1
|
Wheelock CE, Stooks J, Schwob J, Hostler D. Continuous rise in oxygen consumption during prolonged military loaded march in the heat with and without fluid replacement: a pilot study. BMJ Mil Health 2025; 171:221-226. [PMID: 38373790 DOI: 10.1136/military-2023-002573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION V̇O2 drift, the rise in oxygen consumption during continuous exercise, has not been adequately reported during prolonged military marches. The purpose of this study was to analyse V̇O2 and energy expenditure (EE) during a loaded march with and without rehydration efforts. Second, the study aimed to compare EE throughout the march with predicted values using a validated model. METHODS Seven healthy men (23±2 years; V̇O2max: 50.8±5.3 mL/kg/min) completed four 60 min loaded marches (20.4 kg at 50% V̇O2max) in a warm environment (30°C and 50% relative humidity). Three were preceded by hypohydration via a 4-hour cold water immersion (18°C). The control (CON) visit was a non-immersed euhydrated march. After water immersion, subjects were rehydrated with 0% (NO), 50% (HALF) or 100% (FULL) of total body mass lost. During exercise, V̇O2 and EE were collected and core temperature change was calculated. To determine if EE could be accurately predicted, values were compared with a calculated estimate using the US Army Load Carry Decision Aid (LCDA). RESULTS At the start of exercise, there was no difference between conditions in V̇O2 (ALL: 24.3±0.3 mL/kg/min; p=0.50) or EE (ALL: 8.6±1.0 W/kg; p=0.68). V̇O2 (p=0.02) and EE (p<0.01) increased during exercise and were 12.3±10.0% and 12.8±9.5% greater, respectively, at 60 min across all trials and were not mitigated by rehydration amount. There was an effect of core temperature change on V̇O2 for each condition (CON: r=0.62; NO: r=0.47; HALF: r=0.70; FULL: r=0.55). LCDA-predicted values were different from measured EE during exercise. CONCLUSION V̇O2 drift occurred during loaded military marches and was associated with increases in EE and core temperature change. Pre-exercise hypohydration with water immersion followed by rehydration did not influence the degree of drift. LCDA prediction of EE may not agree with measured values during prolonged loaded marches where V̇O2 drift occurs.
Collapse
Affiliation(s)
| | - J Stooks
- Exercise and Nutrition Sciences, SUNY Buffalo, Buffalo, New York, USA
| | - J Schwob
- Exercise and Nutrition Sciences, SUNY Buffalo, Buffalo, New York, USA
| | - D Hostler
- Exercise and Nutrition Sciences, SUNY Buffalo, Buffalo, New York, USA
| |
Collapse
|
2
|
Rodrigo-Carranza V, Muñoz de la Cruz V, Hoogkamer W. Influence of Advanced-Footwear-Technology Spikes on Middle- and Long-Distance Running Performance Measures in Trained Runners. Int J Sports Physiol Perform 2025; 20:689-699. [PMID: 40088898 DOI: 10.1123/ijspp.2024-0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/17/2025]
Abstract
PURPOSE Two new designs of track spikes have recently emerged: spikes with a compliant and resilient midsole foam (eg, polyether block amide [PEBA]) and spikes that combine such modern foam with a carbon fiber plate. We evaluated the effect of these different spikes on running performance measures for middle- and long-distance track events in trained runners. METHODS Fourteen females on a single visit performed six 200-m trials at a self-perceived 800-m race pace in 3 different spike conditions (Control, PEBA, and PEBA + Plate), twice in a mirrored order. Sixteen males completed 4 visits. During each of the first 3 visits, they performed six 200-m trials at a self-perceived 800-m race pace, twice in each condition, followed by a 3000-m time trial in 1 of the 3 spike conditions. During visit 4, participants completed six 4-minute running-economy trials at 5 m/s, twice in each condition. RESULTS At the 800-m race pace, females ran faster in PEBA (2.1%) and PEBA + Plate (2.0%) compared with Control. Males ran faster in PEBA (1.4%) and PEBA + Plate (2.4%) compared with Control and in PEBA + Plate compared with PEBA (1.1%). Similarly, males ran the 3000-m time trial faster in PEBA (1.0%) and PEBA + Plate (2.4%) than in Control. Running economy was better in PEBA (5.1%) and PEBA + Plate (4.0%) than in Control. CONCLUSIONS Compared with traditional spiked shoes, shoes with PEBA foam (both with and without a plate) enhanced distance-running performance measures by 1% to 2% in females and males, with greater benefits in the PEBA + Plate condition in males.
Collapse
Affiliation(s)
- Víctor Rodrigo-Carranza
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
- Footwear Innovation Production, TempeInditex, Alicante, Spain
| | | | - Wouter Hoogkamer
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
3
|
Grimmitt AB, Whelan ME, Martini DN, Hoogkamer W. Walking with increased step length variability increases the metabolic cost of walking in young adults. J Exp Biol 2025; 228:jeb250126. [PMID: 40130437 PMCID: PMC12045634 DOI: 10.1242/jeb.250126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
Several studies have observed a relationship between step length variability and the metabolic cost of walking. In those studies, changes in step length variability were secondary to changes in walking speed or step width variability. The purpose of this study was to determine how directly increasing step length variability affects the metabolic cost of walking. Eighteen healthy young adults completed 5 min trials of treadmill walking at 1.20 m s-1 while we manipulated their step length variability. Illuminated rectangles were projected onto the surface of a treadmill to cue step length variabilities of 0%, 5% and 10% coefficient of variation. Step length and its variability were tracked with reflective markers on the feet. Metabolic power across habitual (no projections) and the three variability conditions was measured using indirect calorimetry and analyzed using linear mixed effects modeling. Metabolic power was largest in the 10% condition (mean±s.d. 4.30±0.23 W kg-1) compared with 0% (4.16±0.18 W kg-1) and habitual (3.98±0.25 W kg-1). Actual step length variability was significantly different from prescribed conditions: 0%, 3.17±0.64%; 5%, 4.38±0.98% and 10%, 6.94±1.07%. For every 1% increase in step length variability, there was a 1.1% (0.05 W kg-1; P<0.001) increase in metabolic power. Our results demonstrate an association between the metabolic cost of walking and step length variability. This suggests that increased gait variability contributes to a small portion of the increased cost of walking seen in older adults and people with neurological impairments.
Collapse
Affiliation(s)
- Adam B. Grimmitt
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Maeve E. Whelan
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Douglas N. Martini
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
4
|
White LT, Malcolm P, Franz JR, Takahashi KZ. The Effect of Shoe Insole Stiffness Modifications on Walking Performance in Older Adults: A Feasibility Study. J Appl Biomech 2025; 41:124-131. [PMID: 39753120 DOI: 10.1123/jab.2024-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 03/21/2025]
Abstract
Shoes or insoles embedded with carbon fiber materials to increase longitudinal stiffness have been shown to enhance running and walking performance in elite runners, and younger adults, respectively. It is unclear, however, if such stiffness modifications can translate to enhanced mobility in older adults who typically walk with greater metabolic cost of transport compared to younger adults. Here, we sought to test whether adding footwear stiffness via carbon fiber insoles could improve walking outcomes (eg, distance traveled and metabolic cost of transport) in older adults during the 6-minute walk test. 20 older adults (10 M/10 F; 75.95 [6.01] y) performed 6-minute walk tests in 3 different shoe/insole stiffnesses (low, medium, and high) and their own footwear (4 total conditions). We also evaluated participants' toe flexor strength and passive foot compliance to identify subject-specific factors that influence performance from added shoe/insole stiffnesses. We found no significant group differences in distance traveled or net metabolic cost of transport (P ≥ .171). However, weaker toe flexors were associated with greater improvement in distance traveled between the medium and low stiffness conditions (P = .033, r = -.478), indicating that individual foot characteristics may help identify potential candidates for interventions involving footwear stiffness modifications.
Collapse
Affiliation(s)
- Logan T White
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Philippe Malcolm
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Kota Z Takahashi
- Department of Health and Kinesiology, The University of Utah, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, The University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Lichtwark GA, Jessup LN, Konno RN, Riveros-Matthey CD, Dick TJM. Integrating muscle energetics into biomechanical models to understand variance in the cost of movement. J Exp Biol 2025; 228:JEB248022. [PMID: 39973196 DOI: 10.1242/jeb.248022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
In this Review, we explore the state of the art of biomechanical models for estimating energy consumption during terrestrial locomotion. We consider different mechanical models that provide a solid framework to understand movement energetics from the perspective of force and work requirements. Whilst such models are highly informative, they lack specificity for predicting absolute metabolic rates across a range of species or variations in movement patterns. Muscles consume energy when they activate to generate tension, as well as when they shorten to generate positive work. Phenomenological muscle models incorporating steady-state parameters have been developed and are able to reproduce how muscle fibre energy consumption changes under different contractile conditions; however, such models are difficult to validate when scaled up to whole muscle. This is, in part, owing to limited availability of data that relate muscle dynamics to energetic rates during contraction of large mammalian muscles. Furthermore, factors including the compliance of tendinous tissue, dynamic shape changes and motor unit recruitment can alter the dynamics of muscle contractile tissue and potentially improve muscle efficiency under some locomotion conditions. Despite the many challenges, energetic cost estimates derived from musculoskeletal models that simulate muscle function required to generate movement have been shown to reasonably predict changes in human metabolic rates under different movement conditions. However, accurate predictions of absolute metabolic rate are still elusive. We suggest that conceptual models may be adapted based on our understanding of muscle energetics to better predict the variance in movement energetics both within and between terrestrial species.
Collapse
Affiliation(s)
- Glen A Lichtwark
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Luke N Jessup
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ryan N Konno
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cristian D Riveros-Matthey
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Taylor J M Dick
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Hudgins JH, Pastina JT, Gillis IL, Abel MG, Bergstrom HC, Black WS, Best SA. The Ability of Stryd Footpod Metrics to Reflect Changes in Metabolic Power Between Running Shoe Types. J Sports Sci 2024; 42:2229-2241. [PMID: 39565291 DOI: 10.1080/02640414.2024.2426903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024]
Abstract
It is unclear if running power (RP) estimated by the Stryd footpod device maintains its linear relationship to metabolic power (WMET) when switching between training and racing shoe types. This study determined if RP estimated by the Stryd footpod and its other spatiotemporal metrics reflect the improvement (decrease) in WMET when wearing high-performance racing shoes (HPRS; Nike AlphaFly Next%) compared to control training shoes (CTS; Nike Revolution 5). Fourteen well-trained runners completed two treadmill tests: Absolute Velocity Running Test (AVRT; 11.3-14.5 km·hr-1) and Relative Velocity Running Test (RVRT; 55-75% VO2MAX). WMET was determined with indirect calorimetry. RP was not significantly different between shoe types (p > 0.432) during the AVRT, but WMET was ~5% lower in HPRS (p < 0.001). During the RVRT, participants ran ~6% faster and at ~6% higher RP (both, p < 0.001) in HPRS for the same WMET (p = 0.869). Linear mixed models confirmed WMET was ~5% lower in HPRS for a given RP (p < 0.001). Still, RP and WMET were strongly related within shoe types (p < 0.001, conditional-R2 = 0.982, SEE = 2.57%). Form power ratio and ground contact time correlated with energetic cost (p < 0.011) but did not fully reflect the influence of shoe type. Therefore, runners should account for their shoe type when using RP to indicate WMET between training and racing.
Collapse
Affiliation(s)
- Jake H Hudgins
- Department of Human Physiology, Oregon Performance Research Laboratory, University of Oregon, Eugene, Oregon, USA
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| | - Joseph T Pastina
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| | - Isabelle L Gillis
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| | - Mark G Abel
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| | - Haley C Bergstrom
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| | - W Scott Black
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| | - Stuart A Best
- Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Schwalm LC, Fohrmann D, Schaffarczyk M, Gronwald T, Willwacher S, Hollander K. Habituation Does Not Change Running Economy in Advanced Footwear Technology. Int J Sports Physiol Perform 2024; 19:1285-1290. [PMID: 39187239 DOI: 10.1123/ijspp.2024-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/08/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE This study aimed to compare running economy across habituated and nonhabituated advanced footwear technology (AFT) in trained long-distance runners. METHODS A total of 16 participants completed up to six 5-minute trials in 1 to 3 pairs of their own habituated shoes and 3 different and standardized AFTs at individual marathon pace. We measured oxygen uptake and carbon dioxide production and expressed running economy as oxygen uptake (in milliliters oxygen per kilogram per minute), oxygen cost of transport (oxygen per kilogram per minute), energetic cost (in watts per kilogram), and energetic cost of transport (in joules per kilogram per kilometer). We used linear mixed-effect models to evaluate differences. Relative shoe weight and shoe mileage (distance worn during running) were covariates. RESULTS Forty-eight standardized and 29 individual AFT conditions were measured (mileage 117.0 [128.8] km, range 0-522 km; 25 habituated 135.7 [129.2] km, range 20-522 km; 4 nonhabituated 0 [0] km, range 0-0 km). Rating of perceived exertion, blood [La], and respiratory exchange ratio ranged from 9 to 15, 1.11 to 4.54 mmol/L, and 0.76 to 1.01. There was no effect for habituation on energetic cost of transport (thabituation = -.232, P = .409, b = -0.006; 95% CI, -0.058 to 0.046) or other running economy metrics. Neither shoe weight nor shoe mileage had an effect. CONCLUSIONS Our results suggest that habituation to AFTs does not result in greater benefits in the use of AFTs. This means that implementation in training may not be needed, even if we cannot rule out any other possible benefits of habituation at this stage, such as adaptation of the musculoskeletal system.
