1
|
Roberts BM, Geddis AV, Sczuroski CE, Reynoso M, Hughes JM, Gwin JA, Staab JS. A single, maximal dose of celecoxib, ibuprofen, or flurbiprofen does not reduce the muscle signalling response to plyometric exercise in young healthy adults. Eur J Appl Physiol 2024; 124:3607-3617. [PMID: 39044030 DOI: 10.1007/s00421-024-05565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) possess analgesic and anti-inflammatory properties by inhibiting cyclooxygenase (COX) enzymes. Conflicting evidence exists on whether NSAIDs influence signaling related to muscle adaptations and exercise with some research finding a reduction in muscle protein synthesis signaling via the AKT-mTOR pathway, changes in satellite cell signaling, reductions in muscle protein degradation, and reductions in cell proliferation. In this study, we determined if a single maximal dose of flurbiprofen (FLU), celecoxib (CEL), ibuprofen (IBU), or a placebo (PLA) affects the short-term muscle signaling responses to plyometric exercise. METHODS This was a block randomized, double-masked, crossover design, where 12 participants performed four plyometric exercise bouts consisting of 10 sets of 10 plyometric jumps at 40% 1RM. Two hours before exercise, participants consumed a single dose of celecoxib (CEL 200 mg), IBU (800 mg), FLU (100 mg) or PLA with food. Muscle biopsy samples were collected before and 3-h after exercise from the vastus lateralis. Data were analyzed using a repeated measures (RM) ANOVA, ANOVA, or a Friedman test. Significance was considered at p < 0.05. RESULTS We found no treatment effects on the mRNA expression of PTSG1, PTSG2, MYC, TBP, RPLOP, MYOD1, Pax7, MYOG, Atrogin-1, or MURF1 (all, p > 0.05). We also found no treatment effects on AKT-mTOR signaling or MAPK signaling measured through the phosphorylation status of mTORS2441, mTORS2448, RPS6 235/236, RPS 240/244, 4EBP1, ERK1/2, p38 T180/182 normalized to their respective total abundance (all, p > 0.05). However, we did find a significant difference between MNK1 T197/202 in PLA compared to FLU (p < .05). CONCLUSION A single, maximal dose of IBU, CEL, or FLU taken prior to exercise did not affect the signaling of muscle protein synthesis, protein degradation, or ribosome biogenesis three hours after a plyometric training bout.
Collapse
Affiliation(s)
- Brandon M Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA.
| | - Alyssa V Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Cara E Sczuroski
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Marinaliz Reynoso
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Julie M Hughes
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Jess A Gwin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| | - Jeffery S Staab
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA, 01760, USA
| |
Collapse
|
2
|
Okayasu I, Kuroiwa H, Shinkawa K, Hayashi K, Sato S, Iwata N, Tano G, Sekizaki R, Umeda K, Ohnishi H. Significant increase in prostaglandin E-major urinary metabolite with physical exercise suggesting muscle inflammation. ALL LIFE 2023. [DOI: 10.1080/26895293.2023.2167868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Isao Okayasu
- Kiryu University, Midori, Japan
- Kitasato University, Sagamihara, Japan
| | | | | | - Kaori Hayashi
- Nagano University of Health and Medicine, School of Nursing, Nagano, Japan
| | - Seiichi Sato
- International University of Health and Welfare, School of Nursing, Ohtawara, Japan
| | - Noboru Iwata
- Kiryu University School of Health Care, Department of Nursing, Midori, Japan
| | | | | | | | | |
Collapse
|
3
|
Szűcs G, Pipicz M, Szabó MR, Csont T, Török L, Csonka C. Effect of Eccentric Exercise on Metabolic Health in Diabetes and Obesity. SPORTS MEDICINE - OPEN 2023; 9:91. [PMID: 37775653 PMCID: PMC10541389 DOI: 10.1186/s40798-023-00596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/12/2023] [Indexed: 10/01/2023]
Abstract
There is a growing body of evidence showing the importance of physical activity against civilization-induced metabolic diseases, including type 2 diabetes (T2DM) and obesity. Eccentric contraction, when skeletal muscles generate force by lengthening, is a unique type of skeletal muscle activity. Eccentric contraction may lead to better power production characteristics of the muscle because eccentric contraction requires less energy and can result in higher tension. Therefore, it is an ideal tool in the rehabilitation program of patients. However, the complex metabolic effect (i.e., fat mass reduction, increased lipid oxidation, improvement in blood lipid profile, and increased insulin sensitivity) of the eccentric contraction alone has scarcely been investigated. This paper aims to review the current literature to provide information on whether eccentric contraction can influence metabolic health and body composition in T2DM or obesity. We also discussed the potential role of myokines in mediating the effects of eccentric exercise. A better understanding of the mechanism of eccentric training and particularly their participation in the regulation of metabolic diseases may widen their possible therapeutic use and, thereby, may support the fight against the leading global risks for mortality in the world.
Collapse
Affiliation(s)
- Gergő Szűcs
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - László Török
- Department of Traumatology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6720, Hungary
- Department of Sports Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Tisza Lajos krt. 107, Szeged, 6720, Hungary
| | - Csaba Csonka
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary.
- Department of Sports Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Tisza Lajos krt. 107, Szeged, 6720, Hungary.
| |
Collapse
|
4
|
Borkowski J, Stefaniak T, Cych P. Changes in Skeletal Muscle Troponin T and Vitamin D Binding Protein (DBP) Concentrations in the Blood of Male Amateur Athletes Participating in a Marathon and 100 km Adventure Race. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095692. [PMID: 37174210 PMCID: PMC10178111 DOI: 10.3390/ijerph20095692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
This study assessed changes in creatine kinase (CK) activity and skeletal muscle troponin T (sTnT) concentrations in the blood, to estimate the degree of muscle degradation after exercise. In addition, the concentration of vitamin D binding protein (DBP) in the blood was assessed. DBP concentrations were measured in blood as a marker for plasma load by monomeric actin. The study included marathon (MR) participants and 100 km adventure race (AR) participants, who were examined before and after the race. There was a significant (16-fold) increase in CK activity among AR participants, and a significant increase in sTnT concentration-127% in the MR group and 113% in the AR group, while there was a statistically significant decrease in DBP concentration by 14% in the AR group. In addition, it was observed that the initial concentration of DBP in both groups was in a normal range, but was lower than the average population, and the DBP concentration in the AR group was lower than in the MR group. It was concluded that exhausting physical effort such as a marathon or adventure races causes muscle damage with a far stronger influence on sarcoplasm than on filaments. The short-term and slight reduction in the concentration of DBP in blood after such efforts may be due to the appearance of monomeric actin in plasma.
Collapse
Affiliation(s)
- Jacek Borkowski
- Department of Physiology and Biochemistry, Wroclaw University of Health and Sport Sciences, 35 J.I. Paderewski Avenue, 51-612 Wroclaw, Poland
| | - Tadeusz Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31 Str, 50-375 Wrocław, Poland
| | - Piotr Cych
- Department of Sport Didactics, Wroclaw University of Health and Sport Sciences, 35 J.I. Paderewski Avenue, 51-612 Wroclaw, Poland
| |
Collapse
|
5
|
Newmire DE, Willoughby DS. The Skeletal Muscle Microbiopsy Method in Exercise and Sports Science Research: A Narrative and Methodological Review. Scand J Med Sci Sports 2022; 32:1550-1568. [PMID: 35904526 DOI: 10.1111/sms.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The skeletal muscle microbiopsy protocol was introduced to the Exercise and Sports Science (ESS) research field in 1999 and has been used as a protocol to directly examine muscular structural and biochemical changes. There is much variation in the reporting of the microbiopsy protocol and its related pre-and post-procedure for participant care and sample collection. The purpose of this narrative and methodological review is to compare the microbiopsy to the traditional Bergström protocol used in the ESS field, identify and summarize all related microbiopsy protocols used in previous ESS studies and determine the most frequently used microbiopsy protocols aspects and associated pre- and post-biopsy procedures; METHODS: A review of literature up to January, 2022 was used following the PRISMA and Cochrane Methodological Review Guide to determine frequently used methods that may facilitate optimal and potential recommendations for muscle microbiopsy needle gauge (G), concentration or dose (% or mL) and administration of local anesthetic, co-axial/cannula introducer gauge (G), muscle depth (cm), muscle sample size collected (mg), passes to collect samples, time points of muscle sampling, and promotion of participant compliance and minimization of adverse events; RESULTS: 85 articles were selected based on the inclusionary requirements related to the ESS field or methodological considerations. The most frequently reported aspects in previous research to suggest the location of the vastus lateralis is the midpoint between the patella and the greater trochanter of the femur or 1/3 or 2/3 the distance from the patella to anterior superior iliac spine, 14 G biopsy needle, subcutaneous injected lidocaine administration (2 mL; 1%), 13 G co-axial/cannula, 1-2 cm muscle depth, 10-20 mg of muscle sample, ~3-time points, 2-3 passes; DISCUSSION: There is much variation in the reporting of the microbiopsy protocol and its related pre-and post-biopsy procedures. Standardization in reporting may promote recommendations to optimize data integrity, participant safety, participant adherence to the study design, and increase reproducibility. Recommendations are made for the microbiopsy procedure based on frequently reported characteristics.
Collapse
Affiliation(s)
- Daniel E Newmire
- Exercise Physiology and Biochemistry Laboratory, Department of Kinesiology, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA
| | - Darryn S Willoughby
- School of Health Professions, School of Exercise and Sport Science Mayborn College of Health Sciences, University of Mary Hardin-Baylor, Belton, TX, USA
| |
Collapse
|
6
|
Touron J, Perrault H, Maisonnave L, Patrac V, Walrand S, Malpuech-Brugère C, Pereira B, Burelle Y, Costes F, Richard R. Effects of exercise-induced metabolic and mechanical loading on skeletal muscle mitochondrial function in male rats. J Appl Physiol (1985) 2022; 133:611-621. [PMID: 35900326 DOI: 10.1152/japplphysiol.00719.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over the last decades, a growing interest in eccentric (ECC) exercise has emerged, but mitochondrial adaptations to ECC training remain poorly documented. Using an approach for manipulating mechanical and metabolic exercise power, we positioned that for same metabolic power, training using concentric (CON) or ECC contractions would induce similar skeletal muscle mitochondrial adaptations. Sixty adult rats were randomly assigned to a control (CTRL) or three treadmill training groups running at 15m·min-1 for 45min, 5days weekly for 8 weeks at targeted upward or downward slopes. Animals from the CON (+15%) and ECC30 (-30%) groups trained at iso-metabolic power while CON and ECC15 (-15%) exercised at iso-mechanical power. Assessments were made of Vastus Intermedius mitochondrial respiration (oxygraphy), enzymatic activities (spectrophotometry) and real-time qPCR for mRNA transcripts. Maximal rates of mitochondrial respiration was 14-15% higher in CON and ECC30 compared to CTRL and ECC15. Apparent Km for ADP for trained groups was 40-66% higher than CTRL, with statistical significance reached for CON and ECC30. Complex I and citrate synthase activities were 1.6 (ECC15) to 1.8 (ECC30 and CON) times values of CTRL. Complex IV activity was higher than CTRL (p<0.05) only for CON and ECC30. mRNA transcripts analyses showed higher TFAM, SLC25A4, CKMT2 and PPID in the ECC30 compared to CTRL. Findings confirm that training-induced skeletal muscle mitochondrial function adaptations are governed by the extent of metabolic overload irrespective of exercise modality. The distinctive ECC30 mRNA transcript pattern may reflect a cytoskeleton damage-repair or ECC adaptive cycle that differs from that of biogenesis.
