1
|
Xu W, Yang T, Zhang J, Li H, Guo M. Rhodiola rosea: a review in the context of PPPM approach. EPMA J 2024; 15:233-259. [PMID: 38841616 PMCID: PMC11147995 DOI: 10.1007/s13167-024-00367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
A natural "medicine and food" plant, Rhodiola rosea (RR) is primarily made up of organic acids, phenolic compounds, sterols, glycosides, vitamins, lipids, proteins, amino acids, trace elements, and other physiologically active substances. In vitro, non-clinical and clinical studies confirmed that it exerts anti-inflammatory, antioxidant, and immune regulatory effects, balances the gut microbiota, and alleviates vascular circulatory disorders. RR can prolong life and has great application potential in preventing and treating suboptimal health, non-communicable diseases, and COVID-19. This narrative review discusses the effects of RR in preventing organ damage (such as the liver, lung, heart, brain, kidneys, intestines, and blood vessels) in non-communicable diseases from the perspective of predictive, preventive, and personalised medicine (PPPM/3PM). In conclusion, as an adaptogen, RR can provide personalised health strategies to improve the quality of life and overall health status.
Collapse
Affiliation(s)
- Wenqian Xu
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | | | - Jinyuan Zhang
- The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Heguo Li
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Min Guo
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Félix-Soriano E, Sáinz N, Gil-Iturbe E, Castilla-Madrigal R, Celay J, Fernández-Galilea M, Pejenaute Á, Lostao MP, Martínez-Climent JA, Moreno-Aliaga MJ. Differential remodeling of subcutaneous white and interscapular brown adipose tissue by long-term exercise training in aged obese female mice. J Physiol Biochem 2023:10.1007/s13105-023-00964-2. [PMID: 37204588 DOI: 10.1007/s13105-023-00964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Obesity exacerbates aging-induced adipose tissue dysfunction. This study aimed to investigate the effects of long-term exercise on inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) of aged obese mice. Two-month-old female mice received a high-fat diet for 4 months. Then, six-month-old diet-induced obese animals were allocated to sedentarism (DIO) or to a long-term treadmill training (DIOEX) up to 18 months of age. In exercised mice, iWAT depot revealed more adaptability, with an increase in the expression of fatty acid oxidation genes (Cpt1a, Acox1), and an amelioration of the inflammatory status, with a favorable modulation of pro/antiinflammatory genes and lower macrophage infiltration. Additionally, iWAT of trained animals showed an increment in the expression of mitochondrial biogenesis (Pgc1a, Tfam, Nrf1), thermogenesis (Ucp1), and beige adipocytes genes (Cd137, Tbx1). In contrast, iBAT of aged obese mice was less responsive to exercise. Indeed, although an increase in functional brown adipocytes genes and proteins (Pgc1a, Prdm16 and UCP1) was observed, few changes were found on inflammation-related and fatty acid metabolism genes. The remodeling of iWAT and iBAT depots occurred along with an improvement in the HOMA index for insulin resistance and in glucose tolerance. In conclusion, long-term exercise effectively prevented the loss of iWAT and iBAT thermogenic properties during aging and obesity. In iWAT, the long-term exercise program also reduced the inflammatory status and stimulated a fat-oxidative gene profile. These exercise-induced adipose tissue adaptations could contribute to the beneficial effects on glucose homeostasis in aged obese mice.
Collapse
Affiliation(s)
- Elisa Félix-Soriano
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Neira Sáinz
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Eva Gil-Iturbe
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Rosa Castilla-Madrigal
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Jon Celay
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, University of Navarra, Pamplona, Spain
- CIBERONC, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Fernández-Galilea
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Álvaro Pejenaute
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M Pilar Lostao
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - José A Martínez-Climent
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, University of Navarra, Pamplona, Spain
- CIBERONC, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María J Moreno-Aliaga
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
3
|
Carbó R, Rodríguez E. Relevance of Sugar Transport across the Cell Membrane. Int J Mol Sci 2023; 24:ijms24076085. [PMID: 37047055 PMCID: PMC10094530 DOI: 10.3390/ijms24076085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sugar transport through the plasma membrane is one of the most critical events in the cellular transport of nutrients; for example, glucose has a central role in cellular metabolism and homeostasis. The way sugars enter the cell involves complex systems. Diverse protein systems participate in the membrane traffic of the sugars from the extracellular side to the cytoplasmic side. This diversity makes the phenomenon highly regulated and modulated to satisfy the different needs of each cell line. The beautiful thing about this process is how evolutionary processes have diversified a single function: to move glucose into the cell. The deregulation of these entrance systems causes some diseases. Hence, it is necessary to study them and search for a way to correct the alterations and utilize these mechanisms to promote health. This review will highlight the various mechanisms for importing the valuable sugars needed to create cellular homeostasis and survival in all kinds of cells.
