1
|
Olivares-Costa M, Fabio MC, De la Fuente-Ortega E, Haeger PA, Pautassi R. New therapeutics for the prevention or amelioration of fetal alcohol spectrum disorders: a narrative review of the preclinical literature. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:749-770. [PMID: 39023419 DOI: 10.1080/00952990.2024.2361442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 07/20/2024]
Abstract
Background: Ethanol consumption during pregnancy induces enduring detrimental effects in the offspring, manifesting as a spectrum of symptoms collectively termed as Fetal Alcohol Spectrum Disorders (FASD). Presently, there is a scarcity of treatments for FASD.Objectives: To analyze current literature, emphasizing evidence derived from preclinical models, that could potentially inform therapeutic interventions for FASD.Methods: A narrative review was conducted focusing on four prospective treatments: nutritional supplements, antioxidants, anti-inflammatory compounds and environmental enrichment. The review also highlights innovative therapeutic strategies applied during early (e.g. folate administration, postnatal days 4-9) or late (e.g. NOX2 inhibitors given after weaning) postnatal stages that resulted in significant improvements in behavioral responses during adolescence (a critical period marked by the emergence of mental health issues in humans).Results: Our findings underscore the value of treatments centered around nutritional supplementation or environmental enrichment, aimed at mitigating oxidative stress and inflammation, implying shared mechanisms in FASD pathogenesis. Moreover, the review spotlights emerging evidence pertaining to the involvement of novel molecular components with potential pharmacological targets (such as NOX2, MCP1/CCR2, PPARJ, and PDE1).Conclusions: Preclinical studies have identified oxidative imbalance and neuroinflammation as relevant pathological mechanisms induced by prenatal ethanol exposure. The relevance of these mechanisms, which exhibit positive feedback loop mechanisms, appear to peak during early development and decreases in adulthood. These findings provide a framework for the future development of therapeutic avenues in the development of specific clinical treatments for FASD.
Collapse
Affiliation(s)
- Montserrat Olivares-Costa
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - María Carolina Fabio
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| | - Erwin De la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Paola A Haeger
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Ricardo Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| |
Collapse
|
2
|
Terracina S, Tarani L, Ceccanti M, Vitali M, Francati S, Lucarelli M, Venditti S, Verdone L, Ferraguti G, Fiore M. The Impact of Oxidative Stress on the Epigenetics of Fetal Alcohol Spectrum Disorders. Antioxidants (Basel) 2024; 13:410. [PMID: 38671857 PMCID: PMC11047541 DOI: 10.3390/antiox13040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fetal alcohol spectrum disorders (FASD) represent a continuum of lifelong impairments resulting from prenatal exposure to alcohol, with significant global impact. The "spectrum" of disorders includes a continuum of physical, cognitive, behavioral, and developmental impairments which can have profound and lasting effects on individuals throughout their lives, impacting their health, social interactions, psychological well-being, and every aspect of their lives. This narrative paper explores the intricate relationship between oxidative stress and epigenetics in FASD pathogenesis and its therapeutic implications. Oxidative stress, induced by alcohol metabolism, disrupts cellular components, particularly in the vulnerable fetal brain, leading to aberrant development. Furthermore, oxidative stress is implicated in epigenetic changes, including alterations in DNA methylation, histone modifications, and microRNA expression, which influence gene regulation in FASD patients. Moreover, mitochondrial dysfunction and neuroinflammation contribute to epigenetic changes associated with FASD. Understanding these mechanisms holds promise for targeted therapeutic interventions. This includes antioxidant supplementation and lifestyle modifications to mitigate FASD-related impairments. While preclinical studies show promise, further clinical trials are needed to validate these interventions' efficacy in improving clinical outcomes for individuals affected by FASD. This comprehensive understanding of the role of oxidative stress in epigenetics in FASD underscores the importance of multidisciplinary approaches for diagnosis, management, and prevention strategies. Continued research in this field is crucial for advancing our knowledge and developing effective interventions to address this significant public health concern.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy (M.L.)
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, 00185 Rome, Italy;
| | | | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy (M.L.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy (M.L.)
- Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Sabrina Venditti
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185 Rome, Italy
| | - Loredana Verdone
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy (M.L.)
