1
|
Devantier-Thomas B, Deakin GB, Crowther F, Schumann M, Doma K. The repeated bout effect of traditional resistance training on cycling efficiency and performance. Eur J Appl Physiol 2024; 124:2005-2017. [PMID: 38376510 PMCID: PMC11199296 DOI: 10.1007/s00421-024-05422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/14/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE This study examined the repeated bout effect of two resistance training bouts on cycling efficiency and performance. METHODS Ten male resistance-untrained cyclists (age 38 ± 13 years; height 180.4 ± 7.0 cm; weight 80.1 ± 10.1; kg; VO2max 51.0 ± 7.6 ml.kg-1.min-1) undertook two resistance training bouts at six-repetition maximum. Blood creatine kinase (CK), delayed-onset of muscle soreness (DOMS), counter-movement jump (CMJ), squat jump (SJ), submaximal cycling and time-trial performance were examined prior to (Tbase), 24 (T24) and 48 (T48) h post each resistance training bout. RESULTS There were significantly lower values for DOMS (p = 0.027) after Bout 2 than Bout 1. No differences were found between bouts for CK, CMJ, SJ and submaximal cycling performance. However, jump height (CMJ and SJ) submaximal cycling measures (ventilation and perceived exertion) were impaired at T24 and T48 compared to Tbase (p < 0.05). Net efficiency during submaximal cycling improved at Bout 2 (23.8 ± 1.2) than Bout 1 (24.3 ± 1.0%). There were no changes in cycling time-trial performance, although segmental differences in cadence were observed between bouts and time (i.e. Tbase vs T24 vs T48; p < 0.05). CONCLUSION Cyclists improved their cycling efficiency from Bout 1 to Bout 2 possibly due to the repeated bout effect. However, cyclists maintained their cycling completion times during exercise-induced muscle damage (EIMD) in both resistance training bouts, possibly by altering their cycling strategies. Thus, cyclists should consider EIMD symptomatology after resistance training bouts, particularly for cycling-specific technical sessions, regardless of the repeated bout effect.
Collapse
Affiliation(s)
- Baily Devantier-Thomas
- James Cook Drive, Rehab Sciences Building (DB-43), James Cook University, Townsville, QLD, 4811, Australia
| | - Glen B Deakin
- James Cook Drive, Rehab Sciences Building (DB-43), James Cook University, Townsville, QLD, 4811, Australia
| | - Fiona Crowther
- James Cook Drive, Rehab Sciences Building (DB-43), James Cook University, Townsville, QLD, 4811, Australia
| | - Moritz Schumann
- Department of Sports Medicine and Exercise Therapy, Chemnitz University of Technology, Chemnitz, Germany
| | - Kenji Doma
- James Cook Drive, Rehab Sciences Building (DB-43), James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
2
|
Arsoniadis GG, Botonis PG, Bogdanis GC, Terzis G, Toubekis AG. Acute effects of dryland muscular endurance and maximum strength training on sprint swimming performance in young swimmers. J Sports Sci 2024:1-9. [PMID: 38922324 DOI: 10.1080/02640414.2024.2371580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
The study examined acute effects of dryland muscular endurance (ME) and maximum strength (MS) sessions on performance, physiological, and biomechanical variables during a subsequent sprint swimming session. Twenty-seven swimmers (16.5 ± 2.6 yrs) completed three experimental conditions including: i) ME, 55% of 1-repetition maximum, ii) MS, 90% of 1-repetition maximum, and iii) control (CON, no dry-land). Twenty minutes following ME, MS and CON sessions swimmers performed a 10-s tethered swimming sprint, four by 50-m (4 × 50-m), and a 100-m front crawl sprints. Performance time, blood lactate, heart rate (HR), stroke rate (SR), stroke length (SL), stroke index (SI), and stroke efficiency (ηF) were measured during 4 × 50-m and 100-m. Hand grip strength (HG), and shoulder muscles isometric strength (ISO) were measured after each session. Mean 4 × 50-m time increased in ME compared to CON by 1.7 ± 2.7% (p = 0.01), while 100-m time was similar among conditions (p > 0.05). ISO was lower after dry-land training in all conditions (p = 0.01). Tethered force, HG, HR, SR, SL, SI, and ηF were no different between conditions (p > 0.05). Dryland ME session decrease swimming performance; however, ME and MS sessions did not affect technical ability during a subsequent maximum intensity swimming.
Collapse
Affiliation(s)
- Gavriil G Arsoniadis
- Division of Aquatic Sports, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros G Botonis
- Division of Aquatic Sports, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
- School of Physical Education and Sport Science, Division of Biology of Exercise, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory C Bogdanis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Argyris G Toubekis
- Division of Aquatic Sports, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Doma K, Matoso B, Protzen G, Singh U, Boullosa D. The Repeated Bout Effect of Multiarticular Exercises on Muscle Damage Markers and Physical Performances: A Systematic Review and Meta-Analyses. J Strength Cond Res 2023; 37:2504-2515. [PMID: 38015738 DOI: 10.1519/jsc.0000000000004628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
ABSTRACT Doma, K, Matoso, B, Protzen, G, Singh, U, and Boullosa, D. The repeated bout effect of multiarticular exercises on muscle damage markers and physical performances: a systematic review and meta-analyses. J Strength Cond Res 37(12): 2504-2515, 2023-This systematic review and meta-analysis compared muscle damage markers and physical performance measures between 2 bouts of multiarticular exercises and determined whether intensity and volume of muscle-damaging exercises affected the outcomes. The eligibility criteria consisted of (a) healthy male and female adults; (b) multiarticular exercises to cause muscle damage across 2 bouts; (c) outcome measures were compared at 24-48 hours after the first and second bouts of muscle-damaging exercise; (d) at least one of the following outcome measures: creatine kinase (CK), delayed onset of muscle soreness (DOMS), muscle strength, and running economy. Study appraisal was conducted using the Kmet tool, whereas forest plots were derived to calculate standardized mean differences (SMDs) and statistical significance and alpha set a 0.05. After screening, 20 studies were included. The levels of DOMS and CK were significantly greater during the first bout when compared with the second bout at T24 and T48 (p < 0.001; SMD = 0.51-1.23). Muscular strength and vertical jump performance were significantly lower during the first bout compared with the second bout at T24 and T48 (p ≤ 0.05; SMD = -0.27 to -0.40), whereas oxygen consumption and rating of perceived exertion were significantly greater during the first bout at T24 and T48 (p < 0.05; SMD = 0.28-0.65) during running economy protocols. The meta-analyses were unaffected by changes in intensity and volume of muscle-damaging exercises between bouts. Multiarticular exercises exhibited a repeated bout effect, suggesting that a single bout of commonly performed exercises involving eccentric contractions may provide protection against exercise-induced muscle damage for subsequent bouts.
Collapse
Affiliation(s)
- Kenji Doma
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
- Orthopeadic Research Institute of Queensland, Townsville, Australia
| | - Bruno Matoso
- Integrated Institute of Health, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Gabriel Protzen
- Physical Education College, Federal University of Pelotas, Pelotas, Brazil; and
| | - Utkarsh Singh
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
| | - Daniel Boullosa
- Sport and Exercise Science, College of Healthcare Sciences, James Cook University, Douglas, Australia
- Integrated Institute of Health, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
- Faculty of Physical Activity and Sports Sciences, Universidad de León, Ponferrada, Spain
| |
Collapse
|
4
|
Gao J, Yu L. Effects of concurrent training sequence on VO 2max and lower limb strength performance: A systematic review and meta-analysis. Front Physiol 2023; 14:1072679. [PMID: 36776981 PMCID: PMC9908959 DOI: 10.3389/fphys.2023.1072679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
The aim of this study is to compare the effects of concurrent strength and endurance training sequences on VO2max and lower limb strength performance to provide scientific guidance for training practice. We searched PubMed, EBSCO, Web of Science (WOS), Wanfang, and China National Knowledge Infrastructure (CNKI) databases up to December 2022. The included articles were randomized controlled trials that allowed us to compare the strength-endurance (S-E) sequence and endurance-strength (E-S) sequence on VO2max, maximum knee extension strength, maximum knee flexion strength, and lower limb power. The Cochrane bias risk tool was used to evaluate the methodological quality of the included literature, and Stata 12.0 was used for the heterogeneity test, subgroup analysis, draw forest map, sensitivity analysis, and publication bias evaluation. The results have been presented as standardized mean differences (SMDs) between treatments with 95% confidence intervals and calculations performed using random effects models. Significance was accepted when p < 0.05. The studies included 19 randomized controlled trials (285 males and 197 females), 242 subjects in S-E sequence, and 240 subjects in E-S sequence in the analyses. No difference changes between S-E and E-S sequences has been observed on VO2max in the overall analysis (SMD = 0.02, 95% CI: -0.21-0.25, p = 0.859). The S-E sequence shows a greater increase in lower limb strength performance than does the E-S sequence (SMD = 0.19, 95% CI: 0.02-0.37, p = 0.032), which was manifested in the elderly (p = 0.039) and women (p = 0.017); in training periods >8 weeks (p = 0.002) and training frequencies twice a week (p = 0.003); and with maximum knee flexion (p = 0.040) and knee extension strength (p = 0.026), while no difference was found in lower limb power (p = 0.523). In conclusion, the effect of VO2max will not change with different concurrent training sequences. The S-E sequence improves lower limb strength more significantly, mainly in the improvement of knee flexion and knee extension. This advantage is more related to factors such as age, gender, training period, and training frequency.