Collapse
Affiliation(s)
- Julianne Touron
- UCA- INRAE UMR 1019, Human Nutrition Unit, ASMS team, Clermont-Ferrand, France
| | - Hélène Perrault
- Respiratory Division, McGill University Health Center, Montreal, Canada
| | - Laura Maisonnave
- UCA- INRAE UMR 1019, Human Nutrition Unit, ASMS team, Clermont-Ferrand, France
| | - Véronique Patrac
- UCA- INRAE UMR 1019, Human Nutrition Unit, ASMS team, Clermont-Ferrand, France
| | - Stephane Walrand
- UCA- INRAE UMR 1019, Human Nutrition Unit, ASMS team, Clermont-Ferrand, France
| | | | - Bruno Pereira
- Delegation to Clinical Research and Innovation, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Yan Burelle
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Frédéric Costes
- UCA- INRAE UMR 1019, Human Nutrition Unit, ASMS team, Clermont-Ferrand, France.,Department of Sports Medicine and Functional Explorations, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Ruddy Richard
- UCA- INRAE UMR 1019, Human Nutrition Unit, ASMS team, Clermont-Ferrand, France.,Delegation to Clinical Research and Innovation, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France.,Department of Sports Medicine and Functional Explorations, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
7
|
Luis Araujo Minari A, Avila F, Missae Oyama L, Vagner Thomatieli Dos Santos R. Inflammatory response of the peripheral neuroendocrine system following downhill running. Cytokine 2021; 149:155746. [PMID: 34678553 DOI: 10.1016/j.cyto.2021.155746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Exploring the relationship between exercise inflammation and the peripheral neuroendocrine system is essential for understanding how acute or repetitive bouts of exercise can contribute to skeletal muscle adaption. In severe damage, some evidence demonstrates that peripheral neuroendocrine receptors might contribute to inflammatory resolution, supporting the muscle healing process through myogenesis. In this sense, the current study aimed to evaluate two classic peripheral neuronal receptors along with skeletal muscle inflammation and adaptation parameters in triceps brachii after exercise. We euthanized C57BL (10 to 12 weeks old) male mice before, and one, two, and three days after a downhill running protocol. The positive Ly6C cells, along with interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), glucocorticoid receptor (GR), α7 subunits of the nicotinic acetylcholine receptor (nAChRs), and myonuclei accretion were analyzed. Our main results demonstrated that nAChRs increased with the inflammatory and myonuclei accretion responses regardless of NF-κB and GR protein expression. These results indicate that increased nAChR may contribute to skeletal muscle adaption after downhill running in mice.
Collapse
Affiliation(s)
| | - Felipe Avila
- Departamento de Fisiologia - Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Lila Missae Oyama
- Departamento de Fisiologia - Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Ronaldo Vagner Thomatieli Dos Santos
- Departamento de Psicobiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil; Departamento de Biociências - Campus da Baixada Santista, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil.
| |
Collapse
|
8
|
Skinner S, Nader E, Stauffer E, Robert M, Boisson C, Cibiel A, Foschia C, Feasson L, Robach P, Millet GY, Connes P. Differential impacts of trail and ultra-trail running on cytokine profiles: An observational study. Clin Hemorheol Microcirc 2021; 78:301-310. [PMID: 33814421 DOI: 10.3233/ch-211121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Endurance running events are known to cause inflammation and result in increased cytokine production. However, the effects of ultramarathons on cytokine profiles are not well characterized. OBJECTIVE The aim of this study was to describe and compare the effects of a trail (40 km) race and an ultra-trail (171 km) race on leukocyte concentrations and cytokine profiles. METHODS The study was conducted during the Ultra-Trail du Mont Blanc® ultra-marathon running event, and included 11 runners who completed the 40 km trail run and 12 runners who completed the 171 km ultra-trail. Blood samples were taken before and after the races. RESULTS Leukocyte concentrations significantly increased after both races. Circulating levels of IL-6, IL-1β, MCP-1, and IFN-γ were significantly higher after the longer race compared to the shorter race. Furthermore, while both races resulted in significant increases in IL-6 and IL-8, only the longer race resulted in significant increases in MIP-1β, IL-7, IL-17a, and IL-4. CONCLUSIONS These results illustrate that a 171 km ultra-trail race results in greater modulations in cytokine profiles than a traditional trail race.
Collapse
Affiliation(s)
- Sarah Skinner
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Explorations Fonctionnelles Respiratoires, Médecine du Sport et de l'Activité Physique, Hôpital Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Mélanie Robert
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France.,Erytech Pharma, Lyon, France
| | - Camille Boisson
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | | | - Clément Foschia
- Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| | - Léonard Feasson
- Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France.,Unité de Myologie, Service de Physiologie Clinique et de l'Exercice, Hôpital Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Paul Robach
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - Guillaume Y Millet
- Univ Lyon, UJM-Saint-Etienne, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France.,Institut Universitaire de France (IUF), Paris, France
| | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon, Université de Lyon, Lyon, France.,Laboratoire d'Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| |
Collapse
|
9
|
Touron J, Costes F, Coudeyre E, Perrault H, Richard R. Aerobic Metabolic Adaptations in Endurance Eccentric Exercise and Training: From Whole Body to Mitochondria. Front Physiol 2021; 11:596351. [PMID: 33584331 PMCID: PMC7873519 DOI: 10.3389/fphys.2020.596351] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
A characteristic feature of eccentric as compared with concentric exercise is the ability to generate greater mechanical loads for lower cardiopulmonary demands. Current evidence concurs to show that eccentric training translates into considerable gains in muscle mass and strength. Less is known, however, regarding its impact on oxygen transport and on factors to be considered for optimizing its prescription and monitoring. This article reviews the existing evidence for endurance eccentric exercise effects on the components of the oxygen transport system from systemic to mitochondria in both humans and animals. In the studies reviewed, specially designed cycle-ergometers or downhill treadmill running were used to generate eccentric contractions. Observations to date indicate that overall, the aerobic demand associated with the eccentric training load was too low to significantly increase peak maximal oxygen consumption. By extension, it can be inferred that the very high eccentric power output that would have been required to solicit a metabolic demand sufficient to enhance peak aerobic power could not be tolerated or sustained by participants. The impact of endurance eccentric training on peripheral flow distribution remains largely undocumented. Given the high damage susceptibility of eccentric exercise, the extent to which skeletal muscle oxygen utilization adaptations would be seen depends on the balance of adverse and positive signals on mitochondrial integrity. The article examines the protection provided by repeated bouts of acute eccentric exercise and reports on the impact of eccentric cycling and downhill running training programs on markers of mitochondrial function and of mitochondrial biogenesis using mostly from animal studies. The summary of findings does not reveal an impact of training on skeletal muscle mitochondrial respiration nor on selected mitochondrial messenger RNA transcripts. The implications of observations to date are discussed within future perspectives for advancing research on endurance eccentric exercise physiological impacts and using a combined eccentric and concentric exercise approach to optimize functional capacity.
Collapse
Affiliation(s)
- Julianne Touron
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
| | - Frédéric Costes
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
- Service de Médecine du Sport et des Explorations Fonctionnelles, CHU Gabriel Montpied, Clermont-Ferrand, France
| | - Emmanuel Coudeyre
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
- Service de Médecine Physique et de Réadaptation, CHU Gabriel Montpied/CHU Louise Michel, Clermont-Ferrand, France
| | - Hélène Perrault
- Respiratory Division, McGill University Health Center, Montreal, QC, Canada
| | - Ruddy Richard
- UCA–INRAE, Human Nutrition Unit, ASMS Team, University Clermont Auvergne, Clermont-Ferrand, France
- Service de Médecine du Sport et des Explorations Fonctionnelles, CHU Gabriel Montpied, Clermont-Ferrand, France
- Unité d’Exploration en Nutrition (UEN), CRNH Auvergne, Clermont-Ferrand, France
| |
Collapse
|
10
|
Effect of Three Half-Squat Protocols on the Tensiomyographic Twitch Response and Tissue Damage of the Rectus Femoris and the Biceps Femoris. J Hum Kinet 2020; 75:15-27. [PMID: 33312292 PMCID: PMC7706669 DOI: 10.2478/hukin-2020-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to analyse the acute effects of a concentric exercise and two different eccentric overload exercises (EOEs) on blood markers of muscle damage (i.e. creatine kinase [CK], lactate dehydrogenase [LDH], myoglobin [Myo], and malondialdehyde [MDA]) and muscle contractile properties. Ten healthy, young (27 ± 1.5 years, 179 ± 6 cm, 78.7 ± 10.8 kg), physically active men (3.5 ± 1.9 h·w-1) randomly performed three training sessions using the following protocols: a half-squat (HS) as a concentric exercise, and exercises using Versapulley (VP) or YoYo isoinertial technology (YIT) as EOEs (4 x 7 repetitions with a 2 min rest interval between sets). Blood samples and tensiomyography measurements were obtained after each training session. Repeated measures analysis of variance (ANOVA) followed by the Tukey test was used to detect differences between the four time points of each variable. The standardized difference or effect size (ES, 90% confidence limit) in the selected variables was calculated using the basal SD. After all exercises, a greater activity of CK, LDH, and concentration of Myo, and MDA were found compared to baseline values (p < 0.05). A substantially greater activity of CK, LDH, and Myo concentration, but not MDA, were found after EOEs when compared to the HS protocol. Substantially lower tensiomyography results in the rectus femoris (RF) were reported, irrespective of the exercise mode performed. Also, no substantial differences were obtained in the biceps femoris (BF) between EOEs and the HS protocol. Time of contraction (Tc) in the RF was possibly to very likely lower in the HS in comparison to EOEs. Additionally, muscular displacement (Dm) in the RF was substantially lower in the HS compared to EOEs. VP produced higher concentrations of damage markers than YIT and concentric exercise did. Furthermore, tensiomyography variables showed similar activation in both exercises, although higher specific fatigue (in the RF) was registered in the traditional HS.
