1
|
Dunn RA, Tinsley GM, Palmer TB, Benjamin CL, Sekiguchi Y. The Efficacy of Nutritional Strategies and Ergogenic Aids on Acute Responses and Chronic Adaptations to Exertional-Heat Exposure: A Narrative Review. Nutrients 2024; 16:3792. [PMID: 39599581 PMCID: PMC11597519 DOI: 10.3390/nu16223792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Global warming is attributed to an increased frequency of high ambient temperatures and humidity, elevating the prevalence of high-temperature-related illness and death. Evidence over recent decades highlights that tailored nutritional strategies are essential to improve performance and optimise health during acute and chronic exertional-heat exposure. Therefore, the purpose of this review is to discuss the efficacy of various nutritional strategies and ergogenic aids on responses during and following acute and chronic exertional-heat exposure. An outline is provided surrounding the application of various nutritional practices (e.g., carbohydrate loading, fluid replacement strategies) and ergogenic aids (e.g., caffeine, creatine, nitrate, tyrosine) to improve physiological, cognitive, and recovery responses to acute exertional-heat exposure. Additionally, this review will evaluate if the magnitude and time course of chronic heat adaptations can be modified with tailored supplementation practices. This review highlights that there is robust evidence for the use of certain ergogenic aids and nutritional strategies to improve performance and health outcomes during exertional-heat exposure. However, equivocal findings across studies appear dependent on factors such as exercise testing modality, duration, and intensity; outcome measures in relation to the ergogenic aid's proposed mechanism of action; and sex-specific responses. Collectively, this review provides evidence-based recommendations and highlights areas for future research that have the potential to assist with prescribing specific nutritional strategies and ergogenic aids in populations frequently exercising in the heat. Future research is required to establish dose-, sex-, and exercise-modality-specific responses to various nutritional practices and ergogenic aid use for acute and chronic exertional-heat exposure.
Collapse
Affiliation(s)
- Ryan A. Dunn
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | - Ty B. Palmer
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | | | - Yasuki Sekiguchi
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| |
Collapse
|
2
|
Li H, Yang Y, Liu Q, Liu L, Zhang G, Zhang X, Yin M, Cao Y. The Effects of Caffeine on Exercise in Hot Environments: A Bibliometric Study. Nutrients 2024; 16:3692. [PMID: 39519525 PMCID: PMC11547974 DOI: 10.3390/nu16213692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Caffeine is widely recognized as an ergogenic aid to enhance athletic performance, yet its effects in hot environments remain relatively underexplored. AIMS To provide a comprehensive overview of the research landscape and identify research themes in this field. METHODS We systematically searched the Web of Science (WoS) and SCOPUS databases using keywords related to caffeine (e.g., caffe*), hot environments (e.g., heat, hot, or therm*), and athletic performance (e.g., cardio, endurance, or strength). The Bibliometrix package in R was used for bibliometric analysis and result visualization, while a narrative review was subsequently performed to identify research themes. RESULTS We found that studies examining the impact of caffeine on exercise in hot conditions are relatively sparse and have progressed slowly in recent years. Research in this domain has predominantly been concentrated within an academic network led by Professor Lawrence Armstrong. Recent contributions have been sporadically made by emerging scholars, with collaborations largely confined to a few research groups and countries. Key research themes identified include exercise performance, thermoregulation, fluid balance, physiological responses, immune responses, synergistic effects with other compounds, and the influence of individual differences. Of these, the first three themes-exercise performance, thermoregulation, and fluid balance-have received the most attention. CONCLUSIONS Caffeine's effects on exercise performance in hot environments have not been thoroughly studied. The existing research themes are varied, and the conclusions show considerable inconsistencies. Our study highlights the need for further research into the effects of caffeine dosage, administration methods, and population-specific variables. We also call for increased collaboration among research groups to advance scientific understanding and address the gaps in this field.