Collapse
Affiliation(s)
- Jiuxiang Gao
- Laboratory of Exercise Physiology, College of Sports Science, Beijing Sport University, Beijing, China
| | - Liang Yu
- Laboratory of Fitness Training, College of Fitness Training, Beijing Sport University, Beijing, China,*Correspondence: Liang Yu,
| |
Collapse
|
5
|
Acute Neuromuscular, Physiological and Performance Responses After Strength Training in Runners: A Systematic Review and Meta-Analysis. SPORTS MEDICINE - OPEN 2022; 8:105. [PMID: 35976540 PMCID: PMC9385928 DOI: 10.1186/s40798-022-00497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
Background Strength training (ST) is commonly used to improve muscle strength, power, and neuromuscular adaptations and is recommended combined with runner training. It is possible that the acute effects of the strength training session lead to deleterious effects in the subsequent running. The aim of this systematic review and meta-analysis was to verify the acute effects of ST session on the neuromuscular, physiological and performance variables of runners.
Methods Studies evaluating running performance after resistance exercise in runners in the PubMed and Scopus databases were selected. From 6532 initial references, 19 were selected for qualitative analysis and 13 for meta-analysis. The variables of peak torque (PT), creatine kinase (CK), delayed-onset muscle soreness (DOMS), rating of perceived exertion (RPE), countermovement jump (CMJ), ventilation (VE), oxygen consumption (VO2), lactate (La) and heart rate (HR) were evaluated.
Results The methodological quality of the included studies was considered reasonable; the meta-analysis indicated that the variables PT (p = 0.003), DOMS (p < 0.0001), CK (p < 0.0001), RPE (p < 0.0001) had a deleterious effect for the experimental group; for CMJ, VE, VO2, La, FC there was no difference. By qualitative synthesis, running performance showed a reduction in speed for the experimental group in two studies and in all that assessed time to exhaustion.
Conclusion The evidence indicated that acute strength training was associated with a decrease in PT, increases in DOMS, CK, RPE and had a low impact on the acute responses of CMJ, VE, VO2, La, HR and submaximal running sessions.
Collapse
|
6
|
Harrison DC, Doma K, Leicht AS, McGuckin TA, Woods CT, Connor JD. Repeated Bout Effect of Two Resistance Training Bouts on Bowling-Specific Performance in Male Cricketers. Sports (Basel) 2022; 10:sports10090126. [PMID: 36136381 PMCID: PMC9500931 DOI: 10.3390/sports10090126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
To examine the repeated bout effect (RBE) following two identical resistance bouts and its effect on bowling-specific performance in male cricketers. Male cricket pace bowlers (N = 10), who had not undertaken resistance exercises in the past six months, were invited to complete a familiarisation and resistance maximum testing, before participating in the study protocol. The study protocol involved the collection of muscle damage markers, a battery of anaerobic (jump and sprint), and a bowling-specific performance test at baseline, followed by a resistance training bout, and a retest of physical and bowling-specific performance at 24 h (T24) and 48 h (T48) post-training. The study protocol was repeated 7–10 days thereafter. Indirect markers of muscle damage were lower (creatine kinase: 318.7 ± 164.3 U·L−1; muscle soreness: 3 ± 1), whilst drop jump was improved (~47.5 ± 8.1 cm) following the second resistance training bout when compared to the first resistance training bout (creatine kinase: 550.9 ± 242.3 U·L−1; muscle soreness: 4 ± 2; drop jump: ~43.0 ± 9.7 cm). However, sport-specific performance via bowling speed declined (Bout 1: −2.55 ± 3.43%; Bout 2: 2.67 ± 2.41%) whilst run-up time increased (2.34 ± 3.61%; Bout 2: 3.84 ± 4.06%) after each bout of resistance training. Findings suggest that while an initial resistance training bout reduced muscle damage indicators and improved drop jump performance following a second resistance training bout, this RBE trend was not observed for bowling-specific performance. It was suggested that pace bowlers with limited exposure to resistance training should minimise bowling-specific practice for 1–2 days following the initial bouts of their resistance training program.
Collapse
Affiliation(s)
- Drew C. Harrison
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Kenji Doma
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Correspondence:
| | - Anthony S. Leicht
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health & Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Teneale A. McGuckin
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Carl T. Woods
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3011, Australia
| | - Jonathan D. Connor
- Sport and Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
7
|
Doma K, Ramachandran AK, Boullosa D, Connor J. The Paradoxical Effect of Creatine Monohydrate on Muscle Damage Markers: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:1623-1645. [PMID: 35218552 PMCID: PMC9213373 DOI: 10.1007/s40279-022-01640-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2022] [Indexed: 11/07/2022]
Abstract
Background Several studies have examined the effect of creatine monohydrate (CrM) on indirect muscle damage markers and muscle performance, although pooled data from several studies indicate that the benefits of CrM on recovery dynamics are limited. Objective This systematic review and meta-analysis determined whether the ergogenic effects of CrM ameliorated markers of muscle damage and performance following muscle-damaging exercises. Methods In total, 23 studies were included, consisting of 240 participants in the CrM group (age 23.9 ± 10.4 years, height 178 ± 5 cm, body mass 76.9 ± 7.6 kg, females 10.4%) and 229 participants in the placebo group (age 23.7 ± 8.5 years, height 177 ± 5 cm, body mass 77.0 ± 6.6 kg, females 10.0%). These studies were rated as fair to excellent following the PEDro scale. The outcome measures were compared between the CrM and placebo groups at 24–36 h and 48–90 h following muscle-damaging exercises, using standardised mean differences (SMDs) and associated p-values via forest plots. Furthermore, sub-group analyses were conducted by separating studies into those that examined the effects of CrM as an acute training response (i.e., after one muscle-damaging exercise bout) and those that examined the chronic training response (i.e., examining the acute response after the last training session following several weeks of training). Results According to the meta-analysis, the CrM group exhibited significantly lower indirect muscle damage markers (i.e., creatine kinase, lactate dehydrogenase, and/or myoglobin) at 48–90 h post-exercise for the acute training response (SMD − 1.09; p = 0.03). However, indirect muscle damage markers were significantly greater in the CrM group at 24 h post-exercise (SMD 0.95; p = 0.04) for the chronic training response. Although not significant, a large difference in indirect muscle damage markers was also found at 48 h post-exercise (SMD 1.24) for the chronic training response. The CrM group also showed lower inflammation for the acute training response at 24–36 h post-exercise and 48–90 h post-exercise with a large effect size (SMD − 1.38 ≤ d ≤ − 1.79). Similarly, the oxidative stress markers were lower for the acute training response in the CrM group at 24–36 h post-exercise and 90 h post-exercise, with a large effect size (SMD − 1.37 and − 1.36, respectively). For delayed-onset muscle soreness (DOMS), the measures were lower for the CrM group at 24 h post-exercise with a moderate effect size (SMD − 0.66) as an acute training response. However, the inter-group differences for inflammation, oxidative stress, and DOMS were not statistically significant (p > 0.05). Conclusion Overall, our meta-analysis demonstrated a paradoxical effect of CrM supplementation post-exercise, where CrM appears to minimise exercise-induced muscle damage as an acute training response, although this trend is reversed as a chronic training response. Thus, CrM may be effective in reducing the level of exercise-induced muscle damage following a single bout of strenuous exercises, although training-induced stress could be exacerbated following long-term supplementation of CrM. Although long-term usage of CrM is known to enhance training adaptations, whether the increased level of exercise-induced muscle damage as a chronic training response may provide potential mechanisms to enhance chronic training adaptations with CrM supplementation remains to be confirmed. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-022-01640-z.
