1
|
McGlynn ML, Rosales AM, Collins CW, Slivka DR. The combined influences of local heat application and resistance exercise on the acute mRNA response of skeletal muscle. Front Physiol 2024; 15:1473241. [PMID: 39497702 PMCID: PMC11532036 DOI: 10.3389/fphys.2024.1473241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction The development and maintenance of the skeletal muscle is crucial for the support of daily function. Heat, when applied locally, has shown substantial promise in the maintenance of the muscle. The purpose of this study was to determine the combined effects of local heat application and acute resistance exercise on gene expression associated with the human muscle growth program. Materials and methods Participants (n = 12, 26 ± 7 years, 1.77 ± 0.07 m, 79.6 ± 15.4 kg, and 16.1 ± 11.6 %BF) completed an acute bilateral bout of resistance exercise consisting of leg press (11 ± 2 reps; 170 ± 37 kg) and leg extension (11 ± 1 reps; 58 ± 18 kg). Participants wore a thermal wrap containing circulating fluid (40°C, exercise + heat; EX + HT) during the entire experimental period and 4 h post-exercise, while the other leg served as an exercise-only (EX) control. Biopsies of the vastus lateralis were collected (Pre, Post, and 4hPost) for gene expression analyses. Results Intramuscular temperatures increased (Post, +2.2°C ± 0.7°C, and p < 0.001; 4hPost, +2.5°C ± 0.6°C, and p < 0.001) and were greater in the EX + HT leg post-exercise (+0.35°C ± 0.3°C, and p = 0.005) and after 4hPost (+2.1°C ± 0.8°C and p < 0.001). MYO-D1 mRNA was greater in the EX + HT leg vs. the EX (fold change = 2.74 ± 0.42 vs. 1.70 ± 0.28, p = 0.037). No other genes demonstrated temperature sensitivity when comparing both legs (p > 0.05). mRNA associated with the negative regulator, myostatin (MSTN), decreased post-exercise (p = 0.001) and after 4 h (p = 0.001). mRNA associated with proteolysis decreased post-exercise (FBXO32, p = 0.001; FOXO3a, p = 0.001) and after 4 h (FBXO32, p = 0.001; FOXO3a, p = 0.027). Conclusion The elevated transcription of the myogenic differentiation factor 1 (MYO-D1) after exercise in the heated condition may provide a mechanism by which muscle growth could be enhanced.
Collapse
Affiliation(s)
- Mark L. McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Alejandro M. Rosales
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, United States
| | - Christopher W. Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Dustin R. Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, United States
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, United States
| |
Collapse
|
2
|
Hoshino D, Wada R, Mori Y, Takeda R, Nonaka Y, Kano R, Takagi R, Kano Y. Cooling of male rat skeletal muscle during endurance-like contraction attenuates contraction-induced PGC-1α mRNA expression. Physiol Rep 2023; 11:e15867. [PMID: 37962014 PMCID: PMC10644292 DOI: 10.14814/phy2.15867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
This study aimed to determine effects of cooling on contraction-induced peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and vascular endothelial growth factor (VEGF) gene expression, phosphorylations of its related protein kinases, and metabolic responses. Male rats were separated into two groups; room temperature (RT) or ice-treated (COLD) on the right tibialis anterior (TA). The TA was contracted isometrically using nerve electrical stimulation (1-s stimulation × 30 contractions, with 1-s intervals, for 10 sets with 1-min intervals). The TA was treated before the contraction and during 1-min intervals with an ice pack for the COLD group and a water pack at RT for the RT group. The muscle temperature of the COLD group decreased to 19.42 ± 0.44°C (p < 0.0001, -36.4%) compared with the RT group after the experimental protocol. An increase in mRNA expression level of PGC-1α, not VEGF, after muscle contractions was significantly lower in the COLD group than in the RT group (p < 0.0001, -63.0%). An increase in phosphorylated AMP-activated kinase (AMPK) (p = 0.0037, -28.8%) and a decrease in glycogen concentration (p = 0.0231, +106.3%) after muscle contraction were also significantly inhibited by cooling. Collectively, muscle cooling attenuated the post-contraction increases in PGC-1α mRNA expression coinciding with decreases in AMPK phosphorylation and glycogen degradation.
Collapse
Affiliation(s)
- Daisuke Hoshino
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofu, TokyoJapan
| | - Ryota Wada
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofu, TokyoJapan
| | - Yutaro Mori
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofu, TokyoJapan
| | - Reo Takeda
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofu, TokyoJapan
| | - Yudai Nonaka
- Institute of Liberal Arts and Science, Kanazawa UniversityKanazawaJapan
| | - Ryotaro Kano
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofu, TokyoJapan
| | - Ryo Takagi
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityKusatsu, ShigaJapan
| | - Yutaka Kano
- Bioscience and Technology Program, Department of Engineering ScienceThe University of Electro‐CommunicationsChofu, TokyoJapan
| |
Collapse
|
3
|
McGlynn ML, Rosales AM, Collins CW, Slivka DR. The isolated effects of local cold application on proteolytic and myogenic signaling. Cryobiology 2023; 112:104553. [PMID: 37380094 PMCID: PMC10528672 DOI: 10.1016/j.cryobiol.2023.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Post-exercise cooling studies reveal inhibitory effects on markers of skeletal muscle growth. However, the isolated effect of local cold application has not been adequately addressed. It is unclear if the local cold or the combination of local cold and exercise is driving negatively altered skeletal muscle gene expression. The purpose was to determine the effects of a 4 h local cold application to the vastus lateralis on the myogenic and proteolytic response. Participants (n = 12, 27 ± 6 years, 179 ± 9 cm, 82.8 ± 13.0 kg, 18.4 ± 7.1 %BF) rested with a thermal wrap placed on each leg with either circulating cold fluid (10 °C, COLD) or no fluid circulation (room temperature, RT). Muscle samples were collected to quantify mRNA (RT-qPCR) and proteins (Western Blot) associated with myogenesis and proteolysis. Temperatures in COLD were lower than RT at the skin (13.2 ± 1.0 °C vs. 34.8 ± 0.9 °C; p < 0.001) and intramuscularly (20.5 ± 1.3 °C vs. 35.6 ± 0.8 °C, p < 0.001). Myogenic-related mRNA, MYO-G and MYO-D1, were lower in COLD (p = 0.001, p < 0.001, respectively) whereas myogenic-mRNA, MYF6, was greater in COLD (p = 0.002). No other myogenic associated genes were different between COLD and RT (MSTN, p = 0.643; MEF2a, p = 0.424; MYF5, p = 0.523; RPS3, p = 0.589; RPL3-L, p = 0.688). Proteolytic-related mRNA was higher in COLD (FOXO3a, p < 0.001; Atrogin-1, p = 0.049; MURF-1, p < 0.001). The phosphorylation:total protein ratio for the translational repressor of muscle mass, 4E-BP1Thr37/46, was lower in COLD (p = 0.043), with no differences in mTORser2448 (p = 0.509) or p70S6K1Thr389 (p = 0.579). Isolated local cooling over 4 h exhibits inhibited myogenic and higher proteolytic skeletal muscle molecular response.
