Frozen-Thawed Semen from Naturally Infected Bulls. Viruses 2021; 13:v13040652. [PMID: 33918924 PMCID: PMC8069090 DOI: 10.3390/v13040652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Transmission of bluetongue (BT) virus serotype 8 (BTV-8) via artificial insemination of contaminated frozen semen from naturally infected bulls was investigated in two independent experiments. Healthy, BT negative heifers were hormonally synchronized and artificially inseminated at oestrus. In total, six groups of three heifers received semen from four batches derived from three bulls naturally infected with BTV-8. Each experiment included one control heifer that was not inseminated and that remained BT negative throughout. BTV viraemia and seroconversion were determined in 8 out of 18 inseminated heifers, and BTV was isolated from five of these animals. These eight heifers only displayed mild clinical signs of BT, if any at all, but six of them experienced pregnancy loss between weeks four and eight of gestation, and five of them became BT PCR and antibody positive. The other two infected heifers gave birth at term to two healthy and BT negative calves. The BT viral load varied among the semen batches used and this had a significant impact on the infection rate, the time of onset of viraemia post artificial insemination, and the gestational stage at which pregnancy loss occurred. These results, which confirm unusual features of BTV-8 infection, should not be extrapolated to infection with other BTV strains without thorough evaluation. This study also adds weight to the hypothesis that the re-emergence of BTV-8 in France in 2015 may be attributable to the use of contaminated bovine semen.
Collapse
Affiliation(s)
- Kris De Clercq
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, 1180 Brussels, Belgium; (I.D.L.)
- Correspondence:
| | - Leen Vandaele
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (L.V.); (W.W.); (M.V.E.); (B.L.); (A.d.K.)
| | - Tine Vanbinst
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, 1180 Brussels, Belgium; (I.D.L.)
| | - Mickaël Riou
- UE-1277 Plateforme d’Infectiologie Expérimentale (PFIE), Centre de Recherche Val de Loire, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 37380 Nouzilly, France; (M.R.); (A.P.); (O.B.); (R.G.)
| | - Isra Deblauwe
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium;
| | - Wendy Wesselingh
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (L.V.); (W.W.); (M.V.E.); (B.L.); (A.d.K.)
| | - Anne Pinard
- UE-1277 Plateforme d’Infectiologie Expérimentale (PFIE), Centre de Recherche Val de Loire, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 37380 Nouzilly, France; (M.R.); (A.P.); (O.B.); (R.G.)
| | - Mieke Van Eetvelde
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (L.V.); (W.W.); (M.V.E.); (B.L.); (A.d.K.)
| | - Olivier Boulesteix
- UE-1277 Plateforme d’Infectiologie Expérimentale (PFIE), Centre de Recherche Val de Loire, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 37380 Nouzilly, France; (M.R.); (A.P.); (O.B.); (R.G.)
| | - Bart Leemans
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (L.V.); (W.W.); (M.V.E.); (B.L.); (A.d.K.)
| | - Robert Gélineau
- UE-1277 Plateforme d’Infectiologie Expérimentale (PFIE), Centre de Recherche Val de Loire, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 37380 Nouzilly, France; (M.R.); (A.P.); (O.B.); (R.G.)
| | - Griet Vercauteren
- Department of Pathology, Bacteriology and Poultry Diseases, 9820 Merelbeke, Belgium; (G.V.); (S.V.d.H.)
| | - Sara Van der Heyden
- Department of Pathology, Bacteriology and Poultry Diseases, 9820 Merelbeke, Belgium; (G.V.); (S.V.d.H.)
| | - Jean-François Beckers
- Département des Sciences Fonctionnelles (DSF), Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, 4000 Liège, Belgium;
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4130 Liege, Belgium;
| | - Donal Sammin
- Department of Agriculture Food and the Marine Laboratories, Backweston, W23 X3PH Co. Kildare, Ireland;
| | - Aart de Kruif
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (L.V.); (W.W.); (M.V.E.); (B.L.); (A.d.K.)
| | - Ilse De Leeuw
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, 1180 Brussels, Belgium; (I.D.L.)
| |
Collapse
|
6
|
Vinomack C, Rivière J, Bréard E, Viarouge C, Postic L, Zientara S, Vitour D, Belbis G, Spony V, Pagneux C, Sailleau C, Zanella G. Clinical cases of Bluetongue serotype 8 in calves in France in the 2018-2019 winter. Transbound Emerg Dis 2020; 67:1401-1405. [PMID: 31883429 DOI: 10.1111/tbed.13466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022]
Abstract
Bluetongue virus serotype 8 (BTV-8) caused an epizootic in Europe in 2006/09. Transplacental transmission of BTV-8 was demonstrated leading to abortions, congenital malformations or nervous clinical signs in newborn calves. BTV-8 re-emerged in France in 2015. Although the re-emergent strain is nearly genetically identical to the one that had circulated in 2006/2009, it has caused very few clinical cases. However, from mid-December 2018 to April 2019, cases of calves with congenital malformations or displaying nervous clinical signs occurred in some departments (French administrative unit) in mainland France. Blood samples from these animals were sent to local laboratories, and the positive ones were confirmed at the French Bluetongue reference laboratory (BT-NRL). Out of 580 samples found positive at the local laboratories, 544 were confirmed as RT-PCR BTV-8 positive. The 36 samples found positive in the local laboratories and negative in the BT-NRL were all at the limit of RT-PCR detection. Hundred eighty-eight of the confirmed samples were also tested for the presence of Schmallenberg virus (SBV) and bovine virus diarrhoea virus (BVDV) infection: 4 were found positive for BVDV and none for SBV. The main clinical signs recorded for 244 calves, for which a reporting form was completed by veterinarians, included nervous clinical signs (81%), amaurosis (72%) and decrease/ no suckling reflex (40%). Hydranencephaly and microphthalmia were reported in 19 calves out of 27 in which a necropsy was practiced after death or euthanasia. These results indicate that the re-emergent strain of BTV-8 can cross the transplacental barrier and cause congenital malformations or nervous clinical signs in calves.