Collapse
Affiliation(s)
- Hansen Li
- School of Physical Education, Sichuan Agricultural University, Ya'an 625014, China
| | - Ying Yang
- School of Physical Education, Sichuan Agricultural University, Ya'an 625014, China
| | - Qian Liu
- School of Physical Education, Sichuan Agricultural University, Ya'an 625014, China
| | - Liming Liu
- School of Physical Education, Sichuan Agricultural University, Ya'an 625014, China
| | - Guodong Zhang
- Institute of Sports Science, College of Physical Education, Southwest University, Chongqing 400715, China
| | - Xing Zhang
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| | - Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182 Örebro, Sweden
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
3
|
Magaña MA, Gorini Pereira FL, Kuennen MR, Lutz CJ, Almond DG, Lira AA, Apilado AJ, Kim JK, Boyer WR, Gillum TL. Caffeine has no effect on submaximal running in hypoxia in low caffeine consuming males and females. J Sports Med Phys Fitness 2024; 64:863-870. [PMID: 38842372 DOI: 10.23736/s0022-4707.24.15840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Exposure to hypoxia immediately challenges a variety of physiologic systems that limit exercise capacity. Under normoxia, caffeine (CAFF) increases ventilation and subsequent oxygenation of hemoglobin (SpO2) and skeletal muscle (SmO2). CAFF improves exercise performance at altitude. However, little attention has been given to submaximal exercise in hypoxia, particularly regarding low CAFF consumers and female participants. The aim of this study was to determine the effect of CAFF on pulmonary, metabolic, and perceptual variables in response to submaximal running in hypoxia in low CAFF consuming males and females. METHODS In a double blinded, counterbalanced design, 14 (6 females) individuals (24.1±5.1 years; VO2max: 40.6±5.6 mL × kg-1 × min-1; 20.8±8.0% body fat), who habitually consumed ≤150 mg/day of CAFF performed treadmill running at workloads of 25%, 40%, 60%, and 75% of sea level VO2max in normobaric hypoxia (FIO2=0.15) on two separate occasions: 1) 60 minutes after 6 mg/kg of CAFF; or 2) placebo. RESULTS CAFF had no effect on any variable measured. Specifically, VE (condition: P=0.12; interaction: P=0.19), VT (condition: P=0.16; interaction: P=0.57), and Ve:VO2 (condition: P=0.07; interaction: P=0.69) were similar between groups. Further, CAFF had no effect on relative VO2 (condition: P=0.84; interaction: P=0.95), HR (condition: P=0.28; interaction: P=0.35), SmO2 (condition: P=0.66; interaction: P=0.82), or SpO2 (condition: P=0.16; interaction: P=0.97). Finally, rating of perceived exertion (RPE; P=0.92) and acute mountain sickness scores (P=0.29) were similar across conditions. CONCLUSIONS These data demonstrate that CAFF provides no physiologic advantage to submaximal exercise in acute, normobaric hypoxia with low CAFF consuming males and females.
Collapse
Affiliation(s)
- Marc A Magaña
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | | | - Matthew R Kuennen
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Christen J Lutz
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Danee G Almond
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Albert A Lira
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Alvin J Apilado
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Jong-Kyung Kim
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - William R Boyer
- Department of Kinesiology, California Baptist University, Riverside, CA, USA
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, USA -
| |
Collapse
|
4
|
John K, Kathuria S, Peel J, Page J, Aitkenhead R, Felstead A, Heffernan SM, Jeffries O, Tallent J, Waldron M. Caffeine ingestion compromises thermoregulation and does not improve cycling time to exhaustion in the heat amongst males. Eur J Appl Physiol 2024; 124:2489-2502. [PMID: 38568259 PMCID: PMC11322244 DOI: 10.1007/s00421-024-05460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/04/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Caffeine is a commonly used ergogenic aid for endurance events; however, its efficacy and safety have been questioned in hot environmental conditions. The aim of this study was to investigate the effects of acute caffeine supplementation on cycling time to exhaustion and thermoregulation in the heat. METHODS In a double-blind, randomised, cross-over trial, 12 healthy caffeine-habituated and unacclimatised males cycled to exhaustion in the heat (35 °C, 40% RH) at an intensity associated with the thermoneutral gas exchange threshold, on two separate occasions, 60 min after ingesting caffeine (5 mg/kg) or placebo (5 mg/kg). RESULTS There was no effect of caffeine supplementation on cycling time to exhaustion (TTE) (caffeine; 28.5 ± 8.3 min vs. placebo; 29.9 ± 8.8 min, P = 0.251). Caffeine increased pulmonary oxygen uptake by 7.4% (P = 0.003), heat production by 7.9% (P = 0.004), whole-body sweat rate (WBSR) by 21% (P = 0.008), evaporative heat transfer by 16.5% (P = 0.006) and decreased estimated skin blood flow by 14.1% (P < 0.001) compared to placebo. Core temperature was higher by 0.6% (P = 0.013) but thermal comfort decreased by - 18.3% (P = 0.040), in the caffeine condition, with no changes in rate of perceived exertion (P > 0.05). CONCLUSION The greater heat production and storage, as indicated by a sustained increase in core temperature, corroborate previous research showing a thermogenic effect of caffeine ingestion. When exercising at the pre-determined gas exchange threshold in the heat, 5 mg/kg of caffeine did not provide a performance benefit and increased the thermal strain of participants.