Collapse
Affiliation(s)
- Lars C Schwalm
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| | - Dominik Fohrmann
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| | - Marcelle Schaffarczyk
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| | - Thomas Gronwald
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| | - Steffen Willwacher
- Institute of Advanced Biomechanics and Motion Studies, Offenburg University of Applied Sciences, Offenburg, Germany
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Schafer EA, Chapman CL, Castellani JW, Looney DP. Energy expenditure during physical work in cold environments: physiology and performance considerations for military service members. J Appl Physiol (1985) 2024; 137:995-1013. [PMID: 39205639 PMCID: PMC11486477 DOI: 10.1152/japplphysiol.00210.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Effective execution of military missions in cold environments requires highly trained, well-equipped, and operationally ready service members. Understanding the metabolic energetic demands of performing physical work in extreme cold conditions is critical for individual medical readiness of service members. In this narrative review, we describe 1) the extreme energy costs of performing militarily relevant physical work in cold environments, 2) key factors specific to cold environments that explain these additional energy costs, 3) additional environmental factors that modulate the metabolic burden, 4) medical readiness consequences associated with these circumstances, and 5) potential countermeasures to be developed to aid future military personnel. Key characteristics of the cold operational environment that cause excessive energy expenditure in military personnel include thermoregulatory mechanisms, winter apparel, inspiration of cold air, inclement weather, and activities specific to cold weather. The combination of cold temperatures with other environmental stressors, including altitude, wind, and wet environments, exacerbates the overall metabolic strain on military service members. The high energy cost of working in these environments increases the risk of undesirable consequences, including negative energy balance, dehydration, and subsequent decrements in physical and cognitive performance. Such consequences may be mitigated by the application of enhanced clothing and equipment design, wearable technologies for biomechanical assistance and localized heating, thermogenic pharmaceuticals, and cold habituation and training guidance. Altogether, the reduction in energy expenditure of modern military personnel during physical work in cold environments would promote desirable operational outcomes and optimize the health and performance of service members.
Collapse
Affiliation(s)
- Erica A Schafer
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States
| | - Christopher L Chapman
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States
| | - John W Castellani
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - David P Looney
- Military Performance Division, United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| |
Collapse
|
9
|
Matomäki P, Nuuttila OP, Heinonen OJ, Kyröläinen H, Nummela A. How to Equalize High- and Low-Intensity Endurance Exercise Dose. Int J Sports Physiol Perform 2024; 19:851-859. [PMID: 39032919 DOI: 10.1123/ijspp.2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE Without appropriate standardization of exercise doses, comparing high- (HI) and low-intensity (LI) training outcomes might become a matter of speculation. In athletic preparation, proper quantification ensures an optimized stress-to-recovery ratio. This review aims to compare HI and LI doses by estimating theoretically the conversion ratio, 1:x, between HI and LI: How many minutes, x, of LI are equivalent to 1 minute of HI using various quantification methods? A scrutinized analysis on how the dose increases in relation to duration and intensity was also made. ANALYSIS An estimation was conducted across 4 categories encompassing 10 different approaches: (1) "arbitrary" methods, (2) physiological and perceptual measurements during exercise, (3) postexercise measurements, and comparison to (4a) acute and (4b) chronic intensity-related maximum dose. The first 2 categories provide the most conservative estimation for the HI:LI ratio (1:1.5-1:10), and the third, slightly higher (1:4-1:11). The category (4a) provides the highest estimation (1:52+) and (4b) suggests 1:10 to 1:20. The exercise dose in the majority of the approaches increase linearly in relation to duration and exponentially in relation to intensity. CONCLUSIONS As dose estimations provide divergent evaluations of the HI:LI ratio, the choice of metric will have a large impact on the research designs, results, and interpretations. Therefore, researchers should familiarize themselves with the foundations and weaknesses of their metrics and justify their choice. Last, the linear relationship between duration and exercise dose is in many cases assumed rather than thoroughly tested, and its use should be subjected to closer scrutiny.
Collapse
Affiliation(s)
- Pekka Matomäki
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
- Paavo Nurmi Center & Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Olli-Pekka Nuuttila
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
- UKK Institute for Health Promotion Research, Tampere, Finland
| | - Olli J Heinonen
- Paavo Nurmi Center & Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Ari Nummela
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| |
Collapse
|
10
|
Grimmitt AB, Whelan ME, Martini DN, Hoogkamer W. Walking with increased step length variability increases the metabolic cost of walking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596299. [PMID: 38854143 PMCID: PMC11160611 DOI: 10.1101/2024.05.28.596299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Older adults and neurological populations tend to walk with slower speeds, more gait variability, and a higher metabolic cost. This higher metabolic cost could be related to their increased gait variability, but this relationship is still unclear. The purpose of this study was to determine how increased step length variability affects the metabolic cost of waking. Eighteen healthy young adults completed a set of 5-minute trials of treadmill walking at 1.20 m/s while we manipulated their step length variability. Illuminated rectangles were projected onto the surface of a treadmill to cue step length variabilities of 0, 5 and 10% (coefficient of variation). Actual step lengths and their variability were tracked with reflective markers on the feet, while metabolic cost was measured using indirect calorimetry. Changes in metabolic cost across habitual walking (no projections) and the three variability conditions were analyzed using a linear mixed effects model. Metabolic power was largest in the 10% condition (4.30 ± 0.23 W/kg) compared to 0% (4.16 ± 0.18 W/kg) and habitual (3.98 ± 0.25 W/kg). The participant's actual step length variability did not match projected conditions for 0% (3.10%) and 10% (7.03%). For every 1% increase in step length variability, there is an 0.7% increase in metabolic cost. Our results demonstrate an association between the metabolic cost of walking and gait step length variability. This suggests that increased gait variability contributes to a portion of the increased cost of walking seen in older adults and neurological populations.
Collapse
Affiliation(s)
- Adam B Grimmitt
- Department of Kinesiology, University of Massachusetts Amherst, 01003, USA
| | - Maeve E Whelan
- Department of Kinesiology, University of Massachusetts Amherst, 01003, USA
| | - Douglas N Martini
- Department of Kinesiology, University of Massachusetts Amherst, 01003, USA
| | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts Amherst, 01003, USA
| |
Collapse
|
11
|
Rodrigo-Carranza V, Hoogkamer W, González-Ravé JM, González-Mohíno F. Relationship Between Advanced Footwear Technology Longitudinal Bending Stiffness and Energy Cost of Running. Scand J Med Sci Sports 2024; 34:e14687. [PMID: 38923087 DOI: 10.1111/sms.14687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/13/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION/PURPOSE Shoe longitudinal bending stiffness (LBS) is often considered to influence running economy (RE) and thus, running performance. However, previous results are mixed and LBS levels have not been studied in advanced footwear technology (AFT). The purpose of this study was to evaluate the effects of increased LBS from curved carbon fiber plates embedded within an AFT midsole compared to a traditional running shoe on RE and spatiotemporal parameters. METHODS Twenty-one male trained runners completed three times 4 min at 13 km/h with two experimental shoe models with a curved carbon fiber plate embedded in an AFT midsole with different LBS values (Stiff: 35.5 N/mm and Stiffest: 43.1 N/mm), and a Control condition (no carbon fiber plate: 20.1 N/mm). We measured energy cost of running (W/kg) and spatiotemporal parameters in one visit. RESULTS RE improved for the Stiff shoe condition (15.71 ± 0.95 W/kg; p < 0.001; n2 = 0.374) compared to the Control condition (16.13 ± 1.08 W/kg; 2.56%) and Stiffest condition (16.03 ± 1.19 W/kg; 1.98%). However, we found no significant differences between the Stiffest and Control conditions. Moreover, there were no spatiotemporal differences between shoe conditions. CONCLUSION Changes in LBS in AFT influences RE suggesting that moderately stiff shoes have the most effective LBS to improve RE in AFT compared to very stiff shoes and traditional, flexible shoe conditions while running at 13 km/h.
Collapse
Affiliation(s)
- Víctor Rodrigo-Carranza
- Sports Performance Research Group (GIRD), University of Castilla-La Mancha, Toledo, Spain
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wouter Hoogkamer
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Fernando González-Mohíno
- Sports Performance Research Group (GIRD), University of Castilla-La Mancha, Toledo, Spain
- Facultad de Ciencias de la Vida y de la Naturaleza, Universidad Nebrija, Madrid, Spain
| |
Collapse
|
12
|
Looney DP, Lavoie EM, Notley SR, Holden LD, Arcidiacono DM, Potter AW, Silder A, Pasiakos SM, Arellano CJ, Karis AJ, Pryor JL, Santee WR, Friedl KE. Metabolic Costs of Walking with Weighted Vests. Med Sci Sports Exerc 2024; 56:1177-1185. [PMID: 38291646 DOI: 10.1249/mss.0000000000003400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
INTRODUCTION The US Army Load Carriage Decision Aid (LCDA) metabolic model is used by militaries across the globe and is intended to predict physiological responses, specifically metabolic costs, in a wide range of dismounted warfighter operations. However, the LCDA has yet to be adapted for vest-borne load carriage, which is commonplace in tactical populations, and differs in energetic costs to backpacking and other forms of load carriage. PURPOSE The purpose of this study is to develop and validate a metabolic model term that accurately estimates the effect of weighted vest loads on standing and walking metabolic rate for military mission-planning and general applications. METHODS Twenty healthy, physically active military-age adults (4 women, 16 men; age, 26 ± 8 yr old; height, 1.74 ± 0.09 m; body mass, 81 ± 16 kg) walked for 6 to 21 min with four levels of weighted vest loading (0 to 66% body mass) at up to 11 treadmill speeds (0.45 to 1.97 m·s -1 ). Using indirect calorimetry measurements, we derived a new model term for estimating metabolic rate when carrying vest-borne loads. Model estimates were evaluated internally by k -fold cross-validation and externally against 12 reference datasets (264 total participants). We tested if the 90% confidence interval of the mean paired difference was within equivalence limits equal to 10% of the measured walking metabolic rate. Estimation accuracy, precision, and level of agreement were also evaluated by the bias, standard deviation of paired differences, and concordance correlation coefficient (CCC), respectively. RESULTS Metabolic rate estimates using the new weighted vest term were statistically equivalent ( P < 0.01) to measured values in the current study (bias, -0.01 ± 0.54 W·kg -1 ; CCC, 0.973) as well as from the 12 reference datasets (bias, -0.16 ± 0.59 W·kg -1 ; CCC, 0.963). CONCLUSIONS The updated LCDA metabolic model calculates accurate predictions of metabolic rate when carrying heavy backpack and vest-borne loads. Tactical populations and recreational athletes that train with weighted vests can confidently use the simplified LCDA metabolic calculator provided as Supplemental Digital Content to estimate metabolic rates for work/rest guidance, training periodization, and nutritional interventions.
Collapse
Affiliation(s)
- David P Looney
- US Army Research Institute of Environmental Medicine, Natick, MA
| | - Elizabeth M Lavoie
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY
| | - Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, VIC, AUSTRALIA
| | | | | | - Adam W Potter
- US Army Research Institute of Environmental Medicine, Natick, MA
| | - Amy Silder
- Naval Health Research Center, San Diego, CA
| | | | | | - Anthony J Karis
- US Army Research Institute of Environmental Medicine, Natick, MA
| | - J Luke Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY
| | - William R Santee
- US Army Research Institute of Environmental Medicine, Natick, MA
| | - Karl E Friedl
- US Army Research Institute of Environmental Medicine, Natick, MA
| |
Collapse
|
13
|
Lee J, Wang Z, Chen M, Liu S, Yu Q, Hu M, Kong Z, Nie J. Allometric exponents for scaling running economy in human samples: A systematic review and meta-analysis. Heliyon 2024; 10:e31211. [PMID: 38818143 PMCID: PMC11137408 DOI: 10.1016/j.heliyon.2024.e31211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Ratio-scaled VO2 is the widely used method for quantifying running economy (RE). However, this method should be criticized due to its theoretical defect and curvilinear relationship indicated by the allometric scaling, although no consensus has been achieved on the generally accepted exponent b value of body weight. Therefore, this study aimed to provide a quantitative synthesis of the reported exponents used to scale VO2 to body weight. Six electronic databases were searched based on related terms. Inclusion criteria involved human cardiopulmonary testing data, derived exponents, and reported precision statistics. The random-effects model was applied to statistically analyze exponent b. Subgroup and meta-regression analyses were conducted to explore the potential factors contributing to variation in b values. The probability of the true exponent being below 1 in future studies was calculated. The estimated b values were all below 1 and aligned with the 3/4 power law, except for the 95 % prediction interval of the estimated fat-free body weight exponent b. A publication bias and a slightly greater I2 and τ statistic were also observed in the fat-free body weight study cohort. The estimated probabilities of the true body weight exponent, full body weight exponent, and fat-free body weight exponent being lower than 1 were 93.8 % (likely), 95.1 % (very likely), and 94.5 % (likely) respectively. 'Sex difference', 'age category', 'sporting background', and 'testing modality' were four potential but critical variables that impacted exponent b. Overall, allometric-scaled RE should be measured by full body weight with exponent b raised to 3/4.
