1
|
Kurtz JA, Grazer J, Wilson K, Feresin RG, Doyle JA, Middleton R, Devis E, VanDusseldorp TA, Fasczewski K, Otis J. The effect of quercetin and citrulline on cycling time trial performance. J Int Soc Sports Nutr 2024; 21:2416909. [PMID: 39417670 PMCID: PMC11488173 DOI: 10.1080/15502783.2024.2416909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND There is growing interest in the use of nutrition and dietary supplements to optimize training and time-trial (TT) performance in cyclists. Separately, quercetin (QCT) and citrulline (CIT) have been used as ergogenic aids to improve oxygen (VO2) kinetics, perceived effort, and cycling TT performance. However, whether the combination of QCT and CIT can provide additive benefits and further enhance cycling performance production is currently unknown. METHODS We examined 28-days of QCT + CIT supplementation on TT performance and several performance measures (i.e. mean power, VO2, respiratory exchange ratio (RER), and rate of perceived exertion (RPE)). Forty-eight highly trained cyclists were assigned to one of four supplementation groups: (1) QCT + CIT (QCT: 500 mg, CIT: 3000 g), (2) QCT (500 mg), (3) CIT (3000 mg), or (4) placebo (3500 mg of a zero-calorie flavored crystal light package). Supplements were consumed two times per day for 28 consecutive days. Participants performed a 20-km cycling time-trial race, pre- and post-supplementation to determine the impact of the combined effects of QCT + CIT. RESULTS There were no potential benefits of QCT +CIT supplementation on TT performance and several performance measures. However, there was an improvement in VO2 from pre-to-post-supplementation in QCT (p = 0.05) and CIT (p = 0.04) groups, but not in the QCT+CIT and PL groups. CONCLUSIONS QCT + CIT does not seem beneficial for 20-km TT performance; further exploration with a focus on an increase in cycling duration or QCT+CIT combined with additional polyphenols may amplify any perceived bioactive or metabolic effects on cycling performance. The efficacy of QCT + CIT supplementation to improve cycling performance remains ambiguous.
Collapse
Affiliation(s)
- Jennifer A. Kurtz
- Appalachian State University, Department of Public Health & Exercise Science, Boone, NC, USA
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
| | - Jacob Grazer
- Kennesaw State University, Department of Exercise Science and Sport Management, Kennesaw, GA, USA
| | - Kathryn Wilson
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
- Georgia State University, Center for the Study of Stress, Trauma, and Resilience, Atlanta, Georgia
| | | | - J. Andrew Doyle
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
| | - Ryan Middleton
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
| | - Emma Devis
- University of Miami, Miller School of Medicine, Department of Physical Therapy, Coral Gables, FL, USA
| | | | - Kimberly Fasczewski
- Appalachian State University, Department of Public Health & Exercise Science, Boone, NC, USA
| | - Jeff Otis
- Georgia State University, Department of Kinesiology & Health, Atlanta, GA, USA
| |
Collapse
|
2
|
Chen JY, Huang TR, Hsu SY, Huang CC, Wang HS, Chang JS. Effect and mechanism of quercetin or quercetin-containing formulas against COVID-19: From bench to bedside. Phytother Res 2024; 38:2597-2618. [PMID: 38479376 DOI: 10.1002/ptr.8175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 06/13/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global coronavirus disease 2019 (COVID-19) pandemic since 2019. Immunopathogenesis and thromboembolic events are central to its pathogenesis. Quercetin exhibits several beneficial activities against COVID-19, including antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antithrombotic effects. Although several reviews have been published, these reviews are incomplete from the viewpoint of translational medicine. The authors comprehensively evaluated the evidence of quercetin against COVID-19, both basically and clinically, to apply quercetin and/or its derivatives in the future. The authors searched the PubMed, Embase, and the Cochrane Library databases without any restrictions. The search terms included COVID-19, SARS-CoV-2, quercetin, antiviral, anti-inflammatory, immunomodulatory, thrombosis, embolism, oxidative, and microbiota. The references of relevant articles were also reviewed. All authors independently screened and reviewed the quality of each included manuscript. The Cochrane Risk of Bias Tool, version 2 (RoB 2) was used to assess the quality of the included randomized controlled trials (RCTs). All selected studies were discussed monthly. The effectiveness of quercetin against COVID-19 is not solid due to methodological flaws in the clinical trials. High-quality studies are also required for quercetin-containing traditional Chinese medicines. The low bioavailability and highly variable pharmacokinetics of quercetin hinder its clinical applications. Its positive impact on immunomodulation through reverting dysbiosis of gut microbiota still lacks robust evidence. Quercetin against COVID-19 does not have tough clinical evidence. Strategies to improve its bioavailability and/or to develop its effective derivatives are needed. Well-designed RCTs are also crucial to confirm their effectiveness in the future.
Collapse
Affiliation(s)
- Jhong Yuan Chen
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung Rung Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih Yun Hsu
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching Chun Huang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei Syun Wang
- Department of Traditional Chinese Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung San Chang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Cho H, Kim S, Lee SH, Park Y. Effect of onion ( Allium cepa L.) peel extract on natural killer cell and cytokines in a randomized, double-blind, placebo-controlled trial. Nutr Res Pract 2024; 18:33-45. [PMID: 38352207 PMCID: PMC10861340 DOI: 10.4162/nrp.2024.18.1.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Onion, particularly onion peel, is a quercetin-rich food with, anti-inflammatory and immunomodulatory effects. However, the effect of onion peel extract (OPE) in humans is unclear. Thus, the present study aimed to investigate whether OPE improves natural killer (NK) cell activity and cytokine concentration in a randomized double-blind placebo-controlled trial. SUBJECTS/METHODS Eighty participants aged 19-64 yrs old with a white blood cell count of 4,000-10,000 cells/µL, symptoms of upper respiratory infection at least once within the previous 12 mon, and perceived stress scale (PSS) over 14 were included. Participants were randomly assigned to take either 1,000 mg/day OPE or a placebo for 8 weeks. RESULTS Compliance were 87.4 ± 8.6% and 86.9 ± 79.0% in OPE and placebo groups. Compared to the placebo, OPE supplementation improved "Hoarseness" (P = 0.038) of the Wisconsin Upper Respiratory Symptom Survey (WURSS)-21 symptom, and stress scores (P = 0.001; 0.021) of PSS. Supplementation of OPE had no significant effect on NK cell activity and concentrations of cytokines such as interleukin (IL)-2, IL-6, IL-12, IL-1β, interferon-γ, and tumor necrosis factor-α. At baseline, the WURSS-21 symptom and PSS score (P = 0.024; 0.026) were higher in the OPE group than the placebo group. Among participants with higher than median WURSS-21 symptom score, OPE supplementation increased NK cell activity (P = 0.038). Supplementation of OPE had no significant effects on safety measurements and adverse events. CONCLUSIONS The present study suggested that OPE supplementation improves NK cell activity in participants with moderate upper respiratory symptoms without any significant adverse effects. Trial Registration ClinicalTrials.gov Identifier: NCT05666752.
Collapse
Affiliation(s)
- Hyunji Cho
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| | - Sohui Kim
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| | - Sung hyen Lee
- National Institute of Agricultural Science, Wanju 55365, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
4
|
Pourova J, Dias P, Pour M, Bittner Fialová S, Czigle S, Nagy M, Tóth J, Balázs VL, Horváth A, Csikós E, Farkas Á, Horváth G, Mladěnka P. Proposed mechanisms of action of herbal drugs and their biologically active constituents in the treatment of coughs: an overview. PeerJ 2023; 11:e16096. [PMID: 37901462 PMCID: PMC10607228 DOI: 10.7717/peerj.16096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/24/2023] [Indexed: 10/31/2023] Open
Abstract
Various medicinal plants find their use in cough treatment, based on traditions and long-term experience. Pharmacological principles of their action, however, are much less known. Herbal drugs usually contain a mixture of potentially active compounds, which can manifest diverse effects. Expectorant or antitussive effects, which can be accompanied by others, such as anti-inflammatory or antibacterial, are probably the most important in the treatment of coughs. The aim of this review is to summarize the current state of knowledge of the effects of medicinal plants or their constituents on cough, based on reliable pharmacological studies. First, a comprehensive description of each effect is provided in order to explain the possible mechanism of action in detail. Next, the results related to individual plants and substances are summarized and critically discussed based on pharmacological in vivo and in vitro investigation.
Collapse
Affiliation(s)
- Jana Pourova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| | - Patricia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| | - Silvia Bittner Fialová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | | | - Adrienn Horváth
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Ding K, Jiang W, Zhan W, Xiong C, Chen J, Wang Y, Jia H, Lei M. The therapeutic potential of quercetin for cigarette smoking-induced chronic obstructive pulmonary disease: a narrative review. Ther Adv Respir Dis 2023; 17:17534666231170800. [PMID: 37154390 PMCID: PMC10170608 DOI: 10.1177/17534666231170800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Quercetin is a flavonoid with antioxidant and anti-inflammatory properties. Quercetin has potentially beneficial therapeutic effects for several diseases, including cigarette smoking-induced chronic obstructive pulmonary disease (CS-COPD). Many studies have shown that quercetin's antioxidant and anti-inflammatory properties have positive therapeutic potential for CS-COPD. In addition, quercetin's immunomodulatory, anti-cellular senescence, mitochondrial autophagy-modulating, and gut microbiota-modulating effects may also have therapeutic value for CS-COPD. However, there appears to be no review of the possible mechanisms of quercetin for treating CS-COPD. Moreover, the combination of quercetin with common therapeutic drugs for CS-COPD needs further refinement. Therefore, in this article, after introducing the definition and metabolism of quercetin, and its safety, we comprehensively presented the pathogenesis of CS-COPD related to oxidative stress, inflammation, immunity, cellular senescence, mitochondrial autophagy, and gut microbiota. We then reviewed quercetin's anti-CS-COPD effects, performed by influencing these mechanisms. Finally, we explored the possibility of using quercetin with commonly used drugs for treating CS-COPD, providing a basis for future screening of excellent drug combinations for treating CS-COPD. This review has provided meaningful information on quercetin's mechanisms and clinical use in treating CS-COPD.
Collapse
Affiliation(s)
- Kaixi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenling Zhan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunping Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieling Chen
- Shehong Hospital of Traditional Chinese Medicine, Shehong, China
| | - Yu Wang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Huanan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
6
|
Bojarczuk A, Dzitkowska-Zabielska M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients 2022; 15:nu15010158. [PMID: 36615815 PMCID: PMC9823453 DOI: 10.3390/nu15010158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Antioxidants in sports exercise training remain a debated research topic. Plant-derived polyphenol supplements are frequently used by athletes to reduce the negative effects of exercise-induced oxidative stress, accelerate the recovery of muscular function, and enhance performance. These processes can be efficiently modulated by antioxidant supplementation. The existing literature has failed to provide unequivocal evidence that dietary polyphenols should be promoted specifically among athletes. This narrative review summarizes the current knowledge regarding polyphenols' bioavailability, their role in exercise-induced oxidative stress, antioxidant status, and supplementation strategies in athletes. Overall, we draw attention to the paucity of available evidence suggesting that most antioxidant substances are beneficial to athletes. Additional research is necessary to reveal more fully their impact on exercise-induced oxidative stress and athletes' antioxidant status, as well as optimal dosing methods.
