1
|
Jeong S, Han JW, Kim Y, Bak E, Ma KH, Lee JH, Jung JT, Park I. Complete chloroplast genomes of three Polygala species and indel marker development for identification of authentic polygalae radix (Polygala tenuifolia). Genes Genomics 2025; 47:99-112. [PMID: 39543069 DOI: 10.1007/s13258-024-01573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND In Korea, only Polygala tenuifolia is registered as Polygalae Radix in the pharmacopoeia, while in China, both P. tenuifolia and P. sibirica are used equally. Accurate identification of herbal medicines is crucial for their safety and efficacy, but commercial products are typically sold in dried form, making morphological distinction difficult. Therefore, a quick and accurate method to distinguish P. tenuifolia is necessary for proper utilization of medicinal herb. OBJECTIVE We aimed to identify specific molecular markers for P. tenuifolia to avoid confusion regarding its pharmacological efficacy and to evaluate the classification of Polygala using plastid phylogenetic data. METHODS We analyzed the sequences of three species distributed in Korea, P. tenuifolia, P. japonica, and P. sibirica, and assembled their chloroplast genome sequences. Comparative analysis revealed regions of local divergence, and six molecular markers were developed from these hotspots. Additionally, a phylogenetic tree was constructed to determine the phylogenetic positions of the three Polygala species. RESULTS The marker successfully identified the three Polygala species, and all commercial products and breeding lines tested were confirmed to be P. tenuifolia and recognized as authentic. Phylogenetic analysis revealed that P. tenuifolia forms a distinct cluster from P. sibirica and P. japonica. CONCLUSIONS We determined the chloroplast genomes of the three Polygala species and performed phylogenetic tree analysis and marker development. Indel markers were developed to identify the critical herbal species, P. tenuifolia. This comprehensive study of the Polygala chloroplast genome provides useful information for P. tenuifolia identification.
Collapse
Affiliation(s)
- Sumin Jeong
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, South Korea
| | - Jong Won Han
- Research Management Division, Rural Development Administration, Jeonju, 54875, South Korea
| | - Yeseul Kim
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, South Korea
| | - Eunjeong Bak
- Department of Horticulture, Kongju National University, Yesan, 32439, South Korea
| | - Kyung Ho Ma
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, 27709, South Korea
| | - Jeong Hoon Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, 27709, South Korea
| | - Jin Tae Jung
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, 27709, South Korea
| | - Inkyu Park
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, South Korea.
| |
Collapse
|
2
|
Zhang Y, Song M, Tang D, Li X, Xu N, Li H, Qu L, Wang Y, Yin C, Zhang L, Zhang Z. Comprehensive comparative analysis and development of molecular markers for Lasianthus species based on complete chloroplast genome sequences. BMC PLANT BIOLOGY 2024; 24:867. [PMID: 39285331 PMCID: PMC11406864 DOI: 10.1186/s12870-024-05383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/05/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Lasianthus species are widely used in traditional Chinese folk medicine with high medicinal value. However, source materials and herbarium specimens are often misidentified due to morphological characteristics and commonly used DNA barcode fragments are not sufficient for accurately identifying Lasianthus species. To improve the molecular methods for distinguishing among Lasianthus species, we report the complete chloroplast (CP) genomes of Lasianthus attenuatus, Lasianthus henryi, Lasianthus hookeri, Lasianthus sikkimensis, obtained via high-throughput Illumina sequencing. RESULTS These showed CP genomes size of 160164-160246 bp and a typical quadripartite structure, including a large single-copy region (86675-86848 bp), a small single-copy region (17177-17326 bp), and a pair of inverted repeats (28089-28135 bp). As a whole, the gene order, GC content and IR/SC boundary structure were remarkably similar among of the four Lasianthus CP genomes, the partial gene length and IR, LSC and SSC regions length are still different. The average GC content of the CP genomes was 36.71-36.75%, and a total of 129 genes were detected, including 83 different protein-coding genes, 8 different rRNA genes and 38 different tRNA genes. Furthermore, we compared our 4 complete CP genomes data with publicly available CP genome data from six other Lasianthus species, and we initially screened eleven highly variable region fragments were initially screened. We then evaluated the identification efficiency of eleven highly variable region fragments and 5 regular barcode fragments. Ultimately, we found that the optimal combination fragment' ITS2 + psaI-ycf4' could authenticated the Lasianthus species well. Additionally, the results of genome comparison of Rubiaceae species showed that the coding region is more conservative than the non-coding region, and the ycf1 gene shows the most significant variation. Finally, 49 species of CP genome sequences belonging to 16 genera of the Rubiaceae family were used to construct phylogenetic trees. CONCLUSIONS Our research is the first to analyze the chloroplast genomes of four species of Lasianthus in detail and we ultimately determined that the combination fragment' ITS2 + psaI-ycf4' is the optimal barcode combination for identifying the genus of Lasianthus. Meanwhile, we gathered the available CP genome sequences from the Rubiaceae and used them to construct the most comprehensive phylogenetic tree for the Rubiaceae family. These investigations provide an important reference point for further studies in the species identification, genetic diversity, and phylogenetic analyses of Rubiaceae species.
Collapse
Affiliation(s)
- Yue Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Meifang Song
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Deying Tang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Xianjing Li
- College of Pharmacy, Dali University, Dali, 671000, China
| | - Niaojiao Xu
- College of Pharmacy, Dali University, Dali, 671000, China
| | - Haitao Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Lu Qu
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Yunqiang Wang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Cuiyun Yin
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Lixia Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Zhonglian Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China.
| |
Collapse
|
3
|
Yang L, Zhang S, Wu C, Jiang X, Deng M. Plastome characterization and its phylogenetic implications on Lithocarpus (Fagaceae). BMC PLANT BIOLOGY 2024; 24:1277. [PMID: 39736525 DOI: 10.1186/s12870-024-05874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND The genus Lithocarpus is a species-rich dominant woody lineage in East Asian evergreen broad-leaved forests. Despite its ecological and economic significance, the plastome structure and evolutionary history of the genus remain poorly understood. In this study, we comprehensively analyzed the 34 plastomes representing 33 Lithocarpus species. Of which, 21 were newly assembled. The plastome-based phylogenomic tree was reconstructed to reveal the maternal evolutionary patterns of the genus. RESULTS The Lithocarpus plastomes exhibit a typical quadripartite structure, ranging in length from 161,010 to 161,476 bp, and containing 131 genes, including 86 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. Remarkably, the infA gene was identified as a pseudogene in 17 species. Significant variability was observed in simple sequence repeats (SSRs) as well as in the boundary regions between the two single-copy regions and the inverted repeat region (SC/IR) across the plastomes. Additionally, four genes (accD, atpF, rpl32, and rps8) were found to be under positive selection. The monophyletic status of Lithocarpus was strongly supported by plastome-based phylogeny; however, the phylogenetic tree topology showed a significant difference from that obtained by the nuclear genome-based phylogeny. CONCLUSIONS The plastome of Fagaceae is generally conserved. Nevertheless, genes related to metabolism, photosynthesis, and energy were under strong positive selection in Lithocarpus, likely driven by environmental pressures and local adaptation. The plastome-based phylogeny confirmed the monophyletic status of Lithocarpus and revealed a phylogeographic pattern indicating limited seed-mediated gene flow in the ancestral lineage. The prevalence of cytonuclear discordance in Lithocarpus and other Fagaceae genera suggests that ancient introgression, incomplete lineage sorting, and asymmetrical seed- and pollen-mediated geneflow might contribute to this discordance. Future studies are essential to test these hypotheses and further elucidate the divergence patterns of this unique Asian evergreen lineage.
Collapse
Affiliation(s)
- Lifang Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shoujun Zhang
- Center for Horticulture and Conservation, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chunya Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Xiaolong Jiang
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China.
| | - Min Deng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
- The Key Laboratory of Rare and Endangered Forest Plants of National Forestry and Grassland Administration, The Key Laboratory for Silviculture and Forest Resources Development of Yunnan Province, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China.
| |
Collapse
|
4
|
Chu Z, Wang Y, Yang J, Yisilam G, Li J, Tian X. The complete chloroplast genomes and comparative study of the two tung trees of Vernicia (Euphorbiaceae). BMC Genomics 2024; 25:1246. [PMID: 39722027 DOI: 10.1186/s12864-024-11155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Vernicia montana and V. fordii are economically important woody oil species in the Euphorbiaceae that have great industrial oil and ornamental greening properties, however, the wild resources of Vernicia trees have been reduced because of their habitat destruction. Considering the diverse economic and ecological importance of Vernicia species, it is important to collect more molecular data to determine the genetic differences between V. montana and V. fordii. RESULTS We sequenced, assembled, and annotated the complete chloroplast (CP) genome of two tung trees based on the genome skimming approach. The whole CP genomes of V. montana and V. fordii were 163,518 bp and 161,495 bp in length, both including a pair of inverted repeats separated by a large single-copy and a small single-copy region. We detected a total number of 311 tandem repeats, 100 dispersed repeats, and 255 simple repeats from V. montana and V. fordii CP genomes. The mean value of nucleotide diversity between the two species was 0.0122, and the average Ka/Ks ratio across all coding genes was 0.3483. Comparative chloroplast genome analysis showed that the coding regions were more conserved than the non-coding regions. The phylogenetic relationships yielded by the complete genome sequences showed that V. montana was closely related to V. fordii and is considered as a sister group. CONCLUSIONS We sequenced, assembled, annotated, and analyzed the CP genome of two tung trees, which will be useful in investigating the conservation genetics and potential breeding applications of this oil shrub.
Collapse
Affiliation(s)
- Zhenzhou Chu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Yuwei Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jianjun Yang
- College of Ecology and Environmental Science, Xinjiang University, Urumqi, 830017, China
| | - Gulbar Yisilam
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jialei Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Xinmin Tian
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, 541006, China.
- Guangxi University Engineering Research Center of Bioinformation and Genetic Improvement of Specialty Crops, Guangxi Normal University, Guilin, 541006, China.
| |
Collapse
|
5
|
Wu Y, Zhang K, Zhang B, Li Y, Liu G, Liang Z, Zhang J. Characterization of the complete mitochondrial genome of the rice bean (Vigna umbellata). BMC PLANT BIOLOGY 2024; 24:1239. [PMID: 39716065 DOI: 10.1186/s12870-024-05963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Rice bean (Vigna umbellata), an underrated legume crop, demonstrates strong adaptability to poor soil fertility and has significant potential to enhance global food security. It is valuable both as a vegetable and fodder crop due to its high protein content, essential fatty acids, and micronutrients. Despite the sequencing of a high-quality genome of rice bean, its mitochondrial genome (mitogenome) sequence has not yet been reported. RESULTS For the first time, the rice bean mitogenome was assembled and annotated using PacBio HiFi sequencing and Geseq software. The mitogenome is a circular molecule with a length of 404,493 bp, containing 32 protein-coding genes, 17 tRNAs, and 3 rRNAs. Codon usage and sequence repeats were also determined. Six gene migration events from the chloroplast to the mitogenome were detected in rice bean. A phylogenetic analysis, including the rice bean mitogenome and 25 other taxa (23 of which are Fabales species), clarified the evolutionary and taxonomic status of rice bean. Additionally, a collinearity analysis of seven Fabales mitogenomes revealed high structural variability. In total, 473 RNA editing sites in protein-coding genes were identified. CONCLUSIONS This study presents the first sequencing, assembly, annotation, and analysis of the rice bean mitogenome, providing valuable background information for understanding the evolution of this species. These findings lay the groundwork for future genetic studies and molecular breeding efforts aimed at improving rice bean.
Collapse
Affiliation(s)
- Yuqing Wu
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Kai Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Boyang Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yuqian Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Zhen Liang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Jiewei Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
6
|
Almerekova S, Yermagambetova M, Ivashchenko A, Abugalieva S, Turuspekov Y. Assessment of Complete Plastid Genome Sequences of Tulipa alberti Regel and Tulipa greigii Regel Species from Kazakhstan. Genes (Basel) 2024; 15:1447. [PMID: 39596647 PMCID: PMC11593697 DOI: 10.3390/genes15111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Tulipa species are economically, culturally, scientifically, and ecologically important. Tulips present taxonomic complexities that cannot be adequately resolved by examining their morphological characteristics alone or by relying on a limited selection of genetic markers. METHODS In the present study, we assessed the complete plastid sequences of Tulipa alberti Regel and Tulipa greigii Regel collected from Kazakhstan. Additionally, 14 previously published plastomes were obtained from GenBank for comparison and phylogenetic analysis. RESULTS The plastid genome sizes of T. alberti and T. greigii were 152,359 bp and 152,242 bp, respectively. In the plastid genomes of T. alberti and T. greigii, 136 genes were annotated, 114 of which were unique. These unique genes comprised eighty protein-coding, thirty transfer RNA, and four ribosomal RNA genes. Additionally, 415 simple sequence repeats were identified, comprising 107 tandem, 40 forward, 49 palindromic, 8 reverse, and 1 complementary repeat. Notably, the region containing ycf1 exhibited high variability and may serve as an informative DNA barcode for this genus. CONCLUSION Phylogenetic analysis showed strong support for the relationships among Tulipa species, indicating the utility of plastid genome data for further taxonomic studies within the genus.