Collapse
Affiliation(s)
- Chloé Vinomack
- Epidemiology Unit, Laboratory for Animal Health, ANSES, University Paris Est, Maisons-Alfort, France.,USC EPIMAI, Anses, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Julie Rivière
- USC EPIMAI, Anses, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Emmanuel Bréard
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Cyril Viarouge
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Lydie Postic
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Stéphan Zientara
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Damien Vitour
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Guillaume Belbis
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Vincent Spony
- Direction Départementale de la Cohésion Sociale et de la Protection des Populations, Services vétérinaires, Yzeure, France
| | - Caroline Pagneux
- Eurofins Laboratoire Cœur de France, Boulevard de Nomazy, Moulins, France
| | - Corinne Sailleau
- UMR VIROLOGIE, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Gina Zanella
- Epidemiology Unit, Laboratory for Animal Health, ANSES, University Paris Est, Maisons-Alfort, France
| |
Collapse
|
7
|
Reliable and Standardized Animal Models to Study the Pathogenesis of Bluetongue and Schmallenberg Viruses in Ruminant Natural Host Species with Special Emphasis on Placental Crossing. Viruses 2019; 11:v11080753. [PMID: 31443153 PMCID: PMC6722754 DOI: 10.3390/v11080753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 01/03/2023] Open
Abstract
Starting in 2006, bluetongue virus serotype 8 (BTV8) was responsible for a major epizootic in Western and Northern Europe. The magnitude and spread of the disease were surprisingly high and the control of BTV improved significantly with the marketing of BTV8 inactivated vaccines in 2008. During late summer of 2011, a first cluster of reduced milk yield, fever, and diarrhoea was reported in the Netherlands. Congenital malformations appeared in March 2012 and Schmallenberg virus (SBV) was identified, becoming one of the very few orthobunyaviruses distributed in Europe. At the start of both epizootics, little was known about the pathogenesis and epidemiology of these viruses in the European context and most assumptions were extrapolated based on other related viruses and/or other regions of the World. Standardized and repeatable models potentially mimicking clinical signs observed in the field are required to study the pathogenesis of these infections, and to clarify their ability to cross the placental barrier. This review presents some of the latest experimental designs for infectious disease challenges with BTV or SBV. Infectious doses, routes of infection, inoculum preparation, and origin are discussed. Particular emphasis is given to the placental crossing associated with these two viruses.
Collapse
|
8
|
Courtejoie N, Bournez L, Zanella G, Durand B. Quantifying bluetongue vertical transmission in French cattle from surveillance data. Vet Res 2019; 50:34. [PMID: 31088555 PMCID: PMC6518818 DOI: 10.1186/s13567-019-0651-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/03/2019] [Indexed: 12/02/2022] Open
Abstract
Bluetongue is a vector-borne disease of ruminants with economic consequences for the livestock industry. Bluetongue virus serotype 8 (BTV-8) caused a massive outbreak in Europe in 2006/2009 and re-emerged in France in 2015. Given the unprecedented epidemiological features of this serotype in cattle, the importance of secondary routes of transmission was reconsidered and transplacental transmission of BTV-8 was demonstrated in naturally and experimentally infected cattle. Here we used surveillance data from the on-going outbreak to quantify BTV-8 vertical transmission in French cattle. We used RT-PCR pre-export tests collected from June to December 2016 on the French territory and developed a catalytic model to disentangle vertical and vector-borne transmission. A series of in silico experiments validated the ability of our framework to quantify vertical transmission provided sufficient prevalence levels. By applying our model to an area selected accordingly, we estimated a probability of vertical transmission of 56% (55.8%, 95% credible interval 41.7–70.6) in unvaccinated heifers infected late in gestation. The influence of this high probability of vertical transmission on BTV-8 spread and persistence should be further investigated.
Collapse
Affiliation(s)
- Noémie Courtejoie
- Epidemiology Unit, Laboratory for Animal Health, ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Paris-Est University, 14 Rue Pierre et Marie Curie, 94700, Maisons-Alfort, France.,Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015, Paris, France
| | - Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, ANSES (French Agency for Food, Environmental and Occupational Health and Safety), CS 40009, 54220, Malzéville, France
| | - Gina Zanella
- Epidemiology Unit, Laboratory for Animal Health, ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Paris-Est University, 14 Rue Pierre et Marie Curie, 94700, Maisons-Alfort, France
| | - Benoît Durand
- Epidemiology Unit, Laboratory for Animal Health, ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Paris-Est University, 14 Rue Pierre et Marie Curie, 94700, Maisons-Alfort, France.
| |
Collapse
|
9
|
Maclachlan NJ, Osburn BI. Teratogenic bluetongue and related orbivirus infections in pregnant ruminant livestock: timing and pathogen genetics are critical. Curr Opin Virol 2017; 27:31-35. [PMID: 29107849 DOI: 10.1016/j.coviro.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
Congenital infections of domestic animals with viruses in several families, including Bunyaviridae, Flaviridae, Parvoviridae, and Reoviridae, are the cause of naturally occurring teratogenic central nervous system and/or musculoskeletal defects (arthrogryposis) in domestic animals. Congenital infections of ruminant livestock with bluetongue virus (BTV) and some related members of the genus Orbivirus (family Reoviridae) have clearly shown the critical role of gestational age at infection in determining outcome. Specifically, fetuses infected prior to mid-gestation that survive congenital BTV infection are born with cavitating central nervous system defects that range from severe hydranencephaly to cerebral cysts (porencephaly). Generally, the younger the fetus (in terms of gestational age) at infection, the more severe the teratogenic lesion at birth. Age-dependent virus infection and destruction of neuronal and/or glial cell precursors that populate the developing central nervous system are responsible for these naturally occurring virus-induced congenital defects of animals, thus lesions are most severe when progenitor cells are infected prior to their normal migration during embryogenesis. Whereas congenital infection is characteristic of certain BTV strains, notably live-attenuated (modified-live) vaccine viruses that have been passaged in embryonating eggs, transplacental transmission is not characteristic of many field strains of the virus and much remains to be determined regarding the genetic determinants of transplacental transmission of individual virus strains.