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
3
|
Edri T, Cohen D, Shabtai Y, Fainsod A. Alcohol induces neural tube defects by reducing retinoic acid signaling and promoting neural plate expansion. Front Cell Dev Biol 2023; 11:1282273. [PMID: 38116205 PMCID: PMC10728305 DOI: 10.3389/fcell.2023.1282273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction: Neural tube defects (NTDs) are among the most debilitating and common developmental defects in humans. The induction of NTDs has been attributed to abnormal folic acid (vitamin B9) metabolism, Wnt and BMP signaling, excess retinoic acid (RA), dietary components, environmental factors, and many others. In the present study we show that reduced RA signaling, including alcohol exposure, induces NTDs. Methods: Xenopus embryos were exposed to pharmacological RA biosynthesis inhibitors to study the induction of NTDs. Embryos were treated with DEAB, citral, or ethanol, all of which inhibit the biosynthesis of RA, or injected to overexpress Cyp26a1 to reduce RA. NTD induction was studied using neural plate and notochord markers together with morphological analysis. Expression of the neuroectodermal regulatory network and cell proliferation were analyzed to understand the morphological malformations of the neural plate. Results: Reducing RA signaling levels using retinaldehyde dehydrogenase inhibitors (ethanol, DEAB, and citral) or Cyp26a1-driven degradation efficiently induce NTDs. These NTDs can be rescued by providing precursors of RA. We mapped this RA requirement to early gastrula stages during the induction of neural plate precursors. This reduced RA signaling results in abnormal expression of neural network genes, including the neural plate stem cell maintenance genes, geminin, and foxd4l1.1. This abnormal expression of neural network genes results in increased proliferation of neural precursors giving rise to an expanded neural plate. Conclusion: We show that RA signaling is required for neural tube closure during embryogenesis. RA signaling plays a very early role in the regulation of proliferation and differentiation of the neural plate soon after the induction of neural progenitors during gastrulation. RA signaling disruption leads to the induction of NTDs through the mis regulation of the early neuroectodermal network, leading to increased proliferation resulting in the expansion of the neural plate. Ethanol exposure induces NTDs through this mechanism involving reduced RA levels.
Collapse
Affiliation(s)
| | | | | | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Ashraf H, Cossu D, Ruberto S, Noli M, Jasemi S, Simula ER, Sechi LA. Latent Potential of Multifunctional Selenium Nanoparticles in Neurological Diseases and Altered Gut Microbiota. MATERIALS (BASEL, SWITZERLAND) 2023; 16:699. [PMID: 36676436 PMCID: PMC9862321 DOI: 10.3390/ma16020699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Neurological diseases remain a major concern due to the high world mortality rate and the absence of appropriate therapies to cross the blood-brain barrier (BBB). Therefore, the major focus is on the development of such strategies that not only enhance the efficacy of drugs but also increase their permeability in the BBB. Currently, nano-scale materials seem to be an appropriate approach to treating neurological diseases based on their drug-loading capacity, reduced toxicity, targeted delivery, and enhanced therapeutic effect. Selenium (Se) is an essential micronutrient and has been of remarkable interest owing to its essential role in the physiological activity of the nervous system, i.e., signal transmission, memory, coordination, and locomotor activity. A deficiency of Se leads to various neurological diseases such as Parkinson's disease, epilepsy, and Alzheimer's disease. Therefore, owing to the neuroprotective role of Se (selenium) nanoparticles (SeNPs) are of particular interest to treat neurological diseases. To date, many studies investigate the role of altered microbiota with neurological diseases; thus, the current review focused not only on the recent advancement in the field of nanotechnology, considering SeNPs to cure neurological diseases, but also on investigating the potential role of SeNPs in altered microbiota.
Collapse
Affiliation(s)
- Hajra Ashraf
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Davide Cossu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Stefano Ruberto
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Marta Noli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Seyedesomaye Jasemi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Complex Structure of Microbiology and Virology, AOU Sassari, 07100 Sassari, Italy
| |
Collapse
|
5
|
Shen Y, Huang H, Wang Y, Yang R, Ke X. Antioxidant effects of Se-glutathione peroxidase in alcoholic liver disease. J Trace Elem Med Biol 2022; 74:127048. [PMID: 35963055 DOI: 10.1016/j.jtemb.2022.127048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
Oxidative damage induced by ethanol and its metabolites is one of the factors that fuels the development of alcoholic liver disease (ALD). Selenium (Se) is an effective cofactor for glutathione peroxidase (GPx), and has antioxidant effects that improve ALD. In patients with ALD, ethanol-induced oxidative damage inhibits the synthesis of related Se-containing proteins such as: selenoprotein P (Sepp1), albumin (ALB), and GPx in the liver, thus decreasing the overall Se level in patients. Both Se deficiency and excess can affect the expression of GPx, resulting in damage to the antioxidant defense system. This damage enhances oxidative stress by increasing the levels of reactive oxygen species (ROS) in the body, which aggravates the inflammatory response, lipid metabolism disorder, and lipid peroxidation and worsens ALD symptoms. A cascade of oxidative damages caused by ALD will deplete selenium deposition in the body, stimulate the expression of Gpx1, Sepp1, and Gpx4, and thus mobilize systemic selenoproteins, which can restore GPx activity in the hepatocytes of ALD patients, reduce the levels of reactive oxygen species and alleviate oxidative stress, the inflammatory response, lipid metabolism disorder, and lipid peroxidation, thus helping to mitigate ALD. This review provides a reference for future ALD studies that evaluate the regulation of Se levels and contributes to studies on the potential pathological mechanisms of Se imbalance in ALD.
Collapse
Affiliation(s)
- Yingyan Shen
- Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Meterial, Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu University of Traditional Chinese Medicine, Chendu, China
| | - Hanmei Huang
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China
| | - Yunhong Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rongping Yang
- Chongqing Key Laboratory of Chinese Medicine New Drug Screening, Southwest University, Chongqing, China.