Collapse
|
7
|
Tsao JP, Bernard JR, Hsu HC, Hsu CL, Liao SF, Cheng IS. Short-Term Oral Quercetin Supplementation Improves Post-exercise Insulin Sensitivity, Antioxidant Capacity and Enhances Subsequent Cycling Time to Exhaustion in Healthy Adults: A Pilot Study. Front Nutr 2022; 9:875319. [PMID: 35571883 PMCID: PMC9096901 DOI: 10.3389/fnut.2022.875319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
Aim Quercetin has been reported to have antioxidant and anti-inflammatory properties on health promotion in human studies. The main purpose of this study was to investigate the effect of short-term oral quercetin supplementation on post-exercise whole-body energy metabolism. This study also aimed to determine the effects of supplementation on oxygen stress, inflammation, muscle damage, and high-intensity cycling exercise performance. Method Twelve healthy participants, physically active students, were recruited to perform a randomized, single-blind crossover study. All subjects completed 7-days of quercetin (quercetin:1,000 mg per day for 7-days) and placebo supplementation in a randomized order. Supplement/placebo was combined with exercise consisting of 70% V̇O2max cycling for 60-min, followed by 3-h of recovery, then a subsequent single bout of cycling exercise with 75% V̇O2max to exhaustion. Time to exhaustion, indicators of muscle damage, as well as blood and gaseous parameters relating to energy metabolism, oxidative stress, inflammatory response, respectively, were determined. Results The results showed that 7-day quercetin supplementation significantly attenuated the post-exercise glucose-induced insulin response, increased total antioxidant capacity (TAC) and superoxidase dismutase (SOD) activities, and mitigated malondialdehyde (MDA) levels during the recovery period (p < 0.05). While subsequent 75% V̇O2max cycling performance was significantly improved after quercetin treatment and accompanied by lower responses of interleukin 6 and creatine kinase at 24-h. However, it’s noted that there were no significant responses in glucose, respiratory exchange rate, tumor necrosis factor-α (TNF-α), myoglobin, and high sensitivity C-reactive protein between quercetin and placebo trials. Conclusion Our findings concluded that 7-day oral quercetin supplementation enhances high-intensity cycling time to exhaustion, which may be due in part to the increase in whole-body insulin-stimulated glucose uptake and attenuation of exercise-induced oxygen stress and pro-inflammation. Therefore, quercetin may be considered an effective ergogenic aid for enhancing high-intensity cycling performance among young adults.
Collapse
Affiliation(s)
- Jung-Piao Tsao
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
| | - Jeffrey R. Bernard
- Department of Kinesiology, California State University, Stanislaus, Turlock, CA, United States
| | - Hsiu-Chen Hsu
- Physical Education Office, Central Taiwan University of Science and Technology, Taichung City, Taiwan
| | - Chin-Lin Hsu
- School of Nutrition, Chung Shan Medical University, Taichung City, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung City, Taiwan
- *Correspondence: Chin-Lin Hsu,
| | - Su-Fen Liao
- Department of Physical Medicine and Rehabilitation, Changhua Christian Hospital, Changhua City, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, Taiwan
- Su-Fen Liao,
| | - I-Shiung Cheng
- Department of Physical Education, National Taichung University of Education, Taichung City, Taiwan
- I-Shiung Cheng,
| |
Collapse
|
8
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
9
|
Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. Nutrients 2021; 14:nu14010070. [PMID: 35010943 PMCID: PMC8746365 DOI: 10.3390/nu14010070] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary supplements are widely used as a nutritional strategy to improve and maintain performance and achieve faster recovery in sports and exercise. Exercise-induced muscle damage (EIMD) is caused by mechanical stress and subsequent inflammatory responses including reactive oxygen species and cytokine production. Therefore, dietary supplements with anti-inflammatory and antioxidant properties have the potential to prevent and reduce muscle damage and symptoms characterized by loss of muscle strength and delayed-onset muscle soreness (DOMS). However, only a few supplements are considered to be effective at present. This review focuses on the effects of dietary supplements derived from phytochemicals and listed in the International Olympic Committee consensus statement on muscle damage evaluated by blood myofiber damage markers, muscle soreness, performance, and inflammatory and oxidative stress markers. In this review, the effects of dietary supplements are also discussed in terms of study design (i.e., parallel and crossover studies), exercise model, and such subject characteristics as physical fitness level. Future perspectives and considerations for the use of dietary supplements to alleviate EIMD and DOMS are also discussed.
Collapse
|
10
|
Chahardoli A, Hajmomeni P, Ghowsi M, Qalekhani F, Shokoohinia Y, Fattahi A. Optimization of Quercetin-Assisted Silver Nanoparticles Synthesis and Evaluation of Their Hemocompatibility, Antioxidant, Anti-Inflammatory, and Antibacterial effects. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2100075. [PMID: 34938575 PMCID: PMC8671616 DOI: 10.1002/gch2.202100075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/23/2021] [Indexed: 06/14/2023]
Abstract
In the present study, different effective parameters (temperature, reaction time, and pH) on the synthesis of quercetin-assisted silver nanoparticles (QE-AgNPs) are optimized. These biogenic NPs are characterized by different physico-chemical analyses, including transmission electron microscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and UV-visible spectroscopy. In addition, the biological properties of QE-AgNPs are evaluated through antioxidant, antimicrobial, anti-inflammatory, hemolysis, and coagulation time assays. The formation of QE-AgNPs is affected by different parameters. The optimum condition for the synthesis of QE-AgNPs is attained at 70 °C and pH 7. Prepared QE-AgNPs show a spherical shape with a crystalline nature and an average particle size of 20 ± 3.6 nm. The role of QE as a reducing and capping agent in the preparation process of QE-AgNPs is demonstrated using FTIR analysis. These NPs with excellent antioxidant activity (82.3% at a concentration of 400 µg mL-1) and anti-inflammatory properties (82.5% and 100% at concentrations of 37.25 and 500 µg mL-1, respectively), show good antimicrobial effects, particularly against Staphylococcus aureus. Furthermore, the results of the hemolytic and coagulation assay of QE-AgNPs indicate their hemo-compatibility. Therefore, hemo/bio-compatible QE-AgNPs with excellent and unique properties can be employed in different medicinal and pharmacological applications.
Collapse
Affiliation(s)
- Azam Chahardoli
- Department of BiologyFaculty of ScienceRazi UniversityKermanshah6714414971Iran
| | - Pouria Hajmomeni
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
| | - Mahnaz Ghowsi
- Department of BiologyFaculty of ScienceRazi UniversityKermanshah6714414971Iran
| | - Farshad Qalekhani
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
- Ric Scalzo Institute for Botanical ResearchSouthwest College of Naturopathic MedicineTempeAZ85282USA
| | - Ali Fattahi
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
- Medical Biology Research CenterHealth Technologies InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
| |
Collapse
|
11
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
12
|
Bouyahya A, Guaouguaou FE, El Omari N, El Menyiy N, Balahbib A, El-Shazly M, Bakri Y. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives. J Pharm Anal 2021; 12:35-57. [PMID: 35573886 PMCID: PMC9073245 DOI: 10.1016/j.jpha.2021.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Moroccan medicinal plants exhibit several pharmacological properties such as antimicrobial, anticancer, antidiabetic, analgesic, and anti-inflammatory effects, which are related to the presence of numerous bioactive compounds, including phenolic acids, flavonoids, and terpenoids. In the present review, we systematically evaluate previously published reports on the anti-inflammatory and analgesic effects of Moroccan medicinal plants. The in vitro investigations revealed that Moroccan medicinal plants inhibit several enzymes related to inflammatory processes, whereas in vivo studies noted significant anti-inflammatory and analgesic effects as demonstrated using different experimental models. Various bioactive compounds exhibiting in vitro and in vivo anti-inflammatory and analgesic effects, with diverse mechanisms of action, have been identified. Some plants and their bioactive compounds reveal specific secondary metabolites that possess important anti-inflammatory effects in clinical investigations. Our review proposes the potential applications of Moroccan medicinal plants as sources of anti-inflammatory and analgesic agents. Anti-inflammatory and analgesic effects of Moroccan medicinal plants were highlighted. Chemical nature of Moroccan medicinal plants with anti-inflammatory and analgesic effects was reported. Insights into anti-inflammatory mechanisms of bioactive compounds were highlighted. Toxicological investigations of Moroccan medicinal plants were reviewed.
Collapse
|
13
|
Postnatally induced metabolic and oxidative changes associated with maternal high-fat consumption were mildly affected by Quercetin-3-O-rutinoside treatment in rats. Heliyon 2021; 7:e06847. [PMID: 33997389 PMCID: PMC8102762 DOI: 10.1016/j.heliyon.2021.e06847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/05/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress is usually associated with prolonged intake of high-fat diet (HFD). However, little is known about the impact of maternal HFD on endogenous modulation of antioxidant-defence-enzyme-network, its link to adverse fetal growth and overall effects of Quercetin-3-o-rutinoside (QR) supplementation. Sprague-Dawley rats were initially assigned to normal diet (ND) or HFD for 8 weeks and mated. Post-conception, rats were further divided into four groups, of which two groups had diets supplemented with QR while others continued with their respective diets until delivery. Measurements include food and water consumption, physical parameters (body weight, body mass index (BMI) and fur appearance), oral glucose tolerance, lipid profiles, and placental/liver oxidative changes. We observed that water consumption was significantly increased in dams fed HFD without marked differences in food intake, body weight, BMI and glucose tolerance. Surprisingly, offspring of HFD-fed dams had reduced body weight marked by delayed fur appearance compared to the ND offspring. In dams, there were alterations in lipid profile. Lipid peroxidation was increased in the placenta and liver of gestational day (GD) 19 HFD-fed dams and their postnatal day (PND) 21 male offspring. There was evidence of HFD-induced nitrosative stress in dams and PND28 female offspring. Adaptive defence indicate decreased placenta and liver superoxide dismutase (SOD) levels as well as differential changes in total antioxidant capacity (TAC) and catalase (CAT) activity in HFD treated dams and their progenies. Overall, the results indicate that intrauterine metabolic alterations associated with maternal high-fat consumption may induce oxidative challenge in the offspring accompanied by mild developmental consequences, while QR supplementation has little or no beneficial effects.