Collapse
Affiliation(s)
- Jay Lee
- University of Macau, Macao, China
| | - Zhiwen Wang
- College of Public Courses, Guangdong University of Science and Technology, Dongguan, China
| | - Mingjian Chen
- School of Humanities and Education, Foshan University, Foshan, China
| | - Siqi Liu
- The Human Ergonomics Laboratory of 361 Degree (China) Co., Ltd, China
| | - Qian Yu
- University of Macau, Macao, China
| | | | | | - Jinlei Nie
- Macao Polytechnic University, Macao, China
| |
Collapse
|
14
|
Rayner SE, Pellerine LP, Wu Y, Shivgulam ME, Petterson JL, Kimmerly DS, O'Brien MW. Faster stepping cadence partially explains the higher metabolic cost of walking among females versus males. J Appl Physiol (1985) 2024; 136:1238-1244. [PMID: 38545662 DOI: 10.1152/japplphysiol.00904.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 05/15/2024] Open
Abstract
The metabolic cost of walking (MCOW), or oxygen uptake normalized to distance, provides information on the energy expended during movement. There are conflicting reports as to whether sex differences in MCOW exist, with scarce evidence investigating factors that explain potential sex differences. This study 1) tested the hypothesis that females exhibit a higher MCOW than males, 2) determined whether normalizing to stepping cadence ameliorates the hypothesized sex difference, and 3) explored whether more habitual step counts and time in intensity-related physical activity, and less sedentary time were associated with a decreased MCOW. Seventy-six participants (42 females, 24 ± 5 yr) completed a five-stage, graded treadmill protocol with speeds increasing from 0.89 to 1.79 m/s (6-min walking stage followed by 4-min passive rest). Steady-state oxygen uptake (via indirect calorimetry) and stepping cadence (via manual counts) were determined. Gross and net MCOW, normalized to distance traveled (km) and step-cadence (1,000 steps) were calculated for each stage. Thirty-nine participants (23 females) wore an activPAL on their thigh for 6.9 ± 0.4 days. Normalized to distance, females had greater gross MCOW (J/kg/km) at all speeds (P < 0.014). Normalized to stepping frequency, females exhibited greater gross and net MCOW at 1.12 and 1.79 m/s (J/kg/1,000 steps; P < 0.01) but not at any other speeds (P < 0.075). Stature was negatively associated with free-living cadence (r = -0.347, P = 0.030). Females expend more energy/kilometer traveled than males, but normalizing to stepping cadence attenuated these differences. Such observations provide an explanation for prior work documenting higher MCOW among females and highlight the importance of stepping cadence when assessing the MCOW.NEW & NOTEWORTHY Whether there are sex differences in the metabolic cost of walking (MCOW) and the factors that may contribute to these are unclear. We demonstrate that females exhibit a larger net MCOW than males. These differences were largely attenuated when normalized to stepping cadence. Free-living activity was not associated with MCOW. We demonstrate that stepping cadence, but not free-living activity, partially explains the higher MCOW in females than males.
Collapse
Affiliation(s)
- Sophie E Rayner
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Liam P Pellerine
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yanlin Wu
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Madeline E Shivgulam
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jennifer L Petterson
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Derek S Kimmerly
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Myles W O'Brien
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, New Brunswick, Canada
| |
Collapse
|
15
|
Nicholson M, Poulus D, Robergs R, Kelly V, McNulty C. How Much Energy Do E'Athletes Use during Gameplay? Quantifying Energy Expenditure and Heart Rate Variability Within E'Athletes. SPORTS MEDICINE - OPEN 2024; 10:44. [PMID: 38630170 PMCID: PMC11024080 DOI: 10.1186/s40798-024-00708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Research into esports suggests that e'athletes experience physiological stressors and demands during competition and training. The physiological demands of esports are poorly understood and need to be investigated further to inform future training guidelines, optimise performance outcomes, and manage e'athlete wellbeing. This research aimed to quantify the metabolic rate of esports gameplay and compare this outcome with heart rate variability within expert e'athletes. RESULTS Thirteen healthy male participants ranked within the top 10% of their respective esports title participated in the study (age = 20.7 ± 2.69 years; BMI = 24.6 ± 5.89 kg·m- 2). Expired gas analysis indirect calorimetry measured gas exchange during rest and gaming. Compared to resting conditions, competitive esports gameplay significantly increased median energy expenditure (1.28 (IQR 1.16-1.49) kcal·min- 1 vs. 1.45 (IQR 1.20-1.77) kcal·min- 1, p = .02), oxygen consumption (0.27 (IQR 0.24-0.30) L·min- 1 vs. 0.29 (IQR 0.24-0.35) L·min- 1, p = .02) and carbon dioxide production (0.20 (IQR 0.19-0.27) L·min- 1vs. 0.27 (IQR 0.24-0.33) L·min- 1, p = .01). Competitive gameplay also resulted in a significant increase in heart rate (84.5 (IQR 74.1-96.1) bpm vs. 87.1 (IQR 80.3-104) bpm, p = .01) and decrease in R-R interval's (710 (IQR 624-810) ms vs. 689 (IQR 579-747) ms, p = .02) when compared to rest. However, there were no significant differences in time or frequency measures of heart rate variability. CONCLUSIONS The data reveal increased physiological responses to metabolic rate, energy expenditure and cardiovascular function to esports game play within expert e'athletes. Further physiological research into the physical demands on e'athletes, the influence of different training programs to esport performance, and the added multivariate determinants to elite level esport performance are warranted.
Collapse
Affiliation(s)
- Mitchell Nicholson
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Victoria Park Road, Kelvin Grove, Brisbane, QLD, 4059, Australia.
| | - Dylan Poulus
- Physical Activity, Sport and Exercise Research Theme, Faculty of Health, Southern Cross University, Gold Coast, QLD, Australia
- Manna Institute, Southern Cross University, Gold Coast, Australia
| | - Rob Robergs
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Victoria Park Road, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Vincent Kelly
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Victoria Park Road, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Craig McNulty
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Victoria Park Road, Kelvin Grove, Brisbane, QLD, 4059, Australia
| |
Collapse
|
16
|
Rosbrook P, Sweet D, Qiao J, Looney DP, Margolis LM, Hostler D, Pryor RR, Pryor JL. Heat stress increases carbohydrate oxidation rates and oxygen uptake during prolonged load carriage exercise. Temperature (Austin) 2024; 11:170-181. [PMID: 38846526 PMCID: PMC11152092 DOI: 10.1080/23328940.2024.2322920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/19/2024] [Indexed: 06/09/2024] Open
Abstract
Military missions are conducted in a multitude of environments including heat and may involve walking under load following severe exertion, the metabolic demands of which may have nutritional implications for fueling and recovery planning. Ten males equipped a military pack loaded to 30% of their body mass and walked in 20°C/40% relative humidity (RH) (TEMP) or 37°C/20% RH (HOT) either continuously (CW) for 90 min at the first ventilatory threshold or mixed walking (MW) with unloaded running intervals above the second ventilatory threshold between min 35 and 55 of the 90 min bout. Pulmonary gas, thermoregulatory, and cardiovascular variables were analyzed following running intervals. Final rectal temperature (MW: p < 0.001, g = 3.81, CW: p < 0.001, g = 4.04), oxygen uptake, cardiovascular strain, and energy expenditure were higher during HOT trials (p ≤ 0.05) regardless of exercise type. Both HOT trials elicited higher final carbohydrate oxidation (CHOox) than TEMP CW at min 90 (HOT MW: p < 0.001, g = 1.45, HOT CW: p = 0.009, g = 0.67) and HOT MW CHOox exceeded TEMP MW at min 80 and 90 (p = 0.049, g = 0.60 and p = 0.024, g = 0.73, respectively). There were no within-environment differences in substrate oxidation indicating that severe exertion work cycles did not produce a carryover effect during subsequent loaded walking. The rate of CHOox during 90 minutes of load carriage in the heat appears to be primarily affected by accumulated thermal load.
Collapse
Affiliation(s)
- Paul Rosbrook
- Center for Research & Education in Special Environments, University at Buffalo, Buffalo, USA
| | - Daniel Sweet
- Center for Research & Education in Special Environments, University at Buffalo, Buffalo, USA
| | - JianBo Qiao
- Center for Research & Education in Special Environments, University at Buffalo, Buffalo, USA
| | - David P. Looney
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, USA
| | - Lee M. Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, USA
| | - David Hostler
- Center for Research & Education in Special Environments, University at Buffalo, Buffalo, USA
| | - Riana R. Pryor
- Center for Research & Education in Special Environments, University at Buffalo, Buffalo, USA
| | - J. Luke Pryor
- Center for Research & Education in Special Environments, University at Buffalo, Buffalo, USA
| |
Collapse
|
17
|
Van Hooren B, Souren T, Bongers BC. Accuracy of respiratory gas variables, substrate, and energy use from 15 CPET systems during simulated and human exercise. Scand J Med Sci Sports 2024; 34:e14490. [PMID: 37697640 DOI: 10.1111/sms.14490] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Various systems are available for cardiopulmonary exercise testing (CPET), but their accuracy remains largely unexplored. We evaluate the accuracy of 15 popular CPET systems to assess respiratory variables, substrate use, and energy expenditure during simulated exercise. Cross-comparisons were also performed during human cycling experiments (i.e., verification of simulation findings), and between-session reliability was assessed for a subset of systems. METHODS A metabolic simulator was used to simulate breath-by-breath gas exchange, and the values measured by each system (minute ventilation [V̇E], breathing frequency [BF], oxygen uptake [V̇O2 ], carbon dioxide production [V̇CO2 ], respiratory exchange ratio [RER], energy from carbs and fats, and total energy expenditure) were compared to the simulated values to assess the accuracy. The following manufacturers (system) were assessed: COSMED (Quark CPET, K5), Cortex (MetaLyzer 3B, MetaMax 3B), Vyaire (Vyntus CPX, Oxycon Pro), Maastricht Instruments (Omnical), MGC Diagnostics (Ergocard Clinical, Ergocard Pro, Ultima), Ganshorn/Schiller (PowerCube Ergo), Geratherm (Ergostik), VO2master (VO2masterPro), PNOĒ (PNOĒ), and Calibre Biometrics (Calibre). RESULTS Absolute percentage errors during the simulations ranged from 1.15%-44.3% for V̇E, 1.05-3.79% for BF, 1.10%-13.3% for V̇O2 , 1.07%-18.3% for V̇CO2 , 0.62%-14.8% for RER, 5.52%-99.0% for Kcal from carbs, 5.13%-133% for Kcal from fats, and 0.59%-12.1% for total energy expenditure. Between-session variation ranged from 0.86%-21.0% for V̇O2 and 1.14%-20.2% for V̇CO2 , respectively. CONCLUSION The error of respiratory gas variables, substrate, and energy use differed substantially between systems, with only a few systems demonstrating a consistent acceptable error. We extensively discuss the implications of our findings for clinicians, researchers and other CPET users.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Tjeu Souren
- Independent Consultant, Utrecht, The Netherlands
| | - Bart C Bongers
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
18
|
Faivre-Rampant V, Rakobowchuk M, Tordi N, Mourot L. Cardiovascular Responses to Eccentric Cycling Based on Perceived Exertion Compared to Concentric Cycling, Effect of Pedaling Rate, and Sex. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 21:59. [PMID: 38248524 PMCID: PMC10815134 DOI: 10.3390/ijerph21010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
Interest in eccentric exercises has increased over the last decades due to its efficiency in achieving moderate-high intensity muscular work with reduced metabolic demands. However, individualizing eccentric exercises in rehabilitation contexts remains challenging, as concentric exercises mainly rely on cardiovascular parameters. To overcome this, perceived exertion could serve as an individualization tool, but the knowledge about cardiovascular responses to eccentric cycling based on perceived exertion are still scarce. For this purpose, the cardiorespiratory parameters of 26 participants were assessed during two 5 min bouts of concentric cycling at 30 and 60 rpm and two bouts of eccentric cycling at 15 and 30 rpm matched for rating of perceived exertion. With this method, we hypothesized higher exercise efficiency during eccentric cycling for a same perceived exertion. The results revealed significantly elevated heart rate and cardiac index at higher pedalling rates during concentric (p < 0.001), but not during eccentric cycling (p ≈ 1). Exercise efficiency was higher during concentric cycling (64%), decreasing with pedalling rate, while eccentric cycling exhibited increased work rates (82%), and increased by over 100% with higher pedalling rate. Hence, eccentric cycling, with lower cardiorespiratory work for the same perceived exertion, facilitates higher work rates in deconditioned populations. However, further studies are needed for effective individualization.