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Ojeda ML, Nogales F, Del Carmen Gallego-López M, Carreras O. Binge drinking during the adolescence period causes oxidative damage-induced cardiometabolic disorders: A possible ameliorative approach with selenium supplementation. Life Sci 2022; 301:120618. [PMID: 35533761 DOI: 10.1016/j.lfs.2022.120618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
Abstract
Binge drinking (BD) is the most common alcohol consumption model among adolescents. BD exposure during adolescence disrupts the nervous system function, being involved in the major mortality causes at this age: motor vehicle accidents, homicides and suicides. Recent studies have also shown that BD consumption during adolescence affects liver, renal and cardiovascular physiology, predisposing adolescents to future adult cardiometabolic damage. BD is a particularly pro-oxidant alcohol consumption pattern, because it leads to the production of a great source of reactive oxygen species (ROS) via the microsomal ethanol oxidizing system, also decreasing the antioxidant activity of glutathione peroxidase (GPx). Selenium (Se) is a mineral which plays a pivotal role against oxidation; it forms part of the catalytic center of different antioxidant selenoproteins such as GPxs (GPx1, GPx4, GPx3) and selenoprotein P (SelP). Specifically, GPx4 has an essential role in mitochondria, preventing their oxidation, apoptosis and NFkB-inflamative response, being this function even more relevant in heart's tissue. Se serum levels are decreased in acute and chronic alcoholic adult patients, being correlated to the severity of oxidation, liver damage and metabolic profile. Experimental studies have described that Se supplementation to alcohol exposed mice clearly decreases oxidative and liver damage. However, clinical BD effects on Se homeostasis and selenoproteins' tissue distribution related to oxidation during adolescence are not yet studied. In this narrative review we will describe the use of sodium selenite supplementation as an antioxidant therapy in adolescent BD rats in order to analyze Se homeostasis implication during BD exposure, oxidative balance, apoptosis and inflammation, mainly in liver, kidney, and heart. These biomolecular changes and the cardiovascular function will be analyzed. Se supplementation therapies could be a good strategy to prevent the oxidation, inflammation and apoptosis generated in tissues by BD during adolescence, such as liver, kidney and heart, improving cardiovascular functioning.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | | | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain
| |
Collapse
|
7
|
Critical Role of Maternal Selenium Nutrition in Neurodevelopment: Effects on Offspring Behavior and Neuroinflammatory Profile. Nutrients 2022; 14:nu14091850. [PMID: 35565817 PMCID: PMC9104078 DOI: 10.3390/nu14091850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Research in both animals and humans shows that some nutrients are important in pregnancy and during the first years of life to support brain and cognitive development. Our aim was to evaluate the role of selenium (Se) in supporting brain and behavioral plasticity and maturation. Pregnant and lactating female rats and their offspring up to postnatal day 40 were fed isocaloric diets differing in Se content—i.e., optimal, sub-optimal, and deficient—and neurodevelopmental, neuroinflammatory, and anti-oxidant markers were analyzed. We observed early adverse behavioral changes in juvenile rats only in sub-optimal offspring. In addition, sub-optimal, more than deficient supply, reduced basal glial reactivity in sex dimorphic and brain-area specific fashion. In female offspring, deficient and sub-optimal diets reduced the antioxidant Glutathione peroxidase (GPx) activity in the cortex and in the liver, the latter being the key organ regulating Se metabolism and homeostasis. The finding that the Se sub-optimal was more detrimental than Se deficient diet may suggest that maternal Se deficient diet, leading to a lower Se supply at earlier stages of fetal development, stimulated homeostatic mechanisms in the offspring that were not initiated by sub-optimal Se. Our observations demonstrate that even moderate Se deficiency during early life negatively may affect, in a sex-specific manner, optimal brain development.
Collapse
|
8
|
Ojeda ML, Carreras O, Nogales F. The Role of Selenoprotein Tissue Homeostasis in MetS Programming: Energy Balance and Cardiometabolic Implications. Antioxidants (Basel) 2022; 11:antiox11020394. [PMID: 35204276 PMCID: PMC8869711 DOI: 10.3390/antiox11020394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se) is an essential trace element mainly known for its antioxidant, anti-inflammatory, and anti-apoptotic properties, as it is part of the catalytic center of 25 different selenoproteins. Some of them are related to insulin resistance (IR) and metabolic syndrome (MetS) generation, modulating reactive oxygen species (ROS), and the energetic sensor AMP-activated protein kinase (AMPK); they can also regulate the nuclear transcription factor kappa-B (NF-kB), leading to changes in inflammation production. Selenoproteins are also necessary for the correct synthesis of insulin and thyroid hormones. They are also involved in endocrine central regulation of appetite and energy homeostasis, affecting growth and development. MetS, a complex metabolic disorder, can appear during gestation and lactation in mothers, leading to energetic and metabolic changes in their offspring that, according to the metabolic programming theory, will produce cardiovascular and metabolic diseases later in life. However, there is a gap concerning Se tissue levels and selenoproteins’ implications in MetS generation, which is even greater during MetS programming. This narrative review also provides an overview of the existing evidence, based on experimental research from our laboratory, which strengthens the fact that maternal MetS leads to changes in Se tissue deposits and antioxidant selenoproteins’ expression in their offspring. These changes contribute to alterations in tissues’ oxidative damage, inflammation, energy balance, and tissue function, mainly in the heart. Se imbalance also could modulate appetite and endocrine energy balance, affecting pups’ growth and development. MetS pups present a profile similar to that of diabetes type 1, which also appeared when dams were exposed to low-Se dietary supply. Maternal Se supplementation should be taken into account if, during gestation and/or lactation periods, there are suspicions of endocrine energy imbalance in the offspring, such as MetS. It could be an interesting therapy to induce heart reprogramming. However, more studies are necessary.