Collapse
Affiliation(s)
- Kevin John
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australia
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Sayyam Kathuria
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Jenny Peel
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Joe Page
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Robyn Aitkenhead
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Aimee Felstead
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Shane M Heffernan
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK
| | - Owen Jeffries
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, UK
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, Clayton, Australia
| | - Mark Waldron
- Applied Sports Science Technology and Medicine Research Centre (A-STEM), Faculty of Science and Engineering, Bay Campus, Swansea University, Swansea, Wales, SA1 8EN, UK.
- Welsh Institute of Performance Science, Swansea University, Swansea, UK.
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Down, QLD, Australia.
| |
Collapse
|
5
|
Naulleau C, Jeker D, Pancrate T, Claveau P, Deshayes TA, Burke LM, Goulet EDB. Effect of Pre-Exercise Caffeine Intake on Endurance Performance and Core Temperature Regulation During Exercise in the Heat: A Systematic Review with Meta-Analysis. Sports Med 2022; 52:2431-2445. [PMID: 35616851 DOI: 10.1007/s40279-022-01692-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Heat is associated with physiological strain and endurance performance (EP) impairments. Studies have investigated the impact of caffeine intake upon EP and core temperature (CT) in the heat, but results are conflicting. There is a need to systematically determine the impact of pre-exercise caffeine intake in the heat. OBJECTIVE To use a meta-analytical approach to determine the effect of pre-exercise caffeine intake on EP and CT in the heat. DESIGN Systematic review with meta-analysis. DATA SOURCES Four databases and cross-referencing. DATA ANALYSIS Weighted mean effect summaries using robust variance random-effects models for EP and CT, as well as robust variance meta-regressions to explore confounders. STUDY SELECTION Placebo-controlled, randomized studies in adults (≥ 18 years old) with caffeine intake at least 30 min before endurance exercise ≥ 30 min, performed in ambient conditions ≥ 27 °C. RESULTS Respectively six and 12 studies examined caffeine's impact on EP and CT, representing 52 and 205 endurance-trained individuals. On average, 6 mg/kg body mass of caffeine were taken 1 h before exercises of ~ 70 min conducted at 34 °C and 47% relative humidity. Caffeine supplementation non-significantly improved EP by 2.1 ± 0.8% (95% CI - 0.7 to 4.8) and significantly increased the rate of change in CT by 0.10 ± 0.03 °C/h (95% CI 0.02 to 0.19), compared with the ingestion of a placebo. CONCLUSION Caffeine ingestion of 6 mg/kg body mass ~ 1 h before exercise in the heat may provide a worthwhile improvement in EP, is unlikely to be deleterious to EP, and trivially increases the rate of change in CT.
Collapse
Affiliation(s)
- Catherine Naulleau
- Performance, Hydration and Thermoregulation Laboratory, Faculty of Physical Activity Sciences, University of Sherbrooke, 2500 boul. de l'Université, Sherbrooke, P.Q., J1K 2R1, Canada
- Institut National du Sport du Québec, Montréal, P.Q., Canada
| | - David Jeker
- Performance, Hydration and Thermoregulation Laboratory, Faculty of Physical Activity Sciences, University of Sherbrooke, 2500 boul. de l'Université, Sherbrooke, P.Q., J1K 2R1, Canada
- Institut National du Sport du Québec, Montréal, P.Q., Canada
| | - Timothée Pancrate
- Performance, Hydration and Thermoregulation Laboratory, Faculty of Physical Activity Sciences, University of Sherbrooke, 2500 boul. de l'Université, Sherbrooke, P.Q., J1K 2R1, Canada
| | - Pascale Claveau
- Performance, Hydration and Thermoregulation Laboratory, Faculty of Physical Activity Sciences, University of Sherbrooke, 2500 boul. de l'Université, Sherbrooke, P.Q., J1K 2R1, Canada
| | - Thomas A Deshayes
- Performance, Hydration and Thermoregulation Laboratory, Faculty of Physical Activity Sciences, University of Sherbrooke, 2500 boul. de l'Université, Sherbrooke, P.Q., J1K 2R1, Canada
- Research Center on Aging, University of Sherbrooke, Sherbrooke, P.Q., Canada
| | - Louise M Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Eric D B Goulet
- Performance, Hydration and Thermoregulation Laboratory, Faculty of Physical Activity Sciences, University of Sherbrooke, 2500 boul. de l'Université, Sherbrooke, P.Q., J1K 2R1, Canada.