Collapse
|
11
|
Bontemps B, Vercruyssen F, Gruet M, Louis J. Downhill Running: What Are The Effects and How Can We Adapt? A Narrative Review. Sports Med 2020; 50:2083-2110. [PMID: 33037592 PMCID: PMC7674385 DOI: 10.1007/s40279-020-01355-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Downhill running (DR) is a whole-body exercise model that is used to investigate the physiological consequences of eccentric muscle actions and/or exercise-induced muscle damage (EIMD). In a sporting context, DR sections can be part of running disciplines (off-road and road running) and can accentuate EIMD, leading to a reduction in performance. The purpose of this narrative review is to: (1) better inform on the acute and delayed physiological effects of DR; (2) identify and discuss, using a comprehensive approach, the DR characteristics that affect the physiological responses to DR and their potential interactions; (3) provide the current state of evidence on preventive and in-situ strategies to better adapt to DR. Key findings of this review show that DR may have an impact on exercise performance by altering muscle structure and function due to EIMD. In the majority of studies, EIMD are assessed through isometric maximal voluntary contraction, blood creatine kinase and delayed onset muscle soreness, with DR characteristics (slope, exercise duration, and running speed) acting as the main influencing factors. In previous studies, the median (25th percentile, Q1; 75th percentile, Q3) slope, exercise duration, and running speed were - 12% (- 15%; - 10%), 40 min (30 min; 45 min) and 11.3 km h-1 (9.8 km h-1; 12.9 km h-1), respectively. Regardless of DR characteristics, people the least accustomed to DR generally experienced the most EIMD. There is growing evidence to suggest that preventive strategies that consist of prior exposure to DR are the most effective to better tolerate DR. The effectiveness of in-situ strategies such as lower limb compression garments and specific footwear remains to be confirmed. Our review finally highlights important discrepancies between studies in the assessment of EIMD, DR protocols and populations, which prevent drawing firm conclusions on factors that most influence the response to DR, and adaptive strategies to DR.
Collapse
Affiliation(s)
- Bastien Bontemps
- Université de Toulon, Laboratoire IAPS, Toulon, France
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | | | - Mathieu Gruet
- Université de Toulon, Laboratoire IAPS, Toulon, France
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
12
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
13
|
Cardaci TD, Machek SB, Wilburn DT, Hwang PS, Willoughby DS. Ubiquitin Proteasome System Activity is Suppressed by Curcumin following Exercise-Induced Muscle Damage in Human Skeletal Muscle. J Am Coll Nutr 2020; 40:401-411. [PMID: 32701392 DOI: 10.1080/07315724.2020.1783721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Curcumin is a polyphenolic compound that is suggested to dysregulate the ubiquitin-proteasome system (UPS). This study investigated the effects of curcumin supplementation on markers of UPS activity in response to muscle damage. METHODS Twenty-three recreationally active male and females between the ages of 18-30 were randomized into a curcumin (CUR) or placebo (PLA) group. Both groups ingested 2 g of their respective supplement and 20 mg of piperine for 11 consecutive days. Following 8 consecutive days of supplementation, participants performed a 45-minute eccentrically-biased treadmill protocol at 60% VO2max. Muscle biopsies and delayed onset muscle soreness (DOMS) assessments were performed 30 minutes prior and 3, 24, 48, and 72 hours following exercise. Skeletal muscle ubiquitin, MAFbx/Atrogin-1, ubiquitin specific peptidase 19 (USP19), and chymotrypsin-like protease concentrations were measured using ELISA. A 3-way repeated measures ANOVA with pairwise comparisons was conducted with significance set at p ≤ 0.05. RESULTS Compared to baseline, DOMS for both groups was significantly increased (p < 0.05) at all time points except 72 hours following exercise. No significant differences were found for USP19 between groups. Ubiquitin (p=.016) and MAFbx/Atrogin-1 (p=.006) were significantly lower for CUR compared to PLA. Additionally, MAFbx/Atrogin-1 was significantly greater for females (p=.013) compared to males. In males, curcumin resulted in significant reductions (p = .049) in chymotrypsin-like protease (p = .049). CONCLUSION While elevations in UPS activity were not observed in response to muscle damage, curcumin supplementation in humans does appear to dysregulate basal UPS activity in the presence of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Thomas D Cardaci
- Department of Health, Human Performance, & Recreation, Exercise & Biochemical Nutrition Laboratory, Baylor University, Waco, Texas, USA
| | - Steven B Machek
- Department of Health, Human Performance, & Recreation, Exercise & Biochemical Nutrition Laboratory, Baylor University, Waco, Texas, USA
| | - Dylan T Wilburn
- Department of Health, Human Performance, & Recreation, Exercise & Biochemical Nutrition Laboratory, Baylor University, Waco, Texas, USA
| | - Paul S Hwang
- Department of Health, Human Performance, & Recreation, Exercise & Biochemical Nutrition Laboratory, Baylor University, Waco, Texas, USA
| | - Darryn S Willoughby
- Department of Health, Human Performance, & Recreation, Exercise & Biochemical Nutrition Laboratory, Baylor University, Waco, Texas, USA.,Human Performance Laboratory, School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, Texas, USA
| |
Collapse
|
14
|
Buford TW, Sun Y, Roberts LM, Banerjee A, Peramsetty S, Knighton A, Verma A, Morgan D, Torres GE, Li Q, Carter CS. Angiotensin (1-7) delivered orally via probiotic, but not subcutaneously, benefits the gut-brain axis in older rats. GeroScience 2020; 42:1307-1321. [PMID: 32451847 PMCID: PMC7525634 DOI: 10.1007/s11357-020-00196-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
To (1) investigate the efficacy of multiple doses of an orally delivered probiotic bacteria Lactobacillus paracasei (LP) modified to express angiotensin (1-7) (LP-A) in altering physiologic parameters relevant to the gut-brain axis in older rats and to (2) compare this strategy with subcutaneous delivery of synthetic Ang(1-7) peptide on circulating Ang(1-7) concentrations and these gut-brain axis parameters. Male 24-month-old F344BN rats received oral gavage of LP-A, or subcutaneous injection of Ang(1-7) for 0×, 1×, 3×, or 7×/week over 4 weeks. Circulating RAS analytes, inflammatory cytokines, and tryptophan and its downstream metabolites were measured by ELISA, electrochemiluminescence, and LC-MS respectively. Microbiome taxonomic analysis of fecal samples was performed via 16S-based PCR. Inflammatory and tryptophan-related mRNA expression was measured in colon and pre-frontal cortex. All dosing regimens of LP-A induced beneficial changes in fecal microbiome including overall microbiota community structure and α-diversity, while the 3×/week also significantly increased expression of the anti-inflammatory species Akkermansia muciniphila. The 3×/week also increased serum serotonin and the neuroprotective analyte 2-picolinic acid. In the colon, LP-A increased quinolinate phosphoribosyltransferase expression (1×/week) and increased kynurenine aminotransferase II (1× and 3×/week) mRNA expression. LP-A also significantly reduced neuro-inflammatory gene expression in the pre-frontal cortex (3×/week: COX2, IL-1β, and TNFα; 7×/week: COX2 and IL-1β). Subcutaneous delivery of Ang(1-7) increased circulating Ang(1-7) and reduced angiotensin II, but most gut-brain parameters were unchanged in response. Oral-but not subcutaneous-Ang(1-7) altered physiologic parameters related to gut-brain axis, with the most effects observed in 3×/week oral dosing regimen in older rats.
Collapse
Affiliation(s)
- Thomas W. Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Yi Sun
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Lisa M. Roberts
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Anisha Banerjee
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Sujitha Peramsetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Anthony Knighton
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| | - Amrisha Verma
- Department of Ophthalmology, University of Florida, Gainesville, FL USA
| | - Drake Morgan
- Department of Psychiatry, University of Florida, Gainesville, FL USA
| | - Gonzalo E. Torres
- Department of Molecular, Cellular, and Biomedical Sciences, City College of New York, New York, NY USA
| | - Qiuhong Li
- Department of Ophthalmology, University of Florida, Gainesville, FL USA
| | - Christy S. Carter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
15
|
dos Santos JDMB, Bachi ALL, Luna Junior LA, Foster R, Sierra APR, Benetti M, Araújo JR, Ghorayeb N, Kiss MAPD, Vieira RP, Bullens DMA, Vaisberg M. The Relationship of IL-8 and IL-10 Myokines and Performance in Male Marathon Runners Presenting Exercise-Induced Bronchoconstriction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082622. [PMID: 32290385 PMCID: PMC7215610 DOI: 10.3390/ijerph17082622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022]
Abstract
At present, it is unclear which exercise-induced factors, such as myokines, could diminish the negative impact of the reduction in pulmonary function imposed by the exercise in question. In this study, we aim to evaluate the prevalence of exercise-induced bronchoconstriction (EIB) and also to investigate the effect of myokines in the performance of marathon runners presenting EIB or not. Thirty-eight male recreational marathon runners (age 38.8 [33-44], height 175.7 [172.0-180.3]; weight 74.7 [69.3-81.6]) participated in this study, and through spirometry tests, a prevalence of 23.6% of EIB was found, which is in agreement with the literature. The volunteers who tested positive to EIB (EIB+) presented lower maximum aerobic capacity compared to those who tested negative (EIB-) (EIB+ 44.02 [39.56-47.02] and EIB- 47.62 [44.11-51.18] p = 0.03). The comparison of plasma levels of IL-1β (EIB+ p = 0.296, EIB- p = 0.176, EIB+ vs. EIB- baseline p = 0.190 immediately after p = 0.106), IL-4 (undetectable), IL-6 (EIB+ p = 0.003, EIB- p ≤ 0.001, EIB+ vs. EIB- baseline p = 0.301 immediately after p = 0.614), IL-8 (EIB+ p = 0.003, EIB- p ≤ 0.001, EIB+ vs. EIB- baseline p = 0.110 immediately after p = 0.453), IL-10 (EIB+ p = 0.003, EIB- p ≤ 0.001, EIB+ vs. EIB- baseline p = 0.424 immediately after p = 0.876) and TNF-α (EIB+ p = 0.003, EIB- p ≤ 0.001, EIB+ vs. EIB- baseline p = 0.141 immediately after p = 0.898) were similar in both groups 24 h before and immediately after the marathon. However, negative correlations were found between the marathon finishing time and the levels of IL-8 (r = -0.81, p = 0.022), and IL-10 (r = -0.97, p ≤ 0.001) immediately after completing the marathon. In conclusion, for the first time, it is shown that the myokines IL-8 and IL-10 are related to improvement of the performance of marathon runners presenting EIB.
Collapse
Affiliation(s)
- Juliana de Melo Batista dos Santos
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04025-002, Brazil; (A.L.L.B.); (L.A.L.J.); (R.F.); (M.V.)