Collapse
|
9
|
Affiliation(s)
- Vishal D Naik
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Shannon Washburn
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jayanth Ramadoss
- J. Ramadoss, Department of Obstetrics & Gynecology and Department of Physiology, 275 E Hancock St, C.S. Mott Center for Human Growth and Development, Rm 195, School of Medicine, Wayne State University, Detroit, MI 48201, USA. E-mail:
| |
Collapse
|
10
|
Fiore M, Petrella C, Coriale G, Rosso P, Fico E, Ralli M, Greco A, De Vincentiis M, Minni A, Polimeni A, Vitali M, Messina MP, Ferraguti G, Tarani F, de Persis S, Ceccanti M, Tarani L. Markers of Neuroinflammation in the Serum of Prepubertal Children with Fetal Alcohol Spectrum Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:854-868. [PMID: 34852752 DOI: 10.2174/1871527320666211201154839] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fetal Alcohol Spectrum Disorders (FASD) are the manifestation of the damage caused by alcohol consumption during pregnancy. Children with Fetal Alcohol Syndrome (FAS), the extreme FASD manifestation, show both facial dysmorphology and mental retardation. Alcohol consumed during gestational age prejudices brain development by reducing, among others, the synthesis and release of neurotrophic factors and neuroinflammatory markers. Alcohol drinking also induces oxidative stress. HYPOTHESIS/OBJECTIVE The present study aimed to investigate the potential association between neurotrophins, neuroinflammation, and oxidative stress in 12 prepubertal male and female FASD children diagnosed as FAS or partial FAS (pFAS). METHODS Accordingly, we analyzed, in the serum, the level of BDNF and NGF and the oxidative stress, as Free Oxygen Radicals Test (FORT) and Free Oxygen Radicals Defense (FORD). Moreover, serum levels of inflammatory mediators (IL-1α, IL-2, IL-6, IL-10, IL-12, MCP-1, TGF-β, and TNF-α) involved in neuroinflammatory and oxidative processes have been investigated. RESULTS We demonstrated low serum levels of NGF and BDNF in pre-pubertal FASD children with respect to healthy controls. These changes were associated with higher serum presence of TNF- α and IL-1α. Quite interestingly, an elevation in the FORD was also found despite normal FORT levels. Moreover, we found a potentiation of IL-1α, IL-2, IL-10, and IL-1α1 in the analyzed female compared to male children. CONCLUSION The present investigation shows an imbalance in the peripheral neuroimmune pathways that could be used in children as early biomarkers of the deficits observed in FASD.
Collapse
Affiliation(s)
- Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Giovanna Coriale
- Centro Riferimento Alcologico Regione Lazio, ASL Roma 1, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | | | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Italy
| | | | | | | | - Francesca Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, Italy
| | | | - Mauro Ceccanti
- SITAC, Societa' Italiana per il Trattamento dell'Alcolismo, Roma Italy SIFASD, Società Italiana Sindrome Feto-Alcolica, Roma, Italy
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, Italy
| |
Collapse
|
11
|
Goncharova PS, Davydova TK, Popova TE, Novitsky MA, Petrova MM, Gavrilyuk OA, Al-Zamil M, Zhukova NG, Nasyrova RF, Shnayder NA. Nutrient Effects on Motor Neurons and the Risk of Amyotrophic Lateral Sclerosis. Nutrients 2021; 13:3804. [PMID: 34836059 PMCID: PMC8622539 DOI: 10.3390/nu13113804] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 01/16/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable chronic progressive neurodegenerative disease with the progressive degeneration of motor neurons in the motor cortex and lower motor neurons in the spinal cord and the brain stem. The etiology and pathogenesis of ALS are being actively studied, but there is still no single concept. The study of ALS risk factors can help to understand the mechanism of this disease development and, possibly, slow down the rate of its progression in patients and also reduce the risk of its development in people with a predisposition toward familial ALS. The interest of researchers and clinicians in the protective role of nutrients in the development of ALS has been increasing in recent years. However, the role of some of them is not well-understood or disputed. The objective of this review is to analyze studies on the role of nutrients as environmental factors affecting the risk of developing ALS and the rate of motor neuron degeneration progression. METHODS We searched the PubMed, Springer, Clinical keys, Google Scholar, and E-Library databases for publications using keywords and their combinations. We analyzed all the available studies published in 2010-2020. DISCUSSION We analyzed 39 studies, including randomized clinical trials, clinical cases, and meta-analyses, involving ALS patients and studies on animal models of ALS. This review demonstrated that the following vitamins are the most significant protectors of ALS development: vitamin B12, vitamin E > vitamin C > vitamin B1, vitamin B9 > vitamin D > vitamin B2, vitamin B6 > vitamin A, and vitamin B7. In addition, this review indicates that the role of foods with a high content of cholesterol, polyunsaturated fatty acids, urates, and purines plays a big part in ALS development. CONCLUSION The inclusion of vitamins and a ketogenic diet in disease-modifying ALS therapy can reduce the progression rate of motor neuron degeneration and slow the rate of disease progression, but the approach to nutrient selection must be personalized. The roles of vitamins C, D, and B7 as ALS protectors need further study.