Collapse
Affiliation(s)
- Kenji Doma
- James Cook Drive, Rehabilitation Sciences Building, College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, QLD, QLD481, Australia.
| | | | - Daniel Boullosa
- James Cook Drive, Rehabilitation Sciences Building, College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, QLD, QLD481, Australia.,Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Jonathan Connor
- James Cook Drive, Rehabilitation Sciences Building, College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, QLD, QLD481, Australia
| |
Collapse
|
8
|
Acute and Long-Term Effects of Concurrent Resistance and Swimming Training on Swimming Performance. Sports (Basel) 2022; 10:sports10030029. [PMID: 35324638 PMCID: PMC8953612 DOI: 10.3390/sports10030029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Dry-land resistance exercise (RT) is routinely applied concurrent to swimming (SWIM) training sessions in a year-round training plan. To date, the impact of the acute effect of RT on SWIM or SWIM on RT performance and the long-term RT-SWIM or SWIM-RT training outcome has received limited attention. The existing studies indicate that acute RT or SWIM training may temporarily decrease subsequent muscle function. Concurrent application of RT-SWIM or SWIM-RT may induce similar physiological alterations. Such alterations are dependent on the recovery duration between sessions. Considering the long-term effects of RT-SWIM, the limited existing data present improvements in front crawl swimming performance, dry-land upper and lower body maximum strength, and peak power in swim turn. Accordingly, SWIM-RT training order induces swimming performance improvements in front crawl and increments in maximum dry-land upper and lower body strength. Concurrent application of RT-SWIM or SWIM-RT training applied within a training day leads in similar performance gains after six to twelve weeks of training. The current review suggests that recovery duration between RT and SWIM is a predisposing factor that may determine the training outcome. Competitive swimmers may benefit after concurrent application with both training order scenarios during a training cycle.
Collapse
|
9
|
Doma K, Singh U, Boullosa D, Connor JD. The effect of branched-chain amino acid on muscle damage markers and performance following strenuous exercise: a systematic review and meta-analysis. Appl Physiol Nutr Metab 2021; 46:1303-1313. [PMID: 34612716 DOI: 10.1139/apnm-2021-0110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This systematic review and meta-analysis determined whether the ergogenic effects of branched-chain amino acids (BCAA) ameliorated markers of muscle damage and performance following strenuous exercise. In total, 25 studies were included, consisting of 479 participants (age 24.3 ± 8.3 years, height 1.73 ± 0.06 m, body mass 70.8 ± 9.5 kg, females 26.3%). These studies were rated as fair to excellent following the PEDro scale. The outcome measures were compared between the BCAA and placebo conditions at 24 and 48 hours following muscle-damaging exercises, using standardised mean differences and associated p-values via forest plots. Our meta-analysis demonstrated significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) at 48 hours post-exercise (standardised mean difference [SMD] = -0.41; p < 0.05) for the BCAA than placebo conditions, whilst muscle soreness was significant at 24 hours post-exercise (SMD = -0.28 ≤ d ≤ -0.61; p < 0.05) and 48 hours post-exercise (SMD = -0.41 ≤ d≤ -0.92; p < 0.01). However, no significant differences were identified between the BCAA and placebo conditions for muscle performance at 24 or 48 hours post-exercise (SMD = 0.08 ≤ d ≤ 0.21; p > 0.05). Overall, BCAA reduced the level of muscle damage biomarkers and muscle soreness following muscle-damaging exercises. However, the potential benefits of BCAA for muscle performance recovery is questionable and warrants further investigation to determine the practicality of BCAA for ameliorating muscle damage symptoms in diverse populations. PROSPERO registration number: CRD42020191248. Novelty: BCAA reduces the level of creatine kinase and muscle soreness following strenuous exercise with a dose-response relationship. BCAA does not accelerate recovery for muscle performance.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, Queensland, Australia
| | - Utkarsh Singh
- Sports Dynamix Private Limited, Chennai, Nadu, India
| | - Daniel Boullosa
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, Queensland, Australia.,INISA, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Jonathan Douglas Connor
- College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, Queensland, Australia
| |
Collapse
|
10
|
Effect of Exercise-Induced Muscle Damage on Bowling-Specific Motor Skills in Male Adolescent Cricketers. Sports (Basel) 2021; 9:sports9070103. [PMID: 34357937 PMCID: PMC8309793 DOI: 10.3390/sports9070103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
The current study examined the acute effects of a bout of resistance training on cricket bowling-specific motor performance. Eight sub-elite, resistance-untrained, adolescent male fast bowlers (age 15 ± 1.7 years; height 1.8 ± 0.1 m; weight 67.9 ± 7.9 kg) completed a bout of upper and lower body resistance exercises. Indirect markers of muscle damage (creatine kinase [CK] and delayed onset of muscle soreness [DOMS]), anaerobic performance (15-m sprint and vertical jump), and cricket-specific motor performance (ball speed, run-up time, and accuracy) were measured prior to and 24 (T24) and 48 (T48) hours following the resistance training bout. The resistance training bout significantly increased CK (~350%; effect size [ES] = 1.89-2.24), DOMS (~240%; ES = 1.46-3.77) and 15-m sprint times (~4.0%; ES = 1.33-1.47), whilst significantly reducing vertical jump height (~7.0%; ES = 0.76-0.96) for up to 48 h. The ball speed (~3.0%; ES = 0.50-0.61) and bowling accuracy (~79%; ES = 0.39-0.70) were significantly reduced, whilst run-up time was significantly increased (~3.5%; ES = 0.36-0.50) for up to 24 h. These findings demonstrate that a bout of resistance training evokes exercise-induced muscle damage amongst sub-elite, adolescent male cricketers, which impairs anaerobic performance and bowling-specific motor performance measures. Cricket coaches should be cautious of incorporating bowling sessions within 24-h following a bout of resistance training for sub-elite adolescent fast bowlers, particularly for those commencing a resistance training program.
Collapse
|
11
|
Baldwin KM, Badenhorst CE, Cripps AJ, Landers GJ, Merrells RJ, Bulsara MK, Hoyne GF. Strength Training for Long-Distance Triathletes. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Idrizovic K, Ahmeti GB, Sekulic D, Zevrnja A, Ostojic L, Versic S, Zenic N. Indices of Cardiovascular Health, Body Composition and Aerobic Endurance in Young Women; Differential Effects of Two Endurance-Based Training Modalities. Healthcare (Basel) 2021; 9:healthcare9040449. [PMID: 33920449 PMCID: PMC8069629 DOI: 10.3390/healthcare9040449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022] Open
Abstract
Endurance training (ET) has multiple beneficial effects on cardiovascular health (CVH), but there is an evident lack of knowledge on differential effects of various types of ET on indices of CVH in women. The aim of this study was to analyse the effectiveness of two different types of ET on changes in indicators of CVH in apparently healthy adult women. The sample included 58 women (24 ± 3 years; height: 165 ± 6 cm, mass: 66.7 ± 7.2 kg, BMI: 24.3 ± 2.5 kg/m2, at baseline) divided into one control non-exercising group (n = 19), and two exercising experimental groups (EE). The first EE participated in choreographed aerobic-endurance training (CAT; n = 19), while the second participated in treadmill-based endurance exercise (TEE; n = 20) during the experimental protocol (8 weeks, 24 training sessions). The testing included pre- and post-exercise protocols and measures of anthropometric/body composition indices, lipid panel, and endurance capacity. Two-way analysis of variance for repeated measurements with consecutive post hoc analysis was applied to the “group” and “measurement” variables. The main significant ANOVA effects found for measurement, and “Group x Measurement” interaction (p < 0.05) were found for all variables but body height. The EE induced positive changes in lipid panel variables, anthropometric/body-build status, and endurance capacity. However, TEE improved endurance capacity to a greater extent than CAT. The results suggest that that the optimal exercise intensity and self-chosen type of physical-activity may result in positive effects on indices of CVH, even in women of young age and good health status.
Collapse
Affiliation(s)
- Kemal Idrizovic
- Faculty for Sport and Physical Education, University of Montenegro, 81400 Niksic, Montenegro;
| | - Gentiana Beqa Ahmeti
- Faculty of Physical Education and Sport, University of Prishtina, 10000 Prishtina, Kosovo;
| | - Damir Sekulic
- Faculty of Kinesiology, University of Split, 21000 Split, Croatia; (D.S.); (L.O.); (S.V.)
| | - Ante Zevrnja
- Faculty of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
- Clinical Hospital Split, 21000 Split, Croatia
| | - Ljerka Ostojic
- Faculty of Kinesiology, University of Split, 21000 Split, Croatia; (D.S.); (L.O.); (S.V.)