Collapse
Affiliation(s)
- Shyryn Almerekova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (S.A.)
| | - Moldir Yermagambetova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (S.A.)
| | | | - Saule Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (S.A.)
| | - Yerlan Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (S.A.); (M.Y.); (S.A.)
| |
Collapse
|
7
|
Duan Y, Wang Y, Ding W, Wang C, Meng L, Meng J, Chen N, Liu Y, Xing S. Comparative and phylogenetic analysis of the chloroplast genomes of four commonly used medicinal cultivars of Chrysanthemums morifolium. BMC PLANT BIOLOGY 2024; 24:992. [PMID: 39434004 PMCID: PMC11495106 DOI: 10.1186/s12870-024-05679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
'Boju' and 'Huaiju' are cultivars of the Chrysanthemum (Chrysanthemum morifolium Ramat.) in the family Asteraceae, valued for their medicinal, tea, and ornamental properties, and valued by individuals. However, the yield and quality of medicinal chrysanthemums are limited by the characteristics of the germplasm resources, including the identification at the varieties and cultivation levels. Currently, research characterizing the chloroplast genomes of medicinal Chrysanthemum flowers is relatively limited. This study conducted chloroplast whole-genome sequencing on two cultivars of Chrysanthemum, 'Boju' and 'Huaiju', and compared them with the previously published chloroplast genomes of 'Hangbaiju' and 'Gongju'. The study analyzed the chloroplast genome structures of these four medicinal Chrysanthemums, identifying mutation hotspots and clarifying their phylogenetic relationships. The chloroplast genome sizes of four medicinal Chrysanthemum cultivation products ranged from 151,057 to 151,109 bp, with GC content ranging from 37.45% to 37.76%. A total of 134 genes were identified, including 89 protein-coding genes, 37 ribosomal RNA genes, and 8 transfer RNA genes. Comparative genomic analysis revealed 159 large repeat sequences, 276 simple sequence repeats, 1 gene, and 8 intergenic regions identified as highly variable regions. Nucleotide diversity (Pi) values were high (≥ 0.004) for the petN-psbM, trnR-UCU-trnT-GGU, trnT-GGU-psbD, ndhC-trnV-UCA, ycf1, ndhI-ndhG, trnL-UGA-rpl32, rpl32-ndhF, and ndhF-ycf1 fragments, aiding in variety identification. Phylogenetic analysis revealed consistent results between maximum likelihood and Bayesian inference trees, showing that the four medicinal Chrysanthemum cultivars, along with their wild counterparts and related species, evolved as a monophyletic group, forming a sister clade to Artemisia and Ajania. Among the six Chrysanthemum species, the wild Chrysanthemum diverged first (Posterior probability = 1, bootstrap = 1,000), followed by Ajania, while C. indicum and C. morifolium clustered together (Bootstrap = 100), indicating their closest genetic relationship. The chloroplast whole-genome data and characteristic information provided in this study can be used for variety identification, genetic conservation, and phylogenetic analysis within the family Asteraceae.
Collapse
Affiliation(s)
- Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Chun Wang
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Ling Meng
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Jie Meng
- Jiuzhou Fangyuan Pharmaceutical Co., Ltd., Anhui Modern Industry Research Institute of Traditional Chinese Medicine, Bozhou, 236821, China
| | - Na Chen
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800, China
| | - Yaowu Liu
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, 236800, China.
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038, China.
| |
Collapse
|
8
|
Wen J, Wu BC, Li HM, Zhou W, Song CF. Plastome structure and phylogenetic relationships of genus Hydrocotyle (apiales): provide insights into the plastome evolution of Hydrocotyle. BMC PLANT BIOLOGY 2024; 24:778. [PMID: 39148054 PMCID: PMC11325595 DOI: 10.1186/s12870-024-05483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The genus Hydrocotyle Tourn. ex L. is a key group for further study on the evolution of Apiales, comprising around 170 species globally. Previous studies mainly focused on separate sections and provided much information about this genus, but its infrageneric relationships are still confusing. In addition, the genetic basis of its adaptive evolution remains poorly understood. To investigate the phylogeny and evolution of the genus, we selected ten representative species covering two of three diversity distribution centers and exhibiting rich morphology diversity. Comparative plastome analysis was conducted to clarify the structural character of Hydrocotyle plastomes. Positive selection analyses were implemented to assess the evolution of the genus. Phylogenetic inferences with protein-coding sequences (CDS) of Hydrocotyle and 17 related species were also performed. RESULTS Plastomes within Hydrocotyle were generally conservative in structure, gene order, and size. A total of 14 regions (rps16-trnK, trnQ-rps16, atpI-atpH, trnC-petN-psbM, ycf3-trnS, accD-psaI-ycf4, petA-psbJ, rps12-rpl20, rpl16 intron, rps3-rpl16 intron, rps9-rpl22, ndhF-rpl32, ndhA intron, and ycf1a) were recognized as hotspot regions within the genus, which suggested to be promising DNA barcodes for global phylogenetic analysis of Hydrocotyle. The ycf15 gene was suggested to be a protein-coding gene for Hydrocotyle species, and it could be used as a DNA barcode to identify Hydrocotyle. In phylogenetic analysis, three monophyletic clades (Clade I, II, III) were identified with evidence of rapid radiation speciation within Clade I. The selective pressure analysis detected that six CDS genes (ycf1b, matK, atpF, accD, rps14, and psbB) of Hydrocotyle species were under positive selection. Within the genus, the last four genes were conservative, suggesting a relation to the unique evolution of the genus in Apiales. Seven genes (atpE, matK, psbH, ycf1a, ycf1b, rpoA, and ycf2) were detected to be under some degree of positive selection in different taxa within the genus Hydrocotyle, indicating their role in the adaptive evolution of species. CONCLUSIONS Our study offers new insights into the phylogeny and adaptive evolution of Hydrocotyle. The plastome sequences could significantly enhance phylogenetic resolution and provide genomic resources and potential DNA markers useful for future studies of the genus.
Collapse
Affiliation(s)
- Jun Wen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Bao-Cheng Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hui-Min Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Wei Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Chun-Feng Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China.
| |
Collapse
|
9
|
Xie P, Wu J, Lu M, Tian T, Wang D, Luo Z, Yang D, Li L, Yang X, Liu D, Cheng H, Tan J, Yang H, Zhu D. Assembly and comparative analysis of the complete mitochondrial genome of Fritillaria ussuriensis Maxim. (Liliales: Liliaceae), an endangered medicinal plant. BMC Genomics 2024; 25:773. [PMID: 39118028 PMCID: PMC11312713 DOI: 10.1186/s12864-024-10680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Fritillaria ussuriensis is an endangered medicinal plant known for its notable therapeutic properties. Unfortunately, its population has drastically declined due to the destruction of forest habitats. Thus, effectively protecting F. ussuriensis from extinction poses a significant challenge. A profound understanding of its genetic foundation is crucial. To date, research on the complete mitochondrial genome of F. ussuriensis has not yet been reported. RESULTS The complete mitochondrial genome of F. ussuriensis was sequenced and assembled by integrating PacBio and Illumina sequencing technologies, revealing 13 circular chromosomes totaling 737,569 bp with an average GC content of 45.41%. A total of 55 genes were annotated in this mitogenome, including 2 rRNA genes, 12 tRNA genes, and 41 PCGs. The mitochondrial genome of F. ussuriensis contained 192 SSRs and 4,027 dispersed repeats. In the PCGs of F. ussuriensis mitogenome, 90.00% of the RSCU values exceeding 1 exhibited a preference for A-ended or U-ended codons. In addition, 505 RNA editing sites were predicted across these PCGs. Selective pressure analysis suggested negative selection on most PCGs to preserve mitochondrial functionality, as the notable exception of the gene nad3 showed positive selection. Comparison between the mitochondrial and chloroplast genomes of F. ussuriensis revealed 20 homologous fragments totaling 8,954 bp. Nucleotide diversity analysis revealed the variation among genes, and gene atp9 was the most notable. Despite the conservation of GC content, mitogenome sizes varied significantly among six closely related species, and colinear analysis confirmed the lack of conservation in their genomic structures. Phylogenetic analysis indicated a close relationship between F. ussuriensis and Lilium tsingtauense. CONCLUSIONS In this study, we sequenced and annotated the mitogenome of F. ussuriensis and compared it with the mitogenomes of other closely related species. In addition to genomic features and evolutionary position, this study also provides valuable genomic resources to further understand and utilize this medicinal plant.
Collapse
Affiliation(s)
- Ping Xie
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Jingru Wu
- Affiliated Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Mengyue Lu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Tongxin Tian
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Dongmei Wang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Zhiwen Luo
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Donghong Yang
- Affiliated Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Lili Li
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Xuewen Yang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Decai Liu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Haitao Cheng
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Jiaxin Tan
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Hongsheng Yang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China.
| | - Dequan Zhu
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
10
|
Song W, Shi W, Wang H, Zhang Z, Tao R, Liu J, Wang S, Engel MS, Shi C. Comparative analysis of 12 water lily plastid genomes reveals genomic divergence and evolutionary relationships in early flowering plants. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:425-441. [PMID: 39219675 PMCID: PMC11358372 DOI: 10.1007/s42995-024-00242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
The aquatic plant Nymphaea, a model genus of the early flowering plant lineage Nymphaeales and family Nymphaeaceae, has been extensively studied. However, the availability of chloroplast genome data for this genus is incomplete, and phylogenetic relationships within the order Nymphaeales remain controversial. In this study, 12 chloroplast genomes of Nymphaea were assembled and analyzed for the first time. These genomes were 158,290-160,042 bp in size and contained 113 non-repeat genes, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. We also report on codon usage, RNA editing sites, microsatellite structures, and new repetitive sequences in this genus. Comparative genomics revealed that expansion and contraction of IR regions can lead to changes in the gene numbers. Additionally, it was observed that the highly variable regions of the chloroplast genome were mainly located in intergenic regions. Furthermore, the phylogenetic tree showed the order Nymphaeales was divided into three families, and the genus Nymphaea can be divided into five (or three) subgenera, with the subgenus Nymphaea being the oldest. The divergence times of nymphaealean taxa were analyzed, with origins of the order Nymphaeales and family Nymphaeaceae being about 194 and 131 million years, respectively. The results of the phylogenetic analysis and estimated divergence times will be useful for future evolutionary studies of basal angiosperm lineages. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00242-0.
Collapse
Affiliation(s)
- Weicai Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Wenbo Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Huan Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Zirui Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Ruiqing Tao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Xishuangbanna, 666100 China
| | - Shuo Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
| | - Michael S. Engel
- American Museum of Natural History, New York, NY 10024-5192 USA
- Natural History Museum, and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045 USA
| | - Chao Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, 650204 China
| |
Collapse
|
11
|
Hu J, Yao J, Lu J, Liu W, Zhao Z, Li Y, Jiang L, Zha L. The complete chloroplast genome sequences of nine melon varieties ( Cucumis melo L.): lights into comparative analysis and phylogenetic relationships. Front Genet 2024; 15:1417266. [PMID: 39045329 PMCID: PMC11263122 DOI: 10.3389/fgene.2024.1417266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024] Open
Abstract
Melon (Cucumis melo L.) is one of the most extensively grown horticulture crops of the world. Based on the morphological characters, melon was formerly divided into two subspecies, Cucumis melo ssp. melo and C. melo ssp. agrestis. However, the present methods are still inadequate to distinguish between them. The phylogenetic analysis based on chloroplast genome sequences could provide essential evidence for the classification of melon varieties. We sequenced the chloroplast genomes of nine different melon varieties by the Illumina Hiseq and performed bioinformatic analyses including repeat element analysis, genome comparison and phylogenetic analysis. The results showed that the melon chloroplast genome has a typical quadripartite structure that was conserved across the analyzed sequences. Its length ranges between 155, 558 and 156, 569 bp, with a total GC content varying from 36.7% to 37%. We found 127-132 genes in melon chloroplast genomes, including 85-87 protein-coding regions, 34-37 tRNA and 6-8 rRNA genes. The molecular structure, gene order, content, codon usage, long repeats, and simple sequence repeats (SSRs) were mostly conserved among the nine sequenced genomes. Phylogenetic analysis showed that the chloroplast genome could clearly distinguish between C. melo ssp. melo and C. melo ssp. agrestis. This study not only provides valuable knowledge on melon chloroplasts, but also offers a theoretical basis and technical support for the genetic breeding of melons.