Collapse
Affiliation(s)
- N James Maclachlan
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Bennie I Osburn
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
10
|
Abstract
The performance of different bluetongue control measures related to both vaccination and protection from bluetongue virus (BTV) vectors was assessed. By means of a mathematical model, it was concluded that when vaccination is applied on 95% of animals even for 3 years, bluetongue cannot be eradicated and is able to re‐emerge. Only after 5 years of vaccination, the infection may be close to the eradication levels. In the absence of vaccination, the disease can persist for several years, reaching an endemic condition with low level of prevalence of infection. Among the mechanisms for bluetongue persistence, the persistence in the wildlife, the transplacental transmission in the host, the duration of viraemia and the possible vertical transmission in vectors were assessed. The criteria of the current surveillance scheme in place in the EU for demonstration of the virus absence need revision, because it was highlighted that under the current surveillance policy bluetongue circulation might occur undetected. For the safe movement of animals, newborn ruminants from vaccinated mothers with neutralising antibodies can be considered protected against infection, although a protective titre threshold cannot be identified. The presence of colostral antibodies interferes with the vaccine immunisation in the newborn for more than 3 months after birth, whereas the minimum time after vaccination of animal to be considered immune can be up to 48 days. The knowledge about vectors ecology, mechanisms of over‐wintering and criteria for the seasonally vector‐free period was updated. Some Culicoides species are active throughout the year and an absolute vector‐free period may not exist at least in some areas in Europe. To date, there is no evidence that the use of insecticides and repellents reduce the transmission of BTV in the field, although this may reduce host/vector contact. By only using pour‐on insecticides, protection of animals is lower than the one provided by vector‐proof establishments. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1182/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1171/full
Collapse
|
11
|
Abstract
Bluetongue virus (BTV) is the type species of genus Orbivirus within family Reoviridae. Bluetongue virus is transmitted between its ruminant hosts by the bite of Culicoides spp. midges. Severe BT cases are characterized by symptoms including hemorrhagic fever, particularly in sheep, loss of productivity, and death. To date, 27 BTV serotypes have been documented. These include novel isolates of atypical BTV, which have been almost fully characterized using deep sequencing technologies and do not rely on Culicoides vectors for their transmission among hosts. Due to its high economic impact, BT is an Office International des Epizooties (OIE) listed disease that is strictly controlled in international commercial exchanges. During the 20th century, BTV has been endemic in subtropical regions. In the last 15 years, novel strains of nine "typical" BTV serotypes (1, 2, 4, 6, 8, 9, 11, 14, and 16) invaded Europe, some of which caused disease in naive sheep and unexpectedly in bovine herds (particularly serotype 8). Over the past few years, three novel "atypical" serotypes (25-27) were characterized during sequencing studies of animal samples from Switzerland, Kuwait, and France, respectively. Classical serotype-specific inactivated vaccines, although expensive, were very successful in controlling outbreaks as shown with the northern European BTV-8 outbreak which started in the summer of 2006. Technological jumps in deep sequencing methodologies made rapid full characterizations of BTV genome from isolates/tissues feasible. Next-generation sequencing (NGS) approaches are powerful tools to study the variability of BTV genomes on a fine scale. This paper provides information on how NGS impacted our knowledge of the BTV genome.
Collapse
|
12
|
Steyn J, Venter EH. Sequence analysis and evaluation of the NS3/A gene region of bluetongue virus isolates from South Africa. Arch Virol 2016; 161:947-57. [PMID: 26780892 DOI: 10.1007/s00705-015-2741-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/21/2015] [Indexed: 11/24/2022]
Abstract
Phylogenetic networks and sequence analysis allow a more accurate understanding of the serotypes, genetic relationships and epidemiology of viruses. Based on gene sequences of the conserved segment 10 (NS3), bluetongue virus (BTV) can be divided into five topotypes. In this molecular epidemiology study, segment 10 sequence data of 11 isolates obtained from the Virology Section of the Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, were analyzed and compared to sequence data of worldwide BTV strains available in the GenBank database. The consensus nucleotide sequences of NS3/A showed intermediate levels of variation, with the nucleotide sequence identity ranging from 79.72 % to 100 %. All 11 strains demonstrated conserved amino acid characteristics. Phylogenetic networks were used to identify BTV topotypes. The phylogeny obtained from the nucleotide sequence data of the NS3/A-encoding gene presented three major and two minor topotypes. The clustering of strains from different geographical areas into the same group indicated spatial spread of the segment 10 genes, either through gene reassortment or through the introduction of new strains from other geographical areas via trade. The effect of reassortment and genetic drift on BTV and the importance of correct serotyping to identify viral strains are highlighted.
Collapse
Affiliation(s)
- Jumari Steyn
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| | - Estelle Hildegard Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa.
| |
Collapse
|
13
|
Agerholm JS, Hewicker-Trautwein M, Peperkamp K, Windsor PA. Virus-induced congenital malformations in cattle. Acta Vet Scand 2015; 57:54. [PMID: 26399846 PMCID: PMC4581091 DOI: 10.1186/s13028-015-0145-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/30/2015] [Indexed: 11/18/2022] Open
Abstract
Diagnosing the cause of bovine congenital malformations (BCMs) is challenging for bovine veterinary practitioners and laboratory diagnosticians as many known as well as a large number of not-yet reported syndromes exist. Foetal infection with certain viruses, including bovine virus diarrhea virus (BVDV), Schmallenberg virus (SBV), blue tongue virus (BTV), Akabane virus (AKAV), or Aino virus (AV), is associated with a range of congenital malformations. It is tempting for veterinary practitioners to diagnose such infections based only on the morphology of the defective offspring. However, diagnosing a virus as a cause of BCMs usually requires laboratory examination and even in such cases, interpretation of findings may be challenging due to lack of experience regarding genetic defects causing similar lesions, even in cases where virus or congenital antibodies are present. Intrauterine infection of the foetus during the susceptible periods of development, i.e. around gestation days 60-180, by BVDV, SBV, BTV, AKAV and AV may cause malformations in the central nervous system, especially in the brain. Brain lesions typically consist of hydranencephaly, porencephaly, hydrocephalus and cerebellar hypoplasia, which in case of SBV, AKAV and AV infections may be associated by malformation of the axial and appendicular skeleton, e.g. arthrogryposis multiplex congenita. Doming of the calvarium is present in some, but not all, cases. None of these lesions are pathognomonic so diagnosing a viral cause based on gross lesions is uncertain. Several genetic defects share morphology with virus induced congenital malformations, so expert advice should be sought when BCMs are encountered.
Collapse
Affiliation(s)
- Jørgen S Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 68, 1870, Frederiksberg C, Denmark.
| | - Marion Hewicker-Trautwein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| | - Klaas Peperkamp
- Department of Pathology, GD Animal Health, Arnsbergstraat 7, P.O. Box 9, 7400 AA, Deventer, The Netherlands.
| | - Peter A Windsor
- Faculty of Veterinary Science, University of Sydney, Camden, NSW, 2570, Australia.
| |
Collapse
|
14
|
Zientara S, Ponsart C. Viral emergence and consequences for reproductive performance in ruminants: two recent examples (bluetongue and Schmallenberg viruses). Reprod Fertil Dev 2015; 27:63-71. [PMID: 25472045 DOI: 10.1071/rd14367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Viruses can emerge unexpectedly in different regions of the world and may have negative effects on reproductive performance. This paper describes the consequences for reproductive performance that have been reported after the introduction to Europe of two emerging viruses, namely the bluetongue (BTV) and Schmallenberg (SBV) viruses. Following the extensive spread of BTV in northern Europe, large numbers of pregnant cows were infected with BTV serotype 8 (BTV-8) during the breeding season of 2007. Initial reports of some cases of abortion and hydranencephaly in cattle in late 2007 were followed by quite exhaustive investigations in the field that showed that 10%-35% of healthy calves were infected with BTV-8 before birth. Transplacental transmission and fetal abnormalities in cattle and sheep had been previously observed only with strains of the virus that were propagated in embryonated eggs and/or cell culture, such as vaccine strains or vaccine candidate strains. After the unexpected emergence of BTV-8 in northern Europe in 2006, another arbovirus, namely SBV, emerged in Europe in 2011, causing a new economically important disease in ruminants. This new virus, belonging to the Orthobunyavirus genus in the Bunyaviridae family, was first detected in Germany, in The Netherlands and in Belgium in 2011 and soon after in the UK, France, Italy, Luxembourg, Spain, Denmark and Switzerland. Adult animals show no or only mild clinical symptoms, whereas infection during a critical period of gestation can lead to abortion, stillbirth or the birth of severely malformed offspring. The impact of the disease is usually greater in sheep than in cattle. The consequences of SBV infection in domestic ruminants and more precisely the secondary effects on off-springs will be described.