Collapse
Affiliation(s)
- Victorien Faivre-Rampant
- MPFRPV, Exercise Performance Health Innovation (EPHI) Platform, Université de Franche-Comté, F-25000 Besançon, France;
- UMRS 1075—Mobilités: Vieillissement, Pathologie, Santé, COMETE, University of Normandie, F-14000 Caen, France
- Department of Automatics, Biocybernetics, and Robotics, Jozef Stefan Institut, SI-1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Mark Rakobowchuk
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada
| | - Nicolas Tordi
- PEPITE, Exercise Performance Health Innovation (EPHI) Platform, Université de Franche-Comté, F-25000 Besançon, France
| | - Laurent Mourot
- MPFRPV, Exercise Performance Health Innovation (EPHI) Platform, Université de Franche-Comté, F-25000 Besançon, France;
| |
Collapse
|
19
|
Rodrigo-Carranza V, Hoogkamer W, Salinero JJ, Rodríguez-Barbero S, González-Ravé JM, González-Mohíno F. Influence of Running Shoe Longitudinal Bending Stiffness on Running Economy and Performance in Trained and National Level Runners. Med Sci Sports Exerc 2023; 55:2290-2298. [PMID: 37443458 DOI: 10.1249/mss.0000000000003254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
INTRODUCTION/PURPOSE Previous results about shoe longitudinal bending stiffness (LBS) and running economy (RE) show high variability. This study aimed to assess the effects of shoes with increased LBS on RE and performance in trained and national runners. METHODS Twenty-eight male runners were divided into two groups according to their 10-km performance times (trained, 38-45 min and national runners, <34 min). Subjects ran 2 × 3 min (at 9 and 13 km·h -1 for trained, and 13 and 17 km·h -1 for national runners) with an experimental shoe with carbon fiber plate to increase the LBS (Increased LBS) and a control shoe (without carbon fiber plate). We measured energy cost of running (W·kg -1 ) and spatiotemporal parameters in visit one and participants performed a 3000 m time trial (TT) in two successive visits. RESULTS Increased LBS improved RE in the trained group at slow (11.41 ± 0.93 W·kg -1 vs 11.86 ± 0.93 W·kg -1 ) and fast velocity (15.89 ± 1.24 W·kg -1 vs 16.39 ± 1.24 W·kg -1 ) and only at the fast velocity in the national group (20.35 ± 1.45 W·kg -1 vs 20.78 ± 1.18 W·kg -1 ). The improvements in RE were accompanied by different changes in biomechanical variables between groups. There were a similar improvement in the 3000 m TT test in Increased LBS for trained (639 ± 59 vs 644 ± 61 s in control shoes) and national runners (569 ± 21 vs 574 ± 21 s in control shoes) with more constant pace in increased LBS compared with control shoes in both groups. CONCLUSIONS Increasing shoe LBS improved RE at slow and fast velocities in trained runners and only at fast velocity in national runners. However, the 3000 m TT test improved similarly in both levels of runners with increased LBS. The improvements in RE are accompanied by small modifications in running kinematics that could explain the difference between the different levels of runners.
Collapse
Affiliation(s)
| | - Wouter Hoogkamer
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA
| | | | | | | | | |
Collapse
|
20
|
Looney DP, Hoogkamer W, Kram R, Arellano CJ, Spiering BA. Estimating Metabolic Energy Expenditure During Level Running in Healthy, Military-Age Women and Men. J Strength Cond Res 2023; 37:2496-2503. [PMID: 38015737 DOI: 10.1519/jsc.0000000000004626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
ABSTRACT Looney, DP, Hoogkamer, W, Kram, R, Arellano, CJ, and Spiering, BA. Estimating metabolic energy expenditure during level running in healthy, military-age women and men. J Strength Cond Res 37(12): 2496-2503, 2023-Quantifying the rate of metabolic energy expenditure (Ṁ) of varied aerobic exercise modalities is important for optimizing fueling and performance and maintaining safety in military personnel operating in extreme conditions. However, although equations exist for estimating oxygen uptake during running, surprisingly, there are no general equations that estimate Ṁ. Our purpose was to generate a general equation for estimating Ṁ during level running in healthy, military-age (18-44 years) women and men. We compiled indirect calorimetry data collected during treadmill running from 3 types of sources: original individual subject data (n = 45), published individual subject data (30 studies; n = 421), and published group mean data (20 studies, n = 619). Linear and quadratic equations were fit on the aggregated data set using a mixed-effects modeling approach. A chi-squared (χ2) difference test was conducted to determine whether the more complex quadratic equation was justified (p < 0.05). Our primary indicator of model goodness-of-fit was the root-mean-square deviation (RMSD). We also examined whether individual characteristics (age, height, body mass, and maximal oxygen uptake [V̇O2max]) could minimize prediction errors. The compiled data set exhibited considerable variability in Ṁ (14.54 ± 3.52 W·kg-1), respiratory exchange ratios (0.89 ± 0.06), and running speeds (3.50 ± 0.86 m·s-1). The quadratic regression equation had reduced residual sum of squares compared with the linear fit (χ2, 3,484; p < 0.001), with higher combined accuracy and precision (RMSD, 1.31 vs. 1.33 W·kg-1). Age (p = 0.034), height (p = 0.026), and body mass (p = 0.019) were associated with the magnitude of under and overestimation, which was not the case for V̇O2max (p = 0.898). The newly derived running energy expenditure estimation (RE3) model accurately predicts level running Ṁ at speeds from 1.78 to 5.70 m·s-1 in healthy, military-age women and men. Users can rely on the following equations for improved predictions of running Ṁ as a function of running speed (S, m·s-1) in either watts (W·kg-1 = 4.43 + 1.51·S + 0.37·S2) or kilocalories per minute (kcal·kg-1·min-1 = 308.8 + 105.2·S + 25.58·S2).
Collapse
Affiliation(s)
- David P Looney
- Military Performance Division (MPD), United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Rodger Kram
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Christopher J Arellano
- Center for Neuromotor and Biomechanics Research, University of Houston, Houston, Texas
- Department of Health and Human Performance, University of Houston, Houston, Texas; and
| | | |
Collapse
|
21
|
Bascuas PJ, Gutiérrez H, Piedrafita E, Rabal-Pelay J, Berzosa C, Bataller-Cervero AV. Running Economy in the Vertical Kilometer. SENSORS (BASEL, SWITZERLAND) 2023; 23:9349. [PMID: 38067721 PMCID: PMC10708873 DOI: 10.3390/s23239349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023]
Abstract
New and promising variables are being developed to analyze performance and fatigue in trail running, such as mechanical power, metabolic power, metabolic cost of transport and mechanical efficiency. The aim of this study was to analyze the behavior of these variables during a real vertical kilometer field test. Fifteen trained trail runners, eleven men (from 22 to 38 years old) and four women (from 19 to 35 years old) performed a vertical kilometer with a length of 4.64 km and 835 m positive slope. During the entire race, the runners were equipped with portable gas analyzers (Cosmed K5) to assess their cardiorespiratory and metabolic responses breath by breath. Significant differences were found between top-level runners versus low-level runners in the mean values of the variables of mechanical power, metabolic power and velocity. A repeated-measures ANOVA showed significant differences between the sections, the incline and the interactions between all the analyzed variables, in addition to differences depending on the level of the runner. The variable of mechanical power can be statistically significantly predicted from metabolic power and vertical net metabolic COT. An algebraic expression was obtained to calculate the value of metabolic power. Integrating the variables of mechanical power, vertical velocity and metabolic power into phone apps and smartwatches is a new opportunity to improve performance monitoring in trail running.
Collapse
Affiliation(s)
| | | | | | | | - César Berzosa
- Facultad de Ciencias de la Salud, Universidad San Jorge, Autov. A-23 Zaragoza-Huesca, 50830 Villanueva de Gallego, Spain; (P.J.B.); (H.G.); (E.P.); (J.R.-P.); (A.V.B.-C.)
| | | |
Collapse
|
22
|
Kim KJ, Baughman A, Estep P, Rivas E, Young M, Marshall-Goebel K, Abercromby A, Somers J. Uneven terrain affects metabolic cost and gait in simulated complex lunar surfaces. Physiol Meas 2023; 44:104001. [PMID: 37703896 DOI: 10.1088/1361-6579/acf993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Objective. Upcoming missions of the National Aeronautics and Space Administration (NASA) to the Moon will include extensive human exploration of the lunar surface. Walking will be essential for many exploration tasks, and metabolic cost during ambulation on simulated complex lunar surfaces requires further characterization. In this study, ten healthy subjects (6 male and 4 female) participated in three simulated lunar terrain walking conditions at the NASA Johnson Space Center's planetary 'Rock Yard': (1) flat terrain, (2) flat terrain with obstacles, and (3) mixed terrain.Approach.Energy expenditure and gait were quantified with a wearable metabolic energy expenditure monitoring system and body-worn inertial measurement units (IMUs), respectively.Main results.It was found that participants walking on the mixed terrain, representing the highest workload condition, required significantly higher metabolic costs than in other terrain conditions (p< 0.001). Additionally, our novel IMU-based gait variables discriminated different terrains and identified changes in gait in simulated lunar terrain environments.Significance.Our results showed that the various surface irregularities and inconsistencies could cause additional physical effort while walking on the complex terrain. These findings provide insight into the effects of terrain on metabolic energy expenditure during simulated lunar extravehicular activities.
Collapse
Affiliation(s)
- Kyoung Jae Kim
- KBR, 2400 NASA Parkway, Houston, TX 77058, United States of America
| | - Alexander Baughman
- GeoControl Systems, 3003 S Loop W, Suite 100, Houston, TX 77054, United States of America
| | - Patrick Estep
- GeoControl Systems, 3003 S Loop W, Suite 100, Houston, TX 77054, United States of America
| | - Eric Rivas
- KBR, 2400 NASA Parkway, Houston, TX 77058, United States of America
| | - Millennia Young
- NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, United States of America
| | - Karina Marshall-Goebel
- NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, United States of America
| | - Andrew Abercromby
- NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, United States of America
| | - Jeffrey Somers
- NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, United States of America
| |
Collapse
|
23
|
Jessup LN, Kelly LA, Cresswell AG, Lichtwark GA. Validation of a musculoskeletal model for simulating muscle mechanics and energetics during diverse human hopping tasks. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230393. [PMID: 37885982 PMCID: PMC10598413 DOI: 10.1098/rsos.230393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Computational musculoskeletal modelling has emerged as an alternative, less-constrained technique to indirect calorimetry for estimating energy expenditure. However, predictions from modelling tools depend on many assumptions around muscle architecture and function and motor control. Therefore, these tools need to continue to be validated if we are to eventually develop subject-specific simulations that can accurately and reliably model rates of energy consumption for any given task. In this study, we used OpenSim software and experimental motion capture data to simulate muscle activations, muscle fascicle dynamics and whole-body metabolic power across mechanically and energetically disparate hopping tasks, and then evaluated these outputs at a group- and individual-level against experimental electromyography, ultrasound and indirect calorimetry data. Comparing simulated and experimental outcomes, we found weak to strong correlations for peak muscle activations, moderate to strong correlations for absolute fascicle shortening and mean shortening velocity, and strong correlations for gross metabolic power. These correlations tended to be stronger on a group-level rather than individual-level. We encourage the community to use our publicly available dataset from SimTK.org to experiment with different musculoskeletal models, muscle models, metabolic cost models, optimal control policies, modelling tools and algorithms, data filtering etc. with subject-specific simulations being a focal goal.
Collapse
Affiliation(s)
- Luke N. Jessup
- School of Human Movement and Nutrition Sciences, Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Queensland, Australia
| | - Luke A. Kelly
- School of Human Movement and Nutrition Sciences, Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew G. Cresswell
- School of Human Movement and Nutrition Sciences, Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Queensland, Australia
| | - Glen A. Lichtwark
- School of Human Movement and Nutrition Sciences, Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Papachatzis N, Ray SF, Takahashi KZ. Does human foot anthropometry relate to plantar flexor fascicle mechanics and metabolic energy cost across various walking speeds? J Exp Biol 2023; 226:jeb245113. [PMID: 37092255 PMCID: PMC10226764 DOI: 10.1242/jeb.245113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Foot structures define the leverage in which the ankle muscles push off against the ground during locomotion. While prior studies have indicated that inter-individual variation in anthropometry (e.g. heel and hallux lengths) can directly affect force production of ankle plantar flexor muscles, its effect on the metabolic energy cost of locomotion has been inconclusive. Here, we tested the hypotheses that shorter heels and longer halluces are associated with slower plantar flexor (soleus) shortening velocity and greater ankle plantar flexion moment, indicating enhanced force potential as a result of the force-velocity relationship. We also hypothesized that such anthropometry profiles would reduce the metabolic energy cost of walking at faster walking speeds. Healthy young adults (N=15) walked at three speeds (1.25, 1.75 and 2.00 m s-1), and we collected in vivo muscle mechanics (via ultrasound), activation (via electromyography) and whole-body metabolic energy cost of transport (via indirect calorimetry). Contrary to our hypotheses, shorter heels and longer halluces were not associated with slower soleus shortening velocity or greater plantar flexion moment. Additionally, longer heels were associated with reduced metabolic cost of transport, but only at the fastest speed (2.00 m s-1, R2=0.305, P=0.033). We also found that individuals with longer heels required less increase in plantar flexor (soleus and gastrocnemius) muscle activation to walk at faster speeds, potentially explaining the reduced metabolic cost.