- Faculty of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Sime Versic
- Faculty of Kinesiology, University of Split, 21000 Split, Croatia; (D.S.); (L.O.); (S.V.)
| | - Natasa Zenic
- Faculty of Kinesiology, University of Split, 21000 Split, Croatia; (D.S.); (L.O.); (S.V.)
- Correspondence:
| |
Collapse
|
13
|
Effects of Exercise Sequence and Velocity Loss Threshold During Resistance Training on Following Endurance and Strength Performance During Concurrent Training. Int J Sports Physiol Perform 2021; 16:811-817. [PMID: 33547266 DOI: 10.1123/ijspp.2020-0483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE This study aimed to analyze the response to 4 concurrent training interventions differing in the training sequence and in the velocity loss (VL) threshold during strength training (20% vs 40%) on following endurance and strength performance. METHODS A randomized crossover research design was used. Sixteen trained men performed 4 training interventions consisting of endurance training (ET) followed by resistance training (RT), with 20% and 40% VL, respectively (ET + RT20 and ET + RT40), and RT with 20% and 40% VL, respectively, followed by ET (RT20 + ET and RT40 + ET). The ET consisted of running for 10 minutes at 90% of maximal aerobic velocity. The RT consisted of 3 squat sets with 60% of 1-repetition maximum. A 5-minute rest was given between exercises. The oxygen uptake throughout the ET and repetition velocity during RT were recorded. The blood lactate concentration, vertical jump, and squat velocity were measured at preexercise and after the endurance and strength exercises. RESULTS The RT40 + ET protocol showed an impaired running time along with higher ventilatory equivalents compared with those protocols that performed the ET without previous fatigue. No significant differences were observed in the repetitions per set performed for a given VL threshold, regardless of the exercise sequence. The protocols consisting of 40%VL induced greater reductions in jump height and squat velocity, along with elevated blood lactate concentration. CONCLUSIONS A high VL magnitude (40%VL) induced higher metabolic and mechanical stress, as well as greater residual fatigue, on the following ET performance.
Collapse
|
14
|
Birdsey LP, Weston M, Russell M, Johnston M, Cook CJ, Kilduff LP. The neuromuscular, physiological, endocrine and perceptual responses to different training session orders in international female netball players. Eur J Sport Sci 2021; 22:314-325. [PMID: 33393427 DOI: 10.1080/17461391.2020.1869837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe 20 h responses of International female netball players to training days requiring two sessions (netball and strength, separated by two hours) ordered alternatively were examined. Eleven players completed strength followed by netball training two hours later (STR-NET), with the order reversed (NET-STR) on a separate day. Well-being, neuromuscular performance (jump height [JH], peak power output [PPO], peak velocity [PV]) and endocrine function (testosterone, cortisol concentrations) were measured before sessions one (PreS1) and two (PreS2), immediately after sessions one (IPS1) and two (IPS2), and 20 h post session one (20P). Session and differential ratings of perceived exertion (upper-body, cognitive/technical [RPE-T], lower-body, breathlessness) were collected, and accelerometry and heart rate measured netball load. Identification of clear between-order differences was based on the nonoverlap of the 95% confidence interval (95%CI) for mean differences relative to baseline. Compared to PreS1, greater increases in JH (percentage difference between trials; 95%CI: 9%; 4-14%), PPO (5%; 2-8%), PV (3%; 1-5%) and cortisol concentration (45%; 1-88%), and a greater decrease for testosterone/cortisol ratio (-35%; -72 to -2%) occurred at PreS2 in NET-STR. At 20P, greater decreases in JH (10%; 5-15%), PPO (4%; 1-8%) and PV (4%; 2-6%) were observed following STR-NET. No differences existed for well-being, whilst RPE-T was greater (15 AU; 3-26 AU) for strength training during NET-STR. Session order influenced neuromuscular and endocrine responses in International female netball players, highlighting session ordering as a key consideration when planning training.
Collapse
Affiliation(s)
- Laurence P Birdsey
- A-STEM College of Engineering, Swansea University, Swansea, UK.,English Institute of Sport, Manchester, UK
| | - Matthew Weston
- School of Health and Life Sciences, Teesside University, Middlesborough, UK
| | - Mark Russell
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | | | | | - Liam P Kilduff
- A-STEM College of Engineering, Swansea University, Swansea, UK.,Welsh Institute of Performance Science, Swansea University, Swansea, UK
| |
Collapse
|
15
|
Doma K, Devantier-Thomas B, Gahreman D, Connor J. Selected root plant supplementation reduces indices of exercise-induced muscle damage: A systematic review and meta-analysis. INT J VITAM NUTR RES 2020; 92:448-468. [PMID: 33196371 DOI: 10.1024/0300-9831/a000689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This systematic review and meta-analysis examined the effects of selected root plants (curcumin, ginseng, ginger and garlic) on markers of muscle damage and muscular performance measures following muscle-damaging protocols. We included 25 studies (parallel and crossover design) with 353 participants and used the PEDro scale to appraise each study. Forest plots were generated to report on standardised mean differences (SMD) and p-values at 24 and 48 hours following the muscle-damaging protocols. The meta-analysis showed that the supplemental (SUPP) condition showed significantly lower levels of indirect muscle damage markers (creatine kinase, lactate dehydrogenase and myoglobin) and muscle soreness at 24 hours and 48 hours (p < 0.01) than the placebo (PLA) condition. The inflammatory markers were significantly lower for the SUPP condition than the PLA condition at 24 hours (p = 0.02), although no differences were identified at 48 hours (p = 0.40). There were no significant differences in muscular performance measures between the SUPP and PLA conditions at 24 hours and 48 hours (p > 0.05) post-exercise. According to our qualitative data, a number of studies reported a reduction in oxidative stress (e.g., malondialdehyde, superoxide dismutase) with a concomitant upregulation of anti-oxidant status, although other studies showed no effects. Accordingly, selected root plants minimised the level of several biomarkers of muscle damage, inflammation and muscle soreness during periods of exercise-induced muscle damage. However, the benefits of these supplements in ameliorating oxidative stress, increasing anti-oxidant status and accelerating recovery of muscular performance appears equivocal, warranting further research in these outcome measures.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| | | | - Daniel Gahreman
- College of Health and Human Sciences, Charles Darwin University, Darwin, Australia
| | - Jonathan Connor
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
16
|
Doma K, Gahreman D, Connor J. Fruit supplementation reduces indices of exercise-induced muscle damage: a systematic review and meta-analysis. Eur J Sport Sci 2020; 21:562-579. [PMID: 32460679 DOI: 10.1080/17461391.2020.1775895] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This systematic review and meta-analysis examined the effects of fruit supplements on indices of muscle damage and physical performance measures following muscle-damaging exercise protocols. The PEDro scale and Cochrane's risk of bias tool was used to critically appraise each study, whilst forest plots were generated to report on standardised mean differences (SMD) and p-values. The studies employed a crossover-randomised design, or a randomised controlled placebo design, with measures compared between the supplement (SUPP) and placebo (PLA) conditions at 24 and 48 h following the muscle-damaging exercise protocols. Compared to the PLA condition, the SUPP condition exhibited significantly lower levels of indirect muscle damage markers (p = 0.02; I2 = 44%), inflammatory markers (p = 0.03; I2 = 45%) and oxidative stress (p < 0.001; I2 = 58%), whilst antioxidant capacity was significantly increased (p = 0.04; I2 = 82%) at 24 h post-exercise. The maximal isometric voluntary contraction was significantly greater for the SUPP condition than the PLA at 24 h (p < 0.001; I2 = 81%) and 48 h (p < 0.001; 84%) post-exercise. Only a few studies reported on functional outcome measures (i.e. countermovement jump, cycling, sprint and running maximal oxygen uptake), and the findings appeared conflicting according to qualitative analyses. Fruit supplementation minimised the level of several biomarkers of muscle damage, inflammation and oxidative stress, whilst improved muscular contractility during periods of EIMD. These findings demonstrate that fruit supplements could be used as recovery strategies from strenuous exercise sessions.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| | - Daniel Gahreman
- College of Health and Human Sciences, Charles Darwin University, Darwin, Australia
| | - Jonathan Connor
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
17
|