Collapse
Affiliation(s)
- Stéphan Zientara
- UPE, ANSES, INRA, ENVA, UMR 1161 ANSES/INRA/ENVA, Laboratoire de santé animale d'Alfort, 23 Avenue du Général de gaulle, 94703 Maisons-Alfort, France
| | - Claire Ponsart
- ANSES, Unité des zoonoses bactériennes, Laboratoire de santé animale d'Alfort, 23 Avenue du Général de gaulle, 94703 Maisons-Alfort, France
| |
Collapse
|
15
|
Borel N, Frey CF, Gottstein B, Hilbe M, Pospischil A, Franzoso FD, Waldvogel A. Laboratory diagnosis of ruminant abortion in Europe. Vet J 2014; 200:218-29. [PMID: 24709519 DOI: 10.1016/j.tvjl.2014.03.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 02/14/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
Abortion in ruminants is a major cause of economic loss worldwide, and the management and control of outbreaks is important in limiting their spread, and in preventing zoonotic infections. Given that rapid and accurate laboratory diagnosis is central to controlling abortion outbreaks, the submission of tissue samples to laboratories offering the most appropriate tests is essential. Direct antigen and/or DNA detection methods are the currently preferred methods of reaching an aetiological diagnosis, and ideally these results are confirmed by the demonstration of corresponding macroscopic and/or histopathological lesions in the fetus and/or the placenta. However, the costs of laboratory examinations may be considerable and, even under optimal conditions, the percentage of aetiological diagnoses reached can be relatively low. This review focuses on the most commonly occurring and important abortifacient pathogens of ruminant species in Europe highlighting their epizootic and zoonotic potential. The performance characteristics of the various diagnostic methods used, including their specific advantages and limitations, are discussed.
Collapse
Affiliation(s)
- Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland.
| | - Caroline F Frey
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Switzerland
| | - Bruno Gottstein
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Switzerland
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Andreas Pospischil
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Francesca D Franzoso
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Andreas Waldvogel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|
16
|
van der Sluijs MTW, de Smit AJ, Moormann RJM. Vector independent transmission of the vector-borne bluetongue virus. Crit Rev Microbiol 2014; 42:57-64. [PMID: 24645633 DOI: 10.3109/1040841x.2013.879850] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from dam to fetus, or horizontal via direct contract. For several BTV-serotypes, vertical (transplacental) transmission has been described, resulting in severe congenital malformations. Transplacental transmission had been mainly associated with live vaccine strains. Yet, the European BTV-8 strain demonstrated a high incidence of transplacental transmission in natural circumstances. The relevance of transplacental transmission for the epizootiology is considered limited, especially in enzootic areas. However, transplacental transmission can have a substantial economic impact due to the loss of progeny. Inactivated vaccines have demonstrated to prevent transplacental transmission. Vector-free horizontal transmission has also been demonstrated. Since direct horizontal transmission requires close contact of animals, it is considered only relevant for within-farm spreading of BTV. The genetic determinants which enable vector-free transmission are present in virus strains circulating in the field. More research into the genetic changes which enable vector-free transmission is essential to better evaluate the risks associated with outbreaks of new BTV serotypes and to design more appropriate control measures.
Collapse
Affiliation(s)
| | | | - Rob J M Moormann
- c Central Veterinary Institute , Lelystad , The Netherlands , and.,d Department of Infectious Diseases and Immunology, Virology Division , Utrecht University , Yalelaan , The Netherlands
| |
Collapse
|
17
|
Coetzee P, Van Vuuren M, Stokstad M, Myrmel M, van Gennip RGP, van Rijn PA, Venter EH. Viral replication kinetics and in vitro cytopathogenicity of parental and reassortant strains of bluetongue virus serotype 1, 6 and 8. Vet Microbiol 2014; 171:53-65. [PMID: 24685608 DOI: 10.1016/j.vetmic.2014.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/19/2014] [Accepted: 03/03/2014] [Indexed: 01/16/2023]
Abstract
Bluetongue virus (BTV), a segmented dsRNA virus, is the causative agent of bluetongue (BT), an economically important viral haemorrhagic disease of ruminants. Bluetongue virus can exchange its genome segments in mammalian or insect cells that have been co-infected with more than one strain of the virus. This process, may potentially give rise to the generation of novel reassortant strains that may differ from parental strains in regards to their phenotypic characteristics. To investigate the potential effects of reassortment on the virus' phenotype, parental as well as reassortant strains of BTV serotype 1, 6, 8, that were derived from attenuated and wild type strains by reverse genetics, were studied in vitro for their virus replication kinetics and cytopathogenicity in mammalian (Vero) cell cultures. The results indicate that genetic reassortment can affect viral replication kinetics, the cytopathogenicity and extent/mechanism of cell death in infected cell cultures. In particular, some reassortants of non-virulent vaccine (BTV-1 and BTV-6) and virulent field origin (BTV-8) demonstrate more pronounced cytopathic effects compared to their parental strains. Some reassortant strains in addition replicated to high titres in vitro despite being composed of genome segments from slow and fast replicating parental strains. The latter result may have implications for the level of viraemia in the mammalian host and subsequent uptake and transmission of reassortant strains (and their genome segments) by Culicoides vectors. Increased rates of CPE induction could further suggest a higher virulence for reassortant strains in vivo. Overall, these findings raise questions in regards to the use of modified-live virus (MLV) vaccines and risk of reassortment in the field. To further address these questions, additional experimental infection studies using insects and/or animal models should be conducted, to determine whether these results have significant implications in vivo.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146, 0033 Oslo, Norway.
| | - Moritz Van Vuuren
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | - Maria Stokstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 8146, 0033 Oslo, Norway.
| | - Mette Myrmel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, P.O. Box 8146, 0033 Oslo, Norway.
| | - René G P van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen University, P.O. Box 65, 8200 AB, Lelystad, The Netherlands.