Collapse
Affiliation(s)
- Nikolaos Papachatzis
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT 06520, USA
| | - Samuel F. Ray
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Kota Z. Takahashi
- Department of Health & Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
25
|
Arcidiacono DM, Lavoie EM, Potter AW, Vangala SV, Holden LD, Soucy HY, Karis AJ, Friedl KE, Santee WR, Looney DP. Peak performance and cardiometabolic responses of modern US army soldiers during heavy, fatiguing vest-borne load carriage. APPLIED ERGONOMICS 2023; 109:103985. [PMID: 36764233 DOI: 10.1016/j.apergo.2023.103985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Physiological limits imposed by vest-borne loads must be defined for optimal performance monitoring of the modern dismounted warfighter. PURPOSE To evaluate how weighted vests affect locomotion economy and relative cardiometabolic strain during military load carriage while identifying key physiological predictors of exhaustion limits. METHODS Fifteen US Army soldiers (4 women, 11 men; age, 26 ± 8 years; height, 173 ± 10 cm; body mass (BM), 79 ± 16 kg) performed four incremental walking tests with different vest loads (0, 22, 44, or 66% BM). We examined the effects of vest-borne loading on peak walking speed, the physiological costs of transport, and relative work intensity. We then sought to determine which of the cardiometabolic indicators (oxygen uptake, heart rate, respiration rate) was most predictive of task failure. RESULTS Peak walking speed significantly decreased with successively heavier vest loads (p < 0.01). Physiological costs per kilometer walked were significantly higher with added vest loads for each measure (p < 0.05). Relative oxygen uptake and heart rate were significantly higher during the loaded trials than the 0% BM trial (p < 0.01) yet not different from one another (p > 0.07). Conversely, respiration rate was significantly higher with the heavier load in every comparison (p < 0.01). Probability modeling revealed heart rate as the best predictor of task failure (marginal R2, 0.587, conditional R2, 0.791). CONCLUSION Heavy vest-borne loads cause exceptional losses in performance capabilities and increased physiological strain during walking. Heart rate provides a useful non-invasive indicator of relative intensity and task failure during military load carriage.
Collapse
Affiliation(s)
- Danielle M Arcidiacono
- United States Army Research Institute of Environmental Medicine (USARIEM), 10 General Greene Avenue, Natick, MA, 01760, USA; Oak Ridge Institute for Science and Education (ORISE), 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Elizabeth M Lavoie
- United States Army Research Institute of Environmental Medicine (USARIEM), 10 General Greene Avenue, Natick, MA, 01760, USA; Oak Ridge Institute for Science and Education (ORISE), 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, USA; University at Buffalo, SUNY, 211 Kimball Tower, Buffalo, NY, 14214, USA
| | - Adam W Potter
- United States Army Research Institute of Environmental Medicine (USARIEM), 10 General Greene Avenue, Natick, MA, 01760, USA
| | - Sai V Vangala
- United States Army Research Institute of Environmental Medicine (USARIEM), 10 General Greene Avenue, Natick, MA, 01760, USA
| | - Lucas D Holden
- United States Army Research Institute of Environmental Medicine (USARIEM), 10 General Greene Avenue, Natick, MA, 01760, USA; Oak Ridge Institute for Science and Education (ORISE), 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Hope Y Soucy
- United States Army Research Institute of Environmental Medicine (USARIEM), 10 General Greene Avenue, Natick, MA, 01760, USA; Oak Ridge Institute for Science and Education (ORISE), 1299 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Anthony J Karis
- United States Army Research Institute of Environmental Medicine (USARIEM), 10 General Greene Avenue, Natick, MA, 01760, USA
| | - Karl E Friedl
- United States Army Research Institute of Environmental Medicine (USARIEM), 10 General Greene Avenue, Natick, MA, 01760, USA
| | - William R Santee
- United States Army Research Institute of Environmental Medicine (USARIEM), 10 General Greene Avenue, Natick, MA, 01760, USA
| | - David P Looney
- United States Army Research Institute of Environmental Medicine (USARIEM), 10 General Greene Avenue, Natick, MA, 01760, USA.
| |
Collapse
|
26
|
Gill PK, Kipp S, Beck ON, Kram R. It is time to abandon single-value oxygen uptake energy equivalents. J Appl Physiol (1985) 2023; 134:887-890. [PMID: 36825641 DOI: 10.1152/japplphysiol.00353.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Physiologists commonly use single-value energy equivalents (e.g., 20.1 kJ/LO2 and 20.9 kJ/LO2) to convert oxygen uptake (V̇o2) to energy, but doing so ignores how the substrate oxidation ratio (carbohydrate:fat) changes across aerobic intensities. Using either 20.1 kJ/LO2 or 20.9 kJ/LO2 can incur systematic errors of up to 7%. In most circumstances, the best approach for estimating energy expenditure is to measure both V̇o2 and V̇co2 and use accurate, species-appropriate stoichiometry. However, there are circumstances when V̇co2 measurements may be unreliable. In those circumstances, we recommend that the research report or compare only V̇o2.NEW & NOTEWORTHY We quantify that the common practice of using single-value oxygen uptake energy equivalents for exercising subjects can incur systematic errors of up to 7%. We argue that such errors can be greatly reduced if researchers measure both V̇o2 and V̇co2 and adopt appropriate stoichiometry equations.
Collapse
Affiliation(s)
- Pavreet K Gill
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Shalaya Kipp
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Owen N Beck
- Department of Kinesiology and Health Education, University of Texas, Austin, Texas, United States
| | - Rodger Kram
- Integrative Physiology Department, University of Colorado, Boulder, Colorado, United States
| |
Collapse
|
27
|
VO2max and Velocity at VO2max Play a Role in Ultradistance Trail-Running Performance. Int J Sports Physiol Perform 2023; 18:300-305. [PMID: 36754060 DOI: 10.1123/ijspp.2022-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 02/10/2023]
Abstract
PURPOSE Previous research has shown that maximal oxygen uptake (VO2max) significantly influences performance in trail-running races up to 120 km but not beyond. Similarly, the influence of running economy on performance in ultratrail remains unclear. The aim of our study was, therefore, to determine the physiological predictors of performance in a 166-km trail-running race. METHODS Thirty-three experienced trail runners visited the laboratory 4 to 8 weeks before the race to undergo physiological testing including an incremental treadmill test and strength assessments. Correlations and regression analyses were used to determine the physiological variables related to performance. RESULTS Average finishing time was 37:33 (5:52) hours. Performance correlated significantly with VO2max (r = -.724, P < .001), velocity at VO2max (r = -.813, P < .001), lactate turn point expressed as percentage of VO2max (r = -.510, P = .018), cost of running (r = -.560, P = .008), and body fat percentage (r = .527, P = .012) but was not related to isometric strength. Regression analysis showed that velocity at VO2max predicted 65% of the variability in performance (P < .001), while a model combining VO2max and cost of running combined predicted 62% of the variability (P = .008). CONCLUSION This is the first study to show that VO2max and velocity at VO2max are significant predictors of performance in a 166-km trail-running race. This suggests that ultratrail runners should focus on the development of these 2 qualities to optimize their race performance.
Collapse
|
28
|
Effects of Highly Cushioned and Resilient Racing Shoes on Running Economy at Slower Running Speeds. Int J Sports Physiol Perform 2023; 18:164-170. [PMID: 36626911 DOI: 10.1123/ijspp.2022-0227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE The Nike Vaporfly line of running shoes improves running economy by ∼2.7% to 4.2% at running speeds of 13 to 18 km·h-1. It is unclear whether similar benefits are conferred at slower speeds. Our purpose was to determine the effects of the Nike ZoomX Vaporfly Next% 2 (VFN2) on running economy at 10 and 12 km·h-1 compared with a mass-matched control (CTRL) shoe. METHODS Sixteen runners completed 4 × 5-minute trials at both 10 and 12 km·h-1 on the same day. Each shoe was tested twice at each speed in a counterbalanced, mirrored sequence. Data are displayed as mean (SD). RESULTS A 2-way repeated-measures analysis of variance showed a significant shoe × speed interaction for oxygen consumption (P = .021). At 12 km·h-1, oxygen consumption (in mL·kg-1·min-1) was lower (-1.4% [1.1%]; P < .001) for VFN2 (35.8 [1.7]) relative to CTRL (36.4 [1.7]). That was greater in magnitude than the differences observed at 10 km·h-1 (-0.9% [1.8%]; P = .065) between VFN2 (29.4 [1.9]) and CTRL (29.6 [1.9]). CONCLUSIONS From these data, it appears that the VFN2 still enhances running economy at 10 and 12 km·h-1; however, these benefits are smaller in magnitude compared with previous research at faster speeds.
Collapse
|
29
|
Kim J, Park J, Yang J, Kim Y, Kim I, Shim H, Jang C, Kim M, Kim M, Lee B. Effects of 8-Week Electromyostimulation Training on Upper-Limb Muscle Activity and Respiratory Gas Analysis in Athletes with Disabilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:299. [PMID: 36612622 PMCID: PMC9819487 DOI: 10.3390/ijerph20010299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This study was aimed at verifying the efficacy of EMS training by investigating the changes in upper-limb muscle functions and energy expenditure in athletes with disabilities after an 8-week intervention of EMS training. We compared variations in muscle activity, respiratory gas, and symmetry index (SI) after an 8-week intervention in eight professional male athletes with disabilities wearing an electromyostimulation (EMS) suit (age: 42.00 ± 8.67 years, height: 1.65 ± 0.16 m, weight: 64.00 ± 8.72 kg, career length: 11.75 ± 3.83 years). For EMS training, each participant wore an EMS suit. EMS was applied to the upper-limb muscles pectoralis major and triceps at 40 °C water temperature, with a 25 Hz frequency (duty cycle 10%) for 15 min, followed by a 5 Hz frequency (duty cycle 5%) for 5 min. The pre- and post-intervention measurements were taken in the same way at a pre-set time (for 1 h, twice a week) for 8 weeks. Training involved a seated chest press, and the muscle activity (pectoralis major, triceps, and antebrachial muscles), upper-limb SI, and respiratory gas variables (maximal oxygen consumption (VO2), carbon dioxide output (VCO2), respiratory quotient (RQ), metabolic equivalents (METs), and energy expenditure per min (Energy expended per minute; EEm)) were analyzed. Variations pre- and post-intervention across the measured variables were analyzed. Regarding the change in muscle activity, significant variations were found in the pectoralis major right (p < 0.004), pectoralis major left (p < 0.001), triceps right (p < 0.002), and antebrachial right (p < 0.001). Regarding left-to-right SI, a positive change was detected in the pectoralis major and triceps muscles. Additionally, respiratory gas analysis indicated significant variations in VO2 (p < 0.001), VCO2 (p < 0.001), METs (p < 0.001), and EEm (p < 0.001). EMS training improved muscle strength and respiratory gas variables and is predicted to contribute to enhanced muscle function and rehabilitation training for athletes with disabilities.
Collapse
Affiliation(s)
- Jongbin Kim
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Joonsung Park
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Jeongok Yang
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Youngsoo Kim
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Inhyung Kim
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Himchan Shim
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Changho Jang
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| | - Mincheol Kim
- Independent Researcher, Busan 48316, Republic of Korea
| | | | - Bomjin Lee
- Division of Kinesiology, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|
30
|
McDonald KA, Cusumano JP, Hieronymi A, Rubenson J. Humans trade off whole-body energy cost to avoid overburdening muscles while walking. Proc Biol Sci 2022; 289:20221189. [PMID: 36285498 PMCID: PMC9597406 DOI: 10.1098/rspb.2022.1189] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 07/22/2023] Open
Abstract
Metabolic cost minimization is thought to underscore the neural control of locomotion. Yet, avoiding high muscle activation, a cause of fatigue, often outperforms energy minimization in computational predictions of human gait. Discerning the relative importance of these criteria in human walking has proved elusive, in part, because they have not been empirically decoupled. Here, we explicitly decouple whole-body metabolic cost and 'fatigue-like' muscle activation costs (estimated from electromyography) by pitting them against one another using two distinct gait tasks. When experiencing these competing costs, participants (n = 10) chose the task that avoided overburdening muscles (fatigue avoidance) at the expense of higher metabolic power (p < 0.05). Muscle volume-normalized activation more closely models energy use and was also minimized by the participants' decision (p < 0.05), demonstrating that muscle activation was, at best, an inaccurate signal for metabolic energy. Energy minimization was only observed when there was no adverse effect on muscle activation costs. By decoupling whole-body metabolic and muscle activation costs, we provide among the first empirical evidence of humans embracing non-energetic optimality in favour of a clearly defined neuromuscular objective. This finding indicates that local muscle fatigue and effort may well be key factors dictating human walking behaviour and its evolution.