Collapse
|
14
|
Yin J, Peng X, Lin J, Zhang Y, Zhang J, Gao H, Tian X, Zhang R, Zhao G. Quercetin amelioratesAspergillus fumigatuskeratitis by inhibiting fungal growth, toll-like receptors and inflammatory cytokines. Int Immunopharmacol 2021; 93:107435. [PMID: 33550031 DOI: 10.1016/j.intimp.2021.107435] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the antifungal and anti-inflammatory effects of quercetin on Aspergillus fumigatus (A. fumigatus) keratitis. METHODS Human corneal epithelial cells (HCECs) and C57BL/6 mice were stimulated by A. fumigatus and treated with quercetin or dimethyl sulfoxide (DMSO) after infection. In HCECs, minimum inhibitory concentration (MIC) and cytotoxicity tests (CCK-8) were used to detect the antifungal effect and cytotoxicity of quercetin. In mice with A. fumigatuskeratitis, clinical score, plate counting and hematoxylin-eosin (HE) staining were performed to evaluate the effects of quercetin in vivo. Myeloperoxidase (MPO) assay and immunofluorescence staining were applied to assess neutrophil recruitment and infiltration. Real time PCR (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and western blot were used to detect the mRNA and protein expressions of inflammatory mediators. RESULTS Compared with DMSO control, quercetin (16-64 μM) significantly inhibited the growth of A. fumigatus in a concentration-dependent manner without affecting cell viability in HCECs. In corneas of mice with A. fumigatuskeratitis, quercetin decreased clinical score and fungal load, and reduced neutrophil recruitment and infiltration to the corneal stroma. Moreover, quercetin attenuated the expression of inflammatory mediators including toll-like receptor-4 (TLR-4), TLR-2, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and high mobility group box 1 (HMGB1) in vitro and in vivo. CONCLUSIONS Our study demonstrated that quercetin treatment can ameliorate A. fumigatus keratitis by inhibiting the growth of A. fumigatus, decreasing neutrophil recruitment and infiltration, and downregulating the productions of TLR-4, TLR-2, TNF-α, IL-1β and HMGB1, indicating quercetin is likely to become a potential therapeutic agent in FK treatment.
Collapse
Affiliation(s)
- Jiao Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Jie Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Han Gao
- Department of Ophthalmology, Qingdao Central Hospital, NO. 127 Siliu South Road, Qingdao, Shandong Province 266042, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Ranran Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China.
| |
Collapse
|
15
|
Bouyahya A, Chamkhi I, Benali T, Guaouguaou FE, Balahbib A, El Omari N, Taha D, Belmehdi O, Ghokhan Z, El Menyiy N. Traditional use, phytochemistry, toxicology, and pharmacology of Origanum majorana L. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113318. [PMID: 32882360 DOI: 10.1016/j.jep.2020.113318] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/22/2020] [Accepted: 08/22/2020] [Indexed: 05/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Origanum majorana L., is an aromatic and medicinal plant distributed in different parts of Mediterranean countries. This species is widely used in traditional medicine for the treatment of many diseases such as allergies, hypertension, respiratory infections, diabetes, stomach pain, and intestinal antispasmodic. AIM OF THE REVIEW This work reports previous studies on O. majorana concerning its taxonomy, botanical description, geographical distribution, traditional use, bioactive compounds, toxicology, and biological effects. MATERIALS AND METHODS Different scientific data bases such as Web of Science, Scopus, Wiley Online, SciFinder, Google Scholar, PubMed, ScienceDirect, and SpringerLink were consulted to collect data about O. majorana. The presented data emphasis bioactive compounds, traditional uses, toxicological investigations, and biological activities of O. majorana. RESULTS The findings of this work marked an important correlation between the traditional use of O. majorana as an anti-allergic, antihypertensive, anti-diabetic agent, and its biological effects. Indeed, pharmacological investigations showed that essential oils and extracts from O. majorana exhibit different biological properties, particularly; antibacterial, antifungal, antioxidant, antiparasitic, antidiabetic, anticancer, nephrotoxicity protective, anti-inflammatory, analgesic and anti-pyretic, hepatoprotective, and antimutagenic effects. Toxicological evaluation confirmed the safety and innocuity of this species and supported its medicinal uses. Several bioactive compounds belonging to different chemical family such as terpenoids, flavonoids, and phenolic acids were also identified in O. majorana. CONCLUSIONS The results suggest that the pharmacological properties of O. majorana confirm its traditional uses. Indeed, O. majorana essential oils showed remarkable antimicrobial, antioxidant, anticancer, anti-inflammatory, antimutagenic, nephroprotective, and hepatoprotective activities. However, further investigations regarding the evaluation of molecular mechanisms of identified compounds against human cancer cell lines, inflammatory process, and microbial infections are needed to validate pharmacodynamic targets. The toxicological investigation of O. Majorana confirmed its safety and therefore encouraged pharmacokinetic evaluation tests to validate its bioavailability.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, And Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Imane Chamkhi
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Taoufiq Benali
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, SidiMohamed Ben Abdellah University of Fez, B.P.: 1223, Taza-Gare, Taza, Morocco.
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco.
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Université Mohammed V, Rabat, Morocco.
| | - Omar Belmehdi
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Zengin Ghokhan
- Biochemistry and Physiology Laboratory, Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey.
| | - Naoual El Menyiy
- Laboratory of Physiology, Pharmacology & Environmental Health, Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco.
| |
Collapse
|
16
|
Sgrò P, Ceci R, Lista M, Patrizio F, Sabatini S, Felici F, Sacchetti M, Bazzucchi I, Duranti G, Di Luigi L. Quercetin Modulates IGF-I and IGF-II Levels After Eccentric Exercise-Induced Muscle-Damage: A Placebo-Controlled Study. Front Endocrinol (Lausanne) 2021; 12:745959. [PMID: 34803913 PMCID: PMC8595302 DOI: 10.3389/fendo.2021.745959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Prolonged or unaccustomed eccentric exercise may cause muscle damage and depending from its extent, this event negatively affects physical performance. OBJECTIVES The aim of the present investigation was to evaluate, in humans, the effect of the flavonoid quercetin on circulating levels of the anabolic insulin-like growth factor 1 (IGF-I) and insulin-like growth factor 2 (IGF-II), produced during the recovery period after an eccentric-induced muscle damage (EIMD). METHODS A randomized, double-blind, crossover study has been performed; twelve young men ingested quercetin (1 g/day) or placebo for 14 days and then underwent an eccentric-induced muscle damaging protocol. Blood samples were collected, and cell damage markers [creatine kinase (CK), lactate dehydrogenase (LDH) and myoglobin (Mb)], the inflammatory responsive interleukin 6 (IL-6), IGF-I and IGF-II levels were evaluated before the exercise and at different recovery times from 24 hours to 7 days after EIMD. RESULTS We found that, in placebo treatment the increase in IGF-I (72 h) preceded IGF-II increase (7 d). After Q supplementation there was a more marked increase in IGF-I levels and notably, the IGF-II peak was found earlier, compared to placebo, at the same time of IGF-I (72 h). Quercetin significantly reduced plasma markers of cell damage [CK (p<0.005), LDH (p<0.001) and Mb (p<0.05)] and the interleukin 6 level [IL-6 (p<0.05)] during recovery period following EIMD compared to placebo. CONCLUSIONS Our data are encouraging about the use of quercetin as dietary supplementation strategy to adopt in order to mitigate and promote a faster recovery after eccentric exercise as suggested by the increase in plasma levels of the anabolic factors IGF-I and IGF-II.
Collapse
Affiliation(s)
- Paolo Sgrò
- Endocrinology Unit - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
- *Correspondence: Paolo Sgrò, ; Guglielmo Duranti,
| | - Roberta Ceci
- Laboratory of Biochemistry of Movement - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Marco Lista
- Endocrinology Unit - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Federica Patrizio
- Laboratory of Exercise Physiology - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Stefania Sabatini
- Laboratory of Biochemistry of Movement - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Francesco Felici
- Laboratory of Exercise Physiology - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Massimo Sacchetti
- Laboratory of Exercise Physiology - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Ilenia Bazzucchi
- Laboratory of Exercise Physiology - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Guglielmo Duranti
- Laboratory of Biochemistry of Movement - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
- *Correspondence: Paolo Sgrò, ; Guglielmo Duranti,
| | - Luigi Di Luigi
- Endocrinology Unit - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| |
Collapse
|
17
|
Intensive Running Enhances NF-κB Activity in the Mice Liver and the Intervention Effects of Quercetin. Nutrients 2020; 12:nu12092770. [PMID: 32932805 PMCID: PMC7551556 DOI: 10.3390/nu12092770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Emerging evidence has supported that intensive exercise induces weakened performance and immune and metabolic disorders. We systematically evaluated the effects of quercetin against hepatic inflammatory damage caused by repeated intensive exercise and explored the potential mechanism. Methods: Male BALB/c mice were administered quercetin (100 mg/kg BW) for four weeks, and performed a treadmill running protocol of 28 m/min, 5° slope, 90 min/day concurrently for the last seven days. Results: Quercetin administration reduced the leakage of aspartic acid and alanine aminotransferase and improved ultrastructural abnormalities such as swelling, and degeneration caused by high-intensity running in mice. Quercetin significantly decreased the hepatic and plasmatic levels of inflammatory cytokines IL-1β, IL-6, TNF-α, inducible nitric oxide synthase, cyclooxygenase-2 and intercellular adhesion molecule-1—provoked by over-exercise. Furthermore, diminished activation and nuclear translocation of NF-κB were found after quercetin treatment through inhibiting IKKα and Iκbα phosphorylation of intensive running mice. Conclusion: Quercetin offers protection for mouse livers against intensive sports-induced inflammatory injury, and the suppression of the NF-κB signal transduction pathway may play a role in its anti-inflammatory effects. Our findings broaden our understanding of natural phytochemicals as a promising strategy to prevent excessive exercise damage.
Collapse
|
18
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
19
|
Bongiovanni T, Genovesi F, Nemmer M, Carling C, Alberti G, Howatson G. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: current knowledge, practical application and future perspectives. Eur J Appl Physiol 2020; 120:1965-1996. [PMID: 32661771 DOI: 10.1007/s00421-020-04432-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This review provides an overview of the current knowledge of the nutritional strategies to treat the signs and symptoms related to EIMD. These strategies have been organized into the following sections based upon the quality and quantity of the scientific support available: (1) interventions with a good level of evidence; (2) interventions with some evidence and require more research; and (3) potential nutritional interventions with little to-no-evidence to support efficacy. METHOD Pubmed, EMBASE, Scopus and Web of Science were used. The search terms 'EIMD' and 'exercise-induced muscle damage' were individually concatenated with 'supplementation', 'athletes', 'recovery', 'adaptation', 'nutritional strategies', hormesis'. RESULT Supplementation with tart cherries, beetroot, pomegranate, creatine monohydrate and vitamin D appear to provide a prophylactic effect in reducing EIMD. β-hydroxy β-methylbutyrate, and the ingestion of protein, BCAA and milk could represent promising strategies to manage EIMD. Other nutritional interventions were identified but offered limited effect in the treatment of EIMD; however, inconsistencies in the dose and frequency of interventions might account for the lack of consensus regarding their efficacy. CONCLUSION There are clearly varying levels of evidence and practitioners should be mindful to refer to this evidence-base when prescribing to clients and athletes. One concern is the potential for these interventions to interfere with the exercise-recovery-adaptation continuum. Whilst there is no evidence that these interventions will blunt adaptation, it seems pragmatic to use a periodised approach to administering these strategies until data are in place to provide and evidence base on any interference effect on adaptation.
Collapse
Affiliation(s)
- Tindaro Bongiovanni
- Department of Health, Performance and Recovery, Parma Calcio 1913, Parma, Italy.