| | - Piet A van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen University, P.O. Box 65, 8200 AB, Lelystad, The Netherlands; Department of Biochemistry, Centre for Human Metabonomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| |
Collapse
|
18
|
Oryan A, Amrabadi O, Mohagheghzadeh M. Seroprevalence of bluetongue in sheep and goats in southern Iran with an overview of four decades of its epidemiological status in Iran. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s00580-013-1815-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Rasmussen LD, Savini G, Lorusso A, Bellacicco A, Palmarini M, Caporale M, Rasmussen TB, Belsham GJ, Bøtner A. Transplacental transmission of field and rescued strains of BTV-2 and BTV-8 in experimentally infected sheep. Vet Res 2013; 44:75. [PMID: 24007601 PMCID: PMC3848766 DOI: 10.1186/1297-9716-44-75] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/27/2013] [Indexed: 11/10/2022] Open
Abstract
Transplacental transmission of bluetongue virus has been shown previously for the North European strain of serotype 8 (BTV-8) and for tissue culture or chicken egg-adapted vaccine strains but not for field strains of other serotypes. In this study, pregnant ewes (6 per group) were inoculated with either field or rescued strains of BTV-2 and BTV-8 in order to determine the ability of these viruses to cross the placental barrier. The field BTV-2 and BTV-8 strains was passaged once in Culicoides KC cells and once in mammalian cells. All virus inoculated sheep became infected and seroconverted against the different BTV strains used in this study. BTV RNA was detectable in the blood of all but two ewes for over 28 days but infectious virus could only be detected in the blood for a much shorter period. Interestingly, transplacental transmission of BTV-2 (both field and rescued strains) was demonstrated at high efficiency (6 out of 13 lambs born to BTV-2 infected ewes) while only 1 lamb of 12 born to BTV-8 infected ewes showed evidence of in utero infection. In addition, evidence for horizontal transmission of BTV-2 between ewes was observed. As expected, the parental BTV-2 and BTV-8 viruses and the viruses rescued by reverse genetics showed very similar properties to each other. This study showed, for the first time, that transplacental transmission of BTV-2, which had been minimally passaged in cell culture, can occur; hence such transmission might be more frequent than previously thought.
Collapse
Affiliation(s)
- Lasse Dam Rasmussen
- National Veterinary Institute, Technical University of Denmark, 4771 Kalvehave, Lindholm, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Charron MVP, Balenghien T, Seegers H, Langlais M, Ezanno P. How much can diptera-borne viruses persist over unfavourable seasons? PLoS One 2013; 8:e74213. [PMID: 24023929 PMCID: PMC3762737 DOI: 10.1371/journal.pone.0074213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
Diptera are vectors of major human and animal pathogens worldwide, such as dengue, West-Nile or bluetongue viruses. In seasonal environments, vector-borne disease occurrence varies with the seasonal variations of vector abundance. We aimed at understanding how diptera-borne viruses can persist for years under seasonal climates while vectors overwinter, which should stop pathogen transmission during winter. Modeling is a relevant integrative approach for investigating the large panel of persistence mechanisms evidenced through experimental and observational studies on specific biological systems. Inter-seasonal persistence of virus may occur in hosts due to viremia duration, chronic infection, or vertical transmission, in vector resistance stages, and due to a low continuous transmission in winter. Using a generic stochastic modeling framework, we determine the parameter ranges under which virus persistence could occur via these different mechanisms. The parameter ranges vary according to the host demographic regime: for a high host population turnover, persistence increases with the mechanism parameter, whereas for a low turnover, persistence is maximal for an optimal range of parameter. Persistence in hosts due to long viremia duration in a few hosts or due to vertical transmission is an effective strategy for the virus to overwinter. Unexpectedly, a low continuous transmission during winter does not give rise to certain persistence, persistence barely occurring for a low turnover of the susceptible population. We propose a generic framework adaptable to most diptera-borne diseases. This framework allows ones to assess the plausibility of each persistence mechanism in real epidemiological situations and to compare the range of parameter values theoretically allowing persistence with the range of values determined experimentally.
Collapse
Affiliation(s)
- Maud V. P. Charron
- UMR1300 Biologie, Epidémiologie et Analyse de Risques en santé animale, INRA, LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
- UMR 5251, Université de Bordeaux, IMB, Bordeaux, France
- UMR 5251, CNRS, IMB, Talence, France
- * E-mail:
| | | | - Henri Seegers
- UMR1300 Biologie, Epidémiologie et Analyse de Risques en santé animale, INRA, LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| | - Michel Langlais
- UMR 5251, Université de Bordeaux, IMB, Bordeaux, France
- UMR 5251, CNRS, IMB, Talence, France
| | - Pauline Ezanno
- UMR1300 Biologie, Epidémiologie et Analyse de Risques en santé animale, INRA, LUNAM Université, Oniris, Ecole nationale vétérinaire, agroalimentaire et de l’alimentation Nantes-Atlantique, Nantes, France
| |
Collapse
|
21
|
Evidence of transplacental transmission of bluetongue virus serotype 8 in goats. Vet Microbiol 2013; 166:394-404. [PMID: 23890676 DOI: 10.1016/j.vetmic.2013.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/16/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022]
Abstract
During the incursion of bluetongue virus (BTV) serotype 8 in Europe, an increase in the number of abortions in ruminants was observed. Transplacental transmission of BTV-8 in cattle and sheep, with subsequent foetal infection, is a feature of this specific bluetongue serotype. In this study, BTV-8 ability to cross the placental barrier at the beginning of the second third of pregnancy and at the end of pregnancy was investigated in goats in two separate experiments. In the first experiment, nine goats were experimentally infected with BTV-8 at 61 days of pregnancy. Foetuses were collected 21 dpi. BTV-8 was evidenced by real time RT-PCR and by viral isolation using blood from the umbilical cord and the spleens of 3 out of the 13 foetuses. All dams were viraemic (viral isolation) at the moment of sampling of the foetuses. Significant macroscopic or histological lesions could not be observed in foetuses or in their infected dams (notably at the placenta level). In the second experiment, 10 goats were infected with BTV-8 at 135 days of pregnancy. Kids were born by caesarean section at the programmed day of birth (15 dpi). BTV-8 could not be detected by rt-RT-PCR in blood or spleen samples from the kids. This study showed for the first time that BTV-8 transplacental transmission can occur in goats that have been infected at 61 days of pregnancy, with infectious virus recovered from the caprine foetuses. The observed transmission rate was quite high (33%) at this stage of pregnancy. However, it was not possible to demonstrate the existence of BTV-8 transplacental transmission when infection occurred at the end of the goat pregnancy.