Lee MJC, Ballantyne JK, Chagolla J, Hopkins WG, Fyfe JJ, Phillips SM, Bishop DJ, Bartlett JD. Order of same-day concurrent training influences some indices of power development, but not strength, lean mass, or aerobic fitness in healthy, moderately-active men after 9 weeks of training. PLoS One 2020; 15:e0233134. [PMID: 32407361 PMCID: PMC7224562 DOI: 10.1371/journal.pone.0233134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Background The importance of concurrent exercise order for improving endurance and resistance adaptations remains unclear, particularly when sessions are performed a few hours apart. We investigated the effects of concurrent training (in alternate orders, separated by ~3 hours) on endurance and resistance training adaptations, compared to resistance-only training. Materials and methods Twenty-nine healthy, moderately-active men (mean ± SD; age 24.5 ± 4.7 y; body mass 74.9 ± 10.8 kg; height 179.7 ± 6.5 cm) performed either resistance-only training (RT, n = 9), or same-day concurrent training whereby high-intensity interval training was performed either 3 hours before (HIIT+RT, n = 10) or after resistance training (RT+HIIT, n = 10), for 3 d.wk-1 over 9 weeks. Training-induced changes in leg press 1-repetition maximal (1-RM) strength, countermovement jump (CMJ) performance, body composition, peak oxygen uptake ( V˙O2peak), aerobic power ( W˙peak), and lactate threshold ( W˙LT) were assessed before, and after both 5 and 9 weeks of training. Results After 9 weeks, all training groups increased leg press 1-RM (~24–28%) and total lean mass (~3-4%), with no clear differences between groups. Both concurrent groups elicited similar small-to-moderate improvements in all markers of aerobic fitness ( V˙O2peak ~8–9%; W˙LT ~16-20%; W˙peak ~14-15%). RT improved CMJ displacement (mean ± SD, 5.3 ± 6.3%), velocity (2.2 ± 2.7%), force (absolute: 10.1 ± 10.1%), and power (absolute: 9.8 ± 7.6%; relative: 6.0 ± 6.6%). HIIT+RT elicited comparable improvements in CMJ velocity only (2.2 ± 2.7%). Compared to RT, RT+HIIT attenuated CMJ displacement (mean difference ± 90%CI, -5.1 ± 4.3%), force (absolute: -8.2 ± 7.1%) and power (absolute: -6.0 ± 4.7%). Only RT+HIIT reduced absolute fat mass (mean ± SD, -11.0 ± 11.7%). Conclusions In moderately-active males, concurrent training, regardless of the exercise order, presents a viable strategy to improve lower-body maximal strength and total lean mass comparably to resistance-only training, whilst also improving indices of aerobic fitness. However, improvements in CMJ displacement, force, and power were attenuated when RT was performed before HIIT, and as such, exercise order may be an important consideration when designing training programs in which the goal is to improve lower-body power.
Collapse
Affiliation(s)
- Matthew J. -C. Lee
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- * E-mail:
| | | | - Javier Chagolla
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - William G. Hopkins
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Jackson J. Fyfe
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Australia
| | - Stuart M. Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - David J. Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- School of Medicine & Health Sciences, Edith Cowan University, Joonalup, Australia
| | | |
Collapse
|
18
|
Training Considerations for Optimising Endurance Development: An Alternate Concurrent Training Perspective. Sports Med 2020; 49:669-682. [PMID: 30847824 DOI: 10.1007/s40279-019-01072-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Whilst the "acute hypothesis" was originally coined to describe the detrimental effects of concurrent training on strength development, similar physiological processes may occur when endurance training adaptations are compromised. There is a growing body of research indicating that typical resistance exercises impair neuromuscular function and endurance performance during periods of resistance training-induced muscle damage. Furthermore, recent evidence suggests that the attenuating effects of resistance training-induced muscle damage on endurance performance are influenced by exercise intensity, exercise mode, exercise sequence, recovery and contraction velocity of resistance training. By understanding the influence that training variables have on the level of resistance training-induced muscle damage and its subsequent attenuating effects on endurance performance, concurrent training programs could be prescribed in such a way that minimises fatigue between modes of training and optimises the quality of endurance training sessions. Therefore, this review will provide considerations for concurrent training prescription for endurance development based on scientific evidence. Furthermore, recommendations will be provided for future research by identifying training variables that may impact on endurance development as a result of concurrent training.
Collapse
|
19
|
Barrie B. Concurrent Resistance Training Enhances Performance in Competitive Distance Runners: A Review and Programming Implementation. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Doma K, Nicholls A, Gahreman D, Damas F, Libardi CA, Sinclair W. The Effect of a Resistance Training Session on Physiological and Thermoregulatory Measures of Sub-maximal Running Performance in the Heat in Heat-Acclimatized Men. SPORTS MEDICINE-OPEN 2019; 5:21. [PMID: 31165339 PMCID: PMC6548784 DOI: 10.1186/s40798-019-0195-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND The current study examined the acute effects of a lower body resistance training (RT) session on physiological and thermoregulatory measures during a sub-maximal running protocol in the heat in heat-acclimatized men. Ten resistance-untrained men (age 27.4 ± 4.1 years; height 1.78 ± 0.06 m; body mass 76.8 ± 9.9 kg; peak oxygen uptake 48.2 ± 7.0 mL kg-1 min-1) undertook a high-intensity RT session at six-repetition maximum. Indirect muscle damage markers (i.e., creatine kinase [CK], delayed-onset muscle soreness [DOMS], and countermovement jump [CMJ]) were collected prior to, immediately post and 24 and 48 h after the RT session. The sub-maximal running protocol was performed at 70% of the ventilatory threshold, which was conducted prior to and 24 and 48 h following the RT session to obtain physiological and thermoregulatory measures. RESULTS The RT session exhibited significant increases in DOMS (p < 0.05; effect size [ES]: 1.41-10.53), whilst reduced CMJ (p < 0.05; ES: - 0.79-1.41) for 48 h post-exercise. There were no differences in CK (p > 0.05), although increased with moderate to large ES (0.71-1.12) for 48 h post-exercise. The physiological cost of running was increased for up to 48 h post-exercise (p < 0.05) with moderate to large ES (0.50-0.84), although no differences were shown in thermoregulatory measures (p > 0.05) with small ES (0.33). CONCLUSION These results demonstrate that a RT session impairs sub-maximal running performance for several days post-exercise, although thermoregulatory measures are unperturbed despite elevated muscle damage indicators in heat-acclimatized, resistance untrained men. Accordingly, whilst a RT session may not increase susceptibility to heat-related injuries in heat-acclimatized men during sub-maximal running in the heat, endurance sessions should be undertaken with caution for at least 48 h post-exercise following the initial RT session in resistance untrained men.
Collapse
Affiliation(s)
- Kenji Doma
- College of Healthcare Sciences, James Cook University, James Cook Drive, Rehab Sciences Building, Townsville, QLD, 4811, Australia.
| | - Anthony Nicholls
- College of Healthcare Sciences, James Cook University, James Cook Drive, Rehab Sciences Building, Townsville, QLD, 4811, Australia
| | - Daniel Gahreman
- Exercise and Sport Science, Charles Darwin University, Casuarina, Australia
| | - Felipe Damas
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| | - Wade Sinclair
- College of Healthcare Sciences, James Cook University, James Cook Drive, Rehab Sciences Building, Townsville, QLD, 4811, Australia
| |
Collapse
|
21
|
Benítez-Flores S, Medeiros AR, Voltarelli FA, Iglesias-Soler E, Doma K, Simões HG, Rosa TS, Boullosa DA. Combined effects of very short "all out" efforts during sprint and resistance training on physical and physiological adaptations after 2 weeks of training. Eur J Appl Physiol 2019; 119:1337-1351. [PMID: 30879186 DOI: 10.1007/s00421-019-04125-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/09/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this study was to compare the combined effects of resistance and sprint training, with very short efforts (5 s), on aerobic and anaerobic performances, and cardiometabolic health-related parameters in young healthy adults. METHODS Thirty young physically active individuals were randomly allocated into four groups: resistance training (RTG), sprint interval training (SITG), concurrent training (CTG), and control (CONG). Participants trained 3 days/week for 2 weeks in the high-intensity interventions that consisted of 6-12 "all out" efforts of 5 s separated by 24 s of recovery, totalizing ~ 13 min per session, with 48-72 h of recovery between sessions. Body composition, vertical jump, lower body strength, aerobic and anaerobic performances, heart rate variability (HRV), and redox status were evaluated before and after training. Total work (TW), rating of perceived exertion (CR-10 RPE) and mean HR (HRmean) were monitored during sessions. Incidental physical activity (PA), dietary intake and perceived stress were also controlled. RESULTS Maximum oxygen consumption (VO2max) significantly increased in SITG and CTG (P < 0.05). Lower body strength improved in RTG and CTG (P < 0.05), while countermovement jump (CMJ) was improved in RTG (P = 0.04) only. Redox status improved after all interventions (P < 0.05). No differences were found in TW, PA, dietary intake, and psychological stress between groups (P > 0.05). CONCLUSIONS RT and SIT protocols with very short "all out" efforts, either performed in isolation, or combined, demonstrated improvement in several physical fitness- and health-related parameters. However, CT was the most efficient exercise intervention with improvement observed in the majority of the parameters.