- Correspondence: ; Tel.: +55-11-5576-4848
| | - André Luis Lacerda Bachi
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04025-002, Brazil; (A.L.L.B.); (L.A.L.J.); (R.F.); (M.V.)
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | - Luiz Antonio Luna Junior
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04025-002, Brazil; (A.L.L.B.); (L.A.L.J.); (R.F.); (M.V.)
| | - Roberta Foster
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04025-002, Brazil; (A.L.L.B.); (L.A.L.J.); (R.F.); (M.V.)
- Method Faculty of Sao Paulo (FAMESP), São Paulo 04046-200, Brazil
| | - Ana Paula Renno Sierra
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo 05508-030, Brazil; (A.P.R.S.); (M.B.); (M.A.P.D.K.)
| | - Marino Benetti
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo 05508-030, Brazil; (A.P.R.S.); (M.B.); (M.A.P.D.K.)
| | - José Roberto Araújo
- Department of Morphology and Genetics, Federal University of Sao Paulo (UNIFESP), São Paulo 04023-900, Brazil;
| | - Nabil Ghorayeb
- Sports Cardiology Department, Dante Pazzanese Institute of Cardiology, São Paulo 04012-909, Brazil;
| | | | - Rodolfo P. Vieira
- Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos 11060-001, Brazil;
- Post-Graduation Program in Bioengineering and Biomedical Engineering, Universidade Brasil, São Paulo 08230-030, Brazil
- School of Medicine, Anhembi Morumbi University, São José dos Campos 04705-000, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos 12245-520, Brazil
| | - Dominique M. A. Bullens
- Clinical Division of Pediatrics, UZ Leuven, 3000 Leuven, Belgium;
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Mauro Vaisberg
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04025-002, Brazil; (A.L.L.B.); (L.A.L.J.); (R.F.); (M.V.)
| |
Collapse
|
16
|
Vadasz B, Gohari J, West DW, Grosman-Rimon L, Wright E, Ozcakar L, Srbely J, Kumbhare D. Improving characterization and diagnosis quality of myofascial pain syndrome: a systematic review of the clinical and biomarker overlap with delayed onset muscle soreness. Eur J Phys Rehabil Med 2020; 56:469-478. [PMID: 32072791 DOI: 10.23736/s1973-9087.20.05820-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Myofascial pain syndrome (MPS) is one of the most common conditions of chronic musculoskeletal pain, yet its mechanisms are still poorly understood. Delayed Onset Muscle Soreness (DOMS) is also a regional pain syndrome that has clinical similarities to MPS, but has been better investigated. Emerging research suggests that DOMS may be a valid experimental model for studying MPS; however, a comparison of the similarities and differences of these two conditions has previously not been performed. Herein, we aimed to identify the similarities and differences in the clinical features and biomarkers between DOMS and MPS in order to better define MPS and identify future areas of (DOMS-informed) MPS research. EVIDENCE ACQUISITION In order to identify similarities and differences in the clinical manifestation and biomarkers of DOMS and MPS, scoping literature searches were performed using Medline (1965-2019), Embase (1966-2019) and Central (1966-2019) databases. Fifty-three full-text articles were reviewed out of the 2836 articles retrieved in the search. EVIDENCE SYNTHESIS A scoping review of the literature demonstrated that DOMS and MPS similarly present as conditions of musculoskeletal pain that are associated with decreased strength and limited range of motion. However, while taut bands and discrete tender spots were described in DOMS, none of the studies reviewed have characterized whether these tender points represent the classic myofascial trigger point phenomenon observed in MPS. Certain systemic circulation biomarkers, including inflammatory cytokines and growth factors, were commonly elevated in MPS and DOMS; further research is needed to determine if other biomarkers that are currently characterized in DOMS are useful to enhance the clinical evaluation of MPS. CONCLUSIONS DOMS and MPS share clinical and biomarker similarities suggesting that DOMS may be a useful model for studying MPS.
Collapse
Affiliation(s)
- Brian Vadasz
- Technion American Medical School, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel.,Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University of Toronto, Toronto, ON, Canada
| | - Jacob Gohari
- Technion American Medical School, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Daniel W West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.,Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University of Toronto, Toronto, ON, Canada
| | - Liza Grosman-Rimon
- Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University of Toronto, Toronto, ON, Canada
| | - Evan Wright
- Department of Pediatrics, Jacobi Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Levent Ozcakar
- Department of Physical and Rehabilitation Medicine, School of Medicine, Hacettepe University, Ankara, Turkey
| | - John Srbely
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Canada
| | - Dinesh Kumbhare
- Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University of Toronto, Toronto, ON, Canada -
| |
Collapse
|
17
|
Valladares-Ide D, Peñailillo L, Collao N, Marambio H, Deldicque L, Zbinden-Foncea H. Activation of protein synthesis, regeneration, and MAPK signaling pathways following repeated bouts of eccentric cycling. Am J Physiol Endocrinol Metab 2019; 317:E1131-E1139. [PMID: 31593504 DOI: 10.1152/ajpendo.00216.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to examine the activation of skeletal muscle signaling pathways related to protein synthesis and the gene expression of regeneration/degradation markers following repeated bouts of eccentric cycling. Nine untrained men (25.4 ± 1.9 yr) performed two 30-min eccentric cycling bouts (ECC1, ECC2) at 85% of maximal concentric workload, separated by 2 wk. Muscle biopsies were taken from the vastus lateralis before and 2 h after each bout. Indirect markers of muscle damage were assessed before and 24-48 h after exercise. Changes in the Akt/mammalian target of rapamycin (mTOR)/rbosomal protein S6 kinase 1 (S6K1)/ribosomal protein S6 (rpS6) and MAPK signaling pathways were measured by Western blot and changes in mRNA expression of IL-6 and IL-1β, and myogenic regulatory factors (MRFs) were measured by real-time PCR. ECC1 induced greater increases in indirect markers of muscle damage compared with ECC2. Phosphorylation of S6K1 and rpS6 increased after both exercise bouts (P < 0.05), whereas phosphorylation of mTOR increased after ECC2 only (P = 0.03). Atrogin-1 mRNA expression decreased after ECC1 and ECC2 (P < 0.05) without changes in muscle RING-finger protein-1 mRNA. Basal mRNA levels of myoblast determination protein-1 (MyoD), MRF4, and myogenin were higher 2 wk after ECC1 (P < 0.05). MRF4 mRNA increased after ECC1 and ECC2 (P < 0.05), whereas MyoD mRNA expression increased only after ECC1 (P = 0.03). Phosphorylation of JNK and p38 MAPK increased after both exercise bouts (P < 0.05), similar to IL-6 and IL-1β mRNA expression. All together, these results suggest that differential regulation of the mTOR pathway and MRF expression could mediate the repeated bout effect observed between an initial and secondary bout of eccentric exercise.
Collapse
Affiliation(s)
- Denisse Valladares-Ide
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Luis Peñailillo
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Nicolás Collao
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Hugo Marambio
- Centro de Salud Deportiva, Clínica Santa María, Santiago, Chile
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hermann Zbinden-Foncea
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Centro de Salud Deportiva, Clínica Santa María, Santiago, Chile
| |
Collapse
|
18
|
Hody S, Croisier JL, Bury T, Rogister B, Leprince P. Eccentric Muscle Contractions: Risks and Benefits. Front Physiol 2019; 10:536. [PMID: 31130877 PMCID: PMC6510035 DOI: 10.3389/fphys.2019.00536] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/15/2019] [Indexed: 01/12/2023] Open
Abstract
Eccentric contractions, characterized by the lengthening of the muscle-tendon complex, present several unique features compared with other types of contractions, which may lead to unique adaptations. Due to its specific physiological and mechanical properties, there is an increasing interest in employing eccentric muscle work for rehabilitation and clinical purposes. However, unaccustomed eccentric exercise is known to cause muscle damage and delayed pain, commonly defined as “Delayed-Onset Muscular Soreness” (DOMS). To date, the most useful preventive strategy to avoid these adverse effects consists of repeating sessions involving submaximal eccentric contractions whose intensity is progressively increased over the training. Despite an increased number of investigations focusing on the eccentric contraction, a significant gap still remains in our understanding of the cellular and molecular mechanisms underlying the initial damage response and subsequent adaptations to eccentric exercise. Yet, unraveling the molecular basis of exercise-related muscle damage and soreness might help uncover the mechanistic basis of pathological conditions as myalgia or neuromuscular diseases. In addition, a better insight into the mechanisms governing eccentric training adaptations should provide invaluable information for designing therapeutic interventions and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Stéphanie Hody
- Department of Motricity Sciences, University of Liège, Liege, Belgium
| | | | - Thierry Bury
- Department of Motricity Sciences, University of Liège, Liege, Belgium
| | - Bernard Rogister
- GIGA-Neurosciences, University of Liège, Liege, Belgium.,Department of Neurology, The University Hospital Center, University of Liège, Liege, Belgium.,GIGA - Laboratory of Nervous System Disorders and Therapy, University of Liège, Liege, Belgium
| | - Pierre Leprince
- GIGA-Neurosciences, University of Liège, Liege, Belgium.,GIGA - Laboratory of Nervous System Disorders and Therapy, University of Liège, Liege, Belgium
| |
Collapse
|
19
|
Ramos L, Marcos RL, Torres-Silva R, Pallota RC, Magacho T, Mafra FFP, Macedo MM, Carvalho RLDP, Bjordal JM, Lopes-Martins RAB. Characterization of Skeletal Muscle Strain Lesion Induced by Stretching in Rats: Effects of Laser Photobiomodulation. Photomed Laser Surg 2018; 36:460-467. [DOI: 10.1089/pho.2018.4473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Luciano Ramos
- Faculdade Pitágoras Guarapari–Rod, Governador Jones dos Santos Neves, Guarapari, Espírito Santo, Brazil
| | - Rodrigo Labat Marcos
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, Brazil
| | - Romildo Torres-Silva
- Postgraduate Program in Biomedical Engineering, Technological Research Center–NPT, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, Brazil
| | - Rodney Capp Pallota
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, Brazil
| | - Tatiana Magacho
- Faculdade Pitágoras Guarapari–Rod, Governador Jones dos Santos Neves, Guarapari, Espírito Santo, Brazil
| | - Fernando Francisco Pazello Mafra
- Postgraduate Program in Biomedical Engineering, Technological Research Center–NPT, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, Brazil
| | - Michel Monteiro Macedo
- Postgraduate Program in Biomedical Engineering, Technological Research Center–NPT, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, Brazil
| | | | | | | |
Collapse
|
20
|
Cooke MB, Nix CM, Greenwood LD, Greenwood MC. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage. J Strength Cond Res 2018; 32:736-747. [PMID: 27941488 DOI: 10.1519/jsc.0000000000001750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cooke, MB, Nix, C, Greenwood, L, and Greenwood, M. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage. J Strength Cond Res 32(3): 736-747, 2018-The incidence of muscle injuries is prevalent in elite sport athletes and weekend warriors and strategies that safely and effectively hasten recovery are highly desirable. The purpose of this study was to examine the differences between 3 recovery methods after eliciting muscle damage in recreationally active men relative to maximal isokinetic contractions, perceived muscle soreness, and psychological mood states. Twenty-five recreationally active men (22.15 ± 3.53 years, 75.75 ± 11.91 kg, 180.52 ± 7.3 cm) were randomly matched by V[Combining Dot Above]O2 peak (53.86 ± 6.65 ml·kg·min) and assigned to one of 3 recovery methods: anti-gravity treadmill (G-Trainer) (N = 8), conventional treadmill (N = 8) or static stretching (N = 9). Recovery methods were performed 30 minutes, 24, 48, and 72 hours after a 45-minute downhill run. Following eccentrically biased running, no significant differences were noted in isokinetic knee flexion and extension peak torque, systemic markers of muscle damage, oxidative stress and lipid peroxidation such as serum creatine kinase (CK), superoxide dismutase (SOD), and malondialdehyde (MDA), respectively, and subjective ratings of perceived muscle soreness between recovery methods. The G-Trainer group did however display a higher mood state as indicated by the Profile of Mood State global scores at 24 hours postexercise when compared to the conventional treadmill recovery group (p = 0.035). The improved mood state after the use of the anti-gravity treadmill may provide clinical relevance to other populations.