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milano, Italy.
| | | | - Monika Nemmer
- Nutrition Department Liverpool Football Club, Liverpool, UK
| | - Christopher Carling
- Centre for Elite Performance, French Football Federation, 75015, Paris, France
| | - Giampietro Alberti
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milano, Italy
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
20
|
Nasiri M, Ahmadizad S, Hedayati M, Zarekar T, Seydyousefi M, Faghfoori Z. Trans-resveratrol supplement lowers lipid peroxidation responses of exercise in male Wistar rats. INT J VITAM NUTR RES 2020; 91:507-512. [PMID: 32400317 DOI: 10.1024/0300-9831/a000654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Physical exercise increases free radicals production; antioxidant supplementation may improve the muscle fiber's ability to scavenge ROS and protect muscles against exercise-induced oxidative damage. This study was designed to examine the effects of all-trans resveratrol supplementation as an antioxidant to mediate anti-oxidation and lipid per-oxidation responses to exercise in male Wistar rats. Sixty-four male Wistar rats were randomly divided into four equal number (n = 16) including training + supplement (TS), training (T), supplement (S) and control (C) group. The rats in TS and S groups received a dose of 10 mg/kg resveratrol per day via gavage. The training groups ran on a rodent treadmill 5 times per week at the speed of 10 m/min for 10 min; the speed gradually increased to 30 m/min for 60 minutes at the end of 12th week. The acute phase of exercise protocol included a speed of 25 m/min set to an inclination of 10° to the exhaustion point. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activity, non-enzymatic antioxidants bilirubin, uric acid, lipid peroxidation levels (MDA) and the total antioxidant capacity (TAC) were measured after the exercise termination. The data were analyzed by using one-way ANOVA. The result showed that endurance training caused a significant increase in MDA level [4.5 ± 0.75 (C group) vs. 5.9 ± 0.41 nmol/l (T group)] whereas it decreased the total antioxidant capacity [8.5 ± 1.35 (C group) vs. 7.1 ± 0.55 mmol/l (T group)] (p = 0.001). In addition, GPx and CAT decreased but not significantly (p > 0.05). The training and t-resveratrol supplementation had no significant effect on the acute response of all variables except MDA [4.3 ± 1.4 (C group) vs. 4.0 ± 0.90 nmol/l (TS group)] (p = 0.001) and TAC [8.5 ± 0.90 (C group) vs. 6.6 ± 0.80 mmol/l (TS group)] (p = 0.004). It was concluded that resveratrol supplementation may prevent exercise-induced oxidative stress by preventing lipid peroxidation.
Collapse
Affiliation(s)
- Masoud Nasiri
- Faculty of Sport Sciences, Razi University of Kermanshah, Iran
| | - Saja Ahmadizad
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University G.C., Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebe Zarekar
- Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University G.C., Tehran, Iran
| | - Mehdi Seydyousefi
- Department of Physical Education and Sport Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Zeinab Faghfoori
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran.,Department of Nutrition, School of Nutrition and Food Sciences, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
21
|
Ho TY, Lo HY, Liu IC, Lin KA, Liao YF, Lo YC, Hsiang CY. The protective effect of quercetin on retinal inflammation in mice: the involvement of tumor necrosis factor/nuclear factor-κB signaling pathways. Food Funct 2020; 11:8150-8160. [DOI: 10.1039/d0fo01324b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oral administration of quercetin ameliorated LPS-induced retinal inflammation in mice by down-regulating TNF, cytokine, and NF-κB pathways.
Collapse
Affiliation(s)
- Tin-Yun Ho
- Graduate Institute of Chinese Medicine
- China Medical University
- Taichung 40402
- Taiwan
- Department of Health and Nutrition Biotechnology
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine
- China Medical University
- Taichung 40402
- Taiwan
| | - I-Chen Liu
- Graduate Institute of Chinese Medicine
- China Medical University
- Taichung 40402
- Taiwan
| | - Ken-An Lin
- Graduate Institute of Chinese Medicine
- China Medical University
- Taichung 40402
- Taiwan
| | - Yi-Fang Liao
- Graduate Institute of Biomedical Sciences
- China Medical University
- Taichung 40402
- Taiwan
| | - Yuan-Chun Lo
- School of Medicine
- China Medical University
- Taichung 40402
- Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology
- China Medical University
- Taichung 40402
- Taiwan
| |
Collapse
|
22
|
Dabeek WM, Marra MV. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019; 11:E2288. [PMID: 31557798 PMCID: PMC6835347 DOI: 10.3390/nu11102288] [Citation(s) in RCA: 400] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 01/15/2023] Open
Abstract
Fruit and vegetable intake has been associated with a reduced risk of cardiovascular disease. Quercetin and kaempferol are among the most ubiquitous polyphenols in fruit and vegetables. Most of the quercetin and kaempferol in plants is attached to sugar moieties rather than in the free form. The types and attachments of sugars impact bioavailability, and thus bioactivity. This article aims to review the current literature on the bioavailability of quercetin and kaempferol from food sources and evaluate the potential cardiovascular effects in humans. Foods with the highest concentrations of quercetin and kaempferol in plants are not necessarily the most bioavailable sources. Glucoside conjugates which are found in onions appear to have the highest bioavailability in humans. The absorbed quercetin and kaempferol are rapidly metabolized in the liver and circulate as methyl, glucuronide, and sulfate metabolites. These metabolites can be measured in the blood and urine to assess bioactivity in human trials. The optimal effective dose of quercetin reported to have beneficial effect of lowering blood pressure and inflammation is 500 mg of the aglycone form. Few clinical studies have examined the potential cardiovascular effects of high intakes of quercetin- and kaempferol-rich plants. However, it is possible that a lower dosage from plant sources could be effective due to of its higher bioavailability compared to the aglycone form. Studies are needed to evaluate the potential cardiovascular benefits of plants rich in quercetin and kaempferol glycoside conjugates.
Collapse
Affiliation(s)
- Wijdan M Dabeek
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA.
| | - Melissa Ventura Marra
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
23
|
Wu M, Liu F, Guo Q. Quercetin attenuates hypoxia-ischemia induced brain injury in neonatal rats by inhibiting TLR4/NF-κB signaling pathway. Int Immunopharmacol 2019; 74:105704. [PMID: 31228815 DOI: 10.1016/j.intimp.2019.105704] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023]
Abstract
Neonatal hypoxic ischemia (HI) is a kind of brain damage that occurs when an infant's brain does not receive enough oxygen and blood. The unrepairable damage leads to newborn death and short/long term brain dysfunctions. Due to the complicated causes and the variety of brain damages, there is no definitive treatment of neonatal HI. In this study, we set up a HI injury model of newborn rat and administrated Quercetin (Que) to treat rat pups before and after HI injury. We performed immunohistochemistry, quantitative PCR and immunoblot experiments to examine whether Que. has a role in attenuating brain injury after HI. We found that Que. treatment could clearly attenuate cortical cell apoptosis, as well as suppress apoptosis marker Bax, and activate anti-apoptosis marker Bcl-2. Moreover, Que. treatment decreased the number of cortical cells microgliosis and astrogliosis induced by HI injury. Furthermore, Que. treatment decreased cortical inflammation. Finally, it is suggested that Que. played a neuroprotective function on HI brain injury via inhibiting the TLR4/NF-κB signaling pathway. From these results, we conclude that Que. treatment may be a used as a therapeutic drug to prevent and decrease the newborn brain damage caused by HI.
Collapse
Affiliation(s)
- Meiyan Wu
- The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan 250033, Shandong, China
| | - Fengting Liu
- Yidu Central Hospital of Weifang, No. 4138 Linglongshan Road, Qingzhou 262500, Shandong, China
| | - Qinghui Guo
- The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan 250033, Shandong, China.
| |
Collapse
|
24
|
Koivisto AE, Olsen T, Paur I, Paulsen G, Bastani NE, Garthe I, Raastad T, Matthews J, Blomhoff R, Bøhn SK. Effects of antioxidant-rich foods on altitude-induced oxidative stress and inflammation in elite endurance athletes: A randomized controlled trial. PLoS One 2019; 14:e0217895. [PMID: 31194785 PMCID: PMC6563980 DOI: 10.1371/journal.pone.0217895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
Abstract
Background Various altitude training regimes, systematically used to improve oxygen carrying capacity and sports performance, have been associated with increased oxidative stress and inflammation. We investigated whether increased intake of common antioxidant-rich foods attenuates these processes. Methods In a randomized controlled trial, 31 elite endurance athletes (23 ± 5 years), ingested antioxidant-rich foods (n = 16), (> doubling their usual intake), or eucaloric control foods (n = 15) during a 3-week altitude training camp (2320 m). Fasting blood and urine samples were collected 7 days pre-altitude, after 5 and 18 days at altitude, and 7 days post-altitude. Change over time was compared between the groups using mixed models for antioxidant capacity [uric acid-free (ferric reducing ability of plasma (FRAP)], oxidative stress (8-epi-PGF2α) and inflammatory biomarkers (IFNγ, IL1α, IL1RA, IL1β, IL2, IL5, IL6, IL7, IL10, IL12p70, IL13, IL17, TNFα, MCP-1 and micro-CRP). The cytokine response to a stress-test (VO2max ramp test or 100 m swimming) was assessed at pre- and post-altitude. Results FRAP increased more in the antioxidant compared to the control group (p = 0.034). IL13 decreased in the antioxidant group, while increasing in the controls (p = 0.006). A similar trend was seen for IL6 (p = 0.062). A larger decrease in micro-CRP was detected in the antioxidant group compared to controls (β: -0.62, p = 0.02). We found no group differences for the remaining cytokines. 8-epi-PGF2α increased significantly in the whole population (p = 0.033), regardless group allocation. The stress response was significantly larger post-altitude compared with pre-altitude for IL1β, IL6, IL7, IL13, IL12p70 and TNFα, but we found no group differences. Conclusions Increased intake of antioxidant-rich foods elevated the antioxidant capacity and attenuated some of the altitude-induced systemic inflammatory biomarkers in elite athletes. The antioxidant intervention had no impact on the altitude-induced oxidative stress or changes in acute cytokine responses to exercise stress-tests.
Collapse
Affiliation(s)
- Anu Elisa Koivisto
- Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvild Paur
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Division of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Gøran Paulsen
- Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Ina Garthe
- Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Division of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Siv Kjølsrud Bøhn
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
- * E-mail:
| |
Collapse
|
25
|
Pomegranate Extract Improves Maximal Performance of Trained Cyclists after an Exhausting Endurance Trial: A Randomised Controlled Trial. Nutrients 2019; 11:nu11040721. [PMID: 30925733 PMCID: PMC6521089 DOI: 10.3390/nu11040721] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022] Open
Abstract
The efficacy of pomegranate (Punica granatum) extract (PE) for improving performance and post-exercise recovery in an active population was equivocal in previous studies. In this study, a randomised, double-blinded, placebo-controlled, balanced, cross-over trial with two arms was conducted. Eligibility criteria for participants were as follows: male, amateur cyclist, with a training routine of 2 to 4 sessions per week (at least one hour per session). The cyclists (n = 26) were divided into treatment (PE) and placebo (PLA) groups for a period of 15 days. After physical tests, the groups were exchanged after a 14-day washout period. Exercise tests consisted of endurance bouts (square-wave endurance exercise test followed by an incremental exercise test to exhaustion) and an eccentric exercise drill. The objective was to assess the efficacy of PE in performance outcomes and post-exercise muscular recovery and force restoration after a prolonged submaximal effort. Twenty-six participants were included for statistical analysis. There was a statistically significant difference in total time to exhaustion (TTE)(17.66–170.94 s, p < 0.02) and the time to reach ventilatory threshold 2 (VT2)(26.98–82.55 s, p < 0.001), with greater values for the PE compared to the PLA group. No significant results were obtained for force restoration in the isokinetic unilateral low limb test. PE, after a prolonged submaximal effort, may be effective in improving performance outcomes at maximal effort and might help to restore force in the damaged muscles.