Collapse
Affiliation(s)
- Jianpeng Hu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jinchen Yao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jimei Lu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weiwei Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhiqiang Zhao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yaqian Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lu Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
12
|
Zhang Z, Shi X, Tian H, Qiu J, Ma H, Tan D. Complete Chloroplast Genome of Megacarpaea megalocarpa and Comparative Analysis with Related Species from Brassicaceae. Genes (Basel) 2024; 15:886. [PMID: 39062665 PMCID: PMC11276580 DOI: 10.3390/genes15070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Megacarpaea megalocarpa, a perennial herbaceous species belonging to the Brassicaceae family, has potential medicinal value. We isolated and characterized the chloroplast (cp) genome of M. megalocarpa and compared it with closely related species. The chloroplast genome displayed a typical quadripartite structure, spanning 154,877 bp, with an overall guanine-cytosine (GC) content of 36.20%. Additionally, this genome contained 129 genes, 105 simple sequence repeats (SSRs), and 48 long repeat sequences. Significantly, the ycf1 gene exhibited a high degree of polymorphism at the small single copy (SSC) region and the inverted repeat a (IRa) boundary. Despite this polymorphism, relative synonymous codon usage (RSCU) values were found to be similar across species, and no large segment rearrangements or inversions were detected. The large single copy (LSC) and SSC regions showed higher sequence variations and nucleotide polymorphisms compared to the IR region. Thirteen distinct hotspot regions were identified as potential molecular markers. Our selection pressure analysis revealed that the protein-coding gene rpl20 is subjected to different selection pressures in various species. Phylogenetic analysis positioned M. megalocarpa within the expanded lineage II of the Brassicaceae family. The estimated divergence time suggests that M. megalocarpa diverged approximately 4.97 million years ago. In summary, this study provides crucial baseline information for the molecular identification, phylogenetic relationships, conservation efforts, and utilization of wild resources in Megacarpaea.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunyan Tan
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (Z.Z.); (X.S.); (H.T.); (J.Q.); (H.M.)
| |
Collapse
|
13
|
Wang Y, Wei Q, Xue T, He S, Fang J, Zeng C. Comparative and phylogenetic analysis of the complete chloroplast genomes of 10 Artemisia selengensis resources based on high-throughput sequencing. BMC Genomics 2024; 25:561. [PMID: 38840044 PMCID: PMC11151499 DOI: 10.1186/s12864-024-10455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Artemisia selengensis, classified within the genus Artemisia of the Asteraceae family, is a perennial herb recognized for its dual utility in culinary and medicinal domains. There are few studies on the chloroplast genome of A. selengensis, and the phylogeographic classification is vague, which makes phylogenetic analysis and evolutionary studies very difficult. RESULTS The chloroplast genomes of 10 A. selengensis in this study were highly conserved in terms of gene content, gene order, and gene intron number. The genome lengths ranged from 151,148 to 151,257 bp and were typical of a quadripartite structure with a total GC content of approximately 37.5%. The chloroplast genomes of all species encode 133 genes, including 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Due to the contraction and expansion of the inverted repeats (IR), the overlap of ycf1 and ndhF genes occurred at the inverted repeats B (IRB) and short single copy sequence (SSC) boundaries. According to a codon use study, the frequent base in the chloroplast genome of A. selengensis' third codon position was A/T. The number of SSR repeats was 42-44, most of which were single nucleotide A/T repeats. Sequence alignment analysis of the chloroplast genome showed that variable regions were mainly distributed in single copy regions, nucleotide diversity values of 0 to 0.009 were calculated by sliding window analysis, 8 mutation hotspot regions were detected, and coding regions were more conserved than non-coding regions. Analysis of non-synonymous substitution (Ka) and synonymous substitution (Ks) revealed that accD, rps12, petB, and atpF genes were affected by positive selection and no genes were affected by neutral selection. Based on the findings of the phylogenetic analysis, Artemisia selengensis was sister to the genus Artemisia Chrysanthemum and formed a monophyletic group with other Artemisia genera. CONCLUSIONS In this research, the present study systematically compared the chloroplast genomic features of A. selengensis and provided important information for the study of the chloroplast genome of A. selengensis and the evolutionary relationships among Asteraceae species.
Collapse
Affiliation(s)
- Yuhang Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Qingying Wei
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Tianyuan Xue
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Sixiao He
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Jiao Fang
- School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Kim TH, Ha YH, Setoguchi H, Choi K, Kim SC, Kim HJ. First Record of Comparative Plastid Genome Analysis and Phylogenetic Relationships among Corylopsis Siebold & Zucc. (Hamamelidaceae). Genes (Basel) 2024; 15:380. [PMID: 38540439 PMCID: PMC10970243 DOI: 10.3390/genes15030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Corylopsis Siebold & Zucc. (Hamamelidaceae) is widely used as a horticultural plant and comprises approximately 25 species in East Asia. Molecular research is essential to distinguish Corylopsis species, which are morphologically similar. Molecular research has been conducted using a small number of genes but not in Corylopsis. Plastid genomes of Corylopsis species (Corylopsis gotoana, Corylopsis pauciflora, and Corylopsis sinensis) were sequenced using next-generation sequencing techniques. Repeats and nucleotide diversity that could be used as DNA markers were also investigated. A phylogenetic investigation was carried out using 79 protein-coding genes to infer the evolutionary relationships within the genus Corylopsis. By including new plastomes, the overall plastid genome structure of Corylopsis was similar. Simple sequence repeats of 73-106 SSRs were identified in the protein-coding genes of the plastid genomes, and 33-40 long repeat sequences were identified in the plastomes. The Pi value of the rpl33_rps18 region, an intergenic spacer, was the highest. Phylogenetic analysis demonstrated that Corylopsis is a monophyletic group and Loropetalum is closely related to Corylopsis. C. pauciflora, C. gotoana, and C. spicata formed a clade distributed in Japan, whereas C. sinensis, C. glandulifera, and C. velutina formed a clade that was distributed in China.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon 11186, Republic of Korea; (T.-H.K.)
| | - Young-Ho Ha
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon 11186, Republic of Korea; (T.-H.K.)
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Kyung Choi
- Division of Garden and Plant Resources, Korea National Arboretum, Pocheon 11186, Republic of Korea
| | - Sang-Chul Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon 11186, Republic of Korea; (T.-H.K.)
| | - Hyuk-Jin Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon 11186, Republic of Korea; (T.-H.K.)
| |
Collapse
|
15
|
Qin G, Li X, Qin Y, Lu L, Gao L, Guan D. Transcriptomics of Leaf Development in the Endangered Dioecious Magnolia kwangsiensis: Molecular Basis Underpinning Specialized Metabolism Genes. Genes (Basel) 2024; 15:335. [PMID: 38540394 PMCID: PMC10970092 DOI: 10.3390/genes15030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
Magnolia kwangsiensis, a dioecious tree native to China, is recognized not only for its status as an at-risk species but also for its potential in therapeutic applications courtesy of its bioactive compounds. However, the genetic underpinnings of its leaf development and compound biosynthesis are not well documented. Our study aims to bridge this knowledge gap through comparative transcriptomics, analyzing gene expression through different leaf maturation stages. We studied the transcriptome of M. kwangsiensis leaves by applying RNA sequencing at juvenile, tender, and mature phases. We identified differentially expressed genes (DEGs) to explore transcriptional changes accompanying the developmental trajectory. Our analysis delineates the transcriptional landscape of over 20,000 genes with over 6000 DEGs highlighting significant transcriptional shifts throughout leaf maturation. Mature leaves demonstrated upregulation in pathways related to photosynthesis, cell wall formation, and polysaccharide production, affirming their structural integrity and specialized metabolic functions. Our GO and KEGG enrichment analyses underpin these findings. Furthermore, we unveiled coordinated gene activity correlating development with synthesizing therapeutically relevant polysaccharides. We identified four novel glycosyltransferases potentially pivotal in this synergistic mechanism. Our study uncovers the complementary evolutionary forces that concurrently sculpt structural and chemical defenses. These genetic mechanisms calibrate leaf tissue resilience and biochemical efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Delong Guan
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China; (G.Q.)
| |
Collapse
|
16
|
Wu Y, Zeng MY, Wang HX, Lan S, Liu ZJ, Zhang S, Li MH, Guan Y. The Complete Chloroplast Genomes of Bulbophyllum (Orchidaceae) Species: Insight into Genome Structure Divergence and Phylogenetic Analysis. Int J Mol Sci 2024; 25:2665. [PMID: 38473912 DOI: 10.3390/ijms25052665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Bulbophyllum is one of the largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae, including species of ornamental and medical importance. The lack of knowledge regarding the characterization of Bulbophyllum chloroplast (cp) genomes has imposed current limitations on our study. Here, we report the complete cp genomes of seven Bulbophyllum species, including B. ambrosia, B. crassipes, B. farreri, B. hamatum, B. shanicum, B. triste, and B. violaceolabellum, and compared with related taxa to provide a better understanding of their genomic information on taxonomy and phylogeny. A total of 28 Bulbophyllum cp genomes exhibit typical quadripartite structures with lengths ranging from 145,092 bp to 165,812 bp and a GC content of 36.60% to 38.04%. Each genome contained 125-132 genes, encompassing 74-86 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The genome arrangements, gene contents, and length were similar, with differences observed in ndh gene composition. It is worth noting that there were exogenous fragment insertions in the IR regions of B. crassipes. A total of 18-49 long repeats and 38-80 simple sequence repeats (SSRs) were detected and the single nucleotide (A/T) was dominant in Bulbophyllum cp genomes, with an obvious A/T preference. An analysis of relative synonymous codon usage (RSCU) revealed that leucine (Leu) was the most frequently used codon, while cysteine (Cys) was the least used. Six highly variable regions (rpl32-trnLUAG > trnTUGU-trnLUAA > trnFGAA-ndhJ > rps15-ycf1 > rbcL-accD > psbI-trnSGCU) and five coding sequences (ycf1 > rps12 > matK > psbK > rps15) were identified as potential DNA markers based on nucleotide diversity. Additionally, 31,641 molecular diagnostic characters (MDCs) were identified in complete cp genomes. A phylogenetic analysis based on the complete cp genome sequences and 68 protein-coding genes strongly supported that 28 Bulbophyllum species can be divided into four branches, sects. Brachyantha, Cirrhopetalum, and Leopardinae, defined by morphology, were non-monophyly. Our results enriched the genetic resources of Bulbophyllum, providing valuable information to illustrate the complicated taxonomy, phylogeny, and evolution process of the genus.
Collapse
Affiliation(s)
- Yuwei Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Yao Zeng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huan-Xin Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shibao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunxiao Guan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Lubna, Asaf S, Jan R, Asif S, Bilal S, Khan AL, Al-Rawahi AN, Kim KM, Al-Harrasi A. The complete plastome sequences of invasive weed Parthenium hysterophorus: genome organization, evolutionary significance, structural features, and comparative analysis. Sci Rep 2024; 14:4006. [PMID: 38369569 PMCID: PMC10874969 DOI: 10.1038/s41598-024-54503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Parthenium hysterophorus, a globally widespread weed, poses a significant threat to agricultural ecosystems due to its invasive nature. We investigated the chloroplast genome of P. hysterophorus in this study. Our analysis revealed that the chloroplast genome of P. hysterophorus spans a length of 151,881 base pairs (bp). It exhibits typical quadripartite structure commonly found in chloroplast genomes, including inverted repeat regions (IR) of 25,085 bp, a small single copy (SSC) region of 18,052 bp, and a large single copy (LSC) region of 83,588 bp. A total of 129 unique genes were identified in P. hysterophorus chloroplast genomes, including 85 protein-coding genes, 36 tRNAs, and eight rRNAs genes. Comparative analysis of the P. hysterophorus plastome with those of related species from the tribe Heliantheae revealed both conserved structures and intriguing variations. While many structural elements were shared among the species, we identified a rearrangement in the large single-copy region of P. hysterophorus. Moreover, our study highlighted notable gene divergence in several specific genes, namely matK, ndhF, clpP, rps16, ndhA, rps3, and ndhD. Phylogenetic analysis based on the 72 shared genes placed P. hysterophorus in a distinct clade alongside another species, P. argentatum. Additionally, the estimated divergence time between the Parthenium genus and Helianthus (sunflowers) was approximately 15.1 million years ago (Mya). These findings provide valuable insights into the evolutionary history and genetic relationships of P. hysterophorus, shedding light on its divergence and adaptation over time.
Collapse
Affiliation(s)
- Lubna
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA
| | - Ahmed N Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
18
|
Liu L, Li H, Li J, Li X, Hu N, Wang H, Zhou W. Chloroplast genome analyses of Caragana arborescens and Caragana opulens. BMC Genom Data 2024; 25:16. [PMID: 38336648 PMCID: PMC10854190 DOI: 10.1186/s12863-024-01202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Numerous species within the genus Caragana have high ecological and medicinal value. However, species identification based on morphological characteristics is quite complicated in the genus. To address this issue, we analyzed complete plastid genome data for the genus. RESULTS We obtained chloroplast genomes of two species, Caragana arborescens and Caragana opulens, using Illumina sequencing technology, with lengths of 129,473 bp and 132,815 bp, respectively. The absence of inverted repeat sequences in the two species indicated that they could be assigned to the inverted repeat-lacking clade (IRLC). The genomes included 111 distinct genes (4 rRNA genes, 31 tRNA genes, and 76 protein-coding genes). In addition, 16 genes containing introns were identified in the two genomes, the majority of which contained a single intron. Repeat analyses revealed 129 and 229 repeats in C. arborescens and C. opulens, respectively. C. arborescens and C. opulens genomes contained 277 and 265 simple sequence repeats, respectively. The two Caragana species exhibited similar codon usage patterns. rpl20-clpP, rps19-rpl2, and rpl23-ycf2 showed the highest nucleotide diversity (pi). In an analysis of sequence divergence, certain intergenic regions (matK-rbcL, psbM-petN, atpA-psbI, petA-psbL, psbE-petL, and rps7-rps12) were highly variable. A phylogenetic analysis showed that C. arborescens and C. opulens were related and clustered together with four other Caragana species. The genera Astragalus and Caragana were relatively closely related. CONCLUSIONS The present study provides valuable information about the chloroplast genomes of C. arborescens and C. opulens and lays a foundation for future phylogenetic research and molecular marker development.