Collapse
Affiliation(s)
- Matthew B Cooke
- College of Health and Biomedicine, Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, VIC, Australia
| | - Carrie M Nix
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas
| | - Lori D Greenwood
- Department of Health and Kinesiology, Exercise and Sport Nutrition Laboratory, Texas A & M University, College Station, Texas
| | - Mike C Greenwood
- Department of Health and Kinesiology, Exercise and Sport Nutrition Laboratory, Texas A & M University, College Station, Texas
| |
Collapse
|
21
|
The Impact of Physical Activity on Serum Inflammatory Markers in Overweight Pubertal Boys: 24-Month Follow-Up Study. Pediatr Exerc Sci 2018; 30:198-207. [PMID: 29276854 DOI: 10.1123/pes.2016-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate the differences in the pattern of changes in serum inflammatory cytokines measured annually over a 24-month period, between less active and more active overweight boys. PARTICIPANTS/METHODS In total, 25 pubertal overweight boys were divided by their moderate to vigorous physical activity (MVPA) levels into 2 groups: less active group (LAG; n = 10; MVPA < 60 min/d) and more active group (MAG; n = 15; MVPA > 60 min/d). Physical activity was measured by 7-day accelerometry. Serum concentration of 13 inflammatory cytokines [interleukin (IL)-2, IL-4, IL-6, IL-8, IL-10, IL-1α, IL-1β, vascular endothelial growth factor, interferon-γ, tumor necrosis factor-α, monocyte chemotactic protein-1, epidermal growth factor, and C-reactive protein] was measured at baseline (T0), after 12 months (T1), and after 24 months (T2) from fasting blood samples. RESULTS Serum IL-6 level was significantly higher [LAG: 1.27 (0.86, 1.98) pg/mL; MAG: 0.80 (0.52, 0.84) pg/mL] at T0 and IL-8 level [LAG: 10.26 (8.80, 11.64) pg/mL; MAG: 7.42 (6.10, 9.54) pg/mL] at T2 in LAG compared with MAG. The changes over the study period varied between different inflammatory markers. None of the slopes of any measured markers were statistically different between the LAG and MAG, although the slopes of interferon-γ and IL-10 tended to be different between the groups. CONCLUSIONS The pattern of changes over the study period varied between different inflammatory markers, but these changes were not different between the MVPA groups. More longitudinal studies are needed to investigate whether IL-6, IL-8, IL-10, and interferon-γ would be the choice of inflammatory markers to study the associations between obesity and physical activity in future.
Collapse
|
22
|
Effects of low-intensity pulsed ultrasound on muscle thickness and echo intensity of the elbow flexors following exercise-induced muscle damage. SPORT SCIENCES FOR HEALTH 2017. [DOI: 10.1007/s11332-017-0366-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Gjevestad GO, Hamarsland H, Raastad T, Ottestad I, Christensen JJ, Eckardt K, Drevon CA, Biong AS, Ulven SM, Holven KB. Gene expression is differentially regulated in skeletal muscle and circulating immune cells in response to an acute bout of high-load strength exercise. GENES AND NUTRITION 2017; 12:8. [PMID: 28270867 PMCID: PMC5335818 DOI: 10.1186/s12263-017-0556-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/30/2017] [Indexed: 01/10/2023]
Abstract
Background High-intensity exercise induces many metabolic responses. In is unknown whether the response in the peripheral blood mononuclear cells (PBMCs) reflects the response in skeletal muscle and whether mRNA expression after exercise can be modulated by nutritional intake. The aims were to (i) investigate the effect of dairy proteins on acute responses to exercise in skeletal muscle and PBMCs measuring gene expression and (ii) compare this response in young and older subjects. Methods We performed two separate studies in young (20–40 years) and older subjects (≥70 years). Subjects were randomly allocated to a milk group or a whey group. Supplements were provided immediately after a standardized exercise session. We measured mRNA expression of selected genes after a standardized breakfast and 60/120 min after finishing the exercise, using RT-qPCR. Results We observed no significant differences in mRNA expression between the milk and the whey group; thus, we merged both groups for further analysis. The mRNA expression of IL6, TNF, and CCL2 in skeletal muscle increased significantly after exercise compared with smaller or no increase, in mRNA expression in PBMCs in all participants. The mRNA expression of IL1RN, IL8, and IL10 increased significantly in skeletal muscle and PBMCs. Some mRNA transcripts were differently regulated in older compared to younger participants in PBMCs. Conclusions An acute bout of heavy-load strength exercise, followed by protein supplementation, caused overlapping, but also unique, responses in skeletal muscle and PBMCs, suggesting tissue-specific functions in response to exercise. However, no different effects of the different protein supplements were observed. Altered mRNA expressions in PBMCs of older participants may affect regenerative mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12263-017-0556-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gyrd O Gjevestad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway.,Centre for Research and Development, TINE SA, P.O. Box 7, Kalbakken, 0902 Oslo Norway
| | - Håvard Hamarsland
- Department of Physical Performance, Norwegian School of Sport Sciences, P.B. 4104 USA, 0806 Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, P.B. 4104 USA, 0806 Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway.,The Lipid Clinic, Oslo University Hospital Rikshospitalet, P.O. Box 4950, Nydalen, 0424 Oslo Norway
| | - Kristin Eckardt
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway
| | - Anne S Biong
- Centre for Research and Development, TINE SA, P.O. Box 7, Kalbakken, 0902 Oslo Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway.,National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424 Oslo Norway
| |
Collapse
|
24
|
Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev 2017; 33:55-63. [DOI: 10.1016/j.cytogfr.2016.10.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022]
|
25
|
Giandolini M, Vernillo G, Samozino P, Horvais N, Edwards WB, Morin JB, Millet GY. Fatigue associated with prolonged graded running. Eur J Appl Physiol 2016; 116:1859-73. [PMID: 27456477 DOI: 10.1007/s00421-016-3437-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/11/2016] [Indexed: 11/29/2022]
Abstract
Scientific experiments on running mainly consider level running. However, the magnitude and etiology of fatigue depend on the exercise under consideration, particularly the predominant type of contraction, which differs between level, uphill, and downhill running. The purpose of this review is to comprehensively summarize the neurophysiological and biomechanical changes due to fatigue in graded running. When comparing prolonged hilly running (i.e., a combination of uphill and downhill running) to level running, it is found that (1) the general shape of the neuromuscular fatigue-exercise duration curve as well as the etiology of fatigue in knee extensor and plantar flexor muscles are similar and (2) the biomechanical consequences are also relatively comparable, suggesting that duration rather than elevation changes affects neuromuscular function and running patterns. However, 'pure' uphill or downhill running has several fatigue-related intrinsic features compared with the level running. Downhill running induces severe lower limb tissue damage, indirectly evidenced by massive increases in plasma creatine kinase/myoglobin concentration or inflammatory markers. In addition, low-frequency fatigue (i.e., excitation-contraction coupling failure) is systematically observed after downhill running, although it has also been found in high-intensity uphill running for different reasons. Indeed, low-frequency fatigue in downhill running is attributed to mechanical stress at the interface sarcoplasmic reticulum/T-tubule, while the inorganic phosphate accumulation probably plays a central role in intense uphill running. Other fatigue-related specificities of graded running such as strategies to minimize the deleterious effects of downhill running on muscle function, the difference of energy cost versus heat storage or muscle activity changes in downhill, level, and uphill running are also discussed.
Collapse
Affiliation(s)
- Marlene Giandolini
- Salomon SAS, Amer Sports Innovation and Sport Sciences Laboratory, 74996, Annecy, France.,Inter-universitary Laboratory of Human Movement Biology (EA 7424), University Savoie Mont Blanc, 73376, Le Bourget-du-Lac, France
| | - Gianluca Vernillo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.,CeRiSM, Research Center for Sport, Mountain and Health, University of Verona, Rovereto, TN, Italy
| | - Pierre Samozino
- Inter-universitary Laboratory of Human Movement Biology (EA 7424), University Savoie Mont Blanc, 73376, Le Bourget-du-Lac, France
| | - Nicolas Horvais
- Salomon SAS, Amer Sports Innovation and Sport Sciences Laboratory, 74996, Annecy, France.,Inter-universitary Laboratory of Human Movement Biology (EA 7424), University Savoie Mont Blanc, 73376, Le Bourget-du-Lac, France
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada
| | | | - Guillaume Y Millet
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
26
|
Tebebi PA, Burks SR, Kim SJ, Williams RA, Nguyen BA, Venkatesh P, Frenkel V, Frank JA. Cyclooxygenase-2 or tumor necrosis factor-α inhibitors attenuate the mechanotransductive effects of pulsed focused ultrasound to suppress mesenchymal stromal cell homing to healthy and dystrophic muscle. Stem Cells 2016; 33:1173-86. [PMID: 25534849 DOI: 10.1002/stem.1927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/05/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022]
Abstract
Maximal homing of infused stem cells to diseased tissue is critical for regenerative medicine. Pulsed focused ultrasound (pFUS) is a clinically relevant platform to direct stem cell migration. Through mechanotransduction, pFUS establishes local gradients of cytokines, chemokines, trophic factors (CCTF) and cell adhesion molecules (CAM) in treated skeletal muscle that subsequently infused mesenchymal stromal cells (MSC) can capitalize to migrate into the parenchyma. Characterizing molecular responses to mechanical pFUS effects revealed tumor necrosis factor-alpha (TNFα) drives cyclooxygenase-2 (COX2) signaling to locally increase CCTF/CAM that are necessary for MSC homing. pFUS failed to increase chemoattractants and induce MSC homing to treated muscle in mice pretreated with ibuprofen (nonspecific COX inhibitor) or etanercept (TNFα inhibitor). pFUS-induced MSC homing was also suppressed in COX2-knockout mice, demonstrating ibuprofen blocked the mechanically induced CCTF/CAM by acting on COX2. Anti-inflammatory drugs, including ibuprofen, are administered to muscular dystrophy (MD) patients, and ibuprofen also suppressed pFUS-induced homing to muscle in a mouse model of MD. Drug interactions with cell therapies remain unexplored and are not controlled for during clinical cell therapy trials. This study highlights potentially negative drug-host interactions that suppress stem cell homing and could undermine cell-based approaches for regenerative medicine.