Collapse
|
26
|
Antonioni A, Fantini C, Dimauro I, Caporossi D. Redox homeostasis in sport: do athletes really need antioxidant support? Res Sports Med 2018; 27:147-165. [PMID: 30596287 DOI: 10.1080/15438627.2018.1563899] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplementation with antioxidants received interest as suitable tool for preventing or reducing exercise-related oxidative stress possibly leading to improvement of sport performance in athletes. To date, it is difficult to reach a conclusion on the relevance of antioxidants supplementation in athletes and/or well-trained people. The general picture that emerges from the available data indicates that antioxidants requirement can be covered by dosage equal or close to the recommended dietary allowance (RDA) provided by consumption of a balanced, well-diversified diet. Nevertheless, it remains open the possibility that in specific context, such as in sports characterized by high intensity and/or exhaustive regimes, supplementation with antioxidants could be appropriated to avoid or reduce the damaging effect of these type of exercise. This review will discuss the findings of a number of key studies on the advantages and/or disadvantages for athletes of using antioxidants supplementation, either individually or in combination.
Collapse
Affiliation(s)
- Ambra Antonioni
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Cristina Fantini
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Ivan Dimauro
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| | - Daniela Caporossi
- a Department of Movement, Human and Health Sciences , University of Rome "Foro Italico" , Rome , Italy
| |
Collapse
|
27
|
Owens DJ, Twist C, Cobley JN, Howatson G, Close GL. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? Eur J Sport Sci 2018; 19:71-85. [PMID: 30110239 DOI: 10.1080/17461391.2018.1505957] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exercise-induced muscle damage (EIMD) is characterized by symptoms that present both immediately and for up to 14 days after the initial exercise bout. The main consequence of EIMD for the athlete is the loss of skeletal muscle function and soreness. As such, numerous nutrients and functional foods have been examined for their potential to ameliorate the effects of EIMD and accelerate recovery, which is the purpose of many nutritional strategies for the athlete. However, the trade-off between recovery and adaptation is rarely considered. For example, many nutritional interventions described in this review target oxidative stress and inflammation, both thought to contribute to EIMD but are also crucial for the recovery and adaptation process. This calls into question whether long term administration of supplements and functional foods used to target EIMD is indeed best practice. This rapidly growing area of sports nutrition will benefit from careful consideration of the potential hormetic effect of long term use of nutritional aids that ameliorate muscle damage. This review provides a concise overview of what EIMD is, its causes and consequences and critically evaluates potential nutritional strategies to ameliorate EIMD. We present a pragmatic practical summary that can be adopted by practitioners and direct future research, with the purpose of pushing the field to better consider the fine balance between recovery and adaptation and the potential that nutritional interventions have in modulating this balance.
Collapse
Affiliation(s)
- Daniel J Owens
- a Research Institute for Sport and Exercise Science , Liverpool John Moores University , Liverpool , UK
| | - Craig Twist
- b Department of Sport and Exercise Sciences , University of Chester , Chester , UK
| | - James N Cobley
- c Department of Diabetes and Cardiovascular Disease, Center of Health Sciences , University of the Highlands and Islands , Inverness , UK
| | - Glyn Howatson
- d Department of Sport, Exercise & Rehabilitation , Northumbria University , Newcastle upon Tyne , UK.,e Water Research Group , North West University , Potchefstroom , South Africa
| | - Graeme L Close
- a Research Institute for Sport and Exercise Science , Liverpool John Moores University , Liverpool , UK
| |
Collapse
|
28
|
Ren K, Jiang T, Zhao GJ. Quercetin induces the selective uptake of HDL-cholesterol via promoting SR-BI expression and the activation of the PPARγ/LXRα pathway. Food Funct 2018; 9:624-635. [PMID: 29292466 DOI: 10.1039/c7fo01107e] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reverse cholesterol transport (RCT) is the process to deliver cholesterol to the liver for further excretion and involves scavenger receptor class B type I (SR-BI)-mediated selective lipid uptake (SLU) from high-density lipoprotein cholesterol (HDL-C). The up-regulation of hepatic SR-BI expression accelerates HDL-C clearance in circulation and impedes the development of atherosclerosis (AS). In the present study, we explored the modulation of hepatic SR-BI expression and SR-BI-mediated SLU by quercetin, a natural flavonoid compound in the diet with a favorable role in cardiovascular disorders. We found that quercetin significantly increased the expression level of SR-BI in HepG2 cells in a concentration- and time-dependent manner. Besides, quercetin had stimulatory effects on the binding of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil)-labeled HDL to hepatocytes and 125I/3H-CE-HDL association. Treatment with small interfering RNA (siRNA) or SR-BI specific inhibitor, BLT-1, inhibited quercetin-induced Dil-HDL binding and selective HDL-C uptake. Treatment with quercetin increased both proliferator-activated receptor γ (PPARγ) and liver X receptor α (LXRα) levels. Additionally, the quercetin-induced expression of SR-BI, Dil-HDL binding and the selective uptake of HDL-C were significantly attenuated by treatment with PPARγ siRNA, LXRα siRNA, and their antagonists, respectively. In C57BL/6 mice, quercetin administration potently increased SR-BI, PPARγ and LXRα levels and lipid accumulation in the liver. Altogether, our results suggest that quercetin-induced up-regulation of SR-BI and subsequent lipid uptake in hepatocytes might contribute to its beneficial effects on cholesterol homeostasis and atherogenesis.
Collapse
Affiliation(s)
- Kun Ren
- Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi 541004, China.
| | | | | |
Collapse
|
29
|
Almeida AF, Borge GIA, Piskula M, Tudose A, Tudoreanu L, Valentová K, Williamson G, Santos CN. Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Compr Rev Food Sci Food Saf 2018; 17:714-731. [PMID: 33350133 DOI: 10.1111/1541-4337.12342] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 01/12/2023]
Abstract
After consumption of plant-derived foods or beverages, dietary polyphenols such as quercetin are absorbed in the small intestine and metabolized by the body, or they are subject to catabolism by the gut microbiota followed by absorption of the resulting products by the colon. The resulting compounds are bioavailable, circulate in the blood as conjugates with glucuronide, methyl, or sulfate groups attached, and they are eventually excreted in the urine. In this review, the various conjugates from different intervention studies are summarized and discussed. In addition, the substantial variation between different individuals in the measured quercetin bioavailability parameters is assessed in detail by examining published human intervention studies where sources of quercetin have been consumed in the form of food, beverages, or supplements. It is apparent that most reported studies have examined quercetin and/or metabolites in urine and plasma from a relatively small number of volunteers. Despite this limitation, it is evident that there is less interindividual variation in metabolites which are derived from absorption in the small intestine compared to catabolites derived from the action of microbiota in the colon. There is also some evidence that a high absorber of intact quercetin conjugates could be a low absorber of microbiota-catalyzed phenolics, and vice versa. From the studies reported so far, the reasons or causes of the interindividual differences are not clear, but, based on the known metabolic pathways, it is predicted that dietary history, genetic polymorphisms, and variations in gut microbiota metabolism would play significant roles. In conclusion, quercetin bioavailability is subject to substantial variation between individuals, and further work is required to establish if this contributes to interindividual differences in biological responses.
Collapse
Affiliation(s)
- A Filipa Almeida
- Inst. de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Inst. de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Grethe Iren A Borge
- Nofima AS, the Norwegian Inst. of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mariusz Piskula
- Inst. of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Adriana Tudose
- Central Military Emergency Univ. Hospital "dr. Carol Davila", Bucharest, 010825, Romania
| | - Liliana Tudoreanu
- Faculty of Veterinary Medicine, Univ. of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Kateřina Valentová
- Inst. of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, 14220 Prague, Czech Republic
| | - Gary Williamson
- School of Food Science and Nutrition, Univ. of Leeds, Leeds, United Kingdom
| | - Cláudia N Santos
- Inst. de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Inst. de Tecnologia Química e Biológica António Xavier, Univ. Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
30
|
Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst KI, Lampen A. Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol Nutr Food Res 2017; 62. [PMID: 29127724 DOI: 10.1002/mnfr.201700447] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/13/2017] [Indexed: 12/13/2022]
Abstract
The flavonoid quercetin is frequently found in low amounts as a secondary plant metabolite in fruits and vegetables. Isolated quercetin is also marketed as a dietary supplement, mostly as the free quercetin aglycone, and frequently in daily doses of up to 1000 mg d-1 exceeding usual dietary intake levels. The present review is dedicated to safety aspects of isolated quercetin used as single compound in dietary supplements. Among the numerous published human intervention studies, adverse effects following supplemental quercetin intake have been rarely reported and any such effects were mild in nature. Published adequate scientific data for safety assessment in regard to the long-term use (>12 weeks) of high supplemental quercetin doses (≥1000 mg) are currently not available. Based on animal studies involving oral quercetin application some possible critical safety aspects could be identified such as the potential of quercetin to enhance nephrotoxic effects in the predamaged kidney or to promote tumor development especially in estrogen-dependent cancer. Furthermore, animal and human studies with single time or short-term supplemental quercetin application revealed interactions between quercetin and certain drugs leading to altered drug bioavailability. Based on these results, some potential risk groups are discussed in the present review.
Collapse
Affiliation(s)
- Susanne Andres
- Department of Food Safety, Former employee of the German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sophie Pevny
- Department of Food Safety, Former employee of the German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Rainer Ziegenhagen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Nadiya Bakhiya
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Bernd Schäfer
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
31
|
Duranti G, Ceci R, Patrizio F, Sgrò P, Di Luigi L, Sabatini S, Felici F, Bazzucchi I. Chronic consumption of quercetin reduces erythrocytes oxidative damage: Evaluation at resting and after eccentric exercise in humans. Nutr Res 2017. [PMID: 29540274 DOI: 10.1016/j.nutres.2017.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The polyphenolic flavonoid quercetin has been shown to be a powerful antioxidant, in vitro and in murine models. However, its effect on redox status has been poorly examined in humans, particularly in combination with strenuous exercise. We hypothesized that quercetin supplementation would beneficially affect redox homeostasis in healthy individuals undergoing eccentric exercise. To test this hypothesis, the effects of chronic consumption of quercetin on glutathione system (reduced, oxidized, and reduced to oxidized glutathione ratio), oxidative damage [thiobarbituric acid reactive substances (TBARs)], antioxidant enzymatic network (catalase, glutathione peroxidase, superoxide dismutase) and resistance to lysis, were investigated in erythrocytes, a traditional model widely used to study the effects of oxidative stress as well as the protective effects of antioxidants. In a two weeks controlled, randomized, crossover, intervention trial, 14 individuals ingested 2 caps (1 g/d) of quercetin or placebo. Blood samples were collected before, after 2 weeks of supplementation and after a bout of eccentric exercise. Quercetin, reduced significantly erythrocytes lipid peroxidation levels and the susceptibility to hemolysis induced by the free radical generator AAPH, while no differences in antioxidant enzyme activities and glutathione homeostasis were found between the two groups. After a single bout of eccentric exercise, quercetin supplementation improved redox status as assessed by reduced/oxidized glutathione ratio analysis and reduced TBARs levels both in erythrocytes and plasma. In conclusion, our study provides evidences that chronic quercetin supplementation has antioxidant potential prior to and after a strenuous eccentric exercise thus making the erythrocytes capable to better cope with an oxidative insult.