Collapse
Affiliation(s)
- Kirsty A. McDonald
- School of Health Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph P. Cusumano
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Hieronymi
- School of Visual Arts, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonas Rubenson
- School of Human Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia
- Biomechanics Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
- Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
31
|
Allen SP, Beck ON, Grabowski AM. Evaluating the “cost of generating force” hypothesis across frequency in human running and hopping. J Exp Biol 2022; 225:276655. [DOI: 10.1242/jeb.244755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
The volume of active muscle and duration of extensor muscle force well-explain the associated metabolic energy expenditure across body mass and velocity during level-ground running and hopping. However, if these parameters fundamentally drive metabolic energy expenditure, then they should pertain to multiple modes of locomotion and provide a simple framework for relating biomechanics to metabolic energy expenditure in bouncing gaits. Therefore, we evaluated the ability of the ‘cost of generating force’ hypothesis to link biomechanics and metabolic energy expenditure during human running and hopping across step frequencies. We asked participants to run and hop at 85%, 92%, 100%, 108% and 115% of preferred running step frequency. We calculated changes in active muscle volume, duration of force production, and metabolic energy expenditure. Overall, as step frequency increased, active muscle volume decreased due to postural changes via effective mechanical advantage (EMA) or duty factor. Accounting for changes in EMA and muscle volume better related to metabolic energy expenditure during running and hopping at different step frequencies than assuming a constant EMA and muscle volume. Thus, to ultimately develop muscle mechanics models that can explain metabolic energy expenditure across different modes of locomotion, we suggest more precise measures of muscle force production that include the effects of EMA.
Collapse
Affiliation(s)
- Stephen P. Allen
- 1 Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Owen N. Beck
- 2 The Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, USA
| | - Alena M. Grabowski
- 1 Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- 3 Department of Veterans Affairs, Eastern Colorado Healthcare System, Denver, CO, USA
| |
Collapse
|
32
|
Nielsen A, Heyde C, Simonsen MB, Larsen RG, Hansen RK, Kersting U, Zee MD, Brund RBK. Reliability of Running Economy Measurements: Influence of Shoe Familiarisation. Int J Sports Med 2022; 43:1113-1117. [PMID: 35926512 DOI: 10.1055/a-1820-7023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The purpose was to investigate differences in reliability of running economy measurements between familiar and unfamiliar shoes. Thirty-seven runners were included who all ran in familiar and unfamiliar running shoes while running economy was measured at steady state using a treadmill. Each participant was tested on two different visits (three sessions in total), with two trials in each of the three shoe conditions completed at each visit. Coefficient of variation, standard deviation of differences, and limits of agreement of running economy were used to quantify the repeatability (within-visit variation) and reproducibility (between-visit variation). The coefficient of variation showed a marginal difference in reproducibility across shoe conditions, whereas no differences were seen in coefficient of variation, standard deviation of the differences, or limits of agreement for repeatability across shoes. All three shoe conditions showed greater repeatability than reproducibility for running economy, and enhanced repeatability at visit 3 compared to visit 2. Our results indicate that familiarisation to shoes might not be needed for reliable measurements of running economy. Based on our results, when evaluating benefits in running shoes we suggest that running economy be assessed within the same day. Further, our data suggest a beneficial effect of using multiple familiarisation sessions if small differences between shoe conditions are expected.
Collapse
Affiliation(s)
- Anders Nielsen
- Sport Sciences, Aalborg Universitet, Aalborg East, Denmark
| | - Christian Heyde
- Future Sport Science Team, Adidas AG, Herzogenaurach, Germany
| | | | - Ryan Godsk Larsen
- Health Science and Technology, Aalborg Universitet, Aalborg, Denmark
| | | | - Uwe Kersting
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
| | - M De Zee
- Health Science and Technology, Aalborg Universitet, Aalborg, Denmark
| | | |
Collapse
|
33
|
Adeyeri B, Thomas SA, Arellano CJ. A simple method reveals minimum time required to quantify steady-rate metabolism and net cost of transport for human walking. J Exp Biol 2022; 225:275934. [PMID: 35796105 DOI: 10.1242/jeb.244471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
Abstract
The U-shaped net cost of transport (COT) curve of walking has helped scientists understand the biomechanical basis that underlies energy minimization during walking. However, to produce an individual's net COT curve, data must be analyzed during periods of steady-rate metabolism. Traditionally, studies analyze the last few minutes of a 6-10 min trial, assuming that steady-rate metabolism has been achieved. Yet, it is possible that an individual achieves steady rates of metabolism much earlier. However, there is no consensus on how to objectively quantify steady-rate metabolism across a range of walking speeds. Therefore, we developed a simple slope method to determine the minimum time needed for humans to achieve steady rates of metabolism across slow to fast walking speeds. We hypothesized that a shorter time window could be used to produce a net COT curve that is comparable to the net COT curve created using traditional methods. We analyzed metabolic data from twenty-one subjects who completed several 7-min walking trials ranging from 0.50-2.00 m/s. We partitioned the metabolic data for each trial into moving 1-min, 2-min, and 3 min intervals and calculated their slopes. We statistically compared these slope values to values derived from the last 3-min of the 7-min trial, our 'gold' standard comparison. We found that a minimum of 2 min is required to achieve steady-rate metabolism and that data from 2-4 min yields a net COT curve that is not statistically different from the one derived from experimental protocols that are generally accepted in the field.
Collapse
Affiliation(s)
- Bolatito Adeyeri
- Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA.,Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Shernice A Thomas
- Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA.,Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Christopher J Arellano
- Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA.,Department of Health and Human Performance, University of Houston, Houston, TX, USA
| |
Collapse
|
34
|
VAN Hooren B, Most J, Collombon E, Nieminen H, Plasqui G. A New Approach to Improve the Validity of Doubly Labeled Water to Assess CO2 Production during High-Energy Turnover. Med Sci Sports Exerc 2022; 54:965-973. [PMID: 35576133 DOI: 10.1249/mss.0000000000002865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Accurate measurement of energy expenditure (EE) using doubly labeled water depends on the estimate of total body water (TBW). The aims of this study were to 1) assess the accuracy of a new approach for estimating TBW and EE during high-energy turnover and 2) assess the accuracy of day-to-day assessment of EE with this new approach. METHODS EE was measured in six healthy subjects (three male) for 5 consecutive days using three doubly labeled water methods: 1) the plateau, 2) slope-intercept, and 3) overnight-slope method, with whole-room indirect calorimetry as reference method. Urine samples were collected every evening and morning. High EE (physical activity level of >2.5) was achieved by cycling 4 h·d-1. RESULTS Physical activity level was 2.8 ± 0.1. TBW values were 41.9 ± 6.1, 38.4 ± 5.7, and 40.4 ± 5.8 L for the plateau, slope-intercept, and overnight-slope methods, respectively. The overnight-slope method showed the highest accuracy in estimated CO2 production, when compared with indirect calorimetry over the complete 5-d period (mean ± SD difference, 0.9% ± 1.6%). The plateau method significantly overestimated CO2 production by 4.7% ± 2.6%, whereas the slope-intercept method underestimated CO2 production (-3.4% ± 2.3%). When CO2 production was assessed per day, the overnight-slope method showed an average difference of 9.4% ± 4.5% to indirect calorimetry. CONCLUSIONS The overnight-slope method resulted in a more accurate estimation of CO2 production and EE compared with the plateau or slope-intercept method over a 5-d period in high physical activity conditions. Day-to-day determination of EE using the overnight-slope method was more accurate than diet recall and several standard prediction equations in athletes.
Collapse
Affiliation(s)
- Bas VAN Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the NETHERLANDS
| | | | - Eline Collombon
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the NETHERLANDS
| | - Henrietta Nieminen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the NETHERLANDS
| | - Guy Plasqui
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the NETHERLANDS
| |
Collapse
|
35
|
Nielsen A, Franch J, Heyde C, de Zee M, Kersting U, Larsen RG. Carbon Plate Shoes Improve Metabolic Power and Performance in Recreational Runners. Int J Sports Med 2022; 43:804-810. [PMID: 35523201 DOI: 10.1055/a-1776-7986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study compared metabolic power (MP) and time trial (TT) running performance between Adidas Adizero Adios (AAA) and Nike VaporFly 4% (NVP). Thirty-seven runners completed three laboratory sessions and two field sessions (n=30). After familiarization (visit 1), participants completed eight 6-min treadmill running bouts (four with each shoe, counterbalanced) at their preferred pace, and MP was assessed using indirect calorimetry (visits 2 and 3). During visits 4 and 5, participants completed two outdoor TTs (~3.5 km) in NVP and AAA (counterbalanced). Compared with AAA, NVP exhibited superior MP (NVP: median=13.88 (Q1-Q3=12.90-15.08 W/kg; AAA: median=14.08 (Q1-Q3=13.12-15.44 W/kg; z=-4.81, p<.001, effect size=.56) and TT (NVP=793±98 s; AAA=802±100 s, p=.001; effect size=.09). However, there was no relationship between changes in MP and changes in TT between shoes (r=.151 p=.425, 95% confidence interval=[-.22; .48]). Our results demonstrate that NVP, compared with AAA, improves MP and TT in recreational runners. The lack of correlation between changes in MP and TT indicates that factors other than improved MP contribute to faster short-distance TT with NVP.
Collapse
Affiliation(s)
- Anders Nielsen
- Department of Health Science and Technology, Aalborg Universitet, Aalborg East, Denmark
| | - Jesper Franch
- Department of Health Science and Technology, Aalborg Universitet, Aalborg, Denmark
| | - Christian Heyde
- Future Sport Science Team, Adidas AG, Herzogenaurach, Germany
| | - Mark de Zee
- Department of Health Science and Technology, Aalborg Universitet, Aalborg, Denmark
| | - Uwe Kersting
- Department of Health Science and Technology, Aalborg Universitet, Aalborg, Denmark.,Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Ryan Godsk Larsen
- Department of Health Science and Technology, Aalborg Universitet, Aalborg, Denmark
| |
Collapse
|
36
|
Whiting CS, Hoogkamer W, Kram R. Metabolic cost of level, uphill, and downhill running in highly cushioned shoes with carbon-fiber plates. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:303-308. [PMID: 34740871 PMCID: PMC9189710 DOI: 10.1016/j.jshs.2021.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Compared to conventional racing shoes, Nike Vaporfly 4% running shoes reduce the metabolic cost of level treadmill running by 4%. The reduction is attributed to their lightweight, highly compliant, and resilient midsole foam and a midsole-embedded curved carbon-fiber plate. We investigated whether these shoes also could reduce the metabolic cost of moderate uphill (+3°) and downhill (-3°) grades. We tested the null hypothesis that, compared to conventional racing shoes, highly cushioned shoes with carbon-fiber plates would impart the same ∼4% metabolic power (W/kg) savings during uphill and downhill running as they do during level running. METHODS After familiarization, 16 competitive male runners performed six 5-min trials (2 shoes × 3 grades) in 2 Nike marathon racing-shoe models (Streak 6 and Vaporfly 4%) on a level, uphill (+3°), and downhill (-3°) treadmill at 13 km/h (3.61 m/s). We measured submaximal oxygen uptake and carbon dioxide production during Minutes 4-5 and calculated metabolic power (W/kg) for each shoe model and grade combination. RESULTS Compared to the conventional shoes (Streak 6), the metabolic power in the Vaporfly 4% shoes was 3.83% (level), 2.82% (uphill), and 2.70% (downhill) less (all p < 0.001). The percent of change in metabolic power for uphill running was less compared to level running (p = 0.04; effect size (ES) = 0.561) but was not statistically different between downhill and level running (p = 0.17; ES = 0.356). CONCLUSION On a running course with uphill and downhill sections, the metabolic savings and hence performance enhancement provided by Vaporfly 4% shoes would likely be slightly less overall, compared to the savings on a perfectly level race course.
Collapse
Affiliation(s)
- Clarissa S Whiting
- Locomotion Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA.
| | - Wouter Hoogkamer
- Integrative Locomotion Lab, Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Rodger Kram
- Locomotion Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
37
|
Ahn HN, Lee MG, Jung WS. Effects of gradient and age on energy expenditure and fat metabolism during aerobic exercise at equal intensity in women. Phys Act Nutr 2022; 26:20-27. [PMID: 35510442 PMCID: PMC9081356 DOI: 10.20463/pan.2022.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
[Purpose] This study aimed to investigate the effects of gradient and age on energy expenditure and fat metabolism during aerobic exercise at equal intensity in women. [Methods] Thirty women in their twenties (n=15) and fifties (n=15) were enrolled. All subjects performed aerobic exercise on a treadmill for 10 min at 0% and 6% gradient repeatedly to elicit 50%, 60%, and 70% VO2max. [Results] Energy expenditure and fat oxidation were higher during aerobic exercise at 6% of the gradient than at 0%, and there was no significant difference in carbohydrate oxidation in any age group. [Conclusion] Aerobic exercise at a 6% gradient was more favorable for fat oxidation than a 0% gradient in all age groups. In particular, in the case of women in their fifties, walking on a gradient of 6%, which is favorable for increasing fat oxidation, was more effective than walking on flat ground for preventing and reducing obesity. However, to examine the difference in fat oxidation among exercise intensities more accurately, exercise performed for longer than 30 min is required. Follow-up studies are required to investigate the effect of various gradients on physiological and metabolic characteristics when carrying out aerobic exercises for more than 30 min.