Collapse
Affiliation(s)
- Pamela A Tebebi
- Department of Biomedical Engineering, Catholic University of America, Washington, District of Columbia, USA; Frank Lab, Radiology and Imaging Sciences Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Miyatake S, Bilan PJ, Pillon NJ, Klip A. Contracting C2C12 myotubes release CCL2 in an NF-κB-dependent manner to induce monocyte chemoattraction. Am J Physiol Endocrinol Metab 2016; 310:E160-70. [PMID: 26554595 DOI: 10.1152/ajpendo.00325.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/02/2015] [Indexed: 11/22/2022]
Abstract
Muscle inflammation following exercise is characterized by expression of inflammatory cytokines and chemokines. Exercise also increases muscle macrophages derived from circulating monocytes. However, it is unknown whether muscle cells themselves attract circulating monocytes, or what is the underlying mechanism. We used an in vitro system of electrical stimulation (ES) causing C2C12 myotube contraction to explore whether monocyte chemoattraction ensues and investigated the mediating chemoattractants. Conditioned medium from ES-contracted myotubes caused robust chemoattraction of THP-1 monocytes across Boyden chambers. Following ES, expression of several known monocyte chemokines [C-C motif ligand 2 (CCL2) and C-X-C motif ligand (CXCL)1, -2, and -5] was elevated, but of these, only recombinant CCL2 effectively reproduced monocyte migration. Electrically stimulated myotubes secreted CCL2, and neutralization of CCL2 in conditioned medium or antagonizing the CCL2 receptor (CCR2) in THP-1 monocytes inhibited ES-induced monocyte migration. N-benzyl-p-toluene sulfonamide (BTS), a myosin II-ATPase inhibitor, prevented ES-induced myotube contraction but not CCL2 gene expression and secretion. The membrane-permeant calcium chelator BAPTA-AM reduced ES-induced CCL2 secretion. Hence, electrical depolarization, rather than mechanical contraction, drives the rise in CCL2, with partial calcium input. ES activated the NF-κB pathway; NF-κB inhibitors reduced ES-induced CCL2 gene expression and secretion and repressed ES-induced THP-1 chemoattraction. Thus, electrically stimulated myotubes chemoattract monocytes through NF-κB-regulated CCL2 secretion.
Collapse
Affiliation(s)
- Shouta Miyatake
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicolas J Pillon
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Mizumura K, Taguchi T. Delayed onset muscle soreness: Involvement of neurotrophic factors. J Physiol Sci 2016; 66:43-52. [PMID: 26467448 PMCID: PMC10716961 DOI: 10.1007/s12576-015-0397-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 12/21/2022]
Abstract
Delayed-onset muscle soreness (DOMS) is quite a common consequence of unaccustomed strenuous exercise, especially exercise containing eccentric contraction (lengthening contraction, LC). Its typical sign is mechanical hyperalgesia (tenderness and movement related pain). Its cause has been commonly believed to be micro-damage of the muscle and subsequent inflammation. Here we present a brief historical overview of the damage-inflammation theory followed by a discussion of our new findings. Different from previous observations, we have observed mechanical hyperalgesia in rats 1-3 days after LC without any apparent microscopic damage of the muscle or signs of inflammation. With our model we have found that two pathways are involved in inducing mechanical hyperalgesia after LC: activation of the B2 bradykinin receptor-nerve growth factor (NGF) pathway and activation of the COX-2-glial cell line-derived neurotrophic factor (GDNF) pathway. These neurotrophic factors were produced by muscle fibers and/or satellite cells. This means that muscle fiber damage is not essential, although it is sufficient, for induction of DOMS, instead, NGF and GDNF produced by muscle fibers/satellite cells play crucial roles in DOMS.
Collapse
Affiliation(s)
- Kazue Mizumura
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Toru Taguchi
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| |
Collapse
|
29
|
Herrlinger KA, Chirouzes DM, Ceddia MA. Supplementation with a polyphenolic blend improves post-exercise strength recovery and muscle soreness. Food Nutr Res 2015; 59:30034. [PMID: 26689317 PMCID: PMC4685974 DOI: 10.3402/fnr.v59.30034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/20/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022] Open
Abstract
Background Exercise can initiate a cascade of inflammatory and oxidative stress–related events leading to delayed onset muscle soreness. Polyphenols possess antioxidant and anti-inflammatory properties. Objective The current study examined the effects of a proprietary polyphenolic blend (PB), containing catechins and theaflavins, on exercise performance and recovery following an eccentric exercise challenge. Design Male participants (18–35 years of age) received placebo or PB at a low dose (PB-L, 1,000 mg/d) or high dose (PB-H, 2,000 mg/d) for 13 weeks. During the 13th week of supplementation, participants completed an eccentric exercise (40 min downhill treadmill run) followed by a strength assessment (peak torque on isokinetic leg extensions) pre-exercise, and 24, 48, and 96 h post-exercise. Muscle soreness (subjective questionnaire), markers of muscle stress (cortisol and creatine phosphokinase [CK]), and antioxidant capacity (ferric reducing ability of plasma [FRAP]) were also assessed. Results PB-H attenuated the decrease in peak torque observed in the placebo group from pre-exercise to 48 h (p=0.012) and 96 h (p=0.003) post-exercise. At 48 h post-exercise, PB-H reduced whole body and hamstring soreness (p=0.029) versus placebo. Chronic consumption of PB improved serum FRAP (p=0.039). As expected, serum cortisol and CK increased from pre- to post-exercise in all groups; however, by 96 h, cortisol and CK levels returned to pre-exercise levels following PB supplementation. At 96 h, the change in cortisol from pre- to post-exercise was significantly greater in placebo versus PB-H (p=0.039). Conclusion These findings show that chronic consumption of PB improved antioxidant status, reduced markers of muscle stress, and promoted strength recovery post-exercise.
Collapse
|
30
|
Abdizadeh L, Jafari A, Armanfar M. Effects of short-term coenzyme Q10 supplementation on markers of oxidative stress and inflammation after downhill running in male mountaineers. Sci Sports 2015. [DOI: 10.1016/j.scispo.2015.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Carson JA, Hardee JP, VanderVeen BN. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting. Semin Cell Dev Biol 2015; 54:53-67. [PMID: 26593326 DOI: 10.1016/j.semcdb.2015.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed.
Collapse
Affiliation(s)
- James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA.
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| | - Brandon N VanderVeen
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| |
Collapse
|
32
|
Intermittent bout exercise training down-regulates age-associated inflammation in skeletal muscles. Exp Gerontol 2015; 72:261-8. [PMID: 26545590 DOI: 10.1016/j.exger.2015.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022]
Abstract
Aging is characterized by the progressive decline in mass and function of the skeletal muscle along with increased susceptibility to inflammation, oxidative stress, and atrophy. In this study, we investigate the effect of intermittent bout and single bout exercise training on inflammatory molecules in young (3 months) and old (22 months) male Sprague-Dawley rats. The rats were divided into 6 groups. Young and old rats were randomly assigned for control and two exercise training groups, single bout (S type): 30 min/day, 5 days/week for 6 weeks and intermittent bout (I type): three times for 10 min/day, 5 days/week for 6 weeks respectively. The exercise training was carried out by a treadmill at a speed of 15m/min (young) or 10 m/min (old) with a slope of 5°. After 48 h of the final exercise bout, muscle samples were collected for biochemical assay. I type exercise training reduced the serum levels of inflammatory molecules such as interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA) in old rats. By contrast, interleukin-4 (IL-4) and superoxide dismutase (SOD) were elevated. Consequently in skeletal muscles, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were decreased significantly in the old group of I type. However, the matrix metalloproteinase-2 (MMP-2) level had no positive effects. Also, phosphorylation of mammalian target of rapamycin (p-mTOR) and myogenic differentiation (MyoD) were increased markedly in S and I types of old rats. These results suggest that I type exercise training appears more effective to reduce age-associated inflammatory molecules, and may recommend in regulating against chronic complicated disease induced by aging.
Collapse
|
33
|
Khorramdelazad H, Rohani H, Jafarzadeh A, Hajizadeh M, Hassanshahi G. Role of S100A12/RAGE axis in eccentric exercise-induced delayed-onset muscle soreness in male non-athletes. SPORT SCIENCES FOR HEALTH 2015. [DOI: 10.1007/s11332-015-0246-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Shara M, Stohs SJ. Efficacy and Safety of White Willow Bark (Salix alba) Extracts. Phytother Res 2015; 29:1112-6. [PMID: 25997859 DOI: 10.1002/ptr.5377] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 11/07/2022]
Abstract
Willow bark extract has been used for thousands of years as an anti-inflammatory, antipyretic, and analgesic. In spite of its long history of use, relatively few human and animal studies have been published that confirm anecdotal observations. A small number of clinical studies have been conducted that support the use of willow bark extracts in chronic lower back and joint pain and osteoarthritis. Willow bark extracts also are widely used in sports performance and weight loss products presumably because of anti-inflammatory and analgesic activities, although no human studies have been published that specifically and directly document beneficial effects. In recent years, various in vitro and animal studies have demonstrated that the anti-inflammatory activity of willow bark extract is associated with down regulation of the inflammatory mediators tumor necrosis factor-α and nuclear factor-kappa B. Although willow bark extracts are generally standardized to salicin, other ingredients in the extracts including other salicylates as well as polyphenols, and flavonoids may also play prominent roles in the therapeutic actions. Adverse effects appear to be minimal as compared to non-steroidal anti-inflammatory drugs including aspirin. The primary cause for concern may relate to allergic reactions in salicylate-sensitive individuals.