- Research Center on Aging, University of Sherbrooke, Sherbrooke, P.Q., Canada.
| |
Collapse
|
6
|
Effects of Caffeine and Caffeinated Beverages in Children, Adolescents and Young Adults: Short Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312389. [PMID: 34886115 PMCID: PMC8656548 DOI: 10.3390/ijerph182312389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022]
Abstract
The prevalence of ED consumption has increased over the past 10–15 years. Studies describing the effects of caffeine and caffeinated beverages show confusing results, so it seems important to regularly summarize the available facts, and in more detail. By a thorough analysis of more than 156 scientific papers, the authors describe the molecular background of absorption, as well as the positive and negative effects of different dosages of caffeine, just like its effects in physical activity and performance. ED and EDwA consumption is a regular habit of not only adults, but nowadays even of children and adolescents. There are no safe dosages described of caffeine or ED consumption for children. There are no positive short- or long-term effects of these compounds/products concerning developing brain functions, psycho-motor functions, or social development. Instead, there are many unpleasant side effects, and symptoms of regular or higher-dose ED consumption, especially at younger ages. This mini review describes many details of these unpleasant side effects, their severity, and motivations for consuming these compounds/products. In a quantitative research in Hungary (10–26 years, mean age: 15.6 ± 3.8 y, 1459 subjects, randomly chosen population), a survey based on a questionnaire asking people about their ED consumption habits was conducted. According to the data, 81.8% of the participants consumed EDs at least once, and 63.3% tried several products of the kind. A positive correlation was found between age and consumption (p < 0.001). The results show that a high proportion of this group often consumed EDwA, in many cases leading to harmful side-effects of caffeine overdose. In a sample of Hungarian high school and college students (17–26 years), ED consumption matched the international data, and only 19.7% of respondents did not use EDs at all (had never tasted an ED in their life).
Collapse
|
7
|
Peel JS, McNarry MA, Heffernan SM, Nevola VR, Kilduff LP, Waldron M. The Effect of Dietary Supplements on Endurance Exercise Performance and Core Temperature in Hot Environments: A Meta-analysis and Meta-regression. Sports Med 2021; 51:2351-2371. [PMID: 34129223 PMCID: PMC8514372 DOI: 10.1007/s40279-021-01500-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ergogenic effects of dietary supplements on endurance exercise performance are well-established; however, their efficacy in hot environmental conditions has not been systematically evaluated. OBJECTIVES (1) To meta-analyse studies investigating the effects of selected dietary supplements on endurance performance and core temperature responses in the heat. Supplements were included if they were deemed to: (a) have a strong evidence base for 'directly' improving thermoneutral endurance performance, based on current position statements, or (b) have a proposed mechanism of action that related to modifiable factors associated with thermal balance. (2) To conduct meta-regressions to evaluate the moderating effect of selected variables on endurance performance and core temperature responses in the heat following dietary supplementation. METHODS A search was performed using various databases in May 2020. After screening, 25 peer-reviewed articles were identified for inclusion, across three separate meta-analyses: (1) exercise performance; (2) end core temperature; (3) submaximal core temperature. The moderating effect of several variables were assessed via sub-analysis and meta-regression. RESULTS Overall, dietary supplementation had a trivial significant positive effect on exercise performance (Hedges' g = 0.18, 95% CI 0.007-0.352, P = 0.042), a trivial non-significant positive effect on submaximal core temperature (Hedges' g = 0.18, 95% CI - 0.021 to 0.379, P = 0.080) and a small non-significant positive effect on end core temperature (Hedges' g = 0.20, 95% CI - 0.041 to 0.439, P = 0.104) in the heat. There was a non-significant effect of individual supplements on exercise performance (P = 0.973) and submaximal core temperature (P = 0.599). However, end core temperature was significantly affected by supplement type (P = 0.003), which was attributable to caffeine's large significant positive effect (n = 8; Hedges' g = 0.82, 95% CI 0.433-1.202, P < 0.001) and taurine's medium significant negative effect (n = 1; Hedges' g = - 0.96, 95% CI - 1.855 to - 0.069, P = 0.035). CONCLUSION Supplements such as caffeine and nitrates do not enhance endurance performance in the heat, with caffeine also increasing core temperature responses. Some amino acids might offer the greatest performance benefits in the heat. Exercising in the heat negatively affected the efficacy of many dietary supplements, indicating that further research is needed and current guidelines for performance in hot environments likely require revision.