Collapse
|
38
|
Antonellis P, Gonabadi AM, Myers SA, Pipinos II, Malcolm P. Metabolically efficient walking assistance using optimized timed forces at the waist. Sci Robot 2022; 7:eabh1925. [PMID: 35294219 PMCID: PMC9367670 DOI: 10.1126/scirobotics.abh1925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The metabolic rate of walking can be reduced by applying a constant forward force at the center of mass. It has been shown that the metabolically optimal constant force magnitude minimizes propulsion ground reaction force at the expense of increased braking. This led to the hypothesis that selectively assisting propulsion could lead to greater benefits. We used a robotic waist tether to evaluate the effects of forward forces with different timings and magnitudes. Here, we show that it is possible to reduce the metabolic rate of healthy participants by 48% with a greater efficiency ratio of metabolic cost reduction per unit of net aiding work compared with other assistive robots. This result was obtained using a sinusoidal force profile with peak timing during the middle of the double support. The same timing could also reduce the metabolic rate in patients with peripheral artery disease. A model explains that the optimal force profile accelerates the center of mass into the inverted pendulum movement during single support. Contrary to the hypothesis, the optimal force timing did not entirely coincide with propulsion. Within the field of wearable robotics, there is a trend to use devices to mimic biological torque or force profiles. Such bioinspired actuation can have relevant benefits; however, our results demonstrate that this is not necessarily optimal for reducing metabolic rate.
Collapse
Affiliation(s)
- Prokopios Antonellis
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE 68182, USA
- Department of Neurology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, OP-32, Portland, OR 97239, USA
| | - Arash Mohammadzadeh Gonabadi
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE 68182, USA
- Rehabilitation Engineering Center, Institute for Rehabilitation Science and Engineering, Madonna Rehabilitation Hospital, 5401 South Street, Lincoln, NE 68506, USA
| | - Sara A. Myers
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE 68182, USA
- Department of Surgery and Research Service, Veterans Affairs Nebraska-Western Iowa Medical Center, Omaha, NE 68105, USA
| | - Iraklis I. Pipinos
- Department of Surgery and Research Service, Veterans Affairs Nebraska-Western Iowa Medical Center, Omaha, NE 68105, USA
- Department of Surgery, University of Nebraska Medical Center, 982500 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philippe Malcolm
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE 68182, USA
| |
Collapse
|
39
|
Looney DP, Lavoie EM, Vangala SV, Holden LD, Figueiredo PS, Friedl KE, Frykman PN, Hancock JW, Montain SJ, Pryor JL, Santee WR, Potter AW. Modeling the Metabolic Costs of Heavy Military Backpacking. Med Sci Sports Exerc 2021; 54:646-654. [PMID: 34856578 PMCID: PMC8919998 DOI: 10.1249/mss.0000000000002833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction Existing predictive equations underestimate the metabolic costs of heavy military load carriage. Metabolic costs are specific to each type of military equipment, and backpack loads often impose the most sustained burden on the dismounted warfighter. Purpose This study aimed to develop and validate an equation for estimating metabolic rates during heavy backpacking for the US Army Load Carriage Decision Aid (LCDA), an integrated software mission planning tool. Methods Thirty healthy, active military-age adults (3 women, 27 men; age, 25 ± 7 yr; height, 1.74 ± 0.07 m; body mass, 77 ± 15 kg) walked for 6–21 min while carrying backpacks loaded up to 66% body mass at speeds between 0.45 and 1.97 m·s−1. A new predictive model, the LCDA backpacking equation, was developed on metabolic rate data calculated from indirect calorimetry. Model estimation performance was evaluated internally by k-fold cross-validation and externally against seven historical reference data sets. We tested if the 90% confidence interval of the mean paired difference was within equivalence limits equal to 10% of the measured metabolic rate. Estimation accuracy and level of agreement were also evaluated by the bias and concordance correlation coefficient (CCC), respectively. Results Estimates from the LCDA backpacking equation were statistically equivalent (P < 0.01) to metabolic rates measured in the current study (bias, −0.01 ± 0.62 W·kg−1; CCC, 0.965) and from the seven independent data sets (bias, −0.08 ± 0.59 W·kg−1; CCC, 0.926). Conclusions The newly derived LCDA backpacking equation provides close estimates of steady-state metabolic energy expenditure during heavy load carriage. These advances enable further optimization of thermal-work strain monitoring, sports nutrition, and hydration strategies.
Collapse
Affiliation(s)
- David P Looney
- US Army Research Institute of Environmental Medicine (USARIEM), Natick, MA Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, NY
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Erezuma UL, Espin A, Torres-Unda J, Esain I, Irazusta J, Rodriguez-Larrad A. Use of a passive lumbar back exoskeleton during a repetitive lifting task: effects on physiologic parameters and intersubject variability. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2021; 28:2377-2384. [PMID: 34608854 DOI: 10.1080/10803548.2021.1989179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives. This study evaluated the effects of wearing the Laevo v2.56 exoskeleton (Laevo, The Netherlands) on physiological parameters related to working load and metabolic cost (MC) during a lifting task, explored the variability in exoskeleton performance among users and determined whether perceived discomfort negatively correlates with a reduction in MC. Methods. Twenty participants completed a 4-min repetitive lifting task with/without the exoskeleton. Respiratory gases, heart rate, blood lactate and ratings of perceived exertion and experienced discomfort were collected, and MC was calculated. Results. Wearing the exoskeleton significantly reduced MC and oxygen uptake during the lifting task by 4.8 and 3.8%, respectively. Workload reduction occurred in 65% of the participants. Conclusion. The Laevo v2.56 exoskeleton reduced MC and workload in a repetitive lifting task in a subject-dependent manner. Future studies should focus on identifying factors that could cause performance variability such as user-robot interaction forces.
Collapse
Affiliation(s)
- Unai Latorre Erezuma
- Department of Physiology, University of the Basque Country (UPV/EHU), Spain.,Biocruces Bizkaia Health Research Institute, Spain
| | - Ander Espin
- Department of Physiology, University of the Basque Country (UPV/EHU), Spain.,Biocruces Bizkaia Health Research Institute, Spain
| | - Jon Torres-Unda
- Department of Physiology, University of the Basque Country (UPV/EHU), Spain
| | - Izaro Esain
- Department of Physiology, University of the Basque Country (UPV/EHU), Spain
| | - Jon Irazusta
- Department of Physiology, University of the Basque Country (UPV/EHU), Spain.,Biocruces Bizkaia Health Research Institute, Spain
| | - Ana Rodriguez-Larrad
- Department of Physiology, University of the Basque Country (UPV/EHU), Spain.,Biocruces Bizkaia Health Research Institute, Spain
| |
Collapse
|
41
|
Trowell D, Fox A, Saunders N, Vicenzino B, Bonacci J. Effect of concurrent strength and endurance training on run performance and biomechanics: A randomized controlled trial. Scand J Med Sci Sports 2021; 32:543-558. [PMID: 34767655 DOI: 10.1111/sms.14092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
This parallel-group randomized controlled trial investigated the effect of concurrent strength and endurance (CSE) training on running performance, biomechanics, and muscle activity during overground running. Thirty moderately trained distance runners were randomly assigned to 10-week CSE training (n = 15; 33.1 ± 7.5 years) or a control group (n = 15; 34.2 ± 8.2 years). Participants ran ≥30 km per week and had no experience with strength training. The primary outcome measure was 2-km run time. Secondary outcome measures included lower limb sagittal plane biomechanics and muscle activity during running (3.89 m s-1 and maximal sprinting); maximal aerobic capacity (V̇O2 max); running economy; and body composition. CSE training improved 2-km run time (mean difference (MD): -11.3 s [95% CI -3.7, -19.0]; p = 0.006) and time to exhaustion during the V̇O2 max running test (MD 59.1 s [95% CI 8.58, 109.62]; p = 0.024). The CSE training group also reduced total body fat (MD: -1.05 kg [95% CI -0.21, -1.88]; p = 0.016) while total body mass and lean body mass were unchanged. Hip joint angular velocity during the early swing phase of running at 3.89 m s-1 was the only biomechanical or muscle activity variable that significantly changed following CSE training. CSE training is beneficial for running performance, but changes in running biomechanics and muscle activity may not be contributing factors to the performance improvement. Future research should consider other possible mechanisms and the effect of CSE training on biomechanics and muscle activity during prolonged running under fatigued conditions.
Collapse
Affiliation(s)
- Danielle Trowell
- Centre for Sport Research, Deakin University, Burwood, Victoria, Australia.,Movement Science, Australian Institute of Sport, Canberra, Australian Capital Territory, Australia
| | - Aaron Fox
- Centre for Sport Research, Deakin University, Burwood, Victoria, Australia
| | - Natalie Saunders
- Centre for Sport Research, Deakin University, Burwood, Victoria, Australia
| | - Bill Vicenzino
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Jason Bonacci
- Centre for Sport Research, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
42
|
Wilkinson RD, Kram R. Nose-down saddle tilt improves gross efficiency during seated-uphill cycling. Eur J Appl Physiol 2021; 122:409-414. [PMID: 34766189 DOI: 10.1007/s00421-021-04841-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022]
Abstract
Riding uphill presents a challenge to competitive and recreational cyclists. Based on only limited evidence, some scientists have reported that tilting the saddle nose down improves uphill-cycling efficiency by as much as 6%. PURPOSE here, we investigated if simply tilting the saddle nose down increases efficiency during uphill cycling, which would presumably improve performance. METHODS nineteen healthy, recreational cyclists performed multiple 5 min trials of seated cycling at ~ 3 W kg-1 on a large, custom-built treadmill inclined to 8° under two saddle-tilt angle conditions: parallel to the riding surface and 8° nose down. We measured subjects' rates of oxygen consumption and carbon dioxide production using an expired-gas analysis system and then calculated their average metabolic power during the last two min of each 5 min trial. RESULTS we found that, compared to the parallel-saddle condition, tilting the saddle nose down by 8° improved gross efficiency from 0.205 to 0.208-an average increase of 1.4% ± 0.2%, t = 5.9, p < 0.001, CI95% [0.9 to 1.9], dz = 1.3. CONCLUSION our findings are relevant to competitive and recreational cyclists and present an opportunity for innovating new devices and saddle designs that enhance uphill-cycling efficiency. The effect of saddle tilt on other slopes and the mechanism behind the efficiency improvement remain to be investigated.
Collapse
Affiliation(s)
- Ross D Wilkinson
- Locomotion Laboratory, Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant Street, Clare Small 114, Boulder, CO, 80309-0354, USA.
| | - Rodger Kram
- Locomotion Laboratory, Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant Street, Clare Small 114, Boulder, CO, 80309-0354, USA
| |
Collapse
|
43
|
Brill JW, Kram R. Does the preferred walk-run transition speed on steep inclines minimize energetic cost, heart rate or neither? J Exp Biol 2021; 224:jeb.233056. [PMID: 33408254 DOI: 10.1242/jeb.233056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022]
Abstract
As walking speed increases, humans choose to transition to a running gait at their preferred transition speed (PTS). Near that speed, it becomes metabolically cheaper to run rather than to walk and that defines the energetically optimal transition speed (EOTS). Our goals were to determine: (1) how PTS and EOTS compare across a wide range of inclines and (2) whether the EOTS can be predicted by the heart rate optimal transition speed (HROTS). Ten healthy, high-caliber, male trail/mountain runners participated. On day 1, subjects completed 0 and 15 deg trials and on day 2, they completed 5 and 10 deg trials. We calculated PTS as the average of the walk-to-run transition speed (WRTS) and the run-to-walk transition speed (RWTS) determined with an incremental protocol. We calculated EOTS and HROTS from energetic cost and heart rate data for walking and running near the expected EOTS for each incline. The intersection of the walking and running linear regression equations defined EOTS and HROTS. We found that PTS, EOTS and HROTS all were slower on steeper inclines. PTS was slower than EOTS at 0, 5 and 10 deg, but the two converged at 15 deg. Across all inclines, PTS and EOTS were only moderately correlated. Although EOTS correlated with HROTS, EOTS was not predicted accurately by heart rate on an individual basis.
Collapse
Affiliation(s)
- Jackson W Brill
- Locomotion Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| | - Rodger Kram
- Locomotion Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
44
|
Bohm S, Mersmann F, Santuz A, Arampatzis A. Enthalpy efficiency of the soleus muscle contributes to improvements in running economy. Proc Biol Sci 2021; 288:20202784. [PMID: 33499791 PMCID: PMC7893283 DOI: 10.1098/rspb.2020.2784] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
During human running, the soleus, as the main plantar flexor muscle, generates the majority of the mechanical work through active shortening. The fraction of chemical energy that is converted into muscular work (enthalpy efficiency) depends on the muscle shortening velocity. Here, we investigated the soleus muscle fascicle behaviour during running with respect to the enthalpy efficiency as a mechanism that could contribute to improvements in running economy after exercise-induced increases of plantar flexor strength and Achilles tendon (AT) stiffness. Using a controlled longitudinal study design (n = 23) featuring a specific 14-week muscle-tendon training, increases in muscle strength (10%) and tendon stiffness (31%) and reduced metabolic cost of running (4%) were found only in the intervention group (n = 13, p < 0.05). Following training, the soleus fascicles operated at higher enthalpy efficiency during the phase of muscle-tendon unit (MTU) lengthening (15%) and in average over stance (7%, p < 0.05). Thus, improvements in energetic cost following increases in plantar flexor strength and AT stiffness seem attributed to increased enthalpy efficiency of the operating soleus muscle. The results further imply that the soleus energy production in the first part of stance, when the MTU is lengthening, may be crucial for the overall metabolic energy cost of running.