Collapse
Affiliation(s)
- Polina S. Goncharova
- Center of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia; (P.S.G.); (M.A.N.)
| | - Tatiana K. Davydova
- Center of Neurogenerative Disorders, Yakut Science Centre of Complex Medical Problems, 677000 Yakutsk, Russia; (T.K.D.); (T.E.P.)
| | - Tatiana E. Popova
- Center of Neurogenerative Disorders, Yakut Science Centre of Complex Medical Problems, 677000 Yakutsk, Russia; (T.K.D.); (T.E.P.)
| | - Maxim A. Novitsky
- Center of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia; (P.S.G.); (M.A.N.)
| | - Marina M. Petrova
- Center for Collective Using “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (O.A.G.)
| | - Oksana A. Gavrilyuk
- Center for Collective Using “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (O.A.G.)
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Natalia G. Zhukova
- Department of Neurology and Neurosurgery, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Regina F. Nasyrova
- Center of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia; (P.S.G.); (M.A.N.)
| | - Natalia A. Shnayder
- Center of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint-Petersburg, Russia; (P.S.G.); (M.A.N.)
- Center for Collective Using “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (O.A.G.)
| |
Collapse
|
12
|
Ojeda ML, Nogales F, Romero-Herrera I, Carreras O. Fetal Programming Is Deeply Related to Maternal Selenium Status and Oxidative Balance; Experimental Offspring Health Repercussions. Nutrients 2021; 13:nu13062085. [PMID: 34207090 PMCID: PMC8233903 DOI: 10.3390/nu13062085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nutrients consumed by mothers during pregnancy and lactation can exert permanent effects upon infant developing tissues, which could represent an important risk factor for diseases during adulthood. One of the important nutrients that contributes to regulating the cell cycle and tissue development and functionality is the trace element selenium (Se). Maternal Se requirements increase during gestation and lactation. Se performs its biological action by forming part of 25 selenoproteins, most of which have antioxidant properties, such as glutathione peroxidases (GPxs) and selenoprotein P (SELENOP). These are also related to endocrine regulation, appetite, growth and energy homeostasis. In experimental studies, it has been found that low dietary maternal Se supply leads to an important oxidative disruption in dams and in their progeny. This oxidative stress deeply affects gestational parameters, and leads to intrauterine growth retardation and abnormal development of tissues, which is related to endocrine metabolic imbalance. Childhood pathologies related to oxidative stress during pregnancy and/or lactation, leading to metabolic programing disorders like fetal alcohol spectrum disorders (FASD), have been associated with a low maternal Se status and intrauterine growth retardation. In this context, Se supplementation therapy to alcoholic dams avoids growth retardation, hepatic oxidation and improves gestational and breastfeeding parameters in FASD pups. This review is focused on the important role that Se plays during intrauterine and breastfeeding development, in order to highlight it as a marker and/or a nutritional strategy to avoid diverse fetal programming disorders related to oxidative stress.
Collapse
|
13
|
Zhang J, Cai D, Yang M, Hao Y, Zhu Y, Chen Z, Aziz T, Sarwar A, Yang Z. Screening of folate-producing lactic acid bacteria and modulatory effects of folate-biofortified yogurt on gut dysbacteriosis of folate-deficient rats. Food Funct 2021; 11:6308-6318. [PMID: 32602881 DOI: 10.1039/d0fo00480d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Folate deficiency is accompanied by gut dysbacteriosis. To understand dietary intervention in folate deficiency, a folate-deficient rat model was used to evaluate the modulatory effects of folate-producing lactic acid bacteria (LAB) and biofortified yogurt on gut dysbacteriosis. The high folate-producing strain was screened from 12 LABs, and its variant, namely Lactobacillus plantarum GSLP-7 V, with folate productivity in yogurt at 3.72 μg mL-1, was obtained by stressing with 5.0 mg L-1 methotrexate and 100.00 mg L-1 Ca2+. To our knowledge, this is the highest folate productivity in yogurt by LAB strains ever reported. To further examine the folate supplement effect in vivo, a folate-deficient rat model was established and fed a folate-free diet for 8 weeks. Also, the effects of L. plantrum GSLP-7 V, yogurt fermented with L. plantrum GSLP-7 V, plain yogurt, and chemical folic acid on folate deficiency and gut dysbacteriosis were examined. Analysis of the change in gut microbiota showed that the gut dysbacteriosis was significantly correlated with folate deficiency. Administration of L. plantrum GSLP-7 V and its fermented yogurt for 10 days restored the disrupted gut microbiota and recovered the serum folate and homocysteine to normal levels, while chemical folic acid worsened the gut dysbacteriosis. Chemical folic acid only enriched Akkermansia, while L. plantrum GSLP-7 V and its fermented yogurt modulated the gut microbiota comprehensively through 7 and 10 key genera, respectively. This study confirmed the effectiveness of dietary intervention with folate-biofortified yogurt through modulating gut microbiota, suggesting the potential of the folate-producing LAB as an agent for the treatment of folate-deficiency related diseases.