Collapse
Affiliation(s)
- Jennifer S Peel
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK.
| | - Melitta A McNarry
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Shane M Heffernan
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
| | - Venturino R Nevola
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Defence Science and Technology Laboratory (Dstl), Fareham, Hampshire, UK
| | - Liam P Kilduff
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Mark Waldron
- A-STEM Centre, College of Engineering, Swansea University, Swansea, UK
- Welsh Institute of Performance Science, Swansea University, Swansea, UK
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
8
|
Guest NS, VanDusseldorp TA, Nelson MT, Grgic J, Schoenfeld BJ, Jenkins NDM, Arent SM, Antonio J, Stout JR, Trexler ET, Smith-Ryan AE, Goldstein ER, Kalman DS, Campbell BI. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr 2021; 18:1. [PMID: 33388079 PMCID: PMC7777221 DOI: 10.1186/s12970-020-00383-4] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN) position regarding caffeine intake is as follows: 1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as a wide range of aerobic and anaerobic sport-specific actions. 2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits from caffeine use, although the magnitude of its effects differs between individuals. 3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3-6 mg/kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and do not seem to be required to elicit an ergogenic effect. 4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise session. 5. Caffeine appears to improve physical performance in both trained and untrained individuals. 6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism, and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in between-individual response variation. 7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most individuals. 8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation. 9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when dosages range from 3 to 6 mg/kg and 4-6 mg/kg, respectively. 10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have been shown to improve performance, primarily in aerobic exercise. 11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both anaerobic and aerobic performance.
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, 1 King's College Circle, Room 5326A, Toronto, ON, M5S 1A8, Canada.
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, 30144, USA
| | | | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, 10468, USA
| | - Nathaniel D M Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, 52240, USA
| | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Colombia, SC, 29208, USA
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, 33314, USA
| | - Jeffrey R Stout
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | | | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, Applied Physiology Laboratory, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Erica R Goldstein
- Institue of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL, 32816, USA
| | - Douglas S Kalman
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
- Scientific Affairs. Nutrasource, Guelph, ON, Canada
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
9
|
Abstract
Caffeine is a widely utilized performance-enhancing supplement used by athletes and non-athletes alike. In recent years, a number of meta-analyses have demonstrated that caffeine's ergogenic effects on exercise performance are well-established and well-replicated, appearing consistent across a broad range of exercise modalities. As such, it is clear that caffeine is an ergogenic aid-but can we further explore the context of this ergogenic aid in order to better inform practice? We propose that future research should aim to better understand the nuances of caffeine use within sport and exercise. Here, we propose a number of areas for exploration within future caffeine research. These include an understanding of the effects of training status, habitual caffeine use, time of day, age, and sex on caffeine ergogenicity, as well as further insight into the modifying effects of genotype. We also propose that a better understanding of the wider, non-direct effects of caffeine on exercise, such as how it modifies sleep, anxiety, and post-exercise recovery, will ensure athletes can maximize the performance benefits of caffeine supplementation during both training and competition. Whilst not exhaustive, we hope that the questions provided within this manuscript will prompt researchers to explore areas with the potential to have a large impact on caffeine use in the future.
Collapse
Affiliation(s)
- Craig Pickering
- Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Fylde Road, Preston, PR1 2HE, UK. .,The Prenetics DNAFit Research Centre, London, UK.