Collapse
Affiliation(s)
- Mark L McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Alejandro M Rosales
- School of Integrative Physiology and Athletic Training, Montana Center for Work Physiology and Exercise Metabolism, University of Montana, Missoula, MT, 59812, USA
| | - Christopher W Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Dustin R Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, 68182, USA; School of Integrative Physiology and Athletic Training, Montana Center for Work Physiology and Exercise Metabolism, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
4
|
Leys K, Stroe MS, Annaert P, Van Cruchten S, Carpentier S, Allegaert K, Smits A. Pharmacokinetics during therapeutic hypothermia in neonates: from pathophysiology to translational knowledge and physiologically-based pharmacokinetic (PBPK) modeling. Expert Opin Drug Metab Toxicol 2023; 19:461-477. [PMID: 37470686 DOI: 10.1080/17425255.2023.2237412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/13/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Perinatal asphyxia (PA) still causes significant morbidity and mortality. Therapeutic hypothermia (TH) is the only effective therapy for neonates with moderate to severe hypoxic-ischemic encephalopathy after PA. These neonates need additional pharmacotherapy, and both PA and TH may impact physiology and, consequently, pharmacokinetics (PK) and pharmacodynamics (PD). AREAS COVERED This review provides an overview of the available knowledge in PubMed (until November 2022) on the pathophysiology of neonates with PA/TH. In vivo pig models for this setting enable distinguishing the effect of PA versus TH on PK and translating this effect to human neonates. Available asphyxia pig models and methodological considerations are described. A summary of human neonatal PK of supportive pharmacotherapy to improve neurodevelopmental outcomes is provided. EXPERT OPINION To support drug development for this population, knowledge from clinical observations (PK data, real-world data on physiology), preclinical (in vitro and in vivo (minipig)) data, and molecular and cellular biology insights can be integrated into a predictive physiologically-based PK (PBPK) framework, as illustrated by the I-PREDICT project (Innovative physiology-based pharmacokinetic model to predict drug exposure in neonates undergoing cooling therapy). Current knowledge, challenges, and expert opinion on the future directions of this research topic are provided.
Collapse
Affiliation(s)
- Karen Leys
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences KU Leuven, Leuven, Belgium
| | - Marina-Stefania Stroe
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences KU Leuven, Leuven, Belgium
- BioNotus GCV, Niel, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus MC, GA, Rotterdam, The Netherlands
- Child and Youth Institute, KU Leuven, Leuven, Belgium
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Child and Youth Institute, KU Leuven, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
5
|
McGlynn ML, Rosales AM, Collins CW, Slivka DR. The independent effects of local heat application on muscle growth program associated mRNA and protein phosphorylation. J Therm Biol 2023; 115:103602. [PMID: 37331320 PMCID: PMC10528064 DOI: 10.1016/j.jtherbio.2023.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 06/20/2023]
Abstract
The development and maintenance of skeletal muscle is crucial for the support of daily function. Recent evidence suggests that genes coded for proteins associated with the human muscle growth program (myogenic and proteolytic genes) are sensitive to local heat application. Therefore, the purpose of this investigation was to determine the effect of 4 h of local heat application to the vastus lateralis at rest on acute phosphorylation (mTORSer2448, p70-S6K1Thr389, and 4E-BP1Thr47/36) and gene expression changes for proteins associated with the muscle growth program. Intramuscular temperature of the HOT limb was 1.2 ± 0.2 °C higher than CON limb after 4 h of local heating. However, this local heat stimulus did not influence transcription of genes associated with myogenesis (MSTN, p = 0.321; MYF5, p = 0.445; MYF6, p = 0.895; MEF2a, p = 0.809; MYO-G, p = 0.766; MYO-D1, p = 0.118; RPS3, p = 0.321; and RPL-3L, p = 0.577), proteolysis (Atrogin-1, p = 0.573; FOXO3a, p = 0.452; MURF-1, p = 0.284), nor protein phosphorylation (mTORSer2448, p = 0.981; P70-S6K1Thr389, p = 0.583; 4E-BP1Thr37/46, p = 0.238) associated with the muscle growth program. These findings suggest little to no association between the local application of heat, at rest, and the activation of the observed muscle growth program-related markers.