Collapse
Affiliation(s)
- Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Dongyan Cai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Ming Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Yijiang Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Yuanhua Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Zexuan Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Tariq Aziz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Abid Sarwar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
14
|
Cai J, Zang X, Wu Z, Liu J, Wang D. Altered protein S-glutathionylation depicts redox imbalance triggered by transition metal oxide nanoparticles in a breastfeeding system. NANOIMPACT 2021; 22:100305. [PMID: 35559962 DOI: 10.1016/j.impact.2021.100305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/25/2021] [Accepted: 02/19/2021] [Indexed: 06/15/2023]
Abstract
Nanosafety has become a public concern following nanotechnology development. By now, attention has seldom been paid to breastfeeding system, which is constructed by mammary physiological structure and derived substances (endogenous or exogenous), cells, tissues, organs, and individuals (mother and child), connecting environment and organism, and spans across mother-child dyad. Thus, breastfeeding system is a center of nutrients transport and a unique window of toxic susceptibility in the mother-child dyad. We applied metabolomics combined with redox proteomics to depict how nanoparticles cause metabolic burden via their spontaneous redox cycling in lactating mammary glands. Two widely used nanoparticles [titanium dioxide (nTiO2) and zinc oxide (nZnO)] were exposed to lactating mice via intranasal administration. Biodistribution and biopersistence of nTiO2 and nZnO in mammary glands destroyed its structure, reflective of significantly reduced claudin-3 protein level by 32.1% (P < 0.01) and 47.8% (P < 0.01), and significantly increased apoptosis index by 85.7 (P < 0.01) and 100.3 (P < 0.01) fold change, respectively. Airway exposure of nTiO2 trended to reduced milk production by 22.7% (P = 0.06), while nZnO significantly reduced milk production by 33.0% (P < 0.01). Metabolomics analysis revealed a metabolic shift by nTiO2 or nZnO, such as increased glycolysis (nTiO2: fold enrichment = 3.31, P < 0.05; nZnO: fold enrichment = 3.68, P < 0.05), glutathione metabolism (nTiO2: fold enrichment = 5.57, P < 0.01; nZnO: fold enrichment = 4.43, P < 0.05), and fatty acid biosynthesis (nTiO2: fold enrichment = 3.52, P < 0.05; nZnO: fold enrichment = 3.51, P < 0.05) for tissue repair at expense of lower milk fat synthesis (35.7% reduction by nTiO2; 51.8% reduction by nZnO), and finally led to oxidative stress of mammary glands. The increased GSSG/GSH ratio (57.5% increase by nTiO2; 105% increase by nZnO) with nanoparticle exposure confirmed an alteration in the redox state and a metabolic shift in mammary glands. Redox proteomics showed that nanoparticles induced S-glutathionylation (SSG) modification at Cys sites of proteins in a nanoparticle type-dependent manner. The nTiO2 induced more protein SSG modification sites (nTiO2: 21; nZnO:16), whereas nZnO induced fewer protein SSG modification sites but at deeper SSG levels (26.6% higher in average of nZnO than that of nTiO2). In detail, SSG modification by nTiO2 was characterized by Ltf at Cys423 (25.3% increase), and Trf at Cys386;395;583 (42.3%, 42.3%, 22.8% increase) compared with control group. While, SSG modification by nZnO was characterized by Trfc at Cys365 (71.3% increase) and Fasn at Cys1010 (41.0% increase). The discovery of SSG-modified proteins under airway nanoparticle exposure further supplemented the oxidative stress index and mammary injury index, and deciphered precise mechanisms of nanotoxicity into a molecular level. The unique quantitative site-specific redox proteomics and metabolomics can serve as a new technique to identify nanotoxicity and provide deep insights into nanoparticle-triggered oxidative stress, contributing to a healthy breastfeeding environment.
Collapse
Affiliation(s)
- Jie Cai
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | - Xinwei Zang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | - Zezhong Wu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China
| | - Jianxin Liu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| | - Diming Wang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310029, PR China.
| |
Collapse
|
15
|
Feltham BA, Louis XL, Eskin MNA, Suh M. Docosahexaenoic Acid: Outlining the Therapeutic Nutrient Potential to Combat the Prenatal Alcohol-Induced Insults on Brain Development. Adv Nutr 2020; 11:724-735. [PMID: 31989167 PMCID: PMC7231602 DOI: 10.1093/advances/nmz135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 01/20/2023] Open
Abstract
Brain development is markedly affected by prenatal alcohol exposure, leading to cognitive and behavioral problems in the children. Protecting neuronal damage from prenatal alcohol could improve neural connections and functioning of the brain. DHA, a n-3 (ω-3) long-chain PUFA, is involved in the development of neurons. Insufficient concentrations of DHA impair neuronal development and plasticity of synaptic junctions and affect neurotransmitter concentrations in the brain. Alcohol consumption during pregnancy decreases the maternal DHA status and reduces the placental transfer of DHA to the fetus, resulting in less DHA being available for brain development. It is important to know whether DHA could induce beneficial effects on various physiological functions that promote neuronal development. This review will discuss the current evidence for the beneficial role of DHA in protecting against neuronal damage and its potential in mitigating the teratogenic effects of alcohol.