| | - Jozo Grgic
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| |
Collapse
|
10
|
Mielgo-Ayuso J, Marques-Jiménez D, Refoyo I, Del Coso J, León-Guereño P, Calleja-González J. Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients 2019; 11:nu11102313. [PMID: 31574901 PMCID: PMC6835847 DOI: 10.3390/nu11102313] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Most studies that have shown the positive effects of caffeine supplementation on sports performance have been carried out on men. However, the differences between sexes are evident in terms of body size, body composition, and hormonal functioning, which might cause different outcomes on performance for the same dosage of caffeine intake in men vs. women. The main aim of this systematic review was to analyze and compare the effects of caffeine intake between men and women on sports performance to provide a source of knowledge to sports practitioners and coaches, especially for those working with women athletes, on the use of caffeine as an ergogenic aid. A structured search was carried out following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines in the Web of Science, Cochrane Library, and Scopus databases until 28 July 2019. The search included studies in which the effects of caffeine supplementation on athletic performance were compared between sexes and to an identical placebo situation (dose, duration and timing). No filters were applied for participants’ physical fitness level or age. A total of 254 articles were obtained in the initial search. When applying the inclusion and exclusion criteria, the final sample was 10 articles. The systematic review concluded that four investigations (100% of the number of investigations on this topic) had not found differences between sexes in terms of caffeine supplementation on aerobic performance and 3/3 (100%) on the fatigue index. However, four out of seven articles (57.1%) showed that the ergogenicity of caffeine for anaerobic performance was higher in men than women. In particular, it seems that men are able to produce more power, greater total weight lifted and more speed with the same dose of caffeine than women. In summary, caffeine supplementation produced a similar ergogenic benefit for aerobic performance and the fatigue index in men and women athletes. Nevertheless, the effects of caffeine to produce more power, total weight lifted and to improve sprint performance with respect to a placebo was higher in men than women athletes despite the same dose of caffeine being administered. Thus, the ergogenic effect of acute caffeine intake on anaerobic performance might be higher in men than in women.
Collapse
Affiliation(s)
- Juan Mielgo-Ayuso
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, University of Valladolid, 42004 Soria, Spain.
| | | | - Ignacio Refoyo
- Department of Sports, Faculty of Physical Activity and Sports Sciences (INEF), Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - Juan Del Coso
- Centre for Sport Studies. Rey Juan Carlos University, 28943 Fuenlabrada, Spain.
| | - Patxi León-Guereño
- Faculty of Psychology and Education, University of Deusto, Campus of Donostia-San Sebastián, 20012 San Sebastián, Guipúzcoa, Spain.
| | - Julio Calleja-González
- Laboratory of Human Performance, Department of Physical Education and Sport, Faculty of Education, Sports Section, University of the Basque Country, 01007 Vitoria, Spain.
| |
Collapse
|
11
|
Siquier-Coll J, Bartolomé I, Pérez-Quintero M, Grijota FJ, Muñoz D, Maynar-Mariño M. Effect of heat exposure and physical exercise until exhaustion in normothermic and hyperthermic conditions on serum, sweat and urinary concentrations of magnesium and phosphorus. J Therm Biol 2019; 84:176-184. [PMID: 31466751 DOI: 10.1016/j.jtherbio.2019.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
AIM The aim of this survey was to ascertain the difference in the levels of Magnesium (Mg) and Phosphorus (P) after an exercise test in normothermia and hyperthermia before and after heat acclimation in comparison to their respective pre-test values. METHODS Twenty-nine male university students were divided into an Experimental Group (EG) (n = 15) and a Control Group (CG) (n = 14). All of them voluntarily participated in this investigation. Both groups performed an incremental test until exhaustion on a cycloergometer in normothermia (22 °C) and hyperthermia (42 °C). EG underwent 9 sessions of heat acclimation (100 °C) in a sauna (Harvia C105S Logix Combi Control; 3-15 W; Finland). Once the experimental period was completed, all initial measurements were carried out again under identical conditions. Urine and blood samples were obtained before and after each trial. Sweat samples were collected at the end of every test performed in hyperthermia. The samples were frozen at -80 °C until further analysis by ICP-MS. RESULTS Lower seric Mg levels were observed in both groups at the end of pre-acclimation tests. After acclimation, only EG experimented a decrease of Mg in serum after testing (p < .01). The urinary excretion was unaffected in the pre-acclimated period, but EG experimented an increase in Mg after trials in the post-acclimation evaluation (p < .01). Mg sweat loss decreased significantly after heat acclimation (p < .05). P did not undergo changes, except in its urinary excretion, which was elevated after the normothermia trial in the post-acclimation period (p < .05). CONCLUSIONS It seems that exercise in hyperthermia altered Mg status but not P homeostasis. Additionally, heat acclimation reduces Mg losses in sweat while increasing its loss in urine. Thus, Mg supplementation should be considered in unacclimated and acclimated subjects if physical exercise is going to be performed in hyperthermic conditions.