Collapse
Affiliation(s)
- Stefano Benítez-Flores
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasília, Brazil
| | - André R Medeiros
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasília, Brazil
| | - Fabrício Azevedo Voltarelli
- Post-graduation Program in Health Sciences, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Eliseo Iglesias-Soler
- Department of Physical Education and Sports, Faculty of Sport Sciences and Physical Education, University of A Coruna, A Coruña, Spain
| | - Kenji Doma
- Sport and Exercise Science, James Cook University, Townsville, Australia
| | - Herbert G Simões
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasília, Brazil
| | - Thiago Santos Rosa
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasília, Brazil
| | - Daniel A Boullosa
- Sport and Exercise Science, James Cook University, Townsville, Australia.
| |
Collapse
|
22
|
Abstract
The classical work by Robert C. Hickson showed in 1980 that the addition of a resistance-training protocol to a predominantly aerobic program could lead to impaired leg-strength adaptations in comparison with a resistance-only training regimen. This interference phenomenon was later highlighted in many reports, including a meta-analysis. However, it seems that the interference effect has not been consistently reported, probably because of the complex interactions between training variables and methodological issues. On the other side of the medal, Dr Hickson et al subsequently (1986) reported that a strength-training mesocycle could be beneficial for endurance performance in running and cycling. In recent meta-analyses and review articles, it was demonstrated that such a training strategy could improve middle- and long-distance performance in many disciplines (running, cycling, cross-country skiing, and swimming). Notably, it appears that improvements in the energy cost of locomotion could be associated with these performance enhancements. Despite these benefits, it was also reported that strength training could represent a detrimental stimulus for endurance performance if an inappropriate training plan has been prepared. Taken together, these observations suggest that coaches and athletes should be careful when concurrent training seems imperative to meet the complex physiological requirements of their sport. This brief review presents a practical appraisal of concurrent training for sports performance. In addition, recommendations are provided so that practitioners can adapt their interventions based on the training objectives.
Collapse
|
23
|
Implications of Impaired Endurance Performance following Single Bouts of Resistance Training: An Alternate Concurrent Training Perspective. Sports Med 2018; 47:2187-2200. [PMID: 28702901 DOI: 10.1007/s40279-017-0758-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A single bout of resistance training induces residual fatigue, which may impair performance during subsequent endurance training if inadequate recovery is allowed. From a concurrent training standpoint, such carry-over effects of fatigue from a resistance training session may impair the quality of a subsequent endurance training session for several hours to days with inadequate recovery. The proposed mechanisms of this phenomenon include: (1) impaired neural recruitment patterns; (2) reduced movement efficiency due to alteration in kinematics during endurance exercise and increased energy expenditure; (3) increased muscle soreness; and (4) reduced muscle glycogen. If endurance training quality is consistently compromised during the course of a specific concurrent training program, optimal endurance development may be limited. Whilst the link between acute responses of training and subsequent training adaptation has not been fully established, there is some evidence suggesting that cumulative effects of fatigue may contribute to limiting optimal endurance development. Thus, the current review will (1) explore cross-sectional studies that have reported impaired endurance performance following a single, or multiple bouts, of resistance training; (2) identify the potential impact of fatigue on chronic endurance development; (3) describe the implications of fatigue on the quality of endurance training sessions during concurrent training, and (4) explain the mechanisms contributing to resistance training-induced attenuation on endurance performance from neurological, biomechanical and metabolic standpoints. Increasing the awareness of resistance training-induced fatigue may encourage coaches to consider modulating concurrent training variables (e.g., order of training mode, between-mode recovery period, training intensity, etc.) to limit the carry-over effects of fatigue from resistance to endurance training sessions.
Collapse
|
24
|
Doma K, Leicht A, Sinclair W, Schumann M, Damas F, Burt D, Woods C. Impact of Exercise-Induced Muscle Damage on Performance Test Outcomes in Elite Female Basketball Players. J Strength Cond Res 2018; 32:1731-1738. [PMID: 28930877 DOI: 10.1519/jsc.0000000000002244] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Doma, K, Leicht, A, Sinclair, W, Schumann, M, Damas, F, Burt, D, and Woods, C. Impact of exercise-induced muscle damage on performance test outcomes in elite female basketball players. J Strength Cond Res 32(6): 1731-1738, 2018-The purpose of this study was 2-fold: first, to examine the impact of exercise-induced muscle damage (EIMD) on physical fitness qualities after a basketball-specific training session; second, to determine the reproducibility of the sport-specific performance measures in elite female basketball players. Ten elite female basketball players (age 25.6 ± 4.5 years; height 1.8 ± 0.7 m; and body mass 76.7 ± 8.3 kg) undertook a 90-minute training session involving repeated jumping, sprinting, and game-simulated training. Indirect muscle damage markers (i.e., countermovement jump, delayed onset of muscle soreness [DOMS], and creatine kinase [CK]) and sport-specific performances (i.e., change-of-direction [COD] test and suicide test [ST]) were measured before and 24 hours after training. These measures were also collected 1 week after training to determine the reproducibility of the basketball-specific performance measures. A significant reduction in lower-body power (-3.5 ± 3.6%; p ≤ 0.05), while a significant increase in DOMS (46.7 ± 26.3%; p ≤ 0.05) and CK (57.6 ± 23.1%; p ≤ 0.05) was observed 24 hours after exercise. The ST was also significantly increased (2.1 ± 1.8%; p ≤ 0.05), although no difference was observed for COD (0.1 ± 2.0%; p > 0.05). The intraclass correlation coefficient and coefficient of variation for the COD and ST were 0.81 and 0.90, respectively, and 1.9 and 1.5%, respectively. In conclusion, appropriate recovery should be considered the day after basketball-specific training sessions in elite basketball players. Furthermore, this study showed the usability of performance measures to detect changes during periods of EIMD, with acceptable reproducibility and minimal measurement error.
Collapse
Affiliation(s)
- Kenji Doma
- Sport & Exercise Science, James Cook University, Townsville, Australia
| | - Anthony Leicht
- Sport & Exercise Science, James Cook University, Townsville, Australia
| | - Wade Sinclair
- Sport & Exercise Science, James Cook University, Townsville, Australia
| | - Moritz Schumann
- Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne, Germany
| | - Felipe Damas
- School of Physical Education and Sport, University of São Paolo, São Paolo, Brazil
| | - Dean Burt
- Sport and Exercise Science, Staffordshire University, Staffordshire, England
| | - Carl Woods
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
25
|
Doma K, Schumann M, Leicht AS, Heilbronn BE, Damas F, Burt D. The repeated bout effect of traditional resistance exercises on running performance across 3 bouts. Appl Physiol Nutr Metab 2017; 42:978-985. [PMID: 28553994 DOI: 10.1139/apnm-2017-0214] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study investigated the repeated bout effect of 3 typical lower body resistance-training sessions on maximal and submaximal effort running performance. Twelve resistance-untrained men (age, 24 ± 4 years; height, 1.81 ± 0.10 m; body mass, 79.3 ± 10.9 kg; peak oxygen uptake, 48.2 ± 6.5 mL·kg-1·min-1; 6-repetition maximum squat, 71.7 ± 12.2 kg) undertook 3 bouts of resistance-training sessions at 6-repetitions maximum. Countermovement jump (CMJ), lower-body range of motion (ROM), muscle soreness, and creatine kinase (CK) were examined prior to and immediately, 24 h (T24), and 48 h (T48) after each resistance-training bout. Submaximal (i.e., below anaerobic threshold (AT)) and maximal (i.e., above AT) running performances were also conducted at T24 and T48. Most indirect muscle damage markers (i.e., CMJ, ROM, and muscle soreness) and submaximal running performance were significantly improved (P < 0.05; 1.9%) following the third resistance-training bout compared with the second bout. Whilst maximal running performance was also improved following the third bout (P < 0.05; 9.8%) compared with other bouts, the measures were still reduced by 12%-20% versus baseline. However, the increase in CK was attenuated following the second bout (P < 0.05) with no further protection following the third bout (P > 0.05). In conclusion, the initial bout induced the greatest change in CK; however, at least 2 bouts were required to produce protective effects on other indirect muscle damage markers and submaximal running performance measures. This suggests that submaximal running sessions should be avoided for at least 48 h after resistance training until the third bout, although a greater recovery period may be required for maximal running sessions.