Collapse
Affiliation(s)
- Mark L McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Alejandro M Rosales
- School of Integrated Physiology and Athletic Training, University of Montana, Missoula, MT, 59812, USA
| | - Christopher W Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Dustin R Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, 68182, USA; School of Integrated Physiology and Athletic Training, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
6
|
Cahill T, Chan S, Overton IM, Hardiman G. Transcriptome Profiling Reveals Enhanced Mitochondrial Activity as a Cold Adaptive Strategy to Hypothermia in Zebrafish Muscle. Cells 2023; 12:1366. [PMID: 37408201 PMCID: PMC10216211 DOI: 10.3390/cells12101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 07/07/2023] Open
Abstract
The utilisation of synthetic torpor for interplanetary travel once seemed farfetched. However, mounting evidence points to torpor-induced protective benefits from the main hazards of space travel, namely, exposure to radiation and microgravity. To determine the radio-protective effects of an induced torpor-like state we exploited the ectothermic nature of the Danio rerio (zebrafish) in reducing their body temperatures to replicate the hypothermic states seen during natural torpor. We also administered melatonin as a sedative to reduce physical activity. Zebrafish were then exposed to low-dose radiation (0.3 Gy) to simulate radiation exposure on long-term space missions. Transcriptomic analysis found that radiation exposure led to an upregulation of inflammatory and immune signatures and a differentiation and regeneration phenotype driven by STAT3 and MYOD1 transcription factors. In addition, DNA repair processes were downregulated in the muscle two days' post-irradiation. The effects of hypothermia led to an increase in mitochondrial translation including genes involved in oxidative phosphorylation and a downregulation of extracellular matrix and developmental genes. Upon radiation exposure, increases in endoplasmic reticulum stress genes were observed in a torpor+radiation group with downregulation of immune-related and ECM genes. Exposing hypothermic zebrafish to radiation also resulted in a downregulation of ECM and developmental genes however, immune/inflammatory related pathways were downregulated in contrast to that observed in the radiation only group. A cross-species comparison was performed with the muscle of hibernating Ursus arctos horribilis (brown bear) to define shared mechanisms of cold tolerance. Shared responses show an upregulation of protein translation and metabolism of amino acids, as well as a hypoxia response with the shared downregulation of glycolysis, ECM, and developmental genes.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Sherine Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- JLABS at the Children’s National Research and Innovation Campus, Washington, DC 20012, USA
| | - Ian M. Overton
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK;
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 5DL, UK;
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
7
|
Telles GD, Libardi CA, Conceição MS, Vechin FC, Lixandrão ME, Mangone FRR, Pavanelli AC, Nagai MA, Camera DM, Hawley JA, Ugrinowitsch C. Interrelated but Not Time-Aligned Response in Myogenic Regulatory Factors Demethylation and mRNA Expression after Divergent Exercise Bouts. Med Sci Sports Exerc 2023; 55:199-208. [PMID: 36136603 DOI: 10.1249/mss.0000000000003049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION DNA methylation regulates exercise-induced changes in the skeletal muscle transcriptome. However, the specificity and the time course responses in the myogenic regulatory factors DNA methylation and mRNA expression after divergent exercise modes are unknown. PURPOSE This study aimed to compare the time course changes in DNA methylation and mRNA expression for selected myogenic regulatory factors ( MYOD1 , MYF5 , and MYF6 ) immediately after, 4 h after, and 8 h after a single bout of resistance exercise (RE), high-intensity interval exercise (HIIE), and concurrent exercise (CE). METHODS Nine healthy but untrained males (age, 23.9 ± 2.8 yr; body mass, 70.1 ± 14.9 kg; peak oxygen uptake [V̇O 2peak ], 41.4 ± 5.2 mL·kg -1 ·min -1 ; mean ± SD) performed a counterbalanced, randomized order of RE (4 × 8-12 repetition maximum), HIIE (12 × 1 min sprints at V̇O 2peak running velocity), and CE (RE followed by HIIE). Skeletal muscle biopsies (vastus lateralis) were taken before (REST) immediately (0 h), 4 h, and 8 h after each exercise bout. RESULTS Compared with REST, MYOD1 , MYF5 , and MYF6 , mean methylation across all CpGs analyzed was reduced after 4 and 8 h in response to all exercise protocols ( P < 0.05). Reduced levels of MYOD1 methylation were observed after HIIE and CE compared with RE ( P < 0.05). Compared with REST, all exercise bouts increased mRNA expression over time ( MYOD1 at 4 and 8 h, and MYF6 at 4 h; P < 0.05). MYF5 mRNA expression was lower after 4 h compared with 0 h and higher at 8 h compared with 4 h ( P < 0.05). CONCLUSIONS We observed an interrelated but not time-aligned response between the exercise-induced changes in myogenic regulatory factors demethylation and mRNA expression after divergent exercise modes. Despite divergent contractile stimuli, changes in DNA methylation and mRNA expression in skeletal muscle were largely confined to the late (4-8 h) recovery period and similar between the different exercise challenges.
Collapse
Affiliation(s)
- Guilherme Defante Telles
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, BRAZIL
| | - Cleiton Augusto Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, São Paulo, BRAZIL
| | - Miguel Soares Conceição
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, São Paulo, BRAZIL
| | - Felipe Cassaro Vechin
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, BRAZIL
| | | | | | | | | | - Donny Michael Camera
- Department of Health and Medical Sciences, Swinburne University, Melbourne, VIC, AUSTRALIA
| | - John A Hawley
- Mary MacKillop Institute for Health Research, Exercise and Nutrition Research Program, Australian Catholic University, Melbourne, VIC, AUSTRALIA
| | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, BRAZIL
| |
Collapse
|
8
|
Kwon M, Robins L, McGlynn ML, Collins C, Pekas EJ, Park SY, Slivka D. No Mitochondrial Related Transcriptional Changes in Human Skeletal Muscle after Local Heat Application. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17051. [PMID: 36554930 PMCID: PMC9779680 DOI: 10.3390/ijerph192417051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The purpose of the study is to determine the impact of local heating on skeletal muscle transcriptional response related to mitochondrial biogenesis and mitophagy. Twelve healthy subjects (height, 176.0 ± 11.9 cm; weight, 83.6 ± 18.3 kg; and body composition, 19.0 ± 7.7% body fat) rested in a semi-reclined position for 4 h with a heated thermal wrap (HOT) around one thigh and a wrap without temperature regulation (CON) around the other (randomized). Skin temperature, blood flow, intramuscular temperature, and a skeletal muscle biopsy from the vastus lateralis were obtained after the 4 h intervention. Skin temperature via infrared thermometer and thermal camera was higher after HOT (37.3 ± 0.7 and 36.7 ± 1.0 °C, respectively) than CON (34.8 ± 0.7, 35.2 ± 0.8 °C, respectively, p < 0.001). Intramuscular temperature was higher in HOT (36.3 ± 0.4 °C) than CON (35.2 ± 0.8 °C, p < 0.001). Femoral artery blood flow was higher in HOT (304.5 ± 12.5 mL‧min-1) than CON (272.3 ± 14.3 mL‧min-1, p = 0.003). Mean femoral shear rate was higher in HOT (455.8 ± 25.1 s-1) than CON (405.2 ± 15.8 s-1, p = 0.019). However, there were no differences in any of the investigated genes related to mitochondrial biogenesis (PGC-1α, NRF1, GAPBA, ERRα, TFAM, VEGF) or mitophagy (PINK-1, PARK-2, BNIP-3, BNIP-3L) in response to heat (p > 0.05). These data indicate that heat application alone does not impact the transcriptional response related to mitochondrial homeostasis, suggesting that other factors, in combination with skeletal muscle temperature, are involved with previous observations of altered exercise induced gene expression with heat.