Collapse
Affiliation(s)
- J Siquier-Coll
- Department of Physiology, School of Sport Sciences, University of Extremadura, Spain.
| | - I Bartolomé
- Department of Physiology, School of Sport Sciences, University of Extremadura, Spain
| | - M Pérez-Quintero
- Department of Physiology, School of Sport Sciences, University of Extremadura, Spain
| | - F J Grijota
- Department of Didactics of Musical, Plastic and Corporal Expression, School of Teacher Training, University of Extremadura, Spain
| | - D Muñoz
- Department of Physical Education and Sport, Sport Sciences Faculty, University of Extremadura, Cáceres, Spain
| | - M Maynar-Mariño
- Department of Physiology, School of Sport Sciences, University of Extremadura, Spain
| |
Collapse
|
12
|
Effects of caffeine ingestion on the diurnal variation of cognitive and repeated high-intensity performances. Pharmacol Biochem Behav 2019; 177:69-74. [PMID: 30611752 DOI: 10.1016/j.pbb.2019.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to evaluate the effects of caffeine ingestion on the daily variation of cognitive (i.e., reaction time (RT), attention) and repeated high-intensity exercise performances. Fifteen active males (age: 20 ± 1 years, height: 174.3 ± 4.3 cm, body-mass: 70.8 ± 3.5 kg) performed cognitive and physical tasks under two different circumstances [after a placebo or caffeine ingestion (6 mg/kg of body-mass)] at six different time-of-day (07 h00, 09 h00, 11 h00, 13 h00, 15 h00 and 17 h00) in a randomized double-blind balanced crossover design. During each session, RT, attention and 5-m multiple shuttles run test' performances were recorded. During both the placebo and the caffeine conditions, a significant diurnal variation was found with improvement of cognitive performances recorded at 11 h00 (e.g., RT: 0.37 ± 0.02-s and 0.36 ± 0.02-s for placebo and caffeine respectively) and 17 h00 (e.g., RT: 0.37 ± 0.02-s and 0.35 ± 0.03-s for placebo and caffeine respectively) compared to (i.e., worst performances) 07 h00 (e.g., RT: 0.41 ± 0.02-s and 0.38 ± 0.02-s for placebo and caffeine respectively) and 13 h00 (e.g., RT: 0.41 ± 0.02-s and 0.38 ± 0.02-s for placebo and caffeine respectively) (p < 0.05). For physical performance, improved values were recorded at 17 h00 (e.g., total distance: 730.00 ± 43.92-m and 733.93 ± 43.08-m for placebo and caffeine respectively) compared to 07 h00 (e.g., total distance: 698.14 ± 45.39-m and 709.21 ± 43.78-m for placebo and caffeine respectively) (p < 0.05). Compared to placebo, cognitive (e.g., RT: by 6.4% at 07 h00, 4.1% at 09 h00, 3.4% at 11 h00, 6.0% at 13 h00, 3.8% at 15 h00 and 3.8% at 17 h00) and physical (e.g., total distance: 1.6% at 07 h00, 0.9% at 09 h00, 0.1% at 11 h00 (p > 0.05), 0.5% at 13 h00, 1.0% at 15 h00 and 0.5% at 17 h00) performances increased at all time-of-day (p < 0.05). In conclusion, cognitive and physical performances are time-of-day dependent and caffeine is an effective ergogenic aid to improves both cognitive and physical performances especially at the moment of their lowest values.
Collapse
|
13
|
Al Reef T, Ghanem E. Caffeine: Well-known as psychotropic substance, but little as immunomodulator. Immunobiology 2018; 223:818-825. [PMID: 30146130 DOI: 10.1016/j.imbio.2018.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022]
Abstract
To date, numerable reviews are found in the literature prominent to the effect of caffeine on the immune system, with the latest review published in 2006. Database screening reveals around three thousand articles that have been published during the last decade. Interestingly, less than hundred articles involved humans and rodents as tested models, out of which 20% is of interest to this paper excluding studies done on the nervous and cardiac systems, and in pregnant and cancer cases. In this review, information pertaining to the experimental setup of various studies, namely, the tested model, the study type (in vivo or in vitro), and caffeine dose is covered to discern the behaviour of major cellular and molecular immune components in light of caffeine exposure. Although it is hard to extrapolate results done in rodents to humans and to relay conclusions from in vitro to in vivo studies, most of the collected data favor the suppressive effects of caffeine on the proliferation of stimulated lymphocytes. Macrophages and natural killer cells also exhibited a reduced activity in the presence of high caffeine doses compared to increased activity at low doses. Immunosuppression is also supported by reduced levels of major anti-inflammatory cytokines, IL-2, IL-6, TNF-α. Moreover, certain innate and adaptive immune receptors, such as TLR1, TLR2, TLR4, and MHC class I-related chain B (MICB) molecules, exhibited decreased expression levels. Thus, we support the use of caffeine to alleviate various inflammatory conditions and autoimmune diseases.