Collapse
Affiliation(s)
- Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessandro Santuz
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
45
|
Increasing the midsole bending stiffness of shoes alters gastrocnemius medialis muscle function during running. Sci Rep 2021; 11:749. [PMID: 33436965 PMCID: PMC7804138 DOI: 10.1038/s41598-020-80791-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023] Open
Abstract
In recent years, increasing the midsole bending stiffness (MBS) of running shoes by embedding carbon fibre plates in the midsole resulted in many world records set during long-distance running competitions. Although several theories were introduced to unravel the mechanisms behind these performance benefits, no definitive explanation was provided so far. This study aimed to investigate how the function of the gastrocnemius medialis (GM) muscle and Achilles tendon is altered when running in shoes with increased MBS. Here, we provide the first direct evidence that the amount and velocity of GM muscle fascicle shortening is reduced when running with increased MBS. Compared to control, running in the stiffest condition at 90% of speed at lactate threshold resulted in less muscle fascicle shortening (p = 0.006, d = 0.87), slower average shortening velocity (p = 0.002, d = 0.93) and greater estimated Achilles tendon energy return (p ≤ 0.001, d = 0.96), without a significant change in GM fascicle work (p = 0.335, d = 0.40) or GM energy cost (p = 0.569, d = 0.30). The findings of this study suggest that running in stiff shoes allows the ankle plantarflexor muscle-tendon unit to continue to operate on a more favourable position of the muscle's force-length-velocity relationship by lowering muscle shortening velocity and increasing tendon energy return.
Collapse
|
46
|
Björklund G, Swarén M, Norman M, Alonso J, Johansson F. Metabolic Demands, Center of Mass Movement and Fractional Utilization of V ˙ O 2 max in Elite Adolescent Tennis Players During On-Court Drills. Front Sports Act Living 2020; 2:92. [PMID: 33345083 PMCID: PMC7739766 DOI: 10.3389/fspor.2020.00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
The aim of the study was to investigate the exercise intensity and energy expenditure during four types of on-court tennis drills. Five female and five male tennis players participated in the study (age: 17 ± 2 years; V∙O2max: 54 ± 6 ml·kg−1·min−1). Anthropometric measures were taken for each player and, on separate days, each player performed (i) treadmill running to determine V∙O2max and (ii) four different tennis drills (Drill1-4) during which V∙O2, blood lactate concentration, ratings of perceived exertion (RPE 6–20), and displacement of center of mass (m) using 3D kinematics were recorded. The drills were designed to simulate match play with 90 s of rest between each drill. A repeated two-way ANOVA was used for physiological and biomechanical data and Friedman's test for RPE using < α 0.05. Fractional utilization of V∙O2max was greatest during Drill1 81.8 ± 7.0% and lowest during Drill4 72.4 ± 5.2% (p < 0.001) with no difference between sexes (p > 0.05). The highest energy expenditure was during Drill1 and lowest during Drill4 (77 ± 15 and 49 ± 11 kcal, respectively, p < 0.05). Energy expenditure per meter for Drill1–Drill4 was subsequently reduced for each drill with 10.5 ± 2.1, 9.9 ± 2.2, 7.6 ± 1.7, and 8.0 ± 1.6 J·kg−1·m−1 (p < 0.01). There were no interaction effects for any of these variables. RPE (6–20) and blood lactate concentration post Drill1–Drill4 were 17.5, 15.5, and 13.0 (overall, legs and arms, p < 0.001) and 5.9 ± 2.0, 4.9 ± 1.9, 5.6 ± 2.0, and 5.0 ± 2.2 mmol·l−1 (p < 0.05). The findings of this study demonstrate that the on-court tennis drills performed here are suitable for high intensity training in junior tennis players. The energy expenditure per minute is comparable to similar sports whereas the energy expenditure per meter is notably greater.
Collapse
Affiliation(s)
- Glenn Björklund
- Department of Elite Sports Support, The Swedish Sports Confederation, Stockholm, Sweden.,Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | - Mikael Swarén
- Swedish Unit of Metrology in Sports, Department of Sports, Fitness and Medicine, Dalarna University, Falun, Sweden.,Swedish Olympic Academy, Stockholm, Sweden
| | | | - Juan Alonso
- Department of Elite Sports Support, The Swedish Sports Confederation, Stockholm, Sweden
| | - Fredrik Johansson
- Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden.,Scandinavian College of Naprapathic Medicine, Stockholm, Sweden
| |
Collapse
|
47
|
Peric R, DI Pietro A, Myers J, Nikolovski Z. A systematic comparison of commonly used stoichiometric equations to estimate fat oxidation during exercise in athletes. J Sports Med Phys Fitness 2020; 61:1354-1361. [PMID: 33314884 DOI: 10.23736/s0022-4707.20.11747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Over the last half-century, different stoichiometric equations for calculating the energy cost of exercise based upon the combustion of mixtures of carbohydrates, fats, and proteins have been proposed and modified. With the means of indirect calorimetry, while measuring oxygen uptake, carbon dioxide production, and urinary urea nitrogen excretion, the contribution of specific substrates to overall energy production can be estimated. However, even with their long history of application, no previous studies have evaluated whether the use of different stoichiometric equations provides similar or distinct maximal fat oxidation rate (MFO) responses and information regarding MFO location (FAT<inf>max</inf>) in male athletes. METHODS Twenty healthy male athletes performed graded exercise testing (GXT) cycle ergometry using breath by breath gas analysis to assess fat oxidation and maximal oxygen uptake. Analysis of variance followed by within-equation effects, within-equation factors, and post hoc pairwise comparisons were used to examine within-equation differences. RESULTS Compared stoichiometric equations demonstrated significant differences in the mean and maximal fat oxidation rates, varying up to nearly 7%. FAT<inf>max</inf> differences, however, were not noticed. CONCLUSIONS Our findings suggest that for within-study designs, the equation used appears to be less important, but when inter-study comparisons are planned, caution is in order due to the presence of inter-equation differences.
Collapse
Affiliation(s)
- Ratko Peric
- Sport Studio BL Association for Contemporary Education in Sports, Banja Luka, Bosnia and Herzegovina -
| | | | - Jonathan Myers
- VA Palo Alto Health Care System, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
48
|
Rose GL, Skinner TL, Mielke GI, Schaumberg MA. The effect of exercise intensity on chronic inflammation: A systematic review and meta-analysis. J Sci Med Sport 2020; 24:345-351. [PMID: 33153926 DOI: 10.1016/j.jsams.2020.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Chronic inflammation is independently associated with the incidence and progression of chronic disease. Exercise has been found to reduce chronic inflammation, however the role of exercise intensity (work rate) is unknown. This review aimed to determine the pooled effect of higher- compared to lower-intensity aerobic and resistance exercise on chronic inflammation in adults. DESIGN Systematic review and meta-analysis. METHODS Five electronic databases were searched. Intervention trials that assessed the effect of ≥2 different exercise intensities on peripheral markers of chronic inflammation [c-reactive protein (CRP), interleukin (IL)-6, tumour necrosis factor (TNF)-α and IL-10] in adults were included. Random-effect meta-analyses were conducted to calculate the mean difference in change scores between groups [effect size (ES)]. Sub-group analyses were performed to explore the influence of age, chronic disease, body mass index and intervention duration on inflammation heterogeneity. RESULTS Of 3952 studies identified, 27 were included. There were no significant effects of exercise intensity on IL-6 (ES=-0.039, 95%CI=-0.353-0.275; p=0.806), TNF-α (ES=0.296, 95%CI=-0.184-0.777; p=0.227) and IL-10 (ES=0.007, 95%CI=-0.904-0.919; p=0.987). A significant pooled ES was observed for higher- versus lower-intensity exercise on CRP concentrations, in studies of middle-aged adults (ES=-0.412, 95%CI=-0.821- -0.004, p=0.048) or interventions >9 weeks in duration (ES=-0.520, 95%CI=-0.882--0.159, p=0.005). CONCLUSIONS Exercise intensity did not influence chronic inflammatory response. However, sub-analyses suggest that higher-intensity training may be more efficacious than lower-intensity for middle-aged adults, or when longer duration interventions are implemented (>9 weeks), in the most commonly-reported analyte (CRP).
Collapse
Affiliation(s)
- Grace L Rose
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Gregore I Mielke
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Mia A Schaumberg
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia; School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
49
|
Del Ferraro S, Falcone T, Ranavolo A, Molinaro V. The Effects of Upper-Body Exoskeletons on Human Metabolic Cost and Thermal Response during Work Tasks-A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7374. [PMID: 33050273 PMCID: PMC7600262 DOI: 10.3390/ijerph17207374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND New wearable assistive devices (exoskeletons) have been developed for assisting people during work activity or rehabilitation. Although exoskeletons have been introduced into different occupational fields in an attempt to reduce the risk of work-related musculoskeletal disorders, the effectiveness of their use in workplaces still needs to be investigated. This systematic review focused on the effects of upper-body exoskeletons (UBEs) on human metabolic cost and thermophysiological response during upper-body work tasks. METHODS articles published until 22 September 2020 were selected from Scopus, Web of Science, and PubMed for eligibility and the potential risk of bias was assessed. RESULTS Nine articles resulted in being eligible for the metabolic aspects, and none for the thermal analysis. All the studies were based on comparisons between conditions with and without exoskeletons and considered a total of 94 participants (mainly males) performing tasks involving the trunk or overhead work, 7 back-support exoskeletons, and 1 upper-limb support exoskeleton. Eight studies found a significant reduction in the mean values of the metabolic or cardiorespiratory parameters considered and one found no differences. CONCLUSIONS The reduction found represents a preliminary finding that needs to be confirmed in a wider range of conditions, especially in workplaces, where work tasks show different characteristics and durations compared to those simulated in the laboratory. Future developments should investigate the dependence of metabolic cost on specific UBE design approaches during tasks involving the trunk and the possible statistical correlation between the metabolic cost and the surface ElectroMyoGraphy (sEMG) parameters. Finally, it could be interesting to investigate the effect of exoskeletons on the human thermophysiological response.
Collapse
Affiliation(s)
- Simona Del Ferraro
- INAIL—Department of Occupational and Environmental Medicine, Epidemiology and Hygiene—Laboratory of Ergonomics and Physiology, via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy; (T.F.); (A.R.); (V.M.)
| | - Tiziana Falcone
- INAIL—Department of Occupational and Environmental Medicine, Epidemiology and Hygiene—Laboratory of Ergonomics and Physiology, via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy; (T.F.); (A.R.); (V.M.)
- Unit of Advanced Robotics and Human-Centred Technologies, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Alberto Ranavolo
- INAIL—Department of Occupational and Environmental Medicine, Epidemiology and Hygiene—Laboratory of Ergonomics and Physiology, via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy; (T.F.); (A.R.); (V.M.)
| | - Vincenzo Molinaro
- INAIL—Department of Occupational and Environmental Medicine, Epidemiology and Hygiene—Laboratory of Ergonomics and Physiology, via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy; (T.F.); (A.R.); (V.M.)
| |
Collapse
|
50
|
du Plessis C, Blazevich AJ, Abbiss C, Wilkie JC. Running economy and effort after cycling: Effect of methodological choices. J Sports Sci 2020; 38:1105-1114. [PMID: 32202206 DOI: 10.1080/02640414.2020.1742962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Prior exercise can negatively affect movement economy of a subsequent task. However, the impact of cycling exercise on the energy cost of subsequent running is difficult to ascertain, possibly because of the use of different methods of calculating economy. We examined the influence of a simulated cycling bout on running physiological cost (running economy, heart rate and ventilation rates) and perceptual responses (ratings of perceived exertion and effort) by comparing two running bouts, performed before and after cycling using different running economy calculation methods. Seventeen competitive male triathletes ran at race pace before and after a simulated Olympic-distance cycling bout. Running economy was calculated as V̇O2 (mL∙kg-1∙min-1), oxygen cost (EO2, mL∙kg-1∙m-1) and aerobic energy cost (Eaer, J∙kg-1∙m-1). All measures of running economy and perceptual responses indicated significant alterations imposed by prior cycling. Despite a good level of agreement with minimal bias between calculation methods, differences (p < 0.05) were observed between Eaer and both V̇O2 and EO2. The results confirmed that prior cycling increased physiological cost and perceptual responses in a subsequent running bout. It is recommended that Eaer be calculated as a more valid measure of running economy alongside perceptual responses to assist in the identification of individual responses in running economy following cycling.
Collapse
Affiliation(s)
- Chantelle du Plessis
- Centre for Exercise and Sport Science Research, School of Medical and Health Sciences, Edith Cowan University , Joondalup, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sport Science Research, School of Medical and Health Sciences, Edith Cowan University , Joondalup, Australia
| | - Chris Abbiss
- Centre for Exercise and Sport Science Research, School of Medical and Health Sciences, Edith Cowan University , Joondalup, Australia
| | - Jodie Cochrane Wilkie
- Centre for Exercise and Sport Science Research, School of Medical and Health Sciences, Edith Cowan University , Joondalup, Australia
| |
Collapse
|