Collapse
Affiliation(s)
- Monica Kwon
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Larry Robins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Mark L. McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Christopher Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Elizabeth J. Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
9
|
Robins L, Kwon M, McGlynn ML, Rosales AM, Pekas EJ, Collins C, Park SY, Slivka DR. Influence of Local Muscle Cooling on Mitochondrial-Related Gene Expression at Rest. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12028. [PMID: 36231330 PMCID: PMC9566196 DOI: 10.3390/ijerph191912028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to determine the impact of localized cooling of the skeletal muscle during rest on mitochondrial related gene expression. Thermal wraps were applied to the vastus lateralis of each limb of 12 participants. One limb received a cold application (randomized) (COLD), while the other did not (RT). Wraps were removed at the 4 h time point and measurements of skin temperature, blood flow, and intramuscular temperature were taken prior to a muscle biopsy. RT-qPCR was used to measure expression of genes associated with mitochondrial development. Skin and muscle temperatures were lower in COLD than RT (p < 0.05). Femoral artery diameter was lower in COLD after 4 h (0.62 ± 0.05 cm, to 0.60 ± 0.05 cm, p = 0.018). Blood flow was not different in COLD compared to RT (259 ± 69 mL·min-1 vs. 275 ± 54 mL·min-1, p = 0.20). PGC-1α B and GABPA expression was higher in COLD relative to RT (1.57-fold, p = 0.037 and 1.34-fold, p = 0.006, respectively). There was no difference (p > 0.05) in the expression of PGC-1α, NT-PGC-1α, PGC-1α A, TFAM, ESRRα, NRF1, GABPA, VEGF, PINK1, PARK 2, or BNIP3-L. The impact of this small magnitude of difference in gene expression of PGC-1α B and GABPA without alterations in other genes are unknown. There appears to be only limited impact of local muscle cooling on the transcriptional response related to mitochondrial development.
Collapse
Affiliation(s)
- Larry Robins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Monica Kwon
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Mark L. McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Alejandro M. Rosales
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
- School of Integrated Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA
| | - Elizabeth J. Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Christopher Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Dustin R. Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
- School of Integrated Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
10
|
McGlynn ML, Collins C, Hailes W, Ruby B, Slivka D. Heat Acclimation in Females Does Not Limit Aerobic Exercise Training Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5554. [PMID: 35564948 PMCID: PMC9103535 DOI: 10.3390/ijerph19095554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Recent aerobic exercise training in the heat has reported blunted aerobic power improvements and reduced mitochondrial-related gene expression in men. It is unclear if this heat-induced blunting of the training response exists in females. The purpose of the present study was to determine the impact of 60 min of cycling in the heat over three weeks on thermoregulation, gene expression, and aerobic capacity in females. Untrained females (n = 22; 24 ± 4yoa) were assigned to three weeks of aerobic training in either 20 °C (n = 12) or 33 °C (n = 10; 40%RH). Maximal aerobic capacity (39.5 ± 6.5 to 41.5 ± 6.2 mL·kg−1·min−1, p = 0.021, ηp2 = 0.240, 95% CI [0.315, 3.388]) and peak aerobic power (191.0 ± 33.0 to 206.7 ± 27.2 W, p < 0.001, ηp2 = 0.531, 95% CI [8.734, 22.383]) increased, while the absolute-intensity trial (50%VO2peak) HR decreased (152 ± 15 to 140 ± 13 b·min−1, p < 0.001, ηp2 = 0.691, 95% CI [15.925, 8.353]), but they were not different between temperatures (p = 0.440, p = 0.955, p = 0.341, respectively). Independent of temperature, Day 22 tolerance trial skin temperatures decreased from Day 1 (p = 0.006, ηp2 = 0.319, 95% CI [1.408, 0.266), but training did not influence core temperature (p = 0.598). Average sweat rates were higher in the 33 °C group vs. the 20 °C group (p = 0.008, ηp2 = 0.303, 95% CI [67.9, 394.9]) but did not change due to training (p = 0.571). Pre-training PGC-1α mRNA increased 4h-post-exercise (5.29 ± 0.70 fold change, p < 0.001), was lower post-training (2.69 ± 0.22 fold change, p = 0.004), and was not different between temperatures (p = 0.455). While training induced some diminished transcriptional stimulus, generally the training temperature had little effect on genes related to mitochondrial biogenesis, mitophagy, and metabolic enzymes. These female participants increased aerobic fitness and maintained an exercise-induced PGC-1α mRNA response in the heat equal to that of room temperature conditions, contrasting with the blunted responses previously observed in men.
Collapse
Affiliation(s)
- Mark L. McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (C.C.)
| | - Christopher Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (C.C.)
| | - Walter Hailes
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA; (W.H.); (B.R.)
| | - Brent Ruby
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA; (W.H.); (B.R.)
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (C.C.)
| |
Collapse
|
11
|
Risha MA, Ali A, Siengdee P, Trakooljul N, Dannenberger D, Wimmers K, Ponsuksili S. Insights into molecular pathways and fatty acid membrane composition during the temperature stress response in the murine C2C12 cell model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151019. [PMID: 34662617 DOI: 10.1016/j.scitotenv.2021.151019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Daily and seasonal temperature fluctuations are inevitable due to climate change, which highlights the importance of studying the detrimental effects of temperature fluctuations on the health, productivity, and product quality of farm animals. Muscle membrane composition and the molecular signals are vital for muscle cell differentiation and muscle growth, but their response to temperature stress is not well characterized. Temperature changes can lead to modification of membrane components of the cell, which may affect its surroundings and intracellular signaling pathways. Using C2C12 myoblast cells as a model of skeletal muscle development, this study was designed to investigate the effects of high temperature (39 °C and 41 °C) and low temperature (35 °C) on molecular pathways in the cells as well as the cell membrane fatty acid composition. Our results show that several genes were differentially expressed in C2C12 cells cultured under heat or cold stress, and these genes were enriched important KEGG pathways including PI3K-Akt signaling pathway, lysosome and HIF- signaling pathway, Wnt signaling pathway and AMPK signaling pathway. Our analysis further reveals that several membrane transporters and genes involved in lipid metabolism and fatty acid elongation were also differentially expressed in C2C12 cells cultured under high or low temperature. Additionally, temperature stress shifts the fatty acid composition in the cell membranes, including the proportion of saturated, monounsaturated and polyunsaturated fatty acids. This study revealed an interference between fatty acid composition in the membranes and changing molecular pathways including lipid metabolism and fatty acids elongation mediated under thermal stress. These findings will reinforce a better understanding of the adaptive mechanisms in skeletal muscle under temperature stress.