Collapse
Affiliation(s)
- Tatiana Al Reef
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University, Louaize, Lebanon
| | - Esther Ghanem
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University, Louaize, Lebanon.
| |
Collapse
|
14
|
Hanson NJ, Short LE, Flood LT, Cherup NP, Miller MG. Cortical neural arousal is differentially affected by type of physical exercise performed. Exp Brain Res 2018; 236:1643-1649. [PMID: 29594521 DOI: 10.1007/s00221-018-5247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
Critical flicker frequency (CFF) threshold is a visual discrimination task designed to assess cortical neural arousal, where higher values are associated with increased information processing and improved cognitive function. Previous studies using CFF assessments before and after exercise have only used one type of exercise (e.g., short, fatiguing, steady state, time to exhaustion, etc.). Therefore, the purpose of this study was to determine the effect of exercise type and intensity on neural arousal. 22 recreational runners (10 men, 12 women; age 25 ± 6 years) volunteered to participate in the study. They completed a VO2max test (short, fatiguing trial), and three 30-min treadmill runs (longer, steady-state trials) at rating of perceived exertion (RPE) levels of 13, 15, and 17. Before and after each exercise test, subjects were asked to complete the CFF test; Mtot and Mdi were calculated, which are the average and difference of the ascending/descending frequency trials, respectively. There were no main effects found for either intensity (p = 0.641) or time (p = 0.283); there was, however, a significant interaction found (intensity*time; p = 0.001). In the VO2max test and in the longer, steady-state runs at RPE13 and 15, there was no change in Mtot. There was a significant increase in Mtot after the run at RPE17 (p = 0.019). For Mdi, the VO2max test elicited a significant decrease (p = 0.005), but there was no change after the steady-state runs. The results suggest that short, fatiguing and longer, steady-state exercise affect cortical neural arousal differently. Increases in arousal, and perhaps the related domain of information processing, are more likely to come from steady-state exercise at a vigorous intensity.
Collapse
Affiliation(s)
- Nicholas J Hanson
- Department of Human Performance and Health Education, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008, USA.
| | - Lindsey E Short
- Department of Human Performance and Health Education, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008, USA
| | - Lauren T Flood
- Department of Human Performance and Health Education, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008, USA
| | - Nicholas P Cherup
- School of Education and Human Development, University of Miami, Coral Gables, FL, USA
| | - Michael G Miller
- Department of Human Performance and Health Education, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI, 49008, USA
| |
Collapse
|
15
|
Frozi J, de Carvalho HW, Ottoni GL, Cunha RA, Lara DR. Distinct sensitivity to caffeine-induced insomnia related to age. J Psychopharmacol 2018; 32:89-95. [PMID: 28879806 DOI: 10.1177/0269881117722997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caffeine acts by antagonizing the effect of the endogenous homeostatic sleep factor adenosine. In the current study we aimed to evaluate the pattern of caffeine-induced insomnia and its relation to age and sex in a general population sample derived from a web survey. The sample included 75,534 participants (28.1% men) from 18 to 75 years who answered self-report questionnaires by accessing a website in Brazilian Portuguese (BRAINSTEP project). In our sample, 3620 (17.0%) men and 9920 (18.3%) women reported insomnia due to caffeine intake. Caffeine-induced insomnia increased with aging in both men and women. This difference remained after adjusting for sociodemographic, psychiatric and sleep related variables as well as caffeine intake. Women showed higher proportion of caffeine-induced insomnia than men, but this difference did not remain after controlling for covariates. Also, individuals with caffeine-induced insomnia reported poorer sleep quality, higher latency to fall asleep and a higher proportion of psychiatric diagnoses and daily use of hypnotic drugs. In conclusion, our results show an age-associated increase in caffeine-induced insomnia and poorer mental health indicators among people with caffeine-induced insomnia complaints.
Collapse
Affiliation(s)
- Júlia Frozi
- 1 Postgraduate Program in Psychiatry/Residency Program in Psychiatry-Hospital São Lucas-Pontifícia Universidade Católica-PUCRS, Porto Alegre, Brazil.,2 Department of Psychiatry and Legal Medicine, Medical School-PUCRS-Brazil, Porto Alegre, Brazil
| | | | - Gustavo L Ottoni
- 4 Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Rodrigo A Cunha
- 5 CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,6 FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Diogo R Lara
- 7 Faculty of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|