Collapse
Affiliation(s)
- Kenji Doma
- a College of Healthcare Sciences, James Cook University, Townsville QLD4811, Australia
| | - Moritz Schumann
- b Institute of Cardiovascular Research and Sports Medicine, German Sport University, Cologne 50933, Germany
| | - Anthony Scott Leicht
- a College of Healthcare Sciences, James Cook University, Townsville QLD4811, Australia
| | | | - Felipe Damas
- c School of Physical Education and Sport, University of São Paulo, São Paulo 05508, Brazil
| | - Dean Burt
- d Sport and Exercise Science, Staffordshire University, Staffordshire WS12 4JH, England
| |
Collapse
|
26
|
Marcello RT, Greer BK, Greer AE. Acute Effects of Plyometric and Resistance Training on Running Economy in Trained Runners. J Strength Cond Res 2016; 31:2432-2437. [PMID: 27806012 DOI: 10.1519/jsc.0000000000001705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Marcello, RT, Greer, BK, and Greer, AE. Acute effects of plyometric and resistance training on running economy in trained runners. J Strength Cond Res 31(9): 2432-2437, 2017-Results regarding the acute effects of plyometrics and resistance training (PRT) on running economy (RE) are conflicting. Eight male collegiate distance runners (21 ± 1 years, 62.5 ± 7.8 ml·kg·min V[Combining Dot Above]O2 peak) completed V[Combining Dot Above]O2 peak and 1 repetition maximum (1RM) testing. Seven days later, subjects completed a 12 minutes RE test at 60 and 80% V[Combining Dot Above]O2 peak, followed by a PRT protocol or a rested condition of equal duration (CON). The PRT protocol consisted of 3 sets of 5 repetitions at 85% 1RM for barbell squats, Romanian deadlifts, and barbell lunges; the same volume was used for resisted lateral lunges, box jumps, and depth jumps. Subjects completed another RE test immediately after the treatments and 24 hours later. Subjects followed an identical protocol 6 days later with condition assignment reversed. Running economy was determined by both relative V[Combining Dot Above]O2 (ml·kg·min) and energy expenditure (EE) (kcal·min). There was a significant (p ≤ 0.05) between-trial increase in V[Combining Dot Above]O2 (37.1 ± 4.2 ml·kg·min PRT vs. 35.5 ± 3.9 ml·kg·min CON) and EE (11.4 ± 1.3 kcal·min PRT vs. 11.0 ± 1.4 kcal·min CON) immediately after PRT at 60% V[Combining Dot Above]O2 peak, but no significant changes were observed at 80% V[Combining Dot Above]O2 peak. Respiratory exchange ratio was significantly (p ≤ 0.05) reduced 24 hours after PRT (0.93 ± 0.0) as compared to the CON trial (0.96 ± 0.0) at 80% V[Combining Dot Above]O2 peak. Results indicate that high-intensity PRT may acutely impair RE in aerobically trained individuals at a moderate running intensity, but that the attenuation lasts less than 24 hours in duration.
Collapse
Affiliation(s)
- Richard T Marcello
- Department of Physical Therapy and Human Movement Science, Sacred Heart University, Fairfield, Connecticut
| | | | | |
Collapse
|
27
|
Alves AR, Marta CC, Neiva HP, Izquierdo M, Marques MC. Concurrent Training in Prepubescent Children: The Effects of 8 Weeks of Strength and Aerobic Training on Explosive Strength and V̇o 2max. J Strength Cond Res 2016; 30:2019-32. [DOI: 10.1519/jsc.0000000000001294] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Schumann M, Mykkänen OP, Doma K, Mazzolari R, Nyman K, Häkkinen K. Effects of endurance training only versus same-session combined endurance and strength training on physical performance and serum hormone concentrations in recreational endurance runners. Appl Physiol Nutr Metab 2016; 40:28-36. [PMID: 25494869 DOI: 10.1139/apnm-2014-0262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of endurance training only (E, n = 14) and same-session combined training, when strength training is repeatedly preceded by endurance loading (endurance and strength training (E+S), n = 13) on endurance (1000-m running time during incremental field test) and strength performance (1-repetition maximum (1RM) in dynamic leg press), basal serum hormone concentrations, and endurance loading-induced force and hormone responses in recreationally endurance-trained men. E was identical in the 2 groups and consisted of steady-state and interval running, 4-6 times per week for 24 weeks. E+S performed additional mixed-maximal and explosive-strength training (2 times per week) immediately following an incremental running session (35-45 min, 65%-85% maximal heart rate). E and E+S decreased running time at week 12 (-8% ± 5%, p = 0.001 and -7% ± 3%, p < 0.001) and 24 (-13% ± 5%, p < 0.001 and -9% ± 5%, p = 0.001). Strength performance decreased in E at week 24 (-5% ± 5%, p = 0.014) but was maintained in E+S (between-groups at week 12 and 24, p = 0.014 and 0.011, respectively). Basal serum testosterone and cortisol concentrations remained unaltered in E and E+S but testosterone/sex hormone binding globulin ratio decreased in E+S at week 12 (-19% ± 26%, p = 0.006). At week 0 and 24, endurance loading-induced acute force (-5% to -9%, p = 0.032 to 0.001) and testosterone and cortisol responses (18%-47%, p = 0.013 to p < 0.001) were similar between E and E+S. This study showed no endurance performance benefits when strength training was performed repeatedly after endurance training compared with endurance training only. This was supported by similar acute responses in force and hormonal measures immediately post-endurance loading after the training with sustained 1RM strength in E+S.
Collapse
Affiliation(s)
- Moritz Schumann
- a Department of Biology of Physical Activity, PO Box 35 (VIV), 40014, University of Jyväskylä, Finland
| | | | | | | | | | | |
Collapse
|
29
|
The effect of session order on the physiological, neuromuscular, and endocrine responses to maximal speed and weight training sessions over a 24-h period. J Sci Med Sport 2016; 20:502-506. [PMID: 27036712 DOI: 10.1016/j.jsams.2016.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/18/2016] [Accepted: 03/18/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Athletes are often required to undertake multiple training sessions on the same day with these sessions needing to be sequenced correctly to allow the athlete to maximize the responses of each session. We examined the acute effect of strength and speed training sequence on neuromuscular, endocrine, and physiological responses over 24h. DESIGN 15 academy rugby union players completed this randomized crossover study. METHODS Players performed a weight training session followed 2h later by a speed training session (weights speed) and on a separate day reversed the order (speed weights). Countermovement jumps, perceived muscle soreness, and blood samples were collected immediately prior, immediately post, and 24h post-sessions one and two respectively. Jumps were analyzed for power, jump height, rate of force development, and velocity. Blood was analyzed for testosterone, cortisol, lactate and creatine kinase. RESULTS There were no differences between countermovement jump variables at any of the post-training time points (p>0.05). Likewise, creatine kinase, testosterone, cortisol, and muscle soreness were unaffected by session order (p>0.05). However, 10m sprint time was significantly faster (mean±standard deviation; speed weights 1.80±0.11s versus weights speed 1.76±0.08s; p>0.05) when speed was sequenced second. Lactate levels were significantly higher immediately post-speed sessions versus weight training sessions at both time points (p<0.05). CONCLUSIONS The sequencing of strength and speed training does not affect the neuromuscular, endocrine, and physiological recovery over 24h. However, speed may be enhanced when performed as the second session.