Collapse
Affiliation(s)
- Mohd Shara
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Sidney J Stohs
- School of Pharmacy and Health Professions, Creighton University Medical Center, Omaha, NE, 68168, USA
| |
Collapse
|
35
|
Vardiman JP, Moodie N, Siedlik JA, Kudrna RA, Graham Z, Gallagher P. Short-Wave Diathermy Pretreatment and Inflammatory Myokine Response After High-Intensity Eccentric Exercise. J Athl Train 2015; 50:612-20. [PMID: 25844857 DOI: 10.4085/1062-6050-50.1.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT Various modalities have been used to pretreat skeletal muscle to attenuate inflammation. OBJECTIVE To determine the effects of short-wave diathermy (SWD) preheating treatment on inflammation and stress markers after eccentric exercise. DESIGN Controlled laboratory study. SETTING University laboratory setting. PATIENTS OR OTHER PARTICIPANTS Fifteen male (age = 22 ± 4.9 years, height = 179.75 ± 9.56 cm, mass = 82.22 ± 12.67 kg) college-aged students. INTERVENTION(S) Seven participants were selected randomly to receive 40 minutes of SWD heat treatment (HT), and 8 participants served as the control (CON) group and rested without SWD. Both groups completed 7 sets of 10 repetitions of a high-intensity eccentric exercise protocol (EEP) at 120% of the 1-repetition maximum (1-RM) leg extension. MAIN OUTCOME MEASURE(S) We biopsied muscles on days 1, 3 (24 hours post-EEP), and 4 (48 hours post-EEP) and collected blood samples on days 1, 2 (4 hours post-EEP), 3, and 4. We determined 1-RM on day 2 (24 hours post-SWD) and measured 1-RM on days 3 and 4. We analyzed the muscle samples for interleukin 6 (IL-6), tumor necrosis factor α, and heat shock protein 70 and the blood for serum creatine kinase. RESULTS We found a group × time interaction for intramuscular IL-6 levels after SWD (F2,26 = 7.13, P = .003). The IL-6 decreased in HT (F1,6 = 17.8, P = .006), whereas CON showed no change (P > .05). We found a group × time interaction for tumor necrosis factor α levels (F2,26 = 3.71, P = .04), which increased in CON (F2,14 = 7.16, P = .007), but saw no changes for HT (P > .05). No group × time interactions were noted for 1-RM, heat shock protein 70, or creatine kinase (P > .05). CONCLUSIONS The SWD preheating treatment provided a treatment effect for intramuscular inflammatory myokines induced through high-intensity eccentric exercise but did not affect other factors associated with intense exercise and inflammation.
Collapse
Affiliation(s)
- John P Vardiman
- Applied Physiology Laboratory, University of Kansas, Lawrence
| | - Nicole Moodie
- Exercise and Sport Science Department, Rockhurst University, Kansas City, MO
| | - Jacob A Siedlik
- Applied Physiology Laboratory, University of Kansas, Lawrence
| | | | - Zachary Graham
- Applied Physiology Laboratory, University of Kansas, Lawrence
| | | |
Collapse
|
36
|
Selkow NM, Herman DC, Liu Z, Hertel J, Hart JM, Saliba SA. Blood flow after exercise-induced muscle damage. J Athl Train 2015; 50:400-6. [PMID: 25658816 DOI: 10.4085/1062-6050-49.6.01] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT The most common modality used to address acute inflammation is cryotherapy. Whereas pain decreases with cryotherapy, evidence that changes occur in perfusion of skeletal muscle is limited. We do not know whether ice attenuates the increases in perfusion associated with acute inflammation. OBJECTIVE To examine the effects of repeated applications of ice bags on perfusion of the gastrocnemius muscle after an eccentric exercise protocol. DESIGN Controlled laboratory study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS Eighteen healthy participants (3 men, 15 women; age = 22.2 ± 2.2 years, height = 166.0 ± 11.9 cm, mass = 69.4 ± 25.0 kg). INTERVENTION(S) To induce eccentric muscle damage, participants performed 100 unilateral heel-lowering exercises off a step to the beat of a metronome. A randomized intervention (cryotherapy, sham, control) was applied to the exercised lower extremity immediately after the protocol and again at 10, 24, and 34 hours after the protocol. MAIN OUTCOME MEASURE(S) Baseline perfusion measurements (blood volume, blood flow, and blood flow velocity) were taken using contrast-enhanced ultrasound of the exercised leg. Perfusion was reassessed after the first intervention and 48 hours after the protocol as percentage change scores. Pain was measured with a visual analog scale at baseline and at 10, 24, 34, and 48 hours after the protocol. Separate repeated-measures analyses of variance were used to assess each dependent variable. RESULTS We found no interactions among interventions for microvascular perfusion. Blood volume and blood flow, however, increased in all conditions at 48 hours after exercise (P < .001), and blood flow velocity decreased postintervention from baseline (P = .041). We found a time-by-intervention interaction for pain (P = .009). Visual analog scale scores were lower for the cryotherapy group than for the control group at 34 and 48 hours after exercise. CONCLUSIONS Whereas eccentric muscle damage resulted in increased blood flow, ice did not decrease muscle perfusion 48 hours after exercise. Therefore, ice does not seem to decrease muscle perfusion when blood flow is elevated, as it would be during inflammation.
Collapse
Affiliation(s)
- Noelle M Selkow
- School of Kinesiology and Recreation, Illinois State University, Normal
| | | | | | | | | | | |
Collapse
|
37
|
Cornish SM, Johnson ST. Systemic cytokine response to three bouts of eccentric exercise. RESULTS IN IMMUNOLOGY 2014; 4:23-9. [PMID: 24809007 DOI: 10.1016/j.rinim.2014.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
This research examined the changes in inflammatory cytokines interleukin 6 (IL-6), IL-1ß, IL-10, as well as muscle force, muscle soreness, thigh circumference, and range of motion in response to 3 bouts of eccentric knee extension. Ten males were recruited to participate. The participants performed eccentric exercise on 3 consecutive days on the knee extensors on the right leg separated by 24??h. Participants performed 6 sets of 10 repetitions of isokinetic eccentric knee extension at 120° per second. Blood was sampled before and after each exercise bout and 24?h after the final exercise bout. Muscle isometric force, delayed onset muscle soreness (DOMS), thigh circumference, and range of motion were evaluated before and after each exercise bout and 24?h after the final exercise bout. There were no statistically significant differences noted for the changes in isometric strength, thigh circumference, and range of motion, or IL-6 over the 4 days (all p > 0.05). On the second day and third day there was a significant increase noted in DOMS as compared with baseline (p < 0.05). These results suggest that 3 consecutive days of eccentric exercise results in DOMS but does not produce a sustained systemic inflammatory reaction or changes in muscle function.
Collapse
Affiliation(s)
- Stephen M Cornish
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steven T Johnson
- Centre for Nursing and Health Studies, Athabasca University, Athabasca, Alberta, Canada
| |
Collapse
|
38
|
Donges CE, Duffield R, Smith GC, Short MJ, Edge JA. Cytokine mRNA expression responses to resistance, aerobic, and concurrent exercise in sedentary middle-aged men. Appl Physiol Nutr Metab 2014; 39:130-7. [DOI: 10.1139/apnm-2013-0076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Concurrent resistance and aerobic exercise (CE) is recommended to ageing populations, though is postulated to induce diminished acute molecular responses. Given that contraction-induced cytokine mRNA expression reportedly mediates remunerative postexercise molecular responses, it is necessary to determine whether cytokine mRNA expression may be diminished after CE. Eight middle-aged men (age, 53.3 ±1.8 years; body mass index, 29.4 ± 1.4 kg·m−2) randomly completed (balanced for completion order) 8 × 8 leg extensions at 70% maximal strength (RE), 40 min of cycling at 55% of peak aerobic workload (AE), or (workload-matched) 50% RE and 50% AE (CE). Muscle (vastus lateralis) was obtained pre-exercise, and at 1 h and 4 h postexercise, and analyzed for changes of glycogen concentration, tumor necrosis factor (TNF)α, TNF receptor-1 and -2 (TNF-R1 and TNF-R2, respectively), interleukin (IL)-6, IL-6R, IL-1β, and IL-1 receptor-antagonist (IL-1ra). All exercise modes upregulated cytokine mRNA expression at 1 h postexercise comparably (TNFα, TNF-R1, TNF-R2, IL-1β, IL-6) (p < 0.05). Expression remained elevated at 4 h after RE and AE (p < 0.05), though returned to pre-exercise levels after CE (p > 0.05). Moreover, AE and RE upregulated IL-1β and IL-1ra expression, whereas CE upregulated IL-1β expression only (p < 0.05). Only AE reduced muscle glycogen concentration (p < 0.05), whilst upregulating receptor expression the greatest; though, IL-6R expression remained unchanged after all modes (p > 0.05). In conclusion, in middle-aged men, all modes induced commensurate cytokine mRNA expression at 1 h postexercise; however, only CE resulted in ameliorated expression at 4 h postexercise. Whether the RE or AE components of CE are independently or cumulatively sufficient to upregulate cytokine responses, or whether they collectively inhibit cytokine mRNA expression, remains to be determined.
Collapse
Affiliation(s)
- Cheyne E. Donges
- School of Human Movement Studies, Charles Sturt University, Panorama Avenue, Bathurst NSW 2795, Australia
| | - Rob Duffield
- School of Human Movement Studies, Charles Sturt University, Panorama Avenue, Bathurst NSW 2795, Australia
- Sport and Exercise Discipline Group, Faculty of Health, University of Technology, Sydney, Australia
| | - Greg C. Smith
- Department of Molecular Medicine and Pathology, The University of Auckland, New Zealand
| | - Michael J. Short
- School of Human Movement Studies, Charles Sturt University, Panorama Avenue, Bathurst NSW 2795, Australia
| | - Johann A. Edge
- Department of Sport and Exercise Science, The University of Auckland, New Zealand
| |
Collapse
|
39
|
The skeletal muscle arachidonic acid cascade in health and inflammatory disease. Nat Rev Rheumatol 2014; 10:295-303. [PMID: 24468934 DOI: 10.1038/nrrheum.2014.2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Muscle atrophy and weakness are often observed in patients with chronic inflammatory diseases, and are the major clinical features of the autoimmune myopathies, polymyositis and dermatomyositis. A general understanding of the pathogenesis of muscle atrophy and the impaired muscle function associated with chronic inflammatory diseases has not been clarified. In this context, arachidonic acid metabolites, such as the prostaglandin and leukotriene subfamilies, are of interest because they contribute to immune and nonimmune processes. Accumulating evidence suggests that prostaglandins and leukotrienes are involved in causing muscular pain and inflammation, and also in myogenesis and the repair of muscles. In this Review, we summarize novel findings that implicate prostaglandins and leukotrienes in the muscle atrophy and weakness that occur in inflammatory diseases of the muscles, with a focus on inflammatory myopathies. We discuss the role of the arachidonic acid cascade in skeletal muscle growth and function, and individual metabolites as potential therapeutic targets for the treatment of inflammatory muscle diseases.