Collapse
Affiliation(s)
- Guglielmo Duranti
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Rome, Italy
| | - Roberta Ceci
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Rome, Italy.
| | - Federica Patrizio
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Laboratory of Exercise Physiology, Rome, Italy
| | - Paolo Sgrò
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Unit of Endocrinology, Rome, Italy
| | - Luigi Di Luigi
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Unit of Endocrinology, Rome, Italy
| | - Stefania Sabatini
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, Rome, Italy
| | - Francesco Felici
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Laboratory of Exercise Physiology, Rome, Italy
| | - Ilenia Bazzucchi
- Università degli Studi di Roma "Foro Italico", Department of Movement, Human and Health Sciences, Laboratory of Exercise Physiology, Rome, Italy
| |
Collapse
|
32
|
Deley G, Guillemet D, Allaert FA, Babault N. An Acute Dose of Specific Grape and Apple Polyphenols Improves Endurance Performance: A Randomized, Crossover, Double-Blind versus Placebo Controlled Study. Nutrients 2017; 9:nu9080917. [PMID: 28829368 PMCID: PMC5579710 DOI: 10.3390/nu9080917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
Polyphenols are thought to be an interesting ergogenic aid for exercise and recovery. However, most studies regarding the effects of polyphenols investigated several days of supplementations. The present work aimed to study the effects of an acute intake of grape and apple polyphenols on the capacity to maintain intense exercise, here named endurance performance. Forty-eight physically active men (31 ± 6 years) were included in this study. During the two testing sessions, volunteers completed an endurance test at a high percentage of their maximal aerobic power and time to exhaustion was measured. Respiratory and pain parameters were also monitored. The preceding evening and 1 h before testing, volunteers had to absorb either 500 mg of polyphenols or placebo according to randomization. In comparison with the placebo, the mean duration of the maximal endurance test was significantly increased with polyphenols (+9.7% ± 6.0%, p < 0.05). The maximal perceived exertion was reached later with polyphenols (+12.8% ± 6.8%, p < 0.05). Practically, the present study showed the beneficial effects of grape and apple polyphenols for athletes looking for endurance performance improvements. The specifically designed profile of polyphenols appeared to enhance the capacity to maintain intensive efforts and delay perceived exertion.
Collapse
Affiliation(s)
- Gaëlle Deley
- CAPS, U1093 INSERM, Université de Bourgogne-Franche-Comté, Faculté des Sciences du Sport, F-21000 Dijon, France.
- Centre d'Expertise de la Performance, U1093 INSERM, Université de Bourgogne-Franche-Comté, Faculté des Sciences du Sport, F-21000 Dijon, France.
| | | | | | - Nicolas Babault
- CAPS, U1093 INSERM, Université de Bourgogne-Franche-Comté, Faculté des Sciences du Sport, F-21000 Dijon, France.
- Centre d'Expertise de la Performance, U1093 INSERM, Université de Bourgogne-Franche-Comté, Faculté des Sciences du Sport, F-21000 Dijon, France.
| |
Collapse
|
33
|
Abstract
Polyphenols are found in plant‐based foods and beverages, notably apples, berries, citrus fruit, plums, broccoli, cocoa, tea and coffee and many others. There is substantial epidemiological evidence that a diet high in polyphenol‐rich fruit, vegetables, cocoa and beverages protects against developing cardiovascular disease and type 2 diabetes. The absorption and metabolism of these compounds have been well described and, for many, the gut microbiota play a critical role in absorption; taking into consideration the parent compound and the metabolites from colon bacteria catabolism, more than 80% of a dose can be absorbed and ultimately excreted in the urine. Common polyphenols in the diet are flavanols (cocoa, tea, apples, broad beans), flavanones (hesperidin in citrus fruit), hydroxycinnamates (coffee, many fruits), flavonols (quercetin in onions, apples and tea) and anthocyanins (berries). Many intervention studies, mechanistic in vitro data and epidemiological studies support a role for polyphenols against the development of chronic diseases. For example, flavanols decrease endothelial dysfunction, lower blood pressure and cholesterol, and modulate energy metabolism. Coffee and tea both reduce the risk of developing type 2 diabetes, through action of their constituent polyphenols. Despite extensive research, the exact mechanisms of action of polyphenols in the human body have not been decisively proven, but there is strong evidence that some targets such as nitric oxide metabolism, carbohydrate digestion and oxidative enzymes are important for health benefits. Consumption of polyphenols as healthy dietary components is consistent with the advice to eat five or more portions of fruit and vegetables per day, but it is currently difficult to recommend what ‘doses’ of specific polyphenols should be consumed to derive maximum benefit.
Collapse
|
34
|
Crum EM, Che Muhamed AM, Barnes M, Stannard SR. The effect of acute pomegranate extract supplementation on oxygen uptake in highly-trained cyclists during high-intensity exercise in a high altitude environment. J Int Soc Sports Nutr 2017; 14:14. [PMID: 28572749 PMCID: PMC5452353 DOI: 10.1186/s12970-017-0172-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/26/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recent research has indicated that pomegranate extract (POMx) may improve performance during aerobic exercise by enhancing the matching of vascular oxygen (O2) provision to muscular requirements. POMx is rich in ellagitannin polyphenols and nitrates (NO3-), which are both associated with improvements in blood flow and O2 delivery. Primarily, this study aimed to determine whether POMx improves performance in a cycling time trial to exhaustion at 100%VO2max (TTE100%) in highly-trained cyclists. In addition, we investigated if the O2 cost (VO2) of submaximal exercise was lower with POMx, and whether any changes were greater at high altitude where O2 delivery is impaired. METHODS Eight cyclists exercised at three submaximal intensities before completing a TTE100% at sea-level (SEA) and at 1657 m of altitude (ALT), with pre-exercise consumption of 1000 mg of POMx or a placebo (PLAC) in a randomized, double-blind, crossover design. Data were analysed using a three way (treatment x altitude x intensity) or two-way (treatment x altitude) repeated measures ANOVA with a Fisher's LSD post-hoc analysis. Significance was set at p ≤ 0.05. The effect size of significant interactions was calculated using Cohen's d. RESULTS TTE100% performance was reduced in ALT but was not influenced by POMx (p > 0.05). Plasma NO3- were 10.3 μmol greater with POMx vs. PLAC (95% CI, 0.8, 19.7,F1,7 = 7.83, p < 0.04). VO2 measured at five minutes into the TTE100% was significantly increased in ALTPOMx vs. ALTPLAC (+3.8 ml.min-1kg-1, 95% CI, -5.7, 9.5, F1,7 = 29.2, p = 0.001, ES = 0.6) but unchanged in SEAPOMx vs. SEAPLAC (p > 0.05). Submaximal VO2 values were not affected by POMx (p ≥ 0.05). CONCLUSIONS The restoration of SEA VO2 values at ALT is likely driven by the high polyphenol content of POMx, which is proposed to improve nitric oxide bioavailability. Despite an increase in VO2, no change in exercise performance occurred and therefore this study does not support the use of POMx as an ergogenic supplement.
Collapse
Affiliation(s)
- Emma May Crum
- School of Sport and Exercise, Massey University (New Zealand), Palmerston North, New Zealand
| | | | - Matthew Barnes
- School of Sport and Exercise, Massey University (New Zealand), Palmerston North, New Zealand
| | - Stephen Robert Stannard
- School of Sport and Exercise, Massey University (New Zealand), Palmerston North, New Zealand
| |
Collapse
|
35
|
Borghi SM, Pinho-Ribeiro FA, Fattori V, Bussmann AJC, Vignoli JA, Camilios-Neto D, Casagrande R, Verri WA. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice. PLoS One 2016; 11:e0162267. [PMID: 27583449 PMCID: PMC5008838 DOI: 10.1371/journal.pone.0162267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/16/2016] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise.
Collapse
Affiliation(s)
- Sergio M. Borghi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Felipe A. Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Victor Fattori
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Allan J. C. Bussmann
- Laboratório de Anatomia Patológica, Centro de Ciências de Saúde, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, 86039-440, Londrina, Paraná, Brasil
| | - Josiane A. Vignoli
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
| | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Centro de Ciências de Saúde, Universidade Estadual de Londrina, Avenida Robert Koch, 60, Hospital Universitário, 86039-440, Londrina, Paraná, Brasil
| | - Waldiceu A. Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, 86057-970, Londrina, Paraná, Brasil
- * E-mail: ;
| |
Collapse
|
36
|
Lu NT, Crespi CM, Liu NM, Vu JQ, Ahmadieh Y, Wu S, Lin S, McClune A, Durazo F, Saab S, Han S, Neiman DC, Beaven S, French SW. A Phase I Dose Escalation Study Demonstrates Quercetin Safety and Explores Potential for Bioflavonoid Antivirals in Patients with Chronic Hepatitis C. Phytother Res 2015; 30:160-8. [PMID: 26621580 DOI: 10.1002/ptr.5518] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/19/2022]
Abstract
The hepatitis C virus (HCV) infects more than 180 million people worldwide, with long-term consequences including liver failure and hepatocellular carcinoma. Quercetin bioflavonoids can decrease HCV production in tissue culture, in part through inhibition of heat shock proteins. If quercetin demonstrates safety and antiviral activity in patients, then it could be developed into an inexpensive HCV treatment for third world countries or other affected populations that lack financial means to cover the cost of mainstream antivirals. A phase 1 dose escalation study was performed to evaluate the safety of quercetin in 30 untreated patients with chronic HCV infection and to preliminarily characterize quercetin's potential in suppressing viral load and/or liver injury. Quercetin displayed safety in all trial participants. Additionally, 8 patients showed a "clinically meaningful" 0.41-log viral load decrease. There was a positive correlation (r = 0.41, p = 0.03) indicating a tendency for HCV decrease in patients with a lower ratio of plasma quercetin relative to dose. No significant changes in aspartate transaminase and alanine transaminase were detected. In conclusion, quercetin exhibited safety (up to 5 g daily) and there was a potential for antiviral activity in some hepatitis C patients.