Collapse
Affiliation(s)
- LiE Liu
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Hongyan Li
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Jiaxin Li
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Xinjuan Li
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Wu Zhou
- School of Ecological and Environmental Engineering, Qinghai University, Xining, 810016, China.
| |
Collapse
|
19
|
Ran Z, Li Z, Xiao X, An M, Yan C. Complete chloroplast genomes of 13 species of sect. Tuberculata Chang (Camellia L.): genomic features, comparative analysis, and phylogenetic relationships. BMC Genomics 2024; 25:108. [PMID: 38267876 PMCID: PMC10809650 DOI: 10.1186/s12864-024-09982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Sect. Tuberculata belongs to Camellia, and its members are characterized by a wrinkled pericarp and united filaments. All the plants in this group, which are endemic to China, are highly valuable for exploring the evolution of Camellia and have great potential for use as an oil source. However, due to the complex and diverse phenotypes of these species and the difficulty of investigating them in the field, their complex evolutionary history and interspecific definitions have remained largely unelucidated. RESULTS Therefore, we newly sequenced and annotated 12 chloroplast (cp) genomes and retrieved the published cp genome of Camellia anlungensis Chang in sect. Tuberculata. In this study, comparative analysis of the cp genomes of the thirteen sect. Tuberculata species revealed a typical quadripartite structure characterized by a total sequence length ranging from 156,587 bp to 157,068 bp. The cp.genome arrangement is highly conserved and moderately differentiated. A total of 130 to 136 genes specific to the three types were identified by annotation, including protein-coding genes (coding sequences (CDSs)) (87-91), tRNA genes (35-37), and rRNA genes (8). The total observed frequency ranged from 23,045 (C. lipingensis) to 26,557 (C. anlungensis). IR region boundaries were analyzed to show that the ycf1 gene of C. anlungensis is located in the IRb region, while the remaining species are present only in the IRa region. Sequence variation in the SSC region is greater than that in the IR region, and most protein-coding genes have high codon preferences. Comparative analyses revealed six hotspot regions (tRNA-Thr(GGT)-psbD, psbE-petL, ycf15-tRNA-Leu(CAA), ndhF-rpl32, ndhD, and trnL(CAA)-ycf15) in the cp genomes that could serve as potential molecular markers. In addition, the results of phylogenetic tree construction based on the cp genomes showed that the thirteen sect. Tuberculata species formed a monophyletic group and were divided into two evolutionarily independent clades, confirming the independence of the section. CONCLUSIONS In summary, we obtained the cp genomes of thirteen sect. Tuberculata plants and performed the first comparative analysis of this group. These results will help us better characterize the plants in this section, deepen our understanding of their genetic characteristics and phylogenetic relationships, and lay the theoretical foundation for their accurate classification, elucidation of their evolutionary changes, and rational development and utilization of this section in the future.
Collapse
Affiliation(s)
- Zhaohui Ran
- College of Forestry, Guizhou University, Guiyang, China
| | - Zhi Li
- College of Forestry, Guizhou University, Guiyang, China.
- Bioaffiliationersity and Nature Conservation Research Center, Guizhou University, Guiyang, China.
| | - Xu Xiao
- College of Forestry, Guizhou University, Guiyang, China
| | - Mingtai An
- College of Forestry, Guizhou University, Guiyang, China
- Bioaffiliationersity and Nature Conservation Research Center, Guizhou University, Guiyang, China
| | - Chao Yan
- College of Forestry, Guizhou University, Guiyang, China
| |
Collapse
|
20
|
Chen XH, Ding LN, Zong XY, Xu H, Wang WB, Ding R, Qu B. The complete chloroplast genome sequences of four Liparis species (Orchidaceae) and phylogenetic implications. Gene 2023; 888:147760. [PMID: 37661026 DOI: 10.1016/j.gene.2023.147760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Liparis Richard (Malaxideae, Epidendroideae) is a large and diverse genus of the family Orchidaceae, the taxonomy of which is complicated and controversial. In this study, we sequenced, assembled and analyzed four complete chloroplast genomes of Liparis species including L. kumokiri, L. makinoana, L. pauliana, and L. viridiflora, and evaluated their phylogenetic relationships with related species for the first time. These four chloroplast genomes (size range 153,095 to 158,239 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 83,533-86,752 bp), a small single copy (SSC, 17,938-18,156 bp) and a pair of inverted repeats (IRs, 26,421-26,933 bp). The genomes contain 133 genes, including 87 protein coding genes, 38 tRNAs and 8 rRNA genes. The genome arrangements, gene contents, gene order, long repeats and simple sequence repeats were similar with small differences observed among these four chloroplast genomes. Five highly variable regions including ycf1, ndhA, ndhF, trnQ and trnK were identified from the comparative analysis with other nine related Liparis species, which had the potential to be used as DNA markers for species identification and phylogenetic studies of Liparis species. Phylogenetic analysis based on the complete chloroplast genome sequences strongly supported the polyphyly of Liparis and its further division into three branches. These results provided valuable information to illustrate the complicated taxonomy, phylogeny and evolution process of the Liparis genus.
Collapse
Affiliation(s)
- Xu-Hui Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Li-Na Ding
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Xiao-Yan Zong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Hua Xu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, PR China
| | - Wei-Bin Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China
| | - Rui Ding
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China.
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, Liaoning, PR China.
| |
Collapse
|
21
|
Zhu H, Huang G, Wang X, Chen H, Li P, Zhang J, Peng J, Hu M. The complete chloroplast genome of Goodyera yunnanensis Schltr. Mitochondrial DNA B Resour 2023; 8:1430-1434. [PMID: 38196798 PMCID: PMC10776080 DOI: 10.1080/23802359.2023.2292149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/02/2023] [Indexed: 01/11/2024] Open
Abstract
The family Orchidaceae is renowned for its extensive diversity. Within this family, the genus Goodyera R. Br. is classified under the subtribe Goodyerinae, comprising approximately 99 species. In this study, a species Goodyera yunnanensis Schltr., its plastid genome was characterized. The plastid genome of G. yunnanensis is 146,197 bp in size and exhibits a typical quadripartite structure with a pair of inverted repeat regions (IRs) of 25,611 bp, a large single-copy region (LSC) of 81,300 bp and a small single-copy region (SSC) of 13,675 bp. A total of 126 genes were identified, containing 80 protein-coding genes, 38 tRNA genes and 8 rRNA genes. The overall GC content is 37.2%, with corresponding values of 43.3%, 34.7% and 29.1% in IR, LSC and SSC regions, respectively. Forty-seven simple sequence repeats (SSRs) are found in G. yunnanensis plastome, and the frequency of mononucleotide repeats is significantly higher than other repeat types. Phylogenetic analysis indicates that Goodyera is resolved into four clades. G. yunnanensis belongs to the monophyletic clade A, and its phylogenetic position can be reasonably supported by morphological and molecular data.
Collapse
Affiliation(s)
- Haofei Zhu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Guiyun Huang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Xiongying Wang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Huiyuan Chen
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Pianpian Li
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Jun Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Jingyi Peng
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Meixiang Hu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| |
Collapse
|
22
|
Liu L, Du J, Liu Z, Zuo W, Wang Z, Li J, Zeng Y. Comparative and phylogenetic analyses of nine complete chloroplast genomes of Orchidaceae. Sci Rep 2023; 13:21403. [PMID: 38049440 PMCID: PMC10696064 DOI: 10.1038/s41598-023-48043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
The orchid family has 200,000 species and 700 genera, and it is found worldwide in the tropics and subtropics. In China, there are 1247 species and subspecies of orchids belonging to the Orchidaceae family. Orchidaceae is one of the most diverse plant families in the world, known for their lush look, remarkable ecological tolerance, and capability for reproduction. It has significant decorative and therapeutic value. In terms of evolution, the orchid family is one of the more complicated groups, but up until now, little has been known about its affinities. This study examined the properties of 19 chloroplast (cp) genomes, of which 11 had previously been published and nine had only recently been revealed. Following that, topics such as analysis of selection pressure, codon usage, amino acid frequencies, repeated sequences, and reverse repeat contraction and expansion are covered. The Orchidaceae share similar cp chromosomal characteristics, and we have conducted a preliminary analysis of their evolutionary connections. The cp genome of this family has a typical tepartite structure and a high degree of consistency across species. Platanthera urceolata with more tandem repeats of the cp genome. Similar cp chromosomal traits can be seen in the orchidaceae. Galearis roborowskyi, Neottianthe cucullata, Neottianthe monophylla, Platanthera urceolata and Ponerorchis compacta are the closest cousins, according to phylogenetic study.
Collapse
Affiliation(s)
- Likuan Liu
- College of Life Sciences, Qinghai Normal University, Xining, China
- Academy of Plateau Science Sustainability, Xining, China
| | - Jingxuan Du
- College of Life Sciences, Qinghai Normal University, Xining, China
| | - Zhihua Liu
- School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China
| | - Wenming Zuo
- College of Geosciences, Qinghai Normal University, Xining, China
| | - Zhenglei Wang
- College of Life Sciences, Qinghai Normal University, Xining, China
| | - Jinping Li
- College of Life Sciences, Qinghai Normal University, Xining, China.
- Academy of Plateau Science Sustainability, Xining, China.
| | - Yang Zeng
- College of Life Sciences, Qinghai Normal University, Xining, China.
- Academy of Plateau Science Sustainability, Xining, China.
| |
Collapse
|
23
|
Liu H, Liu X, Sun C, Li HL, Li ZX, Guo Y, Fu XQ, Liao QH, Zhang WL, Liu YQ. Chloroplast Genome Comparison and Phylogenetic Analysis of the Commercial Variety Actinidia chinensis 'Hongyang'. Genes (Basel) 2023; 14:2136. [PMID: 38136958 PMCID: PMC10743354 DOI: 10.3390/genes14122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Actinidia chinensis 'Hongyang', also known as red yangtao (red heart kiwifruit), is a vine fruit tree native to China possessing significant nutritional and economic value. However, information on its genetic diversity and phylogeny is still very limited. The first chloroplast (cp) genome of A. chinensis 'Hongyang' cultivated in China was sequenced using de novo technology in this study. A. chinensis 'Hongyang' possesses a cp genome that spans 156,267 base pairs (bp), exhibiting an overall GC content of 37.20%. There were 132 genes that were annotated, with 85 of them being protein-coding genes, 39 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. A total of 49 microsatellite sequences (SSRs) were detected, mainly single nucleotide repeats, mostly consisting of A or T base repeats. Compared with 14 other species, the cp genomes of A. chinensis 'Hongyang' were biased towards the use of codons containing A/U, and the non-protein coding regions in the A. chinensis 'Hongyang' cpDNA showed greater variation than the coding regions. The nucleotide polymorphism analysis (Pi) yielded nine highly variable region hotspots, most in the large single copy (LSC) region. The cp genome boundary analysis revealed a conservative order of gene arrangement in the inverted repeats (IRs) region of the cp genomes of 15 Actinidia plants, with small expansions and contractions of the boundaries. Furthermore, phylogenetic tree indicated that A. chinensis 'Hongyang' was the closest relative to A. indochinensis. This research provides a useful basis for future genetic and evolutionary studies of A. chinensis 'Hongyang', and enriches the biological information of Actinidia species.
Collapse
Affiliation(s)
- Han Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Xia Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Chong Sun
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, China;
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Zhe-Xin Li
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Yuan Guo
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Xue-Qian Fu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Qin-Hong Liao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Wen-Lin Zhang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.L.); (C.S.); (H.-L.L.); (Z.-X.L.); (Y.G.); (X.-Q.F.); (Q.-H.L.); (W.-L.Z.)
| | - Yi-Qing Liu
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou 434023, China;
| |
Collapse
|
24
|
Sun X, Zhan Y, Li S, Liu Y, Fu Q, Quan X, Xiong J, Gang H, Zhang L, Qi H, Wang A, Huo J, Qin D, Zhu C. Complete chloroplast genome assembly and phylogenetic analysis of blackcurrant ( Ribes nigrum), red and white currant ( Ribes rubrum), and gooseberry ( Ribes uva-crispa) provide new insights into the phylogeny of Grossulariaceae. PeerJ 2023; 11:e16272. [PMID: 37842068 PMCID: PMC10573389 DOI: 10.7717/peerj.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Background Blackcurrant (Ribes nigrum), red currant (R. rubrum), white currant (R. rubrum), and gooseberry (R. uva-crispa) belong to Grossulariaceae and are popular small-berry crops worldwide. The lack of genomic data has severely limited their systematic classification and molecular breeding. Methods The complete chloroplast (cp) genomes of these four taxa were assembled for the first time using MGI-DNBSEQ reads, and their genome structures, repeat elements and protein-coding genes were annotated. By genomic comparison of the present four and previous released five Ribes cp genomes, the genomic variations were identified. By phylogenetic analysis based on maximum-likelihood and Bayesian methods, the phylogeny of Grossulariaceae and the infrageneric relationships of the Ribes were revealed. Results The four cp genomes have lengths ranging from 157,450 to 157,802 bp and 131 shared genes. A total of 3,322 SNPs and 485 Indels were identified from the nine released Ribes cp genomes. Red currant and white currant have 100% identical cp genomes partially supporting the hypothesis that white currant (R. rubrum) is a fruit color variant of red currant (R. rubrum). The most polymorphic genic and intergenic region is ycf1 and trnT-psbD, respectively. The phylogenetic analysis demonstrated the monophyly of Grossulariaceae in Saxifragales and the paraphyletic relationship between Saxifragaceae and Grossulariaceae. Notably, the Grossularia subgenus is well nested within the Ribes subgenus and shows a paraphyletic relationship with the co-ancestor of Calobotrya and Coreosma sections, which challenges the dichotomous subclassification of the Ribes genus based on morphology (subgenus Ribes and subgenus Grossularia). These data, results, and insights lay a foundation for the phylogenetic research and breeding of Ribes species.