Collapse
Affiliation(s)
- Marua Abu Risha
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Asghar Ali
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Puntita Siengdee
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Lipid metabolism and muscular adaptation workgroup, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany.
| |
Collapse
|
12
|
O'Reilly N, Collins C, McGlynn ML, Slivka D. Effect of local heat application during exercise on gene expression related to mitochondrial homeostasis. Appl Physiol Nutr Metab 2021; 46:1545-1551. [PMID: 34399057 PMCID: PMC9014790 DOI: 10.1139/apnm-2021-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the impact of local muscle heating during endurance exercise on human skeletal muscle mitochondrial-related gene expression. Twelve subjects (25 ± 6 yr, 177 ± 8 cm, 78 ± 16 kg, and peak aerobic capacity 45 ± 8 mL·kg-1·min-1) cycled with one leg heated (HOT) and the other serving as a control (CON). Skin and intramuscular temperatures were taken before temperature intervention (Pre), after 30 minutes (Pre30), after exercise (Post) and four hours after exercise (4Post). Muscle biopsies were taken from each leg at Pre and 4Post. Intramuscular temperature increased within HOT (34.4 ± 0.7 °C to 36.1 ± 0.5 °C, p < 0.001) and was higher than CON at Pre30 (34.0 ± 0.7 °C, p < 0.001). However, temperatures at POST were similar (HOT 38.4 ± 0.7 °C, CON 38.3 ± 0.5 °C, p = 0.661). Skin temperature was higher than CON at Post30 (30.3 ± 1.0 °C, p < 0.001) and Post (HOT 34.6 ± 0.9 °C, CON 32.3 ± 1.6 °C, p < 0.001). PGC-1α, VEGF and NRF2 mRNA increased with exercise (p < 0.05) but was not altered with heating (p > 0.05). TFAM increased after exercise with heat application (HOT, p = 0.019) but not with exercise alone (CON, p = 0.422). There was no difference in NRF1, ESRRα, or any of the mitophagy related genes in response to exercise or temperature (p > 0.05). In conclusion, TFAM is enhanced by local heat application during endurance exercise, whereas other genes related to mitochondrial homeostasis are unaffected. Novelty: The main finding of this study is that localized heating increased TFAM mRNA expression. The normal exercise-induced increased PGC-1α gene expression was unaltered by local muscle heating.
Collapse
Affiliation(s)
- Nattie O'Reilly
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Christopher Collins
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Mark L McGlynn
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA
| |
Collapse
|
13
|
Tardo-Dino PE, Taverny C, Siracusa J, Bourdon S, Baugé S, Koulmann N, Malgoyre A. Effect of heat acclimation on metabolic adaptations induced by endurance training in soleus rat muscle. Physiol Rep 2021; 9:e14686. [PMID: 34405575 PMCID: PMC8371354 DOI: 10.14814/phy2.14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 11/24/2022] Open
Abstract
Aerobic training leads to well‐known systemic metabolic and muscular alterations. Heat acclimation may also increase mitochondrial muscle mass. We studied the effects of heat acclimation combined with endurance training on metabolic adaptations of skeletal muscle. Thirty‐two rats were divided into four groups: control (C), trained (T), heat‐acclimated (H), and trained with heat acclimation (H+T) for 6 weeks. Soleus muscle metabolism was studied, notably by the in situ measurement of mitochondrial respiration with pyruvate (Pyr) or palmitoyl‐coenzyme A (PCoA), under phosphorylating conditions (V˙max) or not (V˙0). Aerobic performance increased, and retroperitoneal fat mass decreased with training, independently of heat exposure (p < 0.001 and p < 0.001, respectively). Citrate synthase and hydroxyl‐acyl‐dehydrogenase activity increased with endurance training (p < 0.001 and p < 0.01, respectively), without any effect of heat acclimation. Training induced an increase of the V˙0 and V˙max for PCoA (p < .001 and p < .01, respectively), without interference with heat acclimation. The training‐induced increase of V˙0 (p < 0.01) for pyruvate oxidation was limited when combined with heat acclimation (−23%, p < 0.01). Training and heat acclimation independently increased the V˙max for pyruvate (+60% p < 0.001 and +50% p = 0.01, respectively), without an additive effect of the combination. Heat acclimation doubled the training effect on muscle glycogen storage (p < 0.001). Heat acclimation did not improve mitochondrial adaptations induced by endurance training in the soleus muscle, possibly limiting the alteration of carbohydrate oxidation while not facilitating fatty‐acid utilization. Furthermore, the increase in glycogen storage observed after HA combined with endurance training, without the improvement of pyruvate oxidation, appears to be a hypoxic metabolic phenotype.