Collapse
|
22
|
Coetzee P, Stokstad M, Myrmel M, Mutowembwa P, Loken T, Venter EH, Van Vuuren M. Transplacental infection in goats experimentally infected with a European strain of bluetongue virus serotype 8. Vet J 2013; 197:335-41. [PMID: 23422882 DOI: 10.1016/j.tvjl.2013.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 11/23/2012] [Accepted: 01/07/2013] [Indexed: 11/30/2022]
Abstract
The capability of the recently emerged European strain of bluetongue virus serotype 8 (BTV-8) to cross the ruminant placenta has been established in experimental and field studies in both sheep and cattle. Seroprevalence rates in goats in North-Western Europe were high during the recent outbreak of BTV-8; however the capability of the virus to infect goats through the transplacental route has not been established. In the present study, four Saanen goats were inoculated with the European strain of BTV-8 at 62 days of gestation; this resulted in mild clinical signs, however gross lesions observed post mortem were more severe. Viral RNA was detected by real-time RT-PCR in blood and tissue samples from three fetuses harvested from two goats at 43 days post infection. Conventional RT-PCR and genome sequencing targeting viral segment 2 confirmed infection of brain tissue with BTV-8 in two of these fetuses. In total, five of six fetuses demonstrated lesions that may have been associated with transplacental infection with BTV. Infected fetuses did not demonstrate neurological lesions. Low viral RNA concentrations in fetal blood and tissue further suggest that the infected fetuses would probably not have been born viraemic. The implications of these findings with regards to the epidemiology and overwintering of BTV-8 in Europe remains unclear.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Medicine, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | | | | | | | | | | | | |
Collapse
|
23
|
Coetzee P, Van Vuuren M, Stokstad M, Myrmel M, Venter EH. Bluetongue virus genetic and phenotypic diversity: towards identifying the molecular determinants that influence virulence and transmission potential. Vet Microbiol 2012; 161:1-12. [PMID: 22835527 DOI: 10.1016/j.vetmic.2012.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 06/22/2012] [Accepted: 07/02/2012] [Indexed: 12/23/2022]
Abstract
Bluetongue virus (BTV) is the prototype member of the Orbivirus genus in the family Reoviridae and is the aetiological agent of the arthropod transmitted disease bluetongue (BT) that affects both ruminant and camelid species. The disease is of significant global importance due to its economic impact and effect on animal welfare. Bluetongue virus, a dsRNA virus, evolves through a process of quasispecies evolution that is driven by genetic drift and shift as well as intragenic recombination. Quasispecies evolution coupled with founder effect and evolutionary selective pressures has over time led to the establishment of genetically distinct strains of the virus in different epidemiological systems throughout the world. Bluetongue virus field strains may differ substantially from each other with regards to their phenotypic properties (i.e. virulence and/or transmission potential). The intrinsic molecular determinants that influence the phenotype of BTV have not clearly been characterized. It is currently unclear what contribution each of the viral genome segments have in determining the phenotypic properties of the virus and it is also unknown how genetic variability in the individual viral genes and their functional domains relate to differences in phenotype. In order to understand how genetic variation in particular viral genes could potentially influence the phenotypic properties of the virus; a closer understanding of the BTV virion, its encoded proteins and the evolutionary mechanisms that shape the diversity of the virus is required. This review provides a synopsis of these issues and highlights some of the studies that have been conducted on BTV and the closely related African horse sickness virus (AHSV) that have contributed to ongoing attempts to identify the molecular determinants that influence the virus' phenotype. Different strategies that can be used to generate BTV mutants in vitro and methods through which the causality between particular genetic modifications and changes in phenotype may be determined are also described. Finally examples are highlighted where a clear understanding of the molecular determinants that influence the phenotype of the virus may have contributed to risk assessment and mitigation strategies during recent outbreaks of BT in Europe.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| | | | | | | | | |
Collapse
|
24
|
Reber A, Kreienbrock L, Casati S, Chaignat V, Schwermer H. Putative risk factors for infections with Toggenburg Orbivirus in goat herds in Southern Switzerland (Canton of Ticino). Vet Microbiol 2012; 160:29-34. [PMID: 22739059 DOI: 10.1016/j.vetmic.2012.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Toggenburg Orbivirus (TOV), only detected in goats, has been described as a member of the Bluetongue virus (BTV) serogroup. The transmission pathway of the virus seems different from other Bluetongue viruses (BTVs). The objective of this study was to explore risk factors, especially the influence of alpine pasture and the presence of other livestock species, for the presence of TOV infected goats on farms. Between February 2008 and September 2009, blood samples were collected and analyzed for TOV and hereupon a total of 60 goat farm owners (37 TOV-positive and 23 TOV-negative holdings) were interviewed. Additionally, goatlings were tested for TOV by rRT-PCR prior and after alpine pasture in 2009. These goatlings were positive for TOV only after the alpine pasture. The final logistic regression model included: "exposure to goats from other farms" (OR=10.12, p=0.007), "exposure of the goats to red deer" (OR=4.79, p=0.04) and "exposure to sheep from other farms" (OR=0.05, p=0.002). These variables do not implicitly include direct contact, and the findings are only vaguely indicative for a contact-driven transmission. Furthermore, it is likely that they are only associated with, and thus indicative for, an unknown risk factor associated with alpine pasture not measured in the study. The results of this screening study do not indicate iatrogenic transmission pathways as a main transmission mode and stimulate the formulation of hypotheses on the origin, the transmission pathway and other host species for TOV. Especially, the involvement of an insect vector in transmission on alpine pasture and the relevance of vertical transmission are to be clarified.
Collapse
Affiliation(s)
- Antonella Reber
- Veterinary Public Health Institute, Schwarzenburgstrasse 155, 3003 Liebefeld, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Charron MV, Seegers H, Langlais M, Ezanno P. Seasonal spread and control of Bluetongue in cattle. J Theor Biol 2011; 291:1-9. [DOI: 10.1016/j.jtbi.2011.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022]
|
26
|
Zanella G, Durand B, Sellal E, Breard E, Sailleau C, Zientara S, Batten CA, Mathevet P, Audeval C. Bluetongue virus serotype 8: abortion and transplacental transmission in cattle in the Burgundy region, France, 2008-2009. Theriogenology 2011; 77:65-72. [PMID: 21872306 DOI: 10.1016/j.theriogenology.2011.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 11/19/2022]
Abstract
During the incursion of bluetongue virus (BTV) serotype 8 in France in 2007, an increase in the number of abortions in cattle was observed, but the cause was not clearly established. A survey of all the reported cases of abortion in cattle from November 2008 to April 2009 was conducted in the Nièvre district (Burgundy region) to determine the percentage of abortions as a result of BTV-8 and to study factors that could have played a role in BTV-8 transplacental transmission. BTV-8 was present in 16% of the fetuses or newborn calves that died within 48 h, from 780 dams. Dams inseminated before the BTV epizootic peak recorded from July to September 2008 were more likely to have BTV-positive abortions (OR=5.7, P<0.001) and those vaccinated in May or June 2008 were less likely to have BTV-positive abortions (OR=0.3, P=0.01 and OR=0.4, P=0.001, respectively). The gestational month was not a predictor of BTV abortion. In blood or spleen, fetuses/calves from RT-PCR-positive dams had significantly higher RNA concentrations than fetuses/calves from RT-PCR-negative dams. Of the 128 dams that had BTV-positive fetuses or calves, 60% were RT-PCR-negative. BTV-8-positive fetuses/calves were significantly more frequent (n=42 vs n=21, P=0.082) amongst those showing clinical signs or lesions suggestive of cerebral damage.