Collapse
Affiliation(s)
- Xinyu Sun
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Zhan
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Songlin Li
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yu Liu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiang Fu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Quan
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jinyu Xiong
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huixin Gang
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - Lijun Zhang
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Heilongjiang Institute of Green Food Science, Harbin, Heilongjiang, China
| | - Huijuan Qi
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Heilongjiang Institute of Green Food Science, Harbin, Heilongjiang, China
| | - Aoxue Wang
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - Junwei Huo
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - Dong Qin
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - Chenqiao Zhu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| |
Collapse
|
25
|
Raman G, Choi KS, Lee EM, Morden CW, Shim H, Kang JS, Yang TJ, Park S. Extensive characterization of 28 complete chloroplast genomes of Hydrangea species: A perspective view of their organization and phylogenetic and evolutionary relationships. Comput Struct Biotechnol J 2023; 21:5073-5091. [PMID: 37867966 PMCID: PMC10589384 DOI: 10.1016/j.csbj.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
The tribe Hydrangeeae displays a unique, distinctive disjunct distribution encompassing East Asia, North America and Hawaii. Despite its complex trait variations and polyphyletic nature, comprehensive phylogenomic and biogeographical studies on this tribe have been lacking. To address this gap, we sequenced and characterized 28 plastomes of Hydrangeeae. Our study highlights the highly conserved nature of Hydrangeaceae chloroplast (cp) genomes in terms of gene content and arrangement. Notably, synapomorphic characteristics of tandem repeats in the conserved domain of accD were observed in the Macrophyllae, Chinenses, and Dichroa sections within the Hydrangeeae tribe. Additionally, we found lower expression of accD in these sections using structure prediction and quantitative real-time PCR analysis. Phylogenomic analyses revealed the subdivision of the Hydrangeeae tribe into two clades with robust support values. Consistent with polyphyletic relationships, sect. Broussaisia was identified as the basal group in the tribe Hydrangeeae. Our study also provides insights into the phylogenetic relationships of Hydrangea petiolaris in the Jeju and Ulleung Island populations, suggesting the need for further studies with more samples and molecular data. Divergence time estimation and biogeographical analyses suggested that the common ancestors of the tribe Hydrangeeae likely originated from North America and East Asia during the Paleocene period via the Bering Land Bridge, potentially facilitating migration within the tribe between these regions. In conclusion, this study enhances our understanding of the evolutionary history and biogeography of the tribe Hydrangeeae, shedding light on the dispersal patterns and origins of this intriguing plant group with its unique disjunct distribution.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Kyoung-Su Choi
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- Plant Research Team, Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Eun Mi Lee
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Clifford W. Morden
- School of Life Sciences, University of Hawai]i at Mānoa, Honolulu, HI, USA
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| |
Collapse
|
26
|
Tian Y, Liu X, Xu Y, Yu B, Wang L, Qu X. Comparative and phylogenetic analysis of Asparagus meioclados Levl. and Asparagus munitus Wang et S. C. Chen plastomes and utility of plastomes mutational hotspots. Sci Rep 2023; 13:15622. [PMID: 37730791 PMCID: PMC10511529 DOI: 10.1038/s41598-023-42945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023] Open
Abstract
Tiandong is a vital traditional Chinese herbal medicine. It is derived from the tuber root of the Asparagus cochinchinensis according to the Pharmacopoeia of the people's republic of China (2020 Edition). On account of the similar morphology, Asparagus meioclados and Asparagus munitus were used as Tian-Dong in southwest China. Chloroplast (cp) genomes are highly active genetic components of plants and play an extremely important role in improving the efficiency of the identification of plant species. To differentiate the medicinal plants belonging to the genus Asparagus, we sequenced and analyzed the complete plastomes (plastid genomes) of A. meioclados and A. munitus and obtained two plastomes whose length changed to 156,515 bp and 156,381 bp, respectively. A total of 111 unique genes have been detected in plastome, which included 78 protein-coding genes, 29 tRNA genes and 4 rRNA genes. In plastomes of A. meioclados and A. munitus, 14,685 and 14,987 codons were detected, among which 9942 and 10,207 had the relative synonymous codon usage (RSCU) values higher than 1, respectively. A. meioclados and A. munitus have 26 SSRs patterns, among which A. meioclados was 25 and A. munitus 21. The average Ka/Ks value was 0.36, and positive selection was detected in genes of the photosynthetic system (ndhF and rbcL) in Asparagus species. To perform the comparative analysis of plastomes, the two newly sequenced plastomes of the A. meioclados and A. munitus species were compared with that of A. cochinchinensis, and 12 hotspots, including 5 coding regions and 7 inter-genomic regions, were identified. Based on the whole plastome of Asparagus, 2 divergent hotspots (accD and rpl32-trnL-UAG) and 1 international barcode fragment (rbcL) were screened, which may be used as particular molecular markers for the identification of Asparagus species. In addition, we determined the phylogenetic relationship between A. meioclados and A. munitus in the genus Asparagus. This study enriches our knowledge of the molecular evolutionary relationships of the Asparagus genus and provides treasured data records for species identification, molecular breeding, and evolutionary analysis of this genus.
Collapse
Affiliation(s)
- Yulu Tian
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
- Chongqing Academy of Chinese Materia Medica, 34 Nanshan Road, Huangjueya, Nanan District, Chongqing, 400065, China
| | - Xue Liu
- Chongqing Academy of Chinese Materia Medica, 34 Nanshan Road, Huangjueya, Nanan District, Chongqing, 400065, China.
| | - Yuanjiang Xu
- Chongqing Academy of Chinese Materia Medica, 34 Nanshan Road, Huangjueya, Nanan District, Chongqing, 400065, China
| | - Benxia Yu
- Chongqing Academy of Chinese Materia Medica, 34 Nanshan Road, Huangjueya, Nanan District, Chongqing, 400065, China
| | - Le Wang
- College of Life Science and Food Engineering, Chongqing Three Gorges University, 666 Tianxing Road, Wanzhou District, Chongqing, 404100, China
| | - Xianyou Qu
- Chongqing Academy of Chinese Materia Medica, 34 Nanshan Road, Huangjueya, Nanan District, Chongqing, 400065, China.
| |
Collapse
|
27
|
Chen J, Wang F, Zhao Z, Li M, Liu Z, Peng D. Complete Chloroplast Genomes and Comparative Analyses of Three Paraphalaenopsis (Aeridinae, Orchidaceae) Species. Int J Mol Sci 2023; 24:11167. [PMID: 37446345 DOI: 10.3390/ijms241311167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Paraphalaenopsis, a genus of perennial herbs from the family Orchidaceae, contains a number of ornamental species. However, there is no information on the chloroplast genomes of Paraphalaenopsis, which limits our studies of this genus. In this study, we reported the chloroplast genomes of three species of Paraphalaenopsis (P. labukensis, P. denevel, and P. laycockii 'Semi-alba') and performed comprehensive comparative analysis. These three chloroplast genomes showed a typical quadripartile structure. Their lengths ranged from 147,311 bp to 149,240 bp. Each genome contained 120 unique genes, including 74 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Comparative analysis revealed major differences in sequence divergence in the three chloroplast genomes. In addition, six hypervariable regions were identified (psbM-trnDGUC, psbB, ccsA, trnKUUU, trnSGCU-trnGUCC, rps16-trnQUUG) that can be used as DNA molecular markers. Phylogenetic relationships were determined using the chloroplast genomes of 28 species from 12 genera of Aeridinae. Results suggested that Paraphalaenopsis was a clade of Aeridinae that was sister to the Holcoglossum-Vanda clade, with 100% bootstrap support within Aeridinae. The findings of this study provided the foundation for future studies on the phylogenetic analysis of Aeridinae.
Collapse
Affiliation(s)
- Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuang Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minghe Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
28
|
Pan H, Zagorchev L, Chen L, Tao Y, Cai C, Jiang M, Sun Z, Li J. Complete chloroplast genomes of five Cuscuta species and their evolutionary significance in the Cuscuta genus. BMC Genomics 2023; 24:310. [PMID: 37291497 DOI: 10.1186/s12864-023-09427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Cuscuta, a parasitic plant species in the Convolvulaceae family, grows in many countries and regions. However, the relationship between some species is still unclear. Therefore, more studies are needed to assess the variation of the chloroplast (cp) genome in Cuscuta species and their relationship with subgenera or sections, thus, providing important information on the evolution of Cuscuta species. RESULTS In the present study, we identified the whole cp genomes of C. epithymum, C. europaea, C. gronovii, C. chinensis and C. japonica, and then constructed a phylogenetic tree of 23 Cuscuta species based on the complete genome sequences and protein-coding genes. The complete cp genome sequences of C. epithymum and C. europaea were 96,292 and 97,661 bp long, respectively, and lacked an inverted repeat region. Most cp genomes of Cuscuta spp. have tetragonal and circular structures except for C. epithymum, C. europaea, C. pedicellata and C. approximata. Based on the number of genes and the structure of cp genome and the patterns of gene reduction, we found that C. epithymum and C. europaea belonged to subgenus Cuscuta. Most of the cp genomes of the 23 Cuscuta species had single nucleotide repeats of A and T. The inverted repeat region boundaries among species were similar in the same subgenera. Several cp genes were lost. In addition, the numbers and types of the lost genes in the same subgenus were similar. Most of the lost genes were related to photosynthesis (ndh, rpo, psa, psb, pet, and rbcL), which could have gradually caused the plants to lose the ability to photosynthesize. CONCLUSION Our results enrich the data on cp. genomes of genus Cuscuta. This study provides new insights into understanding the phylogenetic relationships and variations in the cp genome of Cuscuta species.
Collapse
Affiliation(s)
- Hangkai Pan
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- School of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Lyuben Zagorchev
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- Department of Biochemistry, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankov Blvd., Sofia, 1164, Bulgaria
| | - Luxi Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Yutian Tao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- School of Electronics and Information Engineering, Taizhou University, Taizhou, 318000, China
| | - Chaonan Cai
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- School of Advanced Study, Taizhou University, Taizhou, 318000, China
| | - Ming Jiang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
| | - Zhongshuai Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China
- School of Advanced Study, Taizhou University, Taizhou, 318000, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou, 318000, China.
- School of Advanced Study, Taizhou University, Taizhou, 318000, China.
| |
Collapse
|
29
|
Hu K, Sun XQ, Chen M, Lu RS. Low-coverage whole genome sequencing of eleven species/subspecies in Dioscorea sect. Stenophora (Dioscoreaceae): comparative plastome analyses, molecular markers development and phylogenetic inference. FRONTIERS IN PLANT SCIENCE 2023; 14:1196176. [PMID: 37346115 PMCID: PMC10281252 DOI: 10.3389/fpls.2023.1196176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023]
Abstract
Dioscorea sect. Stenophora (Dioscoreaceae) comprises about 30 species that are distributed in the temperate and subtropical regions of the Northern Hemisphere. Despite being evolutionarily "primitive" and medically valuable, genomic resources and molecular studies of this section are still scarce. Here, we conducted low-coverage whole genome sequencing of 11 Stenophora species/subspecies to retrieve their plastome information (whole plastome characteristics, plastome-divergent hotspots, plastome-derived SSRs, etc.) and polymorphic nuclear SSRs, as well as performed comparative plastome and phylogenetic analyses within this section. The plastomes of Stenophora species/subspecies ranged from 153,691 bp (D. zingiberensis) to 154,149 bp (D. biformifolia) in length, and they all contained the same 114 unique genes. All these plastomes were highly conserved in gene structure, gene order and GC content, although variations at the IR/SC borders contributed to the whole length differences among them. The number of plastome-derived SSRs among Stenophora species/subspecies varied from 74 (D. futschauensis) to 93 (D. zingiberensis), with A/T found to be the most frequent one. Seven highly variable regions and 12 polymorphic nuclear SSRs were identified in this section, thereby providing important information for further taxonomical, phylogenetic and population genetic studies. Phylogenomic analyses based on whole plastome sequences and 80 common protein coding genes strongly supported D. biformifolia and D. banzhuana constituted the successive sister species to the remaining sampled species, which could be furtherly divided into three clades. Overall, this study provided a new perspective for plastome evolution of Stenophora, and proved the role of plastome phylogenomic in improving the phylogenetic resolution in this section. These results also provided an important reference for the protection and utilization of this economically important section.
Collapse
Affiliation(s)
- Ke Hu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| | - Xiao-Qin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| | - Rui-Sen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| |
Collapse
|
30
|
Alshegaihi RM, Mansour H, Alrobaish SA, Al Shaye NA, Abd El-Moneim D. The First Complete Chloroplast Genome of Cordia monoica: Structure and Comparative Analysis. Genes (Basel) 2023; 14:genes14050976. [PMID: 37239336 DOI: 10.3390/genes14050976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Cordia monoica is a member of the Boraginaceae family. This plant is widely distributed in tropical regions and has a great deal of medical value as well as economic importance. In the current study, the complete chloroplast (cp) genome of C. monoica was sequenced, assembled, annotated, and reported. This circular chloroplast genome had a size of 148,711 bp, with a quadripartite structure alternating between a pair of repeated inverted regions (26,897-26,901 bp) and a single copy region (77,893 bp). Among the 134 genes encoded by the cp genome, there were 89 protein-coding genes, 37 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. A total of 1387 tandem repeats were detected, with the hexanucleotides class making up 28 percent of the repeats. Cordia monoica has 26,303 codons in its protein-coding regions, and leucine amino acid was the most frequently encoded amino acid in contrast to cysteine. In addition, 12 of the 89 protein-coding genes were found to be under positive selection. The phyloplastomic taxonomical clustering of the Boraginaceae species provides further evidence that chloroplast genome data are reliable not only at family level but also in deciphering the phylogeny at genus level (e.g., Cordia).