Collapse
Affiliation(s)
- Pierre-Emmanuel Tardo-Dino
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,Ecole du Val-de-Grâce, Paris, France.,EDISS 205, Université Claude Bernard Lyon 1, Villeurbanne, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Cindy Taverny
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Julien Siracusa
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Stéphanie Bourdon
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Stéphane Baugé
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Nathalie Koulmann
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,Ecole du Val-de-Grâce, Paris, France.,EDISS 205, Université Claude Bernard Lyon 1, Villeurbanne, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| | - Alexandra Malgoyre
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France.,LBEPS, Université Evry, IRBA, Université Paris-Saclay, Paris, 91025, France
| |
Collapse
|
14
|
Myokine secretion following moderate-intensity endurance exercise under different environmental temperatures. Cytokine 2021; 144:155553. [PMID: 34062449 DOI: 10.1016/j.cyto.2021.155553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 01/04/2023]
Abstract
PURPOSE In the present study, the effects of endurance exercise under different environmental temperatures on myokine responses were elucidated. METHODS Seven healthy males (age: 22.7 ± 0.4 years, height: 173.7 ± 2.7 cm, body weight: 65.2 ± 2.8 kg) performed pedaling at 60% of their maximal oxygen consumption for 60 min under three different environmental temperature conditions, cold (without shivering; 15-19 °C), moderate (24 °C), and hot (34 °C), in a counterbalanced fashion. Exercise intensity (60% maximal oxygen consumption evaluated under each condition) was relatively matched among the conditions. Venous blood samples were collected before, during, immediately after, and at 1, 2, and 3 h after exercise. RESULTS Exercise-induced changes in plasma irisin, interleukin-6, insulin or insulin-like growth factor-1 concentrations did not differ significantly among the conditions (P > 0.05). In hot condition, exercise-induced elevation of plasma fibroblast growth factor-21 (FGF21) concentration was significantly enhanced compared with the cold condition, and the myostatin concentration was lowered compared with the moderate condition (P < 0.05). Furthermore, the area under the curve for the myostatin concentration over an exercise session (including during and after exercise) was significantly lower in the hot than moderate condition (P < 0.05). Notably, a positive correlation between the peak plasma FGF21 and myostatin concentrations was observed at the moderate environment, but not at the cold or hot condition (P < 0.05). CONCLUSION Irisin and FGF21 concentrations induced by moderate-intensity endurance exercise were not enhanced under the cold environmental temperature without shivering. In contrast, exercise in the hot environmental temperature changed favorably FGF21 and myostatin concentrations compared with thermoneutral environment.
Collapse
|
15
|
Krapf S, Schjølberg T, Asoawe L, Honkanen SK, Kase ET, Thoresen GH, Haugen F. Novel methods for cold exposure of skeletal muscle in vivo and in vitro show temperature-dependent myokine production. J Therm Biol 2021; 98:102930. [PMID: 34016352 DOI: 10.1016/j.jtherbio.2021.102930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022]
Abstract
Proteins secreted from skeletal muscle serving a signalling role have been termed myokines. Many of the myokines are exercise factors, produced and released in response to muscle activity. Cold exposures affecting muscle may occur in recreational, occupational and therapeutic settings. Whether muscle temperature independently affects myokine profile, is still to be elucidated. We hypothesized that manipulating muscle temperature by means of external cooling would change myokine production and release. In the present study we have established new models for cold exposure of muscle in vivo and in vitro where rat hind limb or cultured human myotubes were cooled to 18 °C. After a recovery period, muscle tissue, cells and culture media were harvested for further analysis by qPCR and immunoassays. Expression of several myokine genes were significantly increased after cold exposure in both models: in rat muscle, mRNA levels of CCL2 (p = 0.04), VEGFA (p = 0.02), CXCL1 (p = 0.02) and RBM3 (p = 0.02) increased while mRNA levels of IL-6 (p = 0.03) were decreased; in human myotubes, mRNA levels of IL6 (p = 0.01), CXCL8 (p = 0.04), VEGFA (p = 0.03) and CXCL1 (p < 0.01) were significantly increased, as well as intracellular protein levels of IL-8 (CXCL8 gene product; p < 0.01). The corresponding effect on myokine secretion was not observed, on the contrary, IL-8 (p = 0.02) and VEGF (VEGFA gene product) p < 0.01) concentrations in culture media were reduced after cold exposure in vitro. In conclusion, cold exposure of muscle in vivo and in vitro had an effect on the production and release of several known exercise-related myokines. Myokine expression at the level of mRNA and protein was increased by cold exposure, whereas secretion tended to be decreased.
Collapse
Affiliation(s)
- Solveig Krapf
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Lucia Asoawe
- National Institute of Occupational Health, Oslo, Norway
| | | | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fred Haugen
- National Institute of Occupational Health, Oslo, Norway.
| |
Collapse
|
16
|
Meister B, Collins C, McGlynn M, Slivka D. Effect of local cold application during exercise on gene expression related to mitochondrial homeostasis. Appl Physiol Nutr Metab 2020; 46:318-324. [PMID: 32961062 PMCID: PMC8958796 DOI: 10.1139/apnm-2020-0387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise training increases mitochondrial content in active skeletal muscle. Previous work suggests that mitochondrial-related genes respond favorably to exercise in cold environments. However, the impact of localized tissue cooling is unknown. The purpose of this study was to determine the impact of local muscle cooling during endurance exercise on human skeletal muscle mitochondrial-related gene expression. Twelve subjects (age, 28 ± 6 years) cycled at 65% peak power output. One leg was cooled (C) for 30 min before and during exercise with a thermal wrap while the other leg was wrapped but not cooled, room temperature (RT). Muscle biopsies were taken from each vastus lateralis before and 4 h after exercise for the analysis of gene expression. Muscle temperature was lower in the C (29.2 ± 0.7 °C) than the RT (34.1 ± 0.3 °C) condition after pre-cooling for 30 min before exercise (p < 0.001) and remained lower after exercise in the C (36.9 ± 0.5) than the RT (38.4 ± 0.2, p < 0.001) condition. PGC-1α and NRF1 mRNA expression were lower in the C (p = 0.012 and p = 0.045, respectively) than the RT condition at 4 h after exercise. There were no temperature-related differences in other genes (p > 0.05). These data suggest that local cooling has an inhibitory effect on exercise-induced PGC-1α and NRF1 expression in human skeletal muscle. Those considering using local cooling during exercise should consider other systemic cooling options. Novelty: Local cooling has an inhibitory effect on exercise-induced PGC-1α and NRF1 expression in human skeletal muscle. Local cooling may lead to a less robust exercise stimulus compared with standard conditions.