Collapse
Affiliation(s)
- Bradley A Feltham
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Xavier L Louis
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Michael N A Eskin
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Sharma J, Krupenko SA. Folate pathways mediating the effects of ethanol in tumorigenesis. Chem Biol Interact 2020; 324:109091. [PMID: 32283069 DOI: 10.1016/j.cbi.2020.109091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
Folate and alcohol are dietary factors affecting the risk of cancer development in humans. The interaction between folate status and alcohol consumption in carcinogenesis involves multiple mechanisms. Alcoholism is typically associated with folate deficiency due to reduced dietary folate intake. Heavy alcohol consumption also decreases folate absorption, enhances urinary folate excretion and inhibits enzymes pivotal for one-carbon metabolism. While folate metabolism is involved in several key biochemical pathways, aberrant DNA methylation, due to the deficiency of methyl donors, is considered as a common downstream target of the folate-mediated effects of ethanol. The negative effects of low intakes of nutrients that provide dietary methyl groups, with high intakes of alcohol are additive in general. For example, low methionine, low-folate diets coupled with alcohol consumption could increase the risk for colorectal cancer in men. To counteract the negative effects of alcohol consumption, increased intake of nutrients, such as folate, providing dietary methyl groups is generally recommended. Here mechanisms involving dietary folate and folate metabolism in cancer disease, as well as links between these mechanisms and alcohol effects, are discussed. These mechanisms include direct effects on folate pathways and indirect mediation by oxidative stress, hypoxia, and microRNAs.
Collapse
Affiliation(s)
- Jaspreet Sharma
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA
| | - Sergey A Krupenko
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA; Department of Nutrition, University of North Carolina, Chapel Hill, USA.
| |
Collapse
|
17
|
Oxidative stress: Normal pregnancy versus preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165354. [DOI: 10.1016/j.bbadis.2018.12.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 02/03/2023]
|
18
|
Tu HC, Lin MY, Lin CY, Hsiao TH, Wen ZH, Chen BH, Fu TF. Supplementation with 5-formyltetrahydrofolate alleviates ultraviolet B-inflicted oxidative damage in folate-deficient zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109380. [PMID: 31279279 DOI: 10.1016/j.ecoenv.2019.109380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
Ultraviolet (UV) is an omnipresent environmental carcinogen transmitted by sunlight. Excessive UV irradiation has been correlated to an increased risk of skin cancers. UVB, the most mutagenic component among the three UV constituents, causes damage mainly through inducing DNA damage and oxidative stress. Therefore, strategies or nutrients that strengthen an individual's resistance to UV-inflicted harmful effects shall be beneficial. Folate is a water-soluble B vitamin essential for nucleotides biosynthesis, and also a strong biological antioxidant, hence a micronutrient with potential of modulating individual's vulnerability to UV exposure. In this study, we investigated the impact of folate status on UV sensitivity and the protective activity of folate supplementation using a zebrafish model. Elevated reactive oxygen species (ROS) level and morphological injury were observed in the larvae exposed to UVB, which were readily rescued by supplementing with folic acid, 5-formyltetrahydrofolate (5-CHO-THF) and N-acetyl-L-cysteine (NAC). The UVB-inflicted abnormalities and mortality were worsened in Tg(hsp:EGFP-γGH) larvae displaying folate deficiency. Intriguingly, only supplementation with 5-CHO-THF, as opposed to folic acid, offered significant and consistent protection against UVB-inflicted oxidative damage in the folate-deficient larvae. We concluded that the intrinsic folate status correlates with the vulnerability to UVB-induced damage in zebrafish larvae. In addition, 5-CHO-THF surpassed both folic acid and NAC in preventing UVB-inflicted oxidative stress and injury in our current experimental zebrafish model.
Collapse
Affiliation(s)
- Hung-Chi Tu
- The Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Meng-Yun Lin
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Chia-Yang Lin
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Tsun-Hsien Hsiao
- The Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Centers for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Tzu-Fun Fu
- The Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, College of Medicine, Tainan, Taiwan.