Collapse
Affiliation(s)
- Roxana Carbó
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-55557-32911 (ext. 25704)
| | - Emma Rodríguez
- Cardiology Laboratory at Translational Research Unit UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
4
|
Martínez-Gayo A, Félix-Soriano E, Sáinz N, González-Muniesa P, Moreno-Aliaga MJ. Changes Induced by Aging and Long-Term Exercise and/or DHA Supplementation in Muscle of Obese Female Mice. Nutrients 2022; 14:nu14204240. [PMID: 36296923 PMCID: PMC9610919 DOI: 10.3390/nu14204240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and aging promote chronic low-grade systemic inflammation. The aim of the study was to analyze the effects of long-term physical exercise and/or omega-3 fatty acid Docosahexaenoic acid (DHA) supplementation on genes or proteins related to muscle metabolism, inflammation, muscle damage/regeneration and myokine expression in aged and obese mice. Two-month-old C57BL/6J female mice received a control or a high-fat diet for 4 months. Then, the diet-induced obese (DIO) mice were distributed into four groups: DIO, DIO + DHA, DIO + EX (treadmill training) and DIO + DHA + EX up to 18 months. Mice fed a control diet were sacrificed at 2, 6 and 18 months. Aging increased the mRNA expression of Tnf-α and decreased the expression of genes related to glucose uptake (Glut1, Glut4), muscle atrophy (Murf1, Atrogin-1, Cas-9) and myokines (Metrnl, Il-6). In aged DIO mice, exercise restored several of these changes. It increased the expression of genes related to glucose uptake (Glut1, Glut4), fatty acid oxidation (Cpt1b, Acox), myokine expression (Fndc5, Il-6) and protein turnover, decreased Tnf-α expression and increased p-AKT/AKT ratio. No additional effects were observed when combining exercise and DHA. These data suggest the effectiveness of long-term training to prevent the deleterious effects of aging and obesity on muscle dysfunction.
Collapse
Affiliation(s)
- Alejandro Martínez-Gayo
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Elisa Félix-Soriano
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| | - María J. Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- IdISNA–Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (P.G.-M.); (M.J.M.-A.)
| |
Collapse
|
5
|
Félix-Soriano E, Sáinz N, Gil-Iturbe E, Collantes M, Fernández-Galilea M, Castilla-Madrigal R, Ly L, Dalli J, Moreno-Aliaga MJ. Changes in brown adipose tissue lipid mediator signatures with aging, obesity, and DHA supplementation in female mice. FASEB J 2021; 35:e21592. [PMID: 33960028 DOI: 10.1096/fj.202002531r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/12/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Brown adipose tissue (BAT) dysfunction in aging and obesity has been related to chronic unresolved inflammation, which could be mediated by an impaired production of specialized proresolving lipid mediators (SPMs), such as Lipoxins-LXs, Resolvins-Rvs, Protectins-PDs, and Maresins-MaRs. Our aim was to characterize the changes in BAT SPMs signatures and their association with BAT dysfunction during aging, especially under obesogenic conditions, and their modulation by a docosahexaenoic acid (DHA)-rich diet. Lipidomic, functional, and molecular studies were performed in BAT of 2- and 18-month-old lean (CT) female mice and in 18-month-old diet-induced obese (DIO) mice fed with a high-fat diet (HFD), or a DHA-enriched HFD. Aging downregulated Prdm16 and UCP1 levels, especially in DIO mice, while DHA partially restored them. Arachidonic acid (AA)-derived LXs and DHA-derived MaRs and PDs were the most abundant SPMs in BAT of young CT mice. Interestingly, the sum of LXs and of PDs were significantly lower in aged DIO mice compared to young CT mice. Some of the SPMs most significantly reduced in obese-aged mice included LXB4 , MaR2, 4S,14S-diHDHA, 10S,17S-diHDHA (a.k.a. PDX), and RvD6. In contrast, DHA increased DHA-derived SPMs, without modifying LXs. However, MicroPET studies showed that DHA was not able to counteract the impaired cold exposure response in BAT of obese-aged mice. Our data suggest that a defective SPMs production could underlie the decrease of BAT activity observed in obese-aged mice, and highlight the relevance to further characterize the physiological role and therapeutic potential of specific SPMs on BAT development and function.
Collapse
Affiliation(s)
- Elisa Félix-Soriano
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Neira Sáinz
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Eva Gil-Iturbe
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - María Collantes
- Radiopharmacy, Radionanopharmacology and Translational Molecular Imaging Research Group, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Marta Fernández-Galilea
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Rosa Castilla-Madrigal
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Lucy Ly
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Center for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - María J Moreno-Aliaga
- Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
6
|
Effects of Long-Term DHA Supplementation and Physical Exercise on Non-Alcoholic Fatty Liver Development in Obese Aged Female Mice. Nutrients 2021; 13:nu13020501. [PMID: 33546405 PMCID: PMC7913512 DOI: 10.3390/nu13020501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity and aging are associated to non-alcoholic fatty liver disease (NAFLD) development. Here, we investigate whether long-term feeding with a docosahexaenoic acid (DHA)-enriched diet and aerobic exercise, alone or in combination, are effective in ameliorating NAFLD in aged obese mice. Two-month-old female C57BL/6J mice received control or high fat diet (HFD) for 4 months. Then, the diet-induced obese (DIO) mice were distributed into four groups: DIO, DIO + DHA (15% dietary lipids replaced by a DHA-rich concentrate), DIO + EX (treadmill running), and DIO + DHA + EX up to 18 months. The DHA-rich diet reduced liver steatosis in DIO mice, decreasing lipogenic genes (Dgat2, Scd1, Srebp1c), and upregulated lipid catabolism genes (Hsl/Acox) expression. A similar pattern was observed in the DIO + EX group. The combination of DHA + exercise potentiated an increase in Cpt1a and Ppara genes, and AMPK activation, key regulators of fatty acid oxidation. Exercise, alone or in combination with DHA, significantly reversed the induction of proinflammatory genes (Mcp1, Il6, Tnfα, Tlr4) in DIO mice. DHA supplementation was effective in preventing the alterations induced by the HFD in endoplasmic reticulum stress-related genes (Ern1/Xbp1) and autophagy markers (LC3II/I ratio, p62, Atg7). In summary, long-term DHA supplementation and/or exercise could be helpful to delay NAFLD progression during aging in obesity.
Collapse
|