Collapse
Affiliation(s)
- G Zanella
- Epidemiology Unit, Animal Health Laboratory, ANSES, 23 avenue du Général-de-Gaulle, 94706 Maisons-Alfort Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Bluetongue is a major infectious disease of ruminants that is caused by bluetongue virus (BTV). In this study, we analyzed virulence and genetic differences of (i) three BTV field strains from Italy maintained at either a low (L strains) or high (H strains) passage number in cell culture and (ii) three South African "reference" wild-type strains and their corresponding live attenuated vaccine strains. The Italian BTV L strains, in general, were lethal for both newborn NIH-Swiss mice inoculated intracerebrally and adult type I interferon receptor-deficient (IFNAR(-/-)) mice, while the virulence of the H strains was attenuated significantly in both experimental models. Similarly, the South African vaccine strains were not pathogenic for IFNAR(-/-) mice, while the corresponding wild-type strains were virulent. Thus, attenuation of the virulence of the BTV strains used in this study is not mediated by the presence of an intact interferon system. No clear distinction in virulence was observed for the South African BTV strains in newborn NIH-Swiss mice. Full genomic sequencing revealed relatively few amino acid substitutions, scattered in several different viral proteins, for the strains found to be attenuated in mice compared to the pathogenic related strains. However, only the genome segments encoding VP1, VP2, and NS2 consistently showed nonsynonymous changes between all virulent and attenuated strain pairs. This study established an experimental platform for investigating the determinants of BTV virulence. Future studies using reverse genetics will allow researchers to precisely map and "weight" the relative influences of the various genome segments and viral proteins on BTV virulence.
Collapse
|
28
|
|
29
|
|
30
|
Garigliany M, De Leeuw I, Kleijnen D, Vandenbussche F, Callens J, Van Loo H, Lebrun M, Saulmont M, Desmecht D, De Clercq K. The presence of bluetongue virus serotype 8 RNA in Belgian cattle since 2008. Transbound Emerg Dis 2011; 58:503-9. [DOI: 10.1111/j.1865-1682.2011.01230.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
van der Sluijs M, Timmermans M, Moulin V, Noordegraaf CV, Vrijenhoek M, Debyser I, de Smit AJ, Moormann R. Transplacental transmission of Bluetongue virus serotype 8 in ewes in early and mid gestation. Vet Microbiol 2010; 149:113-25. [PMID: 21145670 DOI: 10.1016/j.vetmic.2010.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 11/16/2022]
Abstract
The ability of Bluetongue virus serotype 8 (BTV-8) originating from the 2006 European outbreak to cross the ovine placenta during early and mid gestation was investigated in two separate experiments. In the first experiment, 16 ewes were infected with BTV-8 at 70-75 days gestation. The foetuses were collected at 18-19 days after infection (dpi). BTV-8 could be isolated from at least two organs of 19 out of 40 lambs and from 11 out of 16 infected ewes. In the second experiment, 20 BTV-8 infected ewes in early gestation (day 40-45) were euthanized at 10 days (10 ewes) or 30 days (10 ewes) after infection. The presence of BTV could be demonstrated in two foetuses from two ewes at 10 dpi and in 4 foetuses from four ewes at 30 dpi. The main pathological findings in the foetuses in mid gestation were meningo-encephalitis and vacuolation of the cerebrum. In the foetuses early at gestation, haemorrhages in various foetal tissues and necrosis and haemorrhages in the placentomes were found. These experiments demonstrate for the first time the presence of infectious BTV in lamb foetuses at different stages of gestation, combined with a difference in transmission rate depending on the gestation stage. The high transmission rate found at mid term gestation (69%) makes our model very suitable for further research into the mechanisms of transplacental transmission and for research into the reduction of this route of transmission through vaccination.
Collapse
Affiliation(s)
- M van der Sluijs
- Intervet Schering Plough Animal Health, Wim de Körverstraat 35, PO Box 31, 5830 AA Boxmeer, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Williamson SM, Scholes SFE, Welchman DDB, Dennison M, Batten CA, Williams DL, Mertens PPC, Mellor PS, Darpel KE. Bluetongue virus serotype 8-associated hydranencephaly in two calves in south-eastern England. Vet Rec 2010; 167:216-8. [PMID: 20693506 DOI: 10.1136/vr.c3302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- S M Williamson
- Veterinary Laboratories Agency, Bury St Edmunds, Rougham Hill, Bury St Edmunds, Suffolk.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Calvo-Pinilla E, Nieto JM, Ortego J. Experimental oral infection of bluetongue virus serotype 8 in type I interferon receptor-deficient mice. J Gen Virol 2010; 91:2821-5. [DOI: 10.1099/vir.0.024117-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Szmaragd C, Gunn GJ, Gubbins S. Assessing the consequences of an incursion of a vector-borne disease. II. Spread of bluetongue in Scotland and impact of vaccination. Epidemics 2010; 2:139-147. [PMID: 21352784 DOI: 10.1016/j.epidem.2010.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022] Open
Abstract
Bluetongue is a viral disease of ruminants transmitted by Culicoides biting midges, which has spread across Europe over the past decade. The disease arrived in south-east England in 2007, raising the possibility that it could pose a risk to the valuable Scottish livestock industry. As part of an assessment of the economic consequences of a bluetongue virus incursion into Scotland commissioned by Scottish Government, we investigated a defined set of feasible incursion scenarios under different vaccination strategies. Our epidemiological simulations, based on expert knowledge, highlighted that infection will rarely spread in Scotland after the initial incursion and will be efficiently controlled by vaccination.