Collapse
|
30
|
Hayter KJ, Doma K, Schumann M, Deakin GB. The comparison of cold-water immersion and cold air therapy on maximal cycling performance and recovery markers following strength exercises. PeerJ 2016; 4:e1841. [PMID: 27069791 PMCID: PMC4824899 DOI: 10.7717/peerj.1841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/02/2016] [Indexed: 12/21/2022] Open
Abstract
This study examined the effects of cold-water immersion (CWI) and cold air therapy (CAT) on maximal cycling performance (i.e. anaerobic power) and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10) and female (n = 10) participants were randomised into either: CWI (15 min in 14 °C water to iliac crest) or CAT (15 min in 14 °C air) immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively). Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24), 48 (T48) and 72 (T72) h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05). However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90), T48 (8% ± 2%, ES = 0.64) and T72 (8% ± 7%, ES = 0.76). The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone.
Collapse
Affiliation(s)
- Kane J Hayter
- Sport and Exercise Science, James Cook University , Townsville, Queensland , Australia
| | - Kenji Doma
- Sport and Exercise Science, James Cook University , Townsville, Queensland , Australia
| | - Moritz Schumann
- Department of Biology of Physical Activity, University of Jyväskylä , Jyväskylä , Finland
| | - Glen B Deakin
- Sport and Exercise Science, James Cook University , Townsville, Queensland , Australia
| |
Collapse
|
31
|
Schumann M, Küüsmaa M, Newton RU, Sirparanta AI, Syväoja H, Häkkinen A, Häkkinen K. Fitness and lean mass increases during combined training independent of loading order. Med Sci Sports Exerc 2015; 46:1758-68. [PMID: 24518195 DOI: 10.1249/mss.0000000000000303] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Although the benefits of combined endurance (E) and strength (S) training for the development of physical fitness and health are well known, scientific examination of the effect of loading order when E and S are combined into the same training session (E+S vs S+E) is rare. This study investigated the effects of moderate frequency E+S versus S+E training on physical fitness, body composition, and blood lipids. METHODS Physically active and healthy young men performed E+S (n = 16) or S+E (n = 18) training 2-3 times a week for 24 wk. Endurance (by incremental bike test) and strength (by dynamic leg press) performance as well as body composition (by dual-energy x-ray absorptiometry), muscle cross-sectional area of vastus lateralis (by ultrasound), and blood lipid levels were determined before and after the intervention. RESULTS Time to exhaustion, aerobic power (W), and one-repetition maximum strength significantly increased in the two groups at week 24 (E+S, 12%-15%, P = 0.003-0.001; S+E, 16%-17%, P < 0.001), but no between-group difference was observed. Similarly, the two groups significantly increased total lean mass (E+S, 3%; S+E, 3%; both P = 0.001) and muscle cross-sectional area (E+S, 14%, P = 0.001; S+E, 16%, P < 0.001) at week 24 to a similar extent. No significant changes in body fat or blood lipid levels were observed in either of the two groups at week 24. CONCLUSIONS These results showed that moderate-frequency (2-3 times per week) combined E+S or S+E training led to significant improvements in physical fitness and lean body mass but did not induce significant changes in body fat or blood lipid levels. Furthermore, because no between-group differences were observed, these results indicate that loading order does not seem to affect training adaptations of healthy moderately active young men.
Collapse
Affiliation(s)
- Moritz Schumann
- 1Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, FINLAND; 2Health and Wellness Institute, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA; and 3Department of Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | | | | | | | | | | | | |
Collapse
|
32
|
Doma K, Deakin G. The Acute Effect of Concurrent Training on Running Performance Over 6 Days. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2015; 86:387-396. [PMID: 26241612 DOI: 10.1080/02701367.2015.1053104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
PURPOSE This study examined the effects of strength training on alternating days and endurance training on consecutive days on running performance for 6 days. METHODS Sixteen male and 8 female moderately trained individuals were evenly assigned into concurrent-training (CCT) and strength-training (ST) groups. The CCT group undertook strength training on alternating days combined with endurance training on consecutive days for 6 days. One week later, the CCT group conducted 3 consecutive days of endurance training only to determine whether fatigue would be induced with endurance training alone (CCT-Con). Endurance training was undertaken to induce endurance-training stimulus and to measure the cost of running (CR), rating of perceived exertion (RPE), and time to exhaustion (TTE). The ST group undertook 3 strength-training sessions on alternating days. Maximal voluntary contraction (MVC), rating of muscle soreness (RMS), and rating of muscle fatigue (RMF) were collected prior to each strength and endurance session. RESULTS For the CCT group, small differences were primarily found in CR and RPE (ES = 0.17-0.41). However, moderate-to-large reductions were found for TTE and MVC (ES = 0.65-2.00), whereas large increases in RMS and RMF (ES = 1.23-2.49) were found prior to each strength- and endurance-training session. Small differences were found in MVC for the ST group (ES = 0.11) and during CCT-Con for the CCT group (ES = 0.15-0.31). CONCLUSION Combining strength training on alternating days with endurance training on consecutive days impairs MVC and running performance at maximal effort and increases RMS and RMF over 6 days.
Collapse
|
33
|
Abstract
Running economy (RE) represents a complex interplay of physiological and biomechanical factors that is typically defined as the energy demand for a given velocity of submaximal running and expressed as the submaximal oxygen uptake (VO2) at a given running velocity. This review considered a wide range of acute and chronic interventions that have been investigated with respect to improving economy by augmenting one or more components of the metabolic, cardiorespiratory, biomechanical or neuromuscular systems. Improvements in RE have traditionally been achieved through endurance training. Endurance training in runners leads to a wide range of physiological responses, and it is very likely that these characteristics of running training will influence RE. Training history and training volume have been suggested to be important factors in improving RE, while uphill and level-ground high-intensity interval training represent frequently prescribed forms of training that may elicit further enhancements in economy. More recently, research has demonstrated short-term resistance and plyometric training has resulted in enhanced RE. This improvement in RE has been hypothesized to be a result of enhanced neuromuscular characteristics. Altitude acclimatization results in both central and peripheral adaptations that improve oxygen delivery and utilization, mechanisms that potentially could improve RE. Other strategies, such as stretching should not be discounted as a training modality in order to prevent injuries; however, it appears that there is an optimal degree of flexibility and stiffness required to maximize RE. Several nutritional interventions have also received attention for their effects on reducing oxygen demand during exercise, most notably dietary nitrates and caffeine. It is clear that a range of training and passive interventions may improve RE, and researchers should concentrate their investigative efforts on more fully understanding the types and mechanisms that affect RE and the practicality and extent to which RE can be improved outside the laboratory.
Collapse
Affiliation(s)
- Kyle R Barnes
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Level 2, AUT-Millennium Campus, 17 Antares Place, Mairangi Bay, Auckland, New Zealand,
| | | |
Collapse
|
34
|
Doma K, Schumann M, Sinclair WH, Leicht AS, Deakin GB, Häkkinen K. The repeated bout effect of typical lower body strength training sessions on sub-maximal running performance and hormonal response. Eur J Appl Physiol 2015; 115:1789-99. [PMID: 25828143 DOI: 10.1007/s00421-015-3159-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE This study examined the effects of two typical strength training sessions performed 1 week apart (i.e. repeated bout effect) on sub-maximal running performance and hormonal. METHODS Fourteen resistance-untrained men (age 24.0 ± 3.9 years; height 1.83 ± 0.11 m; body mass 77.4 ± 14.0 kg; VOpeak 48.1 ± 6.1 M kg(-1) min(-1)) undertook two bouts of high-intensity strength training sessions (i.e. six-repetition maximum). Creatine kinase (CK), delayed-onset muscle soreness (DOMS), counter-movement jump (CMJ) as well as concentrations of serum testosterone, cortisol and testosterone/cortisol ratio (T/C) were examined prior to and immediately post, 24 (T24) and 48 (T48) h post each strength training bout. Sub-maximal running performance was also conducted at T24 and T48 of each bout. RESULTS When measures were compared between bouts at T48, the degree of elevation in CK (-58.4 ± 55.6 %) and DOMS (-31.43 ± 42.9 %) and acute reduction in CMJ measures (4.1 ± 5.4 %) were attenuated (p < 0.05) following the second bout. Cortisol was increased until T24 (p < 0.05) although there were no differences between bouts and no differences were found for testosterone and T/C ratio (p > 0.05). Sub-maximal running performance was impaired until T24, although changes were not attenuated following the second bout. CONCLUSIONS The initial bout appeared to provide protection against a number of muscle damage indicators suggesting a greater need for recovery following the initial session of typical lower body resistance exercises in resistance-untrained men although sub-maximal running should be avoided following the first two sessions.
Collapse
Affiliation(s)
- Kenji Doma
- Sport and Exercise Science, James Cook University, Townsville, Australia,
| | | | | | | | | | | |
Collapse
|
35
|
|