Collapse
Affiliation(s)
- Rana M Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Hassan Mansour
- Department of Biological Sciences, Faculty of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Shouaa A Alrobaish
- Department of Biology, College of Science, Qassim University, Buraydah 52377, Saudi Arabia
| | - Najla A Al Shaye
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production, (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| |
Collapse
|
31
|
Wu L, Fan P, Zhou J, Li Y, Xu Z, Lin Y, Wang Y, Song J, Yao H. Gene Losses and Homology of the Chloroplast Genomes of Taxillus and Phacellaria Species. Genes (Basel) 2023; 14:genes14040943. [PMID: 37107701 PMCID: PMC10137875 DOI: 10.3390/genes14040943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Research on the chloroplast genome of parasitic plants is limited. In particular, the homology between the chloroplast genomes of parasitic and hyperparasitic plants has not been reported yet. In this study, three chloroplast genomes of Taxillus (Taxillus chinensis, Taxillus delavayi, and Taxillus thibetensis) and one chloroplast genome of Phacellaria (Phacellaria rigidula) were sequenced and analyzed, among which T. chinensis is the host of P. rigidula. The chloroplast genomes of the four species were 119,941-138,492 bp in length. Compared with the chloroplast genome of the autotrophic plant Nicotiana tabacum, all of the ndh genes, three ribosomal protein genes, three tRNA genes and the infA gene were lost in the three Taxillus species. Meanwhile, in P. rigidula, the trnV-UAC gene and the ycf15 gene were lost, and only one ndh gene (ndhB) existed. The results of homology analysis showed that the homology between P. rigidula and its host T. chinensis was low, indicating that P. rigidula grows on its host T. chinensis but they do not share the chloroplast genome. In addition, horizontal gene transfer was not found between P. rigidula and its host T. chinensis. Several candidate highly variable regions in the chloroplast genomes of Taxillus and Phacellaria species were selected for species identification study. Phylogenetic analysis revealed that the species of Taxillus and Scurrula were closely related and supported that Scurrula and Taxillus should be treated as congeneric, while species in Phacellaria had a close relationship with that in Viscum.
Collapse
Affiliation(s)
- Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Panhui Fan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianguo Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yonghua Li
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530004, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yulin Lin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
32
|
Wanichthanarak K, Nookaew I, Pasookhush P, Wongsurawat T, Jenjaroenpun P, Leeratsuwan N, Wattanachaisaereekul S, Visessanguan W, Sirivatanauksorn Y, Nuntasaen N, Kuhakarn C, Reutrakul V, Ajawatanawong P, Khoomrung S. Revisiting chloroplast genomic landscape and annotation towards comparative chloroplast genomes of Rhamnaceae. BMC PLANT BIOLOGY 2023; 23:59. [PMID: 36707785 PMCID: PMC9883906 DOI: 10.1186/s12870-023-04074-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Massive parallel sequencing technologies have enabled the elucidation of plant phylogenetic relationships from chloroplast genomes at a high pace. These include members of the family Rhamnaceae. The current Rhamnaceae phylogenetic tree is from 13 out of 24 Rhamnaceae chloroplast genomes, and only one chloroplast genome of the genus Ventilago is available. Hence, the phylogenetic relationships in Rhamnaceae remain incomplete, and more representative species are needed. RESULTS The complete chloroplast genome of Ventilago harmandiana Pierre was outlined using a hybrid assembly of long- and short-read technologies. The accuracy and validity of the final genome were confirmed with PCR amplifications and investigation of coverage depth. Sanger sequencing was used to correct for differences in lengths and nucleotide bases between inverted repeats because of the homopolymers. The phylogenetic trees reconstructed using prevalent methods for phylogenetic inference were topologically similar. The clustering based on codon usage was congruent with the molecular phylogenetic tree. The groups of genera in each tribe were in accordance with tribal classification based on molecular markers. We resolved the phylogenetic relationships among six Hovenia species, three Rhamnus species, and two Ventilago species. Our reconstructed tree provides the most complete and reliable low-level taxonomy to date for the family Rhamnaceae. Similar to other higher plants, the RNA editing mostly resulted in converting serine to leucine. Besides, most genes were subjected to purifying selection. Annotation anomalies, including indel calling errors, unaligned open reading frames of the same gene, inconsistent prediction of intergenic regions, and misannotated genes, were identified in the published chloroplast genomes used in this study. These could be a result of the usual imperfections in computational tools, and/or existing errors in reference genomes. Importantly, these are points of concern with regards to utilizing published chloroplast genomes for comparative genomic analysis. CONCLUSIONS In summary, we successfully demonstrated the use of comprehensive genomic data, including DNA and amino acid sequences, to build a reliable and high-resolution phylogenetic tree for the family Rhamnaceae. Additionally, our study indicates that the revision of genome annotation before comparative genomic analyses is necessary to prevent the propagation of errors and complications in downstream analysis and interpretation.
Collapse
Affiliation(s)
- Kwanjeera Wanichthanarak
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Phongthana Pasookhush
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Namkhang Leeratsuwan
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Wonnop Visessanguan
- Functional Ingredients and Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Phathumthani, 12120, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Narong Nuntasaen
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment, Bangkok, 10900, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pravech Ajawatanawong
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Sakda Khoomrung
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
33
|
Wang Y, Xu J, Hu B, Dong C, Sun J, Li Z, Ye K, Deng F, Wang L, Aslam M, Lv W, Qin Y, Cheng Y. Assembly, annotation, and comparative analysis of Ipomoea chloroplast genomes provide insights into the parasitic characteristics of Cuscuta species. FRONTIERS IN PLANT SCIENCE 2023; 13:1074697. [PMID: 36733590 PMCID: PMC9887335 DOI: 10.3389/fpls.2022.1074697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
In the Convolvulaceae family, around 1650 species belonging to 60 genera are widely distributed globally, mainly in the tropical and subtropical regions of America and Asia. Although a series of chloroplast genomes in Convolvulaceae were reported and investigated, the evolutionary and genetic relationships among the chloroplast genomes of the Convolvulaceae family have not been extensively elucidated till now. In this study, we first reported the complete chloroplast genome sequence of Ipomoea pes-caprae, a widely distributed coastal plant with medical values. The chloroplast genome of I. pes-caprae is 161667 bp in length, and the GC content is 37.56%. The chloroplastic DNA molecule of I. pes-caprae is a circular structure composed of LSC (large-single-copy), SSC (small-single-copy), and IR (inverted repeat) regions, with the size of the three regions being 88210 bp, 12117 bp, and 30670 bp, respectively. The chloroplast genome of I. pes-caprae contains 141 genes, and 35 SSRs are identified in the chloroplast genome. Our research results provide important genomic information for the molecular phylogeny of I. pes-caprae. The Phylogenetic analysis of 28 Convolvulaceae chloroplast genomes showed that the relationship of I. pes-caprae with I. involucrata or I. obscura was much closer than that with other Convolvulaccae species. Further comparative analyses between the Ipomoea species and Cuscuta species revealed the mechanism underlying the formation of parasitic characteristics of Cuscuta species from the perspective of the chloroplast genome.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Xu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunxing Dong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zixian Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kangzhuo Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Mohammad Aslam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Wenliang Lv
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
34
|
Pu T, Zhao ZN, Yu X. The complete chloroplast genome of Crataegus scabrifolia (Franch.) Rehd (Rosaceae), a medicinal and edible plant in Southwest China. Mitochondrial DNA B Resour 2023; 8:81-85. [PMID: 36643811 PMCID: PMC9833407 DOI: 10.1080/23802359.2022.2160668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Crataegus scabrifolia (Franch.) Rehd is a medicinal and edible plant in Southwest China. The chloroplast genome of C. scabrifolia was analyzed by high-throughput sequencing technology, and its genetic relationship to related species was discussed. The chloroplast genome is 159,637 bp long, with two inverted repeat (IR) regions (26,384 bp each) that separate a large single-copy (LSC) region (87,730 bp) and a small single-copy (SSC) region (19,139 bp). A total of 127 genes were annotated, including 83 protein-coding genes, 8 rRNA genes, and 36 tRNA genes. The phylogenetic tree shows that C. hupehensis is closely related to C. scabrifolia with strong bootstrap support.
Collapse
Affiliation(s)
- Tian Pu
- School of Forestry, Southwest Forestry University, Kunming, China
| | - Zhen-Ning Zhao
- School of Forestry, Southwest Forestry University, Kunming, China
| | - Xiao Yu
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China,CONTACT Xiao Yu School of Landscape Architecture, Southwest Forestry University, 300 Bailong temple, Qingyun Street, Kunming, 650224China
| |
Collapse
|
35
|
Zhao ZN, Yu X. The complete chloroplast genome of Cynoglossum amabile Stapf & J. R. Drumm., 1906 (Boraginaceae), a traditional Chinese herbal medicine. Mitochondrial DNA B Resour 2023; 8:52-56. [PMID: 36620318 PMCID: PMC9815245 DOI: 10.1080/23802359.2022.2160219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cynoglossum amabile Stapf & J. R. Drumm., 1906 is a traditional Chinese herbal medicine from southwest China. To better determine its phylogenetic relatedness to other Boraginaceae species, the chloroplast (cp) genome of C. amabile was sequenced. The complete cp genome of C. amabile is 151,532 bp in length, containing a small single-copy (SSC) region with a length of 17,366 bp, a large single-copy (LSC) region with a length of 82,902 bp, and a pair of inverted repeats (IRs) regions each with a length of 25,632 bp. The overall GC content of the cp genome is 37.4%. The maximum-likelihood phylogenetic tree showed that Bothriospermum zeylanicum (J. Jacq.) Druce, 1917 was closely related to C. amabile.
Collapse
Affiliation(s)
- Zhen-Ning Zhao
- School of Forestry, Southwest Forestry University, Kunming, China
| | - Xiao Yu
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China,CONTACT Xiao Yu School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
36
|
The Complete Chloroplast Genome Sequence of Machilus chuanchienensis (Lauraceae): Genome Structure and Phylogenetic Analysis. Genes (Basel) 2022; 13:genes13122402. [PMID: 36553669 PMCID: PMC9778441 DOI: 10.3390/genes13122402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Machilus chuanchienensis is an ecological tree distributed in southwestern China. It has a significant valuation with making Hawk tea using its leaves, an ethnic traditional tea-like beverage with a long history in Chinese tea culture. The whole chloroplast (cp) genome is an ideal model for the phylogenetic study of Lauraceae because of its simple structure and highly conserved features. There have been numerous reports of complete cp genome sequences in Lauraceae, but little is known about M. chuanchienensis. Here, the next-generation sequencing (NGS) was used to sequence the M. chuanchienensis cp genome. Then, a comprehensive comparative genome analysis was performed. The results revealed that the M. chuanchienensis's cp genome measured 152,748 base pairs (bp) with a GC content of 39.15% and coded 126 genes annotated, including comprising eight ribosomal RNA (rRNA), 36 transporter RNA (tRNA), and 82 protein-coding genes. In addition, the cp genome presented a typical quadripartite structure comprising a large single-copy (LSC; 93,811) region, a small single-copy (SSC; 18,803) region, and the inverted repeats (IRs; 20,067) region and contained 92 simple sequence repeat (SSR) locus in total. Phylogenetic relationships of 37 species indicated that M. chuanchienensis was a sister to M. balansae, M. melanophylla, and M. minutiflora. Further research on this crucial species may benefit significantly from these findings.
Collapse
|
37
|
Kuang Q, Sheng W. The entire chloroplast genome sequence of Asparagus setaceus (Kunth) Jessop: Genome structure, gene composition, and phylogenetic analysis in Asparagaceae. Open Life Sci 2022; 17:1541-1554. [PMID: 36474705 PMCID: PMC9684740 DOI: 10.1515/biol-2022-0497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 09/08/2024] Open
Abstract
Asparagus setaceus (Kunth) Jessop is a horticultural plant of the genus Asparagus. Herein, the whole chloroplast (cp) genome of A. setaceus was sequenced with PacBio and Illumina sequencing systems. The cp genome shows a characteristic quadripartite structure with 158,076 bp. In total, 135 genes were annotated, containing 89 protein-coding, 38 tRNA, and 8 rRNA genes. Contrast with the previous cp genome of A. setaceus registered in NCBI, we identified 7 single-nucleotide polymorphisms and 15 indels, mostly situated in noncoding areas. Meanwhile, 36 repeat structures and 260 simple sequence repeats were marked out. A bias for A/T-ending codons was shown in this cp genome. Furthermore, we predicted 78 RNA-editing sites in 29 genes, which were all for C-to-U transitions. And it was also proven that positive selection was exerted on the rpoC1 gene of A. setaceus with the K a/K s data. Meanwhile, a conservative gene order and highly similar sequences of protein-coding genes were revealed within Asparagus species. Phylogenetic tree analysis indicated that A. setaceus was a sister to Asparagus cochinchinensis. Taken together, our released genome provided valuable information for the gene composition, genetics comparison, and the phylogeny studies of A. setaceus.