Collapse
Affiliation(s)
- Camille Szmaragd
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - George J Gunn
- Epidemiology Research Unit, Animal Health Group, SAC Research, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Simon Gubbins
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK.
| |
Collapse
|
35
|
Lee F, Ting LJ, Jong MH, Chang WM, Wang FI. Subclinical bluetongue virus infection in domestic ruminants in Taiwan. Vet Microbiol 2010; 142:225-31. [DOI: 10.1016/j.vetmic.2009.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 08/31/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
|
36
|
Maan S, Maan NS, van Rijn PA, van Gennip RGP, Sanders A, Wright IM, Batten C, Hoffmann B, Eschbaumer M, Oura CAL, Potgieter AC, Nomikou K, Mertens PP. Full genome characterisation of bluetongue virus serotype 6 from the Netherlands 2008 and comparison to other field and vaccine strains. PLoS One 2010; 5:e10323. [PMID: 20428242 PMCID: PMC2859060 DOI: 10.1371/journal.pone.0010323] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/26/2010] [Indexed: 11/21/2022] Open
Abstract
In mid September 2008, clinical signs of bluetongue (particularly coronitis) were observed in cows on three different farms in eastern Netherlands (Luttenberg, Heeten, and Barchem), two of which had been vaccinated with an inactivated BTV-8 vaccine (during May-June 2008). Bluetongue virus (BTV) infection was also detected on a fourth farm (Oldenzaal) in the same area while testing for export. BTV RNA was subsequently identified by real time RT-PCR targeting genome-segment (Seg-) 10, in blood samples from each farm. The virus was isolated from the Heeten sample (IAH "dsRNA virus reference collection" [dsRNA-VRC] isolate number NET2008/05) and typed as BTV-6 by RT-PCR targeting Seg-2. Sequencing confirmed the virus type, showing an identical Seg-2 sequence to that of the South African BTV-6 live-vaccine-strain. Although most of the other genome segments also showed very high levels of identity to the BTV-6 vaccine (99.7 to 100%), Seg-10 showed greatest identity (98.4%) to the BTV-2 vaccine (RSAvvv2/02), indicating that NET2008/05 had acquired a different Seg-10 by reassortment. Although Seg-7 from NET2008/05 was also most closely related to the BTV-6 vaccine (99.7/100% nt/aa identity), the Seg-7 sequence derived from the blood sample of the same animal (NET2008/06) was identical to that of the Netherlands BTV-8 (NET2006/04 and NET2007/01). This indicates that the blood contained two different Seg-7 sequences, one of which (from the BTV-6 vaccine) was selected during virus isolation in cell-culture. The predominance of the BTV-8 Seg-7 in the blood sample suggests that the virus was in the process of reassorting with the northern field strain of BTV-8. Two genome segments of the virus showed significant differences from the BTV-6 vaccine, indicating that they had been acquired by reassortment event with BTV-8, and another unknown parental-strain. However, the route by which BTV-6 and BTV-8 entered northern Europe was not established.
Collapse
Affiliation(s)
- Sushila Maan
- Vector Borne Diseases Programme, Institute for Animal Health, Pirbright Laboratory, Woking, Surrey, United Kingdom
| | - Narender S. Maan
- Vector Borne Diseases Programme, Institute for Animal Health, Pirbright Laboratory, Woking, Surrey, United Kingdom
| | - Piet A. van Rijn
- Department of Virology, Central Veterinary Institute of Wageningen UR, AB Lelystad, The Netherlands
| | - René G. P. van Gennip
- Department of Virology, Central Veterinary Institute of Wageningen UR, AB Lelystad, The Netherlands
| | - Anna Sanders
- Vector Borne Diseases Programme, Institute for Animal Health, Pirbright Laboratory, Woking, Surrey, United Kingdom
| | - Isabel M. Wright
- Virology Division, Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | - Carrie Batten
- Vector Borne Diseases Programme, Institute for Animal Health, Pirbright Laboratory, Woking, Surrey, United Kingdom
| | - Bernd Hoffmann
- Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Michael Eschbaumer
- Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Chris A. L. Oura
- Vector Borne Diseases Programme, Institute for Animal Health, Pirbright Laboratory, Woking, Surrey, United Kingdom
| | - Abraham C. Potgieter
- Virology Division, Onderstepoort Veterinary Institute, Onderstepoort, South Africa
| | - Kyriaki Nomikou
- Vector Borne Diseases Programme, Institute for Animal Health, Pirbright Laboratory, Woking, Surrey, United Kingdom
| | - Peter P.C. Mertens
- Vector Borne Diseases Programme, Institute for Animal Health, Pirbright Laboratory, Woking, Surrey, United Kingdom
| |
Collapse
|
37
|
Elbers AR, van der Spek AN, van Rijn PA. Epidemiologic characteristics of bluetongue virus serotype 8 laboratory-confirmed outbreaks in The Netherlands in 2007 and a comparison with the situation in 2006. Prev Vet Med 2009; 92:1-8. [DOI: 10.1016/j.prevetmed.2009.08.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/16/2009] [Accepted: 08/18/2009] [Indexed: 11/30/2022]
|
38
|
Chaignat V, Worwa G, Scherrer N, Hilbe M, Ehrensperger F, Batten C, Cortyen M, Hofmann M, Thuer B. Toggenburg Orbivirus, a new bluetongue virus: Initial detection, first observations in field and experimental infection of goats and sheep. Vet Microbiol 2009; 138:11-9. [DOI: 10.1016/j.vetmic.2009.02.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/28/2009] [Accepted: 02/03/2009] [Indexed: 11/28/2022]
|
39
|
Maclachlan N, Drew C, Darpel K, Worwa G. The Pathology and Pathogenesis of Bluetongue. J Comp Pathol 2009; 141:1-16. [DOI: 10.1016/j.jcpa.2009.04.003] [Citation(s) in RCA: 317] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/09/2009] [Accepted: 04/20/2009] [Indexed: 11/16/2022]
|
40
|
Dal Pozzo F, Saegerman C, Thiry E. Bovine infection with bluetongue virus with special emphasis on European serotype 8. Vet J 2009; 182:142-51. [PMID: 19477665 DOI: 10.1016/j.tvjl.2009.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/26/2009] [Accepted: 05/01/2009] [Indexed: 11/28/2022]
Abstract
Bluetongue virus (BTV) is an arthropod-borne virus infecting domestic and wild ruminants. Infection in cattle is commonly asymptomatic and characterised by a long viraemia. Associated with the emergence and the recrudescence of BTV serotype 8 (BTV-8) in Northern and Central Europe, remarkable differences have been noticed in the transmission and in the clinical expression of the disease, with cattle showing clinical illness and reproductive disorders such as abortion, stillbirth and fetal abnormalities. Several investigations have already indicated the putative ability of the European BTV-8 strain to cross the bovine placenta and to cause congenital infections. The current epidemiological and pathological findings present an unusual picture of the disease in affected bovines.
Collapse
Affiliation(s)
- Fabiana Dal Pozzo
- Department of Infectious and Parasitic Diseases, Virology and Viral Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | |
Collapse
|
41
|
Jauniaux TP, De Clercq KE, Cassart DE, Kennedy S, Vandenbussche FE, Vandemeulebroucke EL, Vanbinst TM, Verheyden BI, Goris NE, Coignoul FL. Bluetongue in Eurasian lynx. Emerg Infect Dis 2008; 14:1496-8. [PMID: 18760034 PMCID: PMC2603091 DOI: 10.3201/eid1409.080434] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|