| |
Collapse
|
19
|
N-Acetylcysteine prevents the decreases in cardiac collagen I/III ratio and systolic function in neonatal mice with prenatal alcohol exposure. Toxicol Lett 2019; 315:87-95. [PMID: 31425726 DOI: 10.1016/j.toxlet.2019.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022]
Abstract
Prenatal alcohol exposure (PAE) is often associated with congenital heart defects, most commonly septal, valvular, and great vessel defects. However, there have been no known studies on whether PAE affects the resulting fibroblast population after development, and whether this has any consequences in the postnatal period. Our previous study focused on the effects of PAE on the postnatal fibroblast population, which translated into changes in cardiac extracellular matrix (ECM) composition and cardiac function in the neonatal heart. Moreover, our lab has previously demonstrated that alcohol-induced fibrosis is mediated by oxidative stress mechanisms in adult rat hearts following chronic alcohol exposure. Thus, we hypothesize that PAE alters cardiac ECM composition that persists into the postnatal period, leading to cardiac dysfunction, and these effects are prevented by antioxidant treatment. To investigate these effects, pregnant mice were intraperitoneally injected with 2.9 g EtOH/kg body weight on gestation days 6.75 and 7.25. Controls were injected with vehicle saline. Randomly selected dams in both groups were then treated with 100 mg/kg body weight of the antioxidant N-acetylcysteine (NAC) immediately after EtOH or vehicle administration. Left ventricular (LV) chamber dimension and function were assessed in sedated animals on neonatal day 5 using echocardiography. Ejection fraction decreased in the PAE group. NAC treatment prevented this depression of systolic function in PAE neonates. Hearts were analyzed for expression of fibroblast activation markers. Alpha smooth muscle actin (α-SMA) increased in PAE neonatal hearts, and this increase was prevented by NAC treatment. In PAE pups, collagen I decreased, but collagen III expression increased compared to saline animals; the overall collagen I/III ratio significantly decreased. When PAE mice were treated with NAC, collagen I/III ratio did not change. Overall, our data demonstrate that prenatal alcohol exposure produces changes in collagen subtype in neonatal cardiac ECM and a decline in systolic function, and these adverse effects were prevented by NAC treatment.
Collapse
|
20
|
Sobrino P, Ojeda ML, Nogales F, Murillo ML, Carreras O. Binge drinking affects kidney function, osmotic balance, aldosterone levels, and arterial pressure in adolescent rats: the potential hypotensive effect of selenium mediated by improvements in oxidative balance. Hypertens Res 2019; 42:1495-1506. [DOI: 10.1038/s41440-019-0265-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/06/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022]
|
21
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
22
|
Yu L, Zhou J, Zhang G, Huang W, Pei L, Lv F, Zhang Y, Zhang W, Wang H. cAMP/PKA/EGR1 signaling mediates the molecular mechanism of ethanol-induced inhibition of placental 11β-HSD2 expression. Toxicol Appl Pharmacol 2018; 352:77-86. [PMID: 29802914 DOI: 10.1016/j.taap.2018.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
It is known that inhibiting 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression in the placenta can cause fetal over-exposure to maternal glucocorticoids and induce intrauterine growth restriction (IUGR); these effects ultimately increase the risk of adult chronic diseases. This study aimed to investigate the molecular mechanism of the prenatal ethanol exposure (PEE)-induced inhibition of placental 11β-HSD2 expression. Pregnant Wistar rats were intragastrically administered ethanol (4 g/kg/d) from gestational days 9 to 20. The levels of maternal and fetal serum corticosterone and placental 11β-HSD2-related gene expression were analyzed. Furthermore, we investigated the mechanism of reduced placental 11β-HSD2 expression induced by ethanol treatment (15-60 mM) in HTR-8/SVneo cells. In vivo, PEE decreased fetal body weights and increased maternal and fetal serum corticosterone and early growth response factor 1 (EGR1) expression levels. Moreover, histone modification changes (decreased acetylation and increased di-methylation of H3K9) to the HSD11B2 promoter and lower 11β-HSD2 expression levels were observed. In vitro, ethanol decreased cAMP/PKA signaling and 11β-HSD2 expression and increased EGR1 expression in a concentration-dependent manner. A cAMP agonist and EGR1 siRNA reversed the ethanol-induced inhibition of 11β-HSD2 expression. Together, PEE reduced placental 11β-HSD2 expression, and the underlying mechanism is associated with ethanol-induced histone modification changes to the HSD11B2 promoter through the cAMP/PKA/EGR1 pathway.
Collapse
Affiliation(s)
- Luting Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jin Zhou
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Guohui Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Huang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Linguo Pei
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Feng Lv
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yuanzhen Zhang
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
23
|
Rodríguez-Rodríguez P, Ramiro-Cortijo D, Reyes-Hernández CG, López de Pablo AL, González MC, Arribas SM. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease. Front Physiol 2018; 9:602. [PMID: 29875698 PMCID: PMC5974054 DOI: 10.3389/fphys.2018.00602] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria.
Collapse
Affiliation(s)
| | - David Ramiro-Cortijo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Angel L López de Pablo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Carmen González
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia M Arribas
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Li D, Deng M, Yu Z, Liu W, Zhou G, Li W, Wang X, Yang DP, Zhang W. Biocompatible and Stable GO-Coated Fe3O4 Nanocomposite: A Robust Drug Delivery Carrier for Simultaneous Tumor MR Imaging and Targeted Therapy. ACS Biomater Sci Eng 2018; 4:2143-2154. [PMID: 33435038 DOI: 10.1021/acsbiomaterials.8b00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong Li
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Mingwu Deng
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Ziyou Yu
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Wei Liu
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Guangdong Zhou
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Wei Li
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Xiansong Wang
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| | - Da-Peng Yang
- Fujian Province Key Laboratory for Preparation and Function, Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. China
| | - Wenjie Zhang
- Department of
Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory
of Tissue Engineering, National Tissue Engineering Center of China, Shanghai 200011, China
| |
Collapse
|