Collapse
Affiliation(s)
- Quan Kuang
- Department of Biological Technology, Nanchang Normal University, Nanchang, 330032, Jiangxi, China
| | - Wentao Sheng
- Department of Biological Technology, Nanchang Normal University, Nanchang, 330032, Jiangxi, China
| |
Collapse
|
38
|
Wang X, Xu KW, Lee SY, Wu J, Li Q, Chen BJ. Characterization of the chloroplast genome and phylogenetic analysis of Ceratopteris pteridoides (Pteridaceae). GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Characterization and Comparative Analysis of Chloroplast Genomes in Five Uncaria Species Endemic to China. Int J Mol Sci 2022; 23:ijms231911617. [PMID: 36232915 PMCID: PMC9569570 DOI: 10.3390/ijms231911617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Uncaria, a perennial vine from the Rubiaceae family, is a typical Chinese traditional medicine. Currently, uncertainty exists over the Uncaria genus’ evolutionary relationships and germplasm identification. The complete chloroplast genomes of four Uncaria species mentioned in the Chinese Pharmacopoeia and Uncaria scandens (an easily confused counterfeit) were sequenced and annotated. The findings demonstrated that the whole chloroplast genome of Uncaria genus is 153,780–155,138 bp in full length, encoding a total of 128–131 genes, containing 83–86 protein-coding genes, eight rRNAs and 37 tRNAs. These regions, which include eleven highly variable loci and 31–49 SSRs, can be used to create significant molecular markers for the Uncaria genus. The phylogenetic tree was constructed according to protein-coding genes and the whole chloroplast genome sequences of five Uncaria species using four methods. The topology of the two phylogenetic trees showed no difference. The sequences of U. rhynchophylla and U. scandens are clustered in one group, while the U. hirsuta and U. macrophylla are clustered in another group. U. sessilifructus is clustered together with the above two small clades. New insights on the relationship were revealed via phylogenetic research in five Uncaria species. This study will provide a theoretical basis for identifying U. rhynchophylla and its counterfeits, as well as the species of the Uncaria genus. This research provides the initial chloroplast genome report of Uncaria, contributes to elucidating the chloroplast genome evolution of Uncaria in China.
Collapse
|
40
|
Qiao Y, Zhang X, Li Z, Song Y, Sun Z. Assembly and comparative analysis of the complete mitochondrial genome of Bupleurum chinense DC. BMC Genomics 2022; 23:664. [PMID: 36131243 PMCID: PMC9490909 DOI: 10.1186/s12864-022-08892-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bupleurum chinense(B. chinense) is a plant that is widely distributed globally and has strong pharmacological effects. Though the chloroplast(cp) genome of B. chinense has been studied, no reports regarding the mitochondrial(mt) genome of B. chinense have been published yet. RESULTS The mt genome of B.chinense was assembled and functionally annotated. The circular mt genome of B. chinense was 435,023 bp in length, and 78 genes, including 39 protein-coding genes, 35 tRNA genes, and 4 rRNA genes, were annotated. Repeat sequences were analyzed and sites at which RNA editing would occur were predicted. Gene migration was observed to occur between the mt and cp genomes of B. chinense via the detection of homologous gene fragments. In addition, the sizes of plant mt genomes and their GC content were analyzed and compared. The sizes of mt genomes of plants varied greatly, but their GC content was conserved to a greater extent during evolution. Ka/Ks analysis was based on code substitutions, and the results showed that most of the coding genes were negatively selected. This indicates that mt genes were conserved during evolution. CONCLUSION In this study, we assembled and annotated the mt genome of the medicinal plant B. chinense. Our findings provide extensive information regarding the mt genome of B. chinense, and help lay the foundation for future studies on the genetic variations, phylogeny, and breeding of B. chinense via an analysis of the mt genome.
Collapse
Affiliation(s)
- Yonggang Qiao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Xinrui Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zheng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yun Song
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhe Sun
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| |
Collapse
|
41
|
Cai H, Gu X, Li Y, Ren Y, Yan S, Yang M. Cold Resistance of Euonymus japonicus Beihaidao Leaves and Its Chloroplast Genome Structure and Comparison with Celastraceae Species. PLANTS 2022; 11:plants11192449. [PMID: 36235317 PMCID: PMC9573587 DOI: 10.3390/plants11192449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
Euonymus japonicus Beihaidao is one of the most economically important ornamental species of the Euonymus genus. There are approximately 97 genera and 1194 species of plants worldwide in this family (Celastraceae). Using E. japonicus Beihaidao, we conducted a preliminary study of the cold resistance of this species, evaluated its performance during winter, assembled and annotated its chloroplast genome, and performed a series of analyses to investigate its gene structure GC content, sequence alignment, and nucleic acid diversity. Our objectives were to understand the evolutionary relationships of the genus and to identify positive selection genes that may be related to adaptations to environmental change. The results indicated that E. japonicus Beihaidao leaves have certain cold resistance and can maintain their viability during wintering. Moreover, the chloroplast genome of E. japonicus Beihaidao is a typical double-linked ring tetrad structure, which is similar to that of the other four Euonymus species, E. hamiltonianus, E. phellomanus, E. schensianus, and E. szechuanensis, in terms of gene structure, gene species, gene number, and GC content. Compared to other Celastraceae species, the variation in the chloroplast genome sequence was lower, and the gene structure was more stable. The phylogenetic relationships of 37 species inferred that members of the Euonymus genus do not form a clade and that E. japonicus Beihaidao is closely related to E. japonicus and E. fortunei. A total of 11 functional positive selected genes were identified, which may have played an important role in the process of Celastraceae species adapting to environmental changes. Our study provides important genetic information to support further investigations into the phylogenetic development and adaptive evolution of Celastraceae species.
Collapse
Affiliation(s)
- Hongyu Cai
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Xiaozheng Gu
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yongtan Li
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Yachao Ren
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Shufang Yan
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang 050050, China
| | - Minsheng Yang
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
- Correspondence: ; Tel.: +86-0312-752-8715
| |
Collapse
|
42
|
Tong L, Yu H, Huang X, Shen J, Xiao G, Chen L, Wang H, Xing L, Chen D. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res 2022; 10:60. [PMID: 36127328 PMCID: PMC9489702 DOI: 10.1038/s41413-022-00226-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease that causes painful swelling and permanent damage to the joints in the body. The molecular mechanisms of OA are currently unknown. OA is a heterogeneous disease that affects the entire joint, and multiple tissues are altered during OA development. To better understand the pathological mechanisms of OA, new approaches, methods, and techniques need to be used to understand OA pathogenesis. In this review, we first focus on the epigenetic regulation of OA, with a particular focus on DNA methylation, histone modification, and microRNA regulation, followed by a summary of several key mediators in OA-associated pain. We then introduce several innovative techniques that have been and will continue to be used in the fields of OA and OA-associated pain, such as CRISPR, scRNA sequencing, and lineage tracing. Next, we discuss the timely updates concerning cell death regulation in OA pathology, including pyroptosis, ferroptosis, and autophagy, as well as their individual roles in OA and potential molecular targets in treating OA. Finally, our review highlights new directions on the role of the synovial lymphatic system in OA. An improved understanding of OA pathogenesis will aid in the development of more specific and effective therapeutic interventions for OA.
Collapse
Affiliation(s)
- Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
| | - Huan Yu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xingyun Huang
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Shen
- Department of Orthopedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huaiyu Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lianping Xing
- Department of Pathology and Laboratory of Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518005, China.
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
43
|
Jiao Y, Feng G, Huang L, Nie G, Li Z, Peng Y, Li D, Xiong Y, Hu Z, Zhang X. Complete Chloroplast Genomes of 14 Subspecies of D. glomerata: Phylogenetic and Comparative Genomic Analyses. Genes (Basel) 2022; 13:genes13091621. [PMID: 36140789 PMCID: PMC9498378 DOI: 10.3390/genes13091621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Orchardgrass (Dactylis glomerata L.) is a species in the Gramineae family that is highly important economically and valued for its role in ecology. However, the phylogeny and taxonomy of D. glomerata are still controversial based on current morphological and molecular evidence. The study of chloroplast (cp) genomes has developed into a powerful tool to develop molecular markers for related species and reveal the relationships between plant evolution and phylogenetics. In this study, we conducted comparative genomic analyses and phylogenetic inferences on 14 cp genomes of D. glomerata originating from the Mediterranean and Eurasia. The genome size ranged from 134,375 bp to 134,993 bp and exhibited synteny of gene organization and order. A total of 129–131 genes were identified, including 85–87 protein coding genes, 38 tRNA genes and 8 rRNA genes. The cp sequences were highly conserved, and key sequence variations were detected at the junctions of inverted repeats (IRs)/small single–copy (SSC) regions. Moreover, nine highly variable regions were identified among the subspecies based on a sequence divergence analysis. A total of 285 RNA editing sites were detected that were relevant to 52 genes, where rpoB exhibited the most abundant RNA editing sites. The phylogenetic analysis revealed that all Dactylis subspecies clustered into a monophyletic group and most branches provided a high support bootstrap. The main divergence time of D. glomerata was dated to the Miocene era, and this could have been due to changes in the climate. These findings will provide useful insights for further studies on phylogeny, the identification of subspecies and the development of hypotheses for the evolutionary history of the genus Dactylis and of the Gramineae family.
Collapse
|
44
|
Peng JY, Zhang XS, Zhang DG, Wang Y, Deng T, Huang XH, Kuang TH, Zhou Q. Newly reported chloroplast genome of Sinosenecio albonervius Y. Liu & Q. E. Yang and comparative analyses with other Sinosenecio species. BMC Genomics 2022; 23:639. [PMID: 36076168 PMCID: PMC9454173 DOI: 10.1186/s12864-022-08872-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sinosenecio B. Nordenstam (Asteraceae) currently comprises 44 species. To investigate the interspecific relationship, several chloroplast markers, including ndhC-trnV, rpl32-trnL, matK, and rbcL, are used to analyze the phylogeny of Sinosenecio. However, the chloroplast genomes of this genus have not been thoroughly investigated. We sequenced and assembled the Sinosenecio albonervius chloroplast genome for the first time. A detailed comparative analysis was performed in this study using the previously reported chloroplast genomes of three Sinosenecio species. Results The results showed that the chloroplast genomes of four Sinosenecio species exhibit a typical quadripartite structure. There are equal numbers of total genes, protein-coding genes and RNA genes among the annotated genomes. Per genome, 49–56 simple sequence repeats and 99 repeat sequences were identified. Thirty codons were identified as RSCU values greater than 1 in the chloroplast genome of S. albonervius based on 54 protein-coding genes, indicating that they showed biased usage. Among 18 protein-coding genes, 46 potential RNA editing sites were discovered. By comparing these chloroplast genomes' structures, inverted repeat regions and coding regions were more conserved than single-copy and non-coding regions. The junctions among inverted repeat and single-copy regions showed slight difference. Several hot spots of genomic divergence were detected, which can be used as new DNA barcodes for species identification. Phylogenetic analysis of the whole chloroplast genome showed that the four Sinosenecio species have close interspecific relationships. Conclusions The complete chloroplast genome of Sinosenecio albonervius was revealed in this study, which included a comparison of Sinosenecio chloroplast genome structure, variation, and phylogenetic analysis for related species. These will help future research on Sinosenecio taxonomy, identification, origin, and evolution to some extent. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08872-3.
Collapse
Affiliation(s)
- Jing-Yi Peng
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China
| | - Xiao-Shuang Zhang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Dai-Gui Zhang
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China.,Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, College of Hunan Province, Jishou, 416000, Hunan, China
| | - Yi Wang
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China
| | - Tao Deng
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xian-Han Huang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Tian-Hui Kuang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, Hunan, China. .,Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, College of Hunan Province, Jishou, 416000, Hunan, China.
| |
Collapse
|
45
|
Revealing the Complete Chloroplast Genome of an Andean Horticultural Crop, Sweet Cucumber (Solanum muricatum), and Its Comparison with Other Solanaceae Species. DATA 2022. [DOI: 10.3390/data7090123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sweet cucumber (Solanum muricatum) sect. Basarthrum is a neglected horticultural crop native to the Andean region. It is naturally distributed very close to other two Solanum crops of high importance, potatoes, and tomatoes. To date, molecular tools for this crop remain undetermined. In this study, the complete sweet cucumber chloroplast (cp) genome was obtained and compared with seven Solanaceae species. The cp genome of S. muricatum was 155,681 bp in length and included a large single copy (LSC) region of 86,182 bp and a small single-copy (SSC) region of 18,360 bp, separated by a pair of inverted repeats (IR) regions of 25,568 bp. The cp genome possessed 87 protein-coding genes (CDS), 37 transfer RNA (tRNA) genes, eight ribosomal RNA (rRNA) genes, and one pseudogene. Furthermore, 48 perfect microsatellites were identified. These repeats were mainly located in the noncoding regions. Whole cp genome comparative analysis revealed that the SSC and LSC regions showed more divergence than IR regions. Similar to previous studies, our phylogenetic analysis showed that S. muricatum is a sister species to members of sections Petota + Lycopersicum + Etuberosum. We expect that this first sweet cucumber chloroplast genome will provide potential molecular markers and genomic resources to shed light on the genetic diversity and population studies of S. muricatum, which will allow us to identify varieties and ecotypes. Finally, the features and the structural differentiation will provide us with information about the genes of interest, generating tools for the most precise selection of the best individuals of sweet cucumber, in less time and with fewer resources.