Collapse
Affiliation(s)
- Ben Meister
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.,School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Chris Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.,School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Mark McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.,School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA.,School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| |
Collapse
|
17
|
Jaworska J, Rodziewicz-Flis E, Kortas J, Kozłowska M, Micielska K, Babińska A, Laskowski R, Lombardi G, Ziemann E. Short-Term Resistance Training Supported by Whole-Body Cryostimulation Induced a Decrease in Myostatin Concentration and an Increase in Isokinetic Muscle Strength. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155496. [PMID: 32751455 PMCID: PMC7432449 DOI: 10.3390/ijerph17155496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/26/2023]
Abstract
The study aimed to determine whether combining cryostimulation with resistance training would effectively increase muscle strength, and if so, whether this adaptation would be related to changes in circulating levels of exerkines (i.e., mediators of systemic adaptation to exercise). Twenty-five students completed 12 sessions of resistance training, each followed by either cryostimulation (n = 15, 3 min exposure at -110 °C) or passive recovery (n = 10). Prior to and post this intervention, participants performed two eccentric cycling bouts (before and after training). At these points, serum concentrations of muscle damage marker (myoglobin), exerkines (interleukin 6 (IL-6), interleukin 15 (IL-15), irisin, brain-derived neurotrophic factor), hypertrophy-related factors (myostatin, insulin-like growth factor 1), and muscle strength were measured. The applied procedure reduced the physiological burden of the second eccentric cycling bout and myoglobin concentrations only in the group subject to cryostimulation. The same group also exhibited decreased levels of myostatin (from 4.7 ± 1.7 to 3.8 ± 1.8 ng·mL-1, p < 0.05). A significant and large interaction between the group × time was noted in IL-15 concentration (p = 0.01, ηp2=0.27). Training and cryostimulation induced a positive and likely significant improvement of isokinetic muscle strength. Altogether, obtained results support the claim that resistance training combined with cold exposure modified muscle strength through modulation of myostatin and IL-15 concentrations.
Collapse
Affiliation(s)
- Joanna Jaworska
- Department of Physiology, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336 Gdansk, Poland; (J.J.); (M.K.); (R.L.)
| | - Ewa Rodziewicz-Flis
- Department of Physical Therapy and Biological Regeneration, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336 Gdansk, Poland;
| | - Jakub Kortas
- Department of Sport, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336 Gdansk, Poland;
| | - Marta Kozłowska
- Department of Physiology, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336 Gdansk, Poland; (J.J.); (M.K.); (R.L.)
| | - Katarzyna Micielska
- Department of Physical Education and Lifelong sports, Poznan University of Physical Education, Krolowej Jadwigi 27/39, 61-871 Poznan, Poland;
| | - Anna Babińska
- Department of Endocrinology and Internal Medicine, Medical University, Marii Sklodowskiej-Curie 3, 80-001 Gdansk, Poland;
| | - Radosław Laskowski
- Department of Physiology, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego 1, 80-336 Gdansk, Poland; (J.J.); (M.K.); (R.L.)
| | - Giovanni Lombardi
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Krolowej Jadwigi 27/39, 61-871 Poznan, Poland;
- IRCCS Istituto Ortopedico Galeazzi, Lab Experimental Biochemistry & Molecular Biology, Via Riccardo Galeazzi, 4, 20161 Milano, Italy
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Krolowej Jadwigi 27/39, 61-871 Poznan, Poland;
- Correspondence:
| |
Collapse
|
18
|
Opichka M, Shute R, Marshall K, Slivka D. Effects of exercise in a cold environment on gene expression for mitochondrial biogenesis and mitophagy. Cryobiology 2019; 90:47-53. [PMID: 31469981 PMCID: PMC6791766 DOI: 10.1016/j.cryobiol.2019.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/29/2022]
Abstract
Cold exposure during cycling and recovery enhances PGC-1α transcription, but aspects of mitophagy and a more intense cold exposure without recovery occurring in the cold have not been explored. PURPOSE Determine the expression of genes related to mitochondrial biogenesis and mitophagy following an acute cycling bout at a temperature below freezing compared to that of room temperature. METHODS Eleven male participants cycled at 65% Wmax for 1 h at -2 °C and 20 °C and then recovered at room temperature for 6 h. A muscle biopsy was taken from the vastus lateralis before exercise, 3 h, and 6 h post-exercise for gene expression analysis. RESULTS Exercising heart rate and skin temperature were lower in the cold (p < 0.001; p = 0.004), while core temperature was higher (p = 0.016). Temperature had no effect on gene expression (p > 0.05). BNIP3 and BNIP3L mRNA were not influenced by exercise (p = 0.329; p 0.233). PGC-1α and VEGF were higher after cycling (p < 0.001), but the extent of PGC-1α upregulation was reduced 6 h post-exercise (p 0.006). TFAM increased 6 h post-exercise (p = 0.001). NRF2, ERRα, PINK1, and PARK2 decreased 3 h post-exercise (p 0.035; p = 0.005; p = 0.002; p = 0.001), but this downregulation was diminished after 6 h of recovery (p = 0.017; p 0.006; p = 0.043; p = 0.047). NRF1 was marginally attenuated with exercise (p = 0.001). CONCLUSIONS Exercise induced alterations in gene expression for mitochondrial biogenesis and mitophagy, but these effects were independent of temperature.
Collapse
Affiliation(s)
- Megan Opichka
- University of Nebraska at Omaha, School of Health and Kinesiology, Omaha, NE, United States.
| | - Robert Shute
- University of Nebraska at Omaha, School of Health and Kinesiology, Omaha, NE, United States.
| | - Katherine Marshall
- University of Nebraska at Omaha, School of Health and Kinesiology, Omaha, NE, United States.
| | - Dustin Slivka
- University of Nebraska at Omaha, School of Health and Kinesiology, Omaha, NE, United States.