Collapse
Affiliation(s)
- Nu T Lu
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, USA.,Department of Hematology and Oncology, University of California Los Angeles, Los Angeles, USA
| | - Catherine M Crespi
- Fielding School of Public Health, Department of Biostatistics, University of California Los Angeles, Los Angeles, USA.,Jonsson Comprehensive Cancer Center, Center for Cancer Prevention and Control, University of California Los Angeles, Los Angeles, USA
| | - Natalie M Liu
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, USA
| | - James Q Vu
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, USA
| | | | - Sheng Wu
- Fielding School of Public Health, Department of Biostatistics, University of California Los Angeles, Los Angeles, USA
| | - Sherry Lin
- Neuromodulation Division, Boston Scientific Inc., Valencia, USA
| | - Amy McClune
- Department of Hepatobiliary Surgery, Kaiser Permanente Sunset, Los Angeles, USA
| | - Francisco Durazo
- Pfleger Liver Institute, University of California Los Angeles, Los Angeles, USA
| | - Sammy Saab
- Pfleger Liver Institute, University of California Los Angeles, Los Angeles, USA
| | - Steven Han
- Pfleger Liver Institute, University of California Los Angeles, Los Angeles, USA
| | - David C Neiman
- Human Performance Laboratory, Appalachian State University- North Carolina Research Campus, Kannapolis, USA
| | - Simon Beaven
- Pfleger Liver Institute, University of California Los Angeles, Los Angeles, USA
| | - Samuel W French
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, USA
| |
Collapse
|
37
|
D'Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015; 106:256-71. [DOI: 10.1016/j.fitote.2015.09.018] [Citation(s) in RCA: 379] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
|
38
|
Scholten SD, Sergeev IN, Song Q, Birger CB. Effects of vitamin D and quercetin, alone and in combination, on cardiorespiratory fitness and muscle function in physically active male adults. Open Access J Sports Med 2015; 6:229-39. [PMID: 26244032 PMCID: PMC4521671 DOI: 10.2147/oajsm.s83159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction Vitamin D and the antioxidant quercetin, are promising agents for improving physical performance because of their possible beneficial effects on muscular strength and cardiorespiratory fitness. Purpose The purpose of this study was to determine the effects of increased intakes of vitamin D, quercetin, and their combination on antioxidant status, the steroid hormone regulators of muscle function, and measures of physical performance in apparently healthy male adults engaged in moderate-to-vigorous-intensity exercise training. Methods A total of 40 adult male participants were randomized to either 4,000 IU vitamin D/d, 1,000 mg/d quercetin, vitamin D plus quercetin, or placebo for 8 weeks. Measures of cardiorespiratory fitness and muscle function, blood markers for antioxidant and vitamin D status, and hormones 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and testosterone were measured pre- and postsupplementation. Results At enrollment, 88.6% of participants were vitamin D sufficient (serum 25-hydroxyvitamin D >50 nmol/L) and had normal serum testosterone levels. Supplementation with vitamin D significantly increased serum 25(OH)D concentration (by 87.3% in the vitamin D group, P<0.001) and was associated with an increasing trend of testosterone concentration. There were no changes in concentration of 1,25(OH)2D3 and markers of antioxidant status associated with vitamin D or quercetin supplementation. No improvements in physical performance measures associated with vitamin D and quercetin supplementation were found. Conclusion The findings obtained demonstrate that long-term vitamin D and quercetin supplementation, alone or in combination, does not improve physical performance in male adults with adequate vitamin D, testosterone, and antioxidant status.
Collapse
Affiliation(s)
- Shane D Scholten
- Exercise and Sport Sciences, Augustana College, Sioux Falls, USA
| | - Igor N Sergeev
- Department of Health and Nutritional Sciences, South Dakota State University, Brookings, SD, USA
| | | | - Chad B Birger
- Center for Health Outcomes and Prevention Research, Sanford Research, Sioux Falls, SD, USA
| |
Collapse
|
39
|
Koval’skii IV, Krasnyuk II, Krasnyuk II, Nikulina OI, Belyatskaya AV, Kharitonov YY, Feldman NB, Lutsenko SV. Mechanisms of Rutin Pharmacological Action (Review). Pharm Chem J 2014. [DOI: 10.1007/s11094-014-1050-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Gao C, Chen X, Li J, Li Y, Tang Y, Liu L, Chen S, Yu H, Liu L, Yao P. Myocardial mitochondrial oxidative stress and dysfunction in intense exercise: regulatory effects of quercetin. Eur J Appl Physiol 2013; 114:695-705. [PMID: 24368555 DOI: 10.1007/s00421-013-2802-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/14/2013] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Oxidative stress plays a pivotal role in the intense exercise-induced myocardium injury, and mitochondrial compartment is presumed as the main source and susceptible target of intracellular reactive oxygen species (ROS). PURPOSE The objective of this study was to evaluate the protective effect of quercetin, a naturally occurring flavonoids possessing antioxidant effect on repeated intense exercise-induced mitochondrial oxidative stress and dysfunction. METHODS Adult male BALB/C mice were treated by quercetin (100 mg/kg bw) for 4 weeks and subjected to the exercise protocol on a treadmill (28 m/min at 5° slope for 90 min) for seven consecutive days concurrently at the fourth week. RESULTS Intense exercise in mice resulted in the leakage of creatine kinase-MB (increased from 221.5 ± 33.8 to 151.1 ± 19.1 U/l, P < 0.01) and ultrastructural malformation mainly evidenced by disrupted myofibrils and swollen mitochondria, which was overtly attenuated by quercetin prophylaxis. Quercetin pretreatment evidently alleviated mitochondrial oxidative stress by inhibiting glutathione depletion and aconitase inactivation, ROS over-generation, and lipid peroxidation in cardiac mitochondria of intense exercise mice. Furthermore, mitochondrial dysfunction manifested by decreased mitochondrial membrane potential (68.6 ± 7.6 versus 100.0 ± 7.7 %, P < 0.01) and respiratory control ratio (5.03 ± 0.55 versus 7.48 ± 0.71, P < 0.01) induced as a consequence of acute exercise was markedly mitigated by quercetin precondition. CONCLUSION Quercetin protects mouse myocardium against intense exercise injury, especially ultrastructural damage and mitochondrial dysfunction, probably through its beneficial antioxidative effect, highlighting a promising strategy for over-training injury by naturally occurring phytochemicals.
Collapse
Affiliation(s)
- Chao Gao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Ministry of Environmental Protection Key Laboratory of Environment, and Health (Wuhan) and State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Knab AM, Nieman DC, Gillitt ND, Shanely RA, Cialdella-Kam L, Henson D, Sha W, Meaney MP. Effects of a freeze-dried juice blend powder on exercise-induced inflammation, oxidative stress, and immune function in cyclists. Appl Physiol Nutr Metab 2013; 39:381-5. [PMID: 24552382 DOI: 10.1139/apnm-2013-0338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A freeze-dried fruit and vegetable juice powder (JUICE) was investigated as a countermeasure nutritional strategy to exercise-induced inflammation, oxidative stress, and immune perturbations in trained cyclists. Thirty-four cyclists (25 male, 9 female) were randomized to control (nonJUICE) or JUICE for 17 days. JUICE provided 230 mg·day(-1) of flavonoids, doubling the typical adult daily intake. During a 3-d period of intensified exercise (days 15-17), subjects cycled at 70%-75% V̇O2max for 2.25 h per day, followed by a 15-min time trial. Blood samples were collected presupplementation, post supplementation (pre-exercise), and immediately and 14-h post exercise on the third day of exercise. Samples were analyzed for inflammation (interleukin (IL)-6, IL-8; tumor necrosis factor alpha (TNFα); monocyte chemoattractant protein-1 (MCP-1)), oxidative stress (oxygen radical absorbance capacity (ORAC), ferric reducing ability of plasma (FRAP), reduced and oxidized glutathione, protein carbonyls), and innate immune function (granulocyte (G-PHAG) and monocyte (M-PHAG) phagocytosis and oxidative burst activity). A 2 (group) × 4 (time points) repeated measures ANOVA revealed significant time effects due to 3 days of exercise for IL-6 (396% increase), IL-8 (78% increase), TNFα (12% increase), MCP-1 (30% increase), G-PHAG (38% increase), M-PHAG (36% increase), FRAP (12.6% increase), ORAC (11% decrease at 14 h post exercise), and protein carbonyls (82% increase at 14 h post exercise) (p < 0.01). No significant interaction effects were found for any of the physiological measures. Although providing 695 gallic acid equivalents of polyphenols per day, JUICE treatment for 17 days did not change exercise-induced alterations in inflammation and oxidative stress or immune function in trained cyclists after a 3-day period of overreaching.
Collapse
Affiliation(s)
- Amy M Knab
- a Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Casuso RA, Martínez-López EJ, Nordsborg NB, Hita-Contreras F, Martínez-Romero R, Cañuelo A, Martínez-Amat A. Oral quercetin supplementation hampers skeletal muscle adaptations in response to exercise training. Scand J Med Sci Sports 2013; 24:920-7. [PMID: 24118142 DOI: 10.1111/sms.12136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2013] [Indexed: 12/26/2022]
Abstract
We aimed to test exercise-induced adaptations on skeletal muscle when quercetin is supplemented. Four groups of rats were tested: quercetin sedentary, quercetin exercised, placebo sedentary, and placebo exercised. Treadmill exercise training took place 5 days a week for 6 weeks. Quercetin groups were supplemented with quercetin, via gavage, on alternate days throughout the experimental period. Sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α mRNA levels, mitochondrial DNA (mtDNA) content, and citrate synthase (CS) activity were measured on quadriceps muscle. Redox status was also quantified by measuring muscle antioxidant enzymatic activity and oxidative damage product, such as protein carbonyl content (PCC). Quercetin supplementation increased oxidative damage in both exercised and sedentary rats by inducing higher amounts of PCC (P < 0.001). Quercetin supplementation caused higher catalase (P < 0.001) and superoxide dismutase (P < 0.05) activity in the non-exercised animals, but not when quercetin is supplemented during exercise. Quercetin supplementation increased SIRT1 expression, but when quercetin is supplemented during exercise, this effect is abolished (P < 0.001). The combination of exercise and quercetin supplementation caused lower (P < 0.05) mtDNA content and CS activity when compared with exercise alone. Quercetin supplementation during exercise provides a disadvantage to exercise-induced muscle adaptations.
Collapse
Affiliation(s)
- R A Casuso
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Polyphenols in exercise performance and prevention of exercise-induced muscle damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:825928. [PMID: 23983900 PMCID: PMC3742027 DOI: 10.1155/2013/825928] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/02/2013] [Indexed: 11/23/2022]
Abstract
Although moderate physical exercise is considered an essential component of a healthy lifestyle that leads the organism to adapt itself to different stresses, exercise, especially when exhaustive, is also known to induce oxidative stress, inflammation, and muscle damage. Many efforts have been carried out to identify dietary strategies or micronutrients able to prevent or at least attenuate the exercise-induced muscle damage and stress. Unfortunately most studies have failed to show protection, and at the present time data supporting the protective effect of micronutrients, as antioxidant vitamins, are weak and trivial. This review focuses on those polyphenols, present in the plant kingdom, that have been recently suggested to exert some positive effects on exercise-induced muscle damage and oxidative stress. In the last decade flavonoids as quercetin, catechins, and other polyphenols as resveratrol have caught the scientists attention. However, at the present time drawing a clear and definitive conclusion seems to be untimely.