Collapse
|
46
|
Yang L, Li J, Zhou G. Comparative chloroplast genome analyses of 23 species in Swertia L. (Gentianaceae) with implications for its phylogeny. Front Genet 2022; 13:895146. [PMID: 36118878 PMCID: PMC9470856 DOI: 10.3389/fgene.2022.895146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Swertia L. is a large genus in the family Gentianaceae. Different chloroplast gene segments have been used to study systematic evolutionary relationships between species of Swertia L. However, as gene fragment–based phylogenies lack sufficient resolution, the systematic evolutionary relationships between Swertia L. species have remained unclear. We sequenced and annotated the complete chloroplast genomes of four Swertia species, namely, S. bifolia, S. tetraptera, S. franchetian, and S. przewalskii, using next generation sequencing and the plastid genome annotator tool. The chloroplast genome sequences of 19 additional species of Swertia L. were downloaded from the NCBI database and also assessed. We found that all 23 Swertia L. species had a similar genetic structure, that is, a ring tetrad structure, but with some clear differences. The chloroplast genomes of the 23 Swertia L. species were 149036–153691 bp long, averaging 152385 bp; the genomes contained 134 functional genes: 38 tRNA, eight rRNA, and 88 protein-encoding genes. A comparative analysis showed that chloroplasts genome of Swertia was conserved in terms of genome structure, codon preference, and repeat sequences, but it differed in terms of genome sizes, gene contents, and SC/IR boundary. Using Swertia wolfangiana as a reference, we found clear divergences in most of the non-coding and intergenic regions of the complete chloroplast genomes of these species; we also found that rpoC1, ccsA, ndhI, ndhA, and rps15 protein-coding genes had large variations. These highly variable hotspots will be useful for future phylogenetic and population genetic studies. Phylogenetic analysis with high bootstrap support showed that Swertia L. was not monophyletic. The classification of subgen. Swertia and subgen. Ophelia was supported by molecular data, which also partly supported the division of sect. Ophelia, sect. Platynema, sect. Poephila, sect. Swertia, and sect. Macranthos. However, the systematic positions of other groups and species require further exploration. The Swertia L formed at 29.60 Ma. Speciation of 10 species occurred in succession after 12 Ma and 13 species occurred in succession after 2.5 Ma. Our analysis provides insight into the unresolved evolutionary relationships of Swertia L. species.
Collapse
Affiliation(s)
- Lucun Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, China
| | - Jingjing Li
- College of Life Science, Qinghai Normal University, Xining, China
| | - Guoying Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, China
- *Correspondence: Guoying Zhou,
| |
Collapse
|
47
|
Zhao K, Li L, Quan H, Yang J, Zhang Z, Liao Z, Lan X. Comparative analyses of chloroplast genomes from Six Rhodiola species: variable DNA markers identification and phylogenetic relationships within the genus. BMC Genomics 2022; 23:577. [PMID: 35953771 PMCID: PMC9373441 DOI: 10.1186/s12864-022-08834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background As a valuable medicinal plant, Rhodiola has a very long history of folk medicine used as an important adaptogen, tonic, and hemostatic. However, our knowledge of the chloroplast genome level of Rhodiola is limited. This drawback has limited studies on the identification, evolution, genetic diversity and other relevant studies on Rhodiola. Results Six Rhodiola complete chloroplast genomes were determined and compared to another Rhodiola cp genome at the genome scale. The results revealed a cp genome with a typical quadripartite and circular structure that ranged in size from 150,771 to 151,891 base pairs. High similarity of genome organization, gene number, gene order, and GC content were found among the chloroplast genomes of Rhodiola. 186 (R. wallichiana) to 200 (R. gelida) SSRs and 144 pairs of repeats were detected in the 6 Rhodiola cp genomes. Thirteen mutational hotspots for genome divergence were determined and could be used as candidate markers for phylogenetic analyses and Rhodiola species identification. The phylogenetic relationships inferred by members of Rhodiola cluster into two clades: dioecious and hermaphrodite. Our findings are helpful for understanding Rhodiola's taxonomic, phylogenetic, and evolutionary relationships. Conclusions Comparative analysis of chloroplast genomes of Rhodiola facilitates medicinal resource conservation, phylogenetic reconstruction and biogeographical research of Rhodiola. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08834-9.
Collapse
Affiliation(s)
- Kaihui Zhao
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Lianqiang Li
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Hong Quan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China.,Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Tibet Agricultural & Animal Husbandry University, Nyingchi, 860000, Tibet, China
| | - Junbo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zhirong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, Tibet, China.
| |
Collapse
|
48
|
Javaid N, Ramzan M, Khan IA, Alahmadi TA, Datta R, Fahad S, Danish S. The chloroplast genome of Farsetia hamiltonii Royle, phylogenetic analysis, and comparative study with other members of Clade C of Brassicaceae. BMC PLANT BIOLOGY 2022; 22:384. [PMID: 35918648 PMCID: PMC9344719 DOI: 10.1186/s12870-022-03750-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/13/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Farsetia hamiltonii Royle is a medicinally important annual plant from the Cholistan desert that belongs to the tribe Anastaticeae and clade C of the Brassicaceae family. We provide the entire chloroplast sequence of F.hamiltonii, obtained using the Illumina HiSeq2500 and paired-end sequencing. We compared F. hamiltonii to nine other clade C species, including Farsetia occidentalis, Lobularia libyca, Notoceras bicorne, Parolinia ornata, Morettia canescens, Cochlearia borzaeana, Megacarpaea polyandra, Biscutella laevigata, and Iberis amara. We conducted phylogenetic research on the 22 Brassicaceae species, which included members from 17 tribes and six clades. RESULTS The chloroplast genome sequence of F.hamiltonii of 154,802 bp sizes with 36.30% GC content and have a typical structure comprised of a Large Single Copy (LSC) of 83,906 bp, a Small Single Copy (SSC) of 17,988 bp, and two copies of Inverted Repeats (IRs) of 26,454 bp. The genomes of F. hamiltonii and F. occidentalis show shared amino acid frequencies and codon use, RNA editing sites, simple sequence repeats, and oligonucleotide repeats. The maximum likelihood tree revealed Farsetia as a monophyletic genus, closely linked to Morettia, with a bootstrap score of 100. The rate of transversion substitutions (Tv) was higher than the rate of transition substitutions (Ts), resulting in Ts/Tv less than one in all comparisons with F. hamiltonii, indicating that the species are closely related. The rate of synonymous substitutions (Ks) was greater than non-synonymous substitutions (Ka) in all comparisons with F. hamiltonii, with a Ka/Ks ratio smaller than one, indicating that genes underwent purifying selection. Low nucleotide diversity values range from 0.00085 to 0.08516, and IR regions comprise comparable genes on junctions with minimal change, supporting the conserved status of the selected chloroplast genomes of the clade C of the Brassicaceae family. We identified ten polymorphic regions, including rps8-rpl14, rps15-ycf1, ndhG-ndhI, psbK-psbI, ccsA-ndhD, rpl36-rps8, petA-psbJ, ndhF-rpl32, psaJ-rpl3, and ycf1 that might be exploited to construct genuine and inexpensive to solve taxonomic discrepancy and understand phylogenetic relationship amongst Brassicaceae species. CONCLUSION The entire chloroplast sequencing of F. hamiltonii sheds light on the divergence of genic chloroplast sequences among members of the clade C. When other Farsetia species are sequenced in the future, the full F. hamiltonii chloroplast will be used as a source for comprehensive taxonomical investigations of the genus. The comparison of F. hamiltonii and other clade C species adds new information to the phylogenetic data and evolutionary processes of the clade. The results of this study will also provide further molecular uses of clade C chloroplasts for possible plant genetic modifications and will help recognise more Brassicaceae family species.
Collapse
Affiliation(s)
- Nida Javaid
- Department of Botany, The Islamia University, Bahawalpur, Pakistan
| | - Musarrat Ramzan
- Department of Botany, The Islamia University, Bahawalpur, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi, Karachi, 75270 Pakistan
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461 Saudi Arabia
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska1, 61300 Brno, Czech Republic
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Khyber Pakhtunkhwa, Haripur, 22620 Pakistan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228 China
| | - Subhan Danish
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228 China
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800 Punjab Pakistan
| |
Collapse
|
49
|
Xia X, Peng J, Yang L, Zhao X, Duan A, Wang D. Comparative Analysis of the Complete Chloroplast Genomes of Eight Ficus Species and Insights into the Phylogenetic Relationships of Ficus. Life (Basel) 2022; 12:life12060848. [PMID: 35743879 PMCID: PMC9224849 DOI: 10.3390/life12060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
The genus Ficus is an evergreen plant, the most numerous species in the family Moraceae, and is often used as a food and pharmacy source. The phylogenetic relationships of the genus Ficus have been debated for many years due to the overlapping phenotypic characters and morphological similarities between the genera. In this study, the eight Ficus species (Ficus altissima, Ficus auriculata, Ficus benjamina, Ficus curtipes, Ficus heteromorpha, Ficus lyrata, Ficus microcarpa, and Ficus virens) complete chloroplast (cp) genomes were successfully sequenced and phylogenetic analyses were made with other Ficus species. The result showed that the eight Ficus cp genomes ranged from 160,333 bp (F. heteromorpha) to 160,772 bp (F. curtipes), with a typical quadripartite structure. It was found that the eight Ficus cp genomes had similar genome structures, containing 127 unique genes. The cp genomes of the eight Ficus species contained 89−104 SSR loci, which were dominated by mono-nucleotides repeats. Moreover, we identified eight hypervariable regions (trnS-GCU_trnG-UCC, trnT-GGU_psbD, trnV-UAC_trnM-CAU, clpP_psbB, ndhF_trnL-UAG, trnL-UAG_ccsA, ndhD_psaC, and ycf1). Phylogenetic analyses have shown that the subgenus Ficus and subgenus Synoecia exhibit close affinities and based on the results, we prefer to merge the subgenus Synoecia into the subgenus Ficus. At the same time, new insights into the subgeneric classification of the Ficus macrophylla were provided. Overall, these results provide useful data for further studies on the molecular identification, phylogeny, species identification and population genetics of speciation in the Ficus genus.
Collapse
Affiliation(s)
- Xi Xia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
| | - Jingyu Peng
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100089, China;
| | - Lin Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
| | - Xueli Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
| | - Anan Duan
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
| | - Dawei Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, College of Forestry, Southwest Forestry University, Kunming 650224, China; (X.X.); (L.Y.); (X.Z.); (A.D.)
- Correspondence: ; Tel.: +86-138-8891-5161
| |
Collapse
|
50
|
Xia C, Wang M, Guan Y, Li J. Comparative Analysis of the Chloroplast Genome for Aconitum Species: Genome Structure and Phylogenetic Relationships. Front Genet 2022; 13:878182. [PMID: 35711937 PMCID: PMC9194378 DOI: 10.3389/fgene.2022.878182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aconitum is an important medicinal group of the Ranunculaceae family and has been used as conventional medicine in Bai, Yi, and other ethnic groups of China. There are about 350 Aconitum species globally and about 170 species in China. It is challenging to identify the species in morphology, and the lack of molecular biology information hinders the identification and rational utilization of the germplasm of this genus. Therefore, it is necessary to increase the molecular data of Aconitum species. This paper acquired the complete chloroplast (CP) genome sequence of ten medicinal plants of Aconitum species from Yunnan by Illumina paired-end (PE) sequencing technology and compared it with other species in the same family and genus. These CP genomes exhibited typical circular quadripartite structure, and their sizes ranged from 155,475 (A. stylosum) to 155,921 bp (A. vilmoinianum), including a large single-copy region (LSC), a small single-copy region (SSC), and two inverted repeat regions (IRs). Their gene content, order, and GC content (38.1%) were similar. Moreover, their number of genes ranged from 129 (A. vilmoinianum) to 132 (A. ramulosum), including 83 to 85 protein-coding genes (PCGs), 37 tRNA genes (tRNAs), eight rRNA genes (rRNAs), and two pseudogenes. In addition, we performed repeated sequence analysis, genomic structure, and comparative analysis using 42 Aconitum chloroplast genomes, including ten Aconitum chloroplast genomes and other sequenced Aconitum species. A total of 48-79 simple sequence repeats (SSRs) and 17 to 77 long repeat sequences were identified. IR regions showed higher variability than the SSC region and LSC region. Seven mutational hotspots were screened out, including trnK-UUU-trnQ-UGG, psbD, ndhJ-ndhK, clpP, psbH-petB, ycf1, and trnA-UGC-trnI-GAU, respectively. The phylogenetic trees of ten Aconitum species and other Aconitum species revealed that the complete CP genome was beneficial in determining the complex phylogenetic relationships among Aconitum species. This study provides a potential molecular marker and genomic resource for phylogeny and species identification of Aconitum species and an important reference and basis for Ranunculaceae species identification and phylogeny.
Collapse
Affiliation(s)
- Conglong Xia
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
- College of Pharmacy, Dali University, Dali, China
| | - Manjiong Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
| | - Yunhui Guan
- College of Pharmacy, Dali University, Dali, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
- College of Pharmacy, Dali University, Dali, China
| |
Collapse
|