| |
Collapse
|
19
|
Ross CI, Shute RJ, Ruby BC, Slivka DR. Skeletal Muscle mRNA Response to Hypobaric and Normobaric Hypoxia After Normoxic Endurance Exercise. High Alt Med Biol 2019; 20:141-149. [DOI: 10.1089/ham.2018.0147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Caleb I. Ross
- Exercise Physiology Lab, University of Nebraska at Omaha, Omaha, Nebraska
| | - Robert J. Shute
- Exercise Physiology Lab, University of Nebraska at Omaha, Omaha, Nebraska
| | - Brent C. Ruby
- Montana Center for Work Physiology and Exercise Metabolism, University of Montana, Missoula, Montana
| | - Dustin R. Slivka
- Exercise Physiology Lab, University of Nebraska at Omaha, Omaha, Nebraska
| |
Collapse
|
20
|
Shi H, Yao R, Lian S, Liu P, Liu Y, Yang YY, Yang H, Li S. Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure. Stress 2019; 22:366-376. [PMID: 30821572 DOI: 10.1080/10253890.2019.1568987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
At low temperatures, the liver increases glucose utilization and expresses RNA-binding motif 3 (RBM3) to cope with cold exposure. In this study, the expression of heat shock protein 70 (HSP70), Toll-like receptor 4 (TLR4), bone marrow differentiation factor 88 (MYD88), and phosphorylated nuclear factor-κB (NF-κB) was consistent with fluctuations in insulin in fasted cold-exposed mice. We also found up-regulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in acute cold exposure with a decrease in core body temperature. RBM3 transcription and translation were activated 2 h after cold exposure. The anti-apoptotic factor Bcl-2/Bax ratio also increased, while expression of apoptosis factors: cleaved caspase-3, cleaved poly(ADP-ribose)polymerase 1 (PARP-1) and cytochrome-c (Cyt-c) was unchanged. Liver glycogen was depleted after 2 h of cold exposure, and blood glucose decreased after 4 h. Glycogen synthase kinase 3β (GSK3β) phosphorylation continued to increase to promote hepatic glycogen synthesis. We found a high level of protein kinase B (AKT) phosphorylation after 6 h of cold exposure. In addition, we demonstrated that after cold exposure for 2 h, in the liver, continued phosphorylation of fructose-2,6-diphosphate (PFKFB2) and decreased accumulation of glycogen intermediates fructose-1,6-diphosphate (FDP) and pyruvic acid (PA). In summary, the liver responds to cold exposure through a number of different pathways, including activation of HSP70/TLR4 signaling pathways, up-regulation of RBM3 expression, and increased glycolysis and glycogen synthesis. We propose a possible signaling pathway in which regulation of RBM3 expression by the liver affects the AKT metabolic signaling pathway. Lay summary In response to changes in ambient temperature, mice regulate global metabolism and gene expression through hormones. This study focused on the effects of environmental hypothermia on molecular pathways of glucose metabolism in the liver, which is the important metabolic organ in mice. This provides a basis for further study of mice against cold exposure damage.
Collapse
Affiliation(s)
- Hongzhao Shi
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Ruizhi Yao
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Shuai Lian
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Peng Liu
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Yang Liu
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Yu Ying Yang
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Huanmin Yang
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| | - Shize Li
- a College of Animal Science and Veterinary Medicine , Heilongjiang Bayi Agricultural University , Daqing , PR China
| |
Collapse
|
21
|
Burtscher M, Gatterer H, Burtscher J, Mairbäurl H. Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review. Front Physiol 2018; 9:572. [PMID: 29867589 PMCID: PMC5964295 DOI: 10.3389/fphys.2018.00572] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Living, working and exercising in extreme terrestrial environments are challenging tasks even for healthy humans of the modern new age. The issue is not just survival in remote environments but rather the achievement of optimal performance in everyday life, occupation, and sports. Various adaptive biological processes can take place to cope with the specific stressors of extreme terrestrial environments like cold, heat, and hypoxia (high altitude). This review provides an overview of the physiological and morphological aspects of adaptive responses in these environmental stressors at the level of organs, tissues, and cells. Furthermore, adjustments existing in native people living in such extreme conditions on the earth as well as acute adaptive responses in newcomers are discussed. These insights into general adaptability of humans are complemented by outcomes of specific acclimatization/acclimation studies adding important information how to cope appropriately with extreme environmental temperatures and hypoxia.
Collapse
Affiliation(s)
- Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,Austrian Society for Alpine and Mountain Medicine, Innsbruck, Austria
| | - Hannes Gatterer
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Heimo Mairbäurl
- Medical Clinic VII, Sports Medicine, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL/TLRC-H), Heidelberg, Germany
| |
Collapse
|
22
|
Shute RJ, Heesch MW, Zak RB, Kreiling JL, Slivka DR. Effects of exercise in a cold environment on transcriptional control of PGC-1α. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29537859 DOI: 10.1152/ajpregu.00425.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peroxisome proliferator-activated receptor-α coactivator-1α (PGC-1α) mRNA is increased with both exercise and exposure to cold temperature. However, transcriptional control has yet to be examined during exercise in the cold. Additionally, the need for environmental cold exposure after exercise may not be a practical recovery modality. The purpose of this study was to determine mitochondrial-related gene expression and transcriptional control of PGC-1α following exercise in a cold compared with room temperature environment. Eleven recreationally trained males completed two 1-h cycling bouts in a cold (7°C) or room temperature (20°C) environment, followed by 3 h of supine recovery in standard room conditions. Muscle biopsies were taken from the vastus lateralis preexercise, postexercise, and after a 3-h recovery. Gene expression and transcription factor binding to the PGC-1α promoter were analyzed. PGC-1α mRNA increased from preexercise to 3 h of recovery, but there was no difference between trials. Estrogen-related receptor-α (ERRα), myocyte enhancer factor-2 (MEF2A), and nuclear respiratory factor-1 (NRF-1) mRNA were lower in cold than at room temperature. Forkhead box class-O (FOXO1) and cAMP response element-binding protein (CREB) binding to the PGC-1α promoter were increased postexercise and at 3 h of recovery. MEF2A binding increased postexercise, and activating transcription factor 2 (ATF2) binding increased at 3 h of recovery. These data indicate no difference in PGC-1α mRNA or transcriptional control after exercise in cold versus room temperature and 3 h of recovery. However, the observed reductions in the mRNA of select transcription factors downstream of PGC-1α indicate a potential influence of exercise in the cold on the transcriptional response related to mitochondrial biogenesis.
Collapse
Affiliation(s)
- Robert J Shute
- Department of Health and Kinesiology, University of Nebraska at Omaha , Omaha, Nebraska
| | - Matthew W Heesch
- Department of Health and Kinesiology, University of Nebraska at Omaha , Omaha, Nebraska
| | - Roksana B Zak
- Department of Health and Kinesiology, University of Nebraska at Omaha , Omaha, Nebraska
| | - Jodi L Kreiling
- Department of Chemistry, University of Nebraska at Omaha , Omaha, Nebraska
| | - Dustin R Slivka
- Department of Health and Kinesiology, University of Nebraska at Omaha , Omaha, Nebraska
| |
Collapse
|