Collapse
|
44
|
Scholten SD, Sergeev IN. Long-term quercetin supplementation reduces lipid peroxidation but does not improve performance in endurance runners. Open Access J Sports Med 2013; 4:53-61. [PMID: 24379709 PMCID: PMC3871649 DOI: 10.2147/oajsm.s39632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose To evaluate the effects of chronic quercetin supplementation on endurance performance and antioxidant status in long distance runners. We hypothesized that an improved antioxidant status can be associated with enhanced performance. Methods During 6 weeks of supplementation utilizing a double blind, randomized design, young male subjects received quercetin (1000 mg/day) or placebo while maintaining their current training schedules. Results Following the end of the supplementation period, there was a significant time × supplement interaction for serum malondialdehyde (MDA), an indicator of lipid peroxidation. There were no significant pre- to post-supplement changes in parameter values employed for measuring total antioxidant capacity, superoxide dismutase activity, and protein oxidation (protein carbonyl) in serum. There were also no significant pre- to post-supplement differences in VO2peak, running economy, heart rate, and rating of perceived exertion (RPE) during the 10 km time trial. Conclusion The findings obtained indicate that there is a relationship between quercetin supplementation and the statistically significant decreasing trend in MDA levels following 6 weeks of supplementation and training. This evidence suggests that quercetin can reduce oxidative stress (lipid peroxidation). However, performance improvements were not significant (as measured by VO2peak, running economy, heart rate, and RPE).
Collapse
Affiliation(s)
- Shane D Scholten
- Department of Natural Sciences, University of Sioux Falls, Sioux Falls, SD, USA
| | - Igor N Sergeev
- Department of Health and Nutritional Sciences, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
45
|
McAnulty LS, Miller LE, Hosick PA, Utter AC, Quindry JC, McAnulty SR. Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise. Appl Physiol Nutr Metab 2013; 38:760-5. [PMID: 23980734 DOI: 10.1139/apnm-2012-0455] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resveratrol and quercetin function as antioxidants and anti-inflammatories in vitro, but these mechanisms have been minimally examined in combination in exercising humans. The purpose of this investigation was to examine supplementation as a countermeasure against oxidative stress and inflammation in response to exercise. Fourteen athletes were randomly assigned, in a double-blind crossover design, to a resveratrol and quercetin combination (RQ) (120 mg resveratrol and 225 mg quercetin for 6 days and 240 mg resveratrol and 450 mg quercetin on day 7 just prior to exercise) or to placebo (P). There was a 1-week washout between trials. Blood was taken at baseline, pre-exercise, immediately after exercise, and 1 h after exercise. Plasma was analyzed for oxidative stress (F2-isoprostanes and protein carbonyls), antioxidant capacity (ferric-reducing ability of plasma (FRAP), Trolox equivalent antioxidant capacity (TEAC), oxygen radical absorptive capacity (ORAC)), and inflammation (cytokine interleukin (IL)-8 and C-reactive protein (CRP)). Statistical design utilized a 2 × 3 ANOVA and Student's t test. Pre-exercise values were not different from baseline for any measure. The postexercise increase in F2-isoprostanes was significantly less (p = 0.039 interaction) with RQ (68%) than with P (137%). Protein carbonyls, FRAP, ORAC, and TEAC significantly increased after exercise but were not affected by treatment. IL-8 and CRP increased significantly immediately after exercise but were not affected by treatment. These data indicate that RQ significantly reduces exercise-induced lipid peroxidation without associated changes in inflammation or plasma antioxidant status.
Collapse
Affiliation(s)
- Lisa S McAnulty
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC 28608, USA
| | | | | | | | | | | |
Collapse
|
46
|
Casuso RA, Martínez-Amat A, Martínez-López EJ, Camiletti-Moirón D, Porres JM, Aranda P. Ergogenic effects of quercetin supplementation in trained rats. J Int Soc Sports Nutr 2013; 10:3. [PMID: 23316871 PMCID: PMC3549753 DOI: 10.1186/1550-2783-10-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/19/2012] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED BACKGROUND Quercetin is a natural polyphenolic compound currently under study for its ergogenic capacity to improve mitochondrial biogenesis. Sedentary mice have exhibited increased endurance performance, but results are contradictory in human models. METHODS We examined the effects of six weeks of endurance training and quercetin supplementation on markers of endurance performance and training in a rodent model. Rats were randomly assigned to one of the following groups: placebo+sedentary (PS), quercetin+sedentary (QS), placebo+endurance training (PT) and quercetin+endurance training (QT). Quercetin was administered at a dose of 25 mg/kg on alternate days. During six weeks of treatment volume parameters of training were recorded, and after six weeks all groups performed a maximal graded VO2 max test and a low-intensity endurance run-to-fatigue test. RESULTS No effects were found in VO2 peak (p>0.999), nor in distance run during low-intensity test, although it was 14% greater in QT when compared with PT (P = 0.097). Post-exercise blood lactate was increased in QT when compared with PT (p=0.023) and also in QS compared with PS (p=0.024). CONCLUSIONS This study showed no effects in VO2 peak, speed at VO2 peak or endurance time to exhaustion after six weeks of quercetin supplementation compared with placebo in trained rats. Quercetin was show to increase blood lactate production after high-intensity exercise.
Collapse
Affiliation(s)
- Rafael A Casuso
- Department of Health Sciences, University of Jaén, Jaén, E-23071, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
The effects of a multiflavonoid supplement on vascular and hemodynamic parameters following acute exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:210798. [PMID: 22191012 PMCID: PMC3236420 DOI: 10.1155/2011/210798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 08/29/2011] [Accepted: 09/07/2011] [Indexed: 11/17/2022]
Abstract
Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Methods. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Results. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Conclusion. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index.
Collapse
|
48
|
McAnulty LS, Nieman DC, Dumke CL, Shooter LA, Henson DA, Utter AC, Milne G, McAnulty SR. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl Physiol Nutr Metab 2011; 36:976-84. [DOI: 10.1139/h11-120] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Blueberries are rich in antioxidants known as anthocyanins, which may exhibit significant health benefits. Strenous exercise is known to acutely generate oxidative stress and an inflammatory state, and serves as an on-demand model to test antioxidant and anti-inflammatory compounds. The purpose of this study was to examine whether 250 g of blueberries per day for 6 weeks and 375 g given 1 h prior to 2.5 h of running at ∼72% maximal oxygen consumption counters oxidative stress, inflammation, and immune changes. Twenty-five well-trained subjects were recruited and randomized into blueberry (BB) (N = 13) or control (CON) (N = 12) groups. Blood, muscle, and urine samples were obtained pre-exercise and immediately postexercise, and blood and urine 1 h postexercise. Blood was examined for F2-isoprostanes for oxidative stress, cortisol, cytokines, homocysteine, leukocytes, T-cell function, natural killer (NK), and lymphocyte cell counts for inflammation and immune system activation, and ferric reducing ability of plasma for antioxidant capacity. Muscle biopsies were examined for glycogen and NFkB expression to evaluate stress and inflammation. Urine was tested for modification of DNA (8-OHDG) and RNA (5-OHMU) as markers of nucleic acid oxidation. A 2 (treatment) × 3 (time) repeated measures ANOVA was used for statistical analysis. Increases in F2-isoprostanes and 5-OHMU were significantly less in BB and plasma IL-10 and NK cell counts were significantly greater in BB vs. CON. Changes in all other markers did not differ. This study indicates that daily blueberry consumption for 6 weeks increases NK cell counts, and acute ingestion reduces oxidative stress and increases anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Lisa S. McAnulty
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC 28608, USA
| | - David C. Nieman
- Department of Health, Leisure, and Exercise Science, Appalachian State University, Boone, NC 28608, USA
| | - Charles L. Dumke
- Department of Health and Human Performance, University of Montana, Missoula, MT 59812, USA
| | - Lesli A. Shooter
- Department of Health, Leisure, and Exercise Science, Appalachian State University, Boone, NC 28608, USA
| | - Dru A. Henson
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| | - Alan C. Utter
- Department of Health, Leisure, and Exercise Science, Appalachian State University, Boone, NC 28608, USA
| | - Ginger Milne
- Department of Biomedical Research Education and Training, Vanderbilt University, Nashville, TN 37240, USA
| | - Steven R. McAnulty
- Department of Health, Leisure, and Exercise Science, Appalachian State University, Boone, NC 28608, USA
| |
Collapse
|
49
|
Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med 2011; 51:942-50. [PMID: 21167935 DOI: 10.1016/j.freeradbiomed.2010.12.009] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/01/2010] [Accepted: 12/06/2010] [Indexed: 01/02/2023]
Abstract
The observation that muscular exercise is associated with oxidative stress in humans was first reported over 30 years ago. Since this initial report, numerous studies have confirmed that prolonged or high-intensity exercise results in oxidative damage to macromolecules in both blood and skeletal muscle. Although the primary tissue(s) responsible for reactive oxygen species (ROS) production during exercise remains a topic of debate, compelling evidence indicates that muscular activity promotes oxidant production in contracting skeletal muscle fibers. Mitochondria, NADPH oxidase, PLA₂-dependent processes, and xanthine oxidase have all been postulated to contribute to contraction-induced ROS production in muscle but the primary site of contraction-induced ROS production in muscle fibers remains unclear. Nonetheless, contraction-induced ROS generation has been shown to play an important physiological function in the regulation of both muscle force production and contraction-induced adaptive responses of muscle fibers to exercise training. Although knowledge in the field of exercise and oxidative stress has grown markedly during the past 30 years, this area continues to expand and there is much more to be learned about the role of ROS as signaling molecules in skeletal muscle.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
50
|
Kuennen M, Gillum T, Dokladny K, Bedrick E, Schneider S, Moseley P. Thermotolerance and heat acclimation may share a common mechanism in humans. Am J Physiol Regul Integr Comp Physiol 2011; 301:R524-33. [PMID: 21613575 DOI: 10.1152/ajpregu.00039.2011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thermotolerance and heat acclimation are key adaptation processes that have been hitherto viewed as separate phenomena. Here, we provide evidence that these processes may share a common basis, as both may potentially be governed by the heat shock response. We evaluated the effects of a heat shock response-inhibitor (quercetin; 2,000 mg/day) on established markers of thermotolerance [gastrointestinal barrier permeability, plasma TNF-α, IL-6, and IL-10 concentrations, and leukocyte heat shock protein 70 (HSP70) content]. Heat acclimation reduced body temperatures, heart rate, and physiological strain during exercise/heat stress) in male subjects (n = 8) completing a 7-day heat acclimation protocol. These same subjects completed an identical protocol under placebo supplementation (placebo). Gastrointestinal barrier permeability and TNF-α were increased on the 1st day of exercise/heat stress in quercetin; no differences in these variables were reported in placebo. Exercise HSP70 responses were increased, and plasma cytokines (IL-6, IL-10) were decreased on the 7th day of heat acclimation in placebo; with concomitant reductions in exercise body temperatures, heart rate, and physiological strain. In contrast, gastrointestinal barrier permeability remained elevated, HSP70 was not increased, and IL-6, IL-10, and exercise body temperatures were not reduced on the 7th day of heat acclimation in quercetin. While exercise heart rate and physiological strain were reduced in quercetin, this occurred later in exercise than with placebo. Consistent with the concept that thermotolerance and heat acclimation are related through the heat shock response, repeated exercise/heat stress increases cytoprotective HSP70 and reduces circulating cytokines, contributing to reductions in cellular and systemic markers of heat strain. Exercising under a heat shock response-inhibitor prevents both cellular and systemic heat adaptations.
Collapse
Affiliation(s)
- Matthew Kuennen
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, USA.
| | | | | | | | | | | |
Collapse
|