Collapse
|
40
|
Tseng CY, Lee JP, Tsai YS, Lee SD, Kao CL, Liu TC, Lai CH, Harris MB, Kuo CH. Topical cooling (icing) delays recovery from eccentric exercise-induced muscle damage. J Strength Cond Res 2013; 27:1354-61. [PMID: 22820210 DOI: 10.1519/jsc.0b013e318267a22c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is generally thought that topical cooling can interfere with blood perfusion and may have positive effects on recovery from a traumatic challenge. This study examined the influence of topical cooling on muscle damage markers and hemodynamic changes during recovery from eccentric exercise. Eleven male subjects (age 20.2 ± 0.3 years) performed 6 sets of elbow extension at 85% maximum voluntary load and randomly assigned to topical cooling or sham groups during recovery in a randomized crossover fashion. Cold packs were applied to exercised muscle for 15 minutes at 0, 3, 24, 48, and 72 hours after exercise. The exercise significantly elevated circulating creatine kinase-MB isoform (CK-MB) and myoglobin levels. Unexpectedly, greater elevations in circulating CK-MB and myoglobin above the control level were noted in the cooling trial during 48-72 hours of the post-exercise recovery period. Subjective fatigue feeling was greater at 72 hours after topical cooling compared with controls. Removal of the cold pack also led to a protracted rebound in muscle hemoglobin concentration compared with controls. Measures of interleukin (IL)-8, IL-10, IL-1β, and muscle strength during recovery were not influenced by cooling. A peak shift in IL-12p70 was noted during recovery with topical cooling. These data suggest that topical cooling, a commonly used clinical intervention, seems to not improve but rather delay recovery from eccentric exercise-induced muscle damage.
Collapse
Affiliation(s)
- Ching-Yu Tseng
- Department of Physical Education, Fu Jen Catholic University, New Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Intramuscular responses with muscle damaging exercise and the interplay between multiple intracellular networks: A human perspective. Food Chem Toxicol 2013; 61:136-43. [DOI: 10.1016/j.fct.2013.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/10/2013] [Accepted: 04/17/2013] [Indexed: 11/21/2022]
|
42
|
Kawanishi N, Kato K, Takahashi M, Mizokami T, Otsuka Y, Imaizumi A, Shiva D, Yano H, Suzuki K. Curcumin attenuates oxidative stress following downhill running-induced muscle damage. Biochem Biophys Res Commun 2013; 441:573-8. [PMID: 24184481 DOI: 10.1016/j.bbrc.2013.10.119] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022]
Abstract
Downhill running causes muscle damage, and induces oxidative stress and inflammatory reaction. Recently, it is shown that curcumin possesses anti-oxidant and anti-inflammatory potentials. Interestingly, curcumin reduces inflammatory cytokine concentrations in skeletal muscle after downhill running of mice. However, it is not known whether curcumin affects oxidative stress after downhill running-induced muscle damage. Therefore, the purpose of this study was to investigate the effects of curcumin on oxidative stress following downhill running induced-muscle damage. We also investigated whether curcumin affects macrophage infiltration via chemokines such as MCP-1 and CXCL14. Male C57BL/6 mice were divided into four groups; rest, rest plus curcumin, downhill running, or downhill running plus curcumin. Downhill running mice ran at 22 m/min, -15% grade on the treadmill for 150 min. Curcumin (3mg) was administered in oral administration immediately after downhill running. Hydrogen peroxide concentration and NADPH-oxidase mRNA expression in the downhill running mice were significantly higher than those in the rest mice, but these variables were significantly attenuated by curcumin administration in downhill running mice. In addition, mRNA expression levels of MCP-1, CXCL14 and F4/80 reflecting presence of macrophages in the downhill running mice were significantly higher than those in the rest mice. However, MCP-1 and F4/80 mRNA expression levels were significantly attenuated by curcumin administration in downhill running mice. Curcumin may attenuate oxidative stress following downhill running-induced muscle damage.
Collapse
Affiliation(s)
- Noriaki Kawanishi
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Effect of cryotherapy on muscle recovery and inflammation following a bout of damaging exercise. Eur J Appl Physiol 2013; 113:2577-86. [PMID: 23873339 DOI: 10.1007/s00421-013-2693-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/03/2013] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to determine the effect of cryotherapy on the inflammatory response to muscle-damaging exercise using a randomized trial. Twenty recreationally active males completed a 40-min run at a -10 % grade to induce muscle damage. Ten of the subjects were immersed in a 5 °C ice bath for 20 min and the other ten served as controls. Knee extensor peak torque, soreness rating, and thigh circumference were obtained pre- and post-run, and 1, 6, 24, 48, and 72 h post-run. Blood samples were obtained pre- and post-run, and 1, 6 and 24 h post-run for assay of plasma chemokine ligand 2 (CCL2). Peak torque decreased from 270 ± 57 Nm at baseline to 253 ± 65 Nm post-run and increased to 295 ± 68 Nm by 72 h post-run with no differences between groups (p = 0.491). Soreness rating increased from 3.6 ± 6.0 mm out of 100 mm at baseline to 47.4 ± 28.2 mm post-run and remained elevated at all time points with no differences between groups (p = 0.696). CCL2 concentrations increased from 116 ± 31 pg mL(-1) at baseline to 293 ± 109 pg mL(-1) at 6 h post-run (control) and from 100 ± 27 pg mL(-1) at baseline to 208 ± 71 pg mL(-1) at 6 h post-run (cryotherapy). The difference between groups was not significant (p = 0.116), but there was a trend for lower CCL2 in the cryotherapy group at 6 h (p = 0.102), though this measure was highly variable. In conclusion, 20 min of cryotherapy was ineffective in attenuating the strength decrement and soreness seen after muscle-damaging exercise, but may have mitigated the rise in plasma CCL2 concentration. These results do not support the use of cryotherapy during recovery.
Collapse
|
44
|
Larkin KA, Macneil RG, Dirain M, Sandesara B, Manini TM, Buford TW. Blood flow restriction enhances post-resistance exercise angiogenic gene expression. Med Sci Sports Exerc 2013; 44:2077-83. [PMID: 22677927 DOI: 10.1249/mss.0b013e3182625928] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The objective of this study is to evaluate the effects of blood flow restriction (BFR) on muscle oxygenation during low-intensity resistance exercise as well as postexercise expression of molecules related to physiological angiogenesis. METHODS Using a randomized cross-over design, six apparently healthy young adults (22 ± 1 yr) performed 120 unilateral knee extensions at 40% of 1 repetition maximum with and without BFR (CNTRL). Near-infrared spectroscopy was used to measure oxygenation of the vastus lateralis during exercise. Serum and muscle expression of Post-Resistance vascular endothelial growth factor (VEGF) were determined preexercise, 4 h postexercise, and 24 h postexercise. Transcript (mRNA) expression of VEGF and other angiogenic genes was also determined. RESULTS BFR increased muscle hemoglobin (Hb) concentrations during exercise (14.4 ± 1.6 vs. 0.9 ± 1.6, P = 0.002), driven largely by an increase in deoxygenated Hb (11.0 ± 2.5 vs. 0.5 ± 1.1, P = 0.030). BFR also increased (P < 0.05) transcript expression of VEGF, VEGF-R2, hypoxia-inducible factor 1 alpha, inducible nitric oxide synthase (NOS), and neuronal NOS. The most dramatic change in response to BFR was an increase in VEGF mRNA at 4 h postexercise (4.1 ± 0.6 vs. 0.6 ± 0.2-fold change, P = 0.028). Compared with control, transcript expression of endothelial NOS, serum VEGF, or muscle protein expression of VEGF was not altered in response to BFR (P > 0.05). CONCLUSION Acute BFR increases postexercise expression of mRNA related to skeletal muscle angiogenesis, plausibly in response to changes in muscle Hb concentrations.
Collapse
Affiliation(s)
- Kelly A Larkin
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32607, USA
| | | | | | | | | | | |
Collapse
|
45
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 396] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
46
|
Selkow NM, Herman DC, Liu Z, Hertel J, Hart JM, Saliba SA. Microvascular perfusion increases after eccentric exercise of the gastrocnemius. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2013; 32:653-658. [PMID: 23525391 DOI: 10.7863/jum.2013.32.4.653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
OBJECTIVES The purpose of this study was to assess microvascular perfusion immediately after eccentric exercise using contrast-enhanced sonography. METHODS An intravenous catheter was placed in the antecubital vein of the arm contralateral to the leg being tested for the delivery of microbubbles to 18 healthy volunteers (mean age ± SD, 22.2 ± 2.2 years; height, 166.0 ± 11.9 cm; weight, 69.4 ± 25.0 kg). Eccentric exercises were performed unilaterally in a randomized leg. Calf-lowering repetitions off a raised step were performed to the beat of a metronome over 3 seconds in the sequence of 50 repetitions, 5 minutes of rest, and 50 repetitions. Microvascular perfusion (blood volume, blood flow, and blood flow velocity) was measured before and immediately after exercise using replenishment kinetics. RESULTS Blood volume and flow both significantly increased after exercise (P < .001). Baseline measurements were 5.88 ± 1.33 dB and 2.34 ± 0.41 dB/s and increased to 12.20 ± 3.31 dB and 4.52 ± 1.05 dB/s, respectively. There was a significant decrease in blood flow velocity (P = .035) after exercise (0.38 ± 0.03 s(-1)) from baseline (0.41 ± 0.06 s(-1)). CONCLUSIONS Circulatory responses were altered after eccentric exercise, which may be due to the metabolic demand placed on the body. On the basis of this finding, eccentric exercise may be used as a model to assess the effect modalities have on the circulatory system after an elevated state of microvascular perfusion is reached.
Collapse
Affiliation(s)
- Noelle M Selkow
- School of Kinesiology and Recreation, Illinois State University, Normal, IL 61761, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Buford TW, MacNeil RG, Clough LG, Dirain M, Sandesara B, Pahor M, Manini TM, Leeuwenburgh C. Active muscle regeneration following eccentric contraction-induced injury is similar between healthy young and older adults. J Appl Physiol (1985) 2013; 116:1481-90. [PMID: 23493365 DOI: 10.1152/japplphysiol.01350.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Repair of skeletal muscle after injury is a key aspect of maintaining proper musculoskeletal function. Studies have suggested that regenerative processes, including myogenesis and angiogenesis, are impaired during advanced age, but evidence from humans is limited. This study aimed to compare active muscle regeneration between healthy young and older adults. We evaluated changes in clinical, biochemical, and immunohistochemical indices of muscle regeneration at precisely 2 (T2) and 7 (T3) days following acute muscle injury. Men and women, aged 18-30 and ≥70 years, matched for gender and body mass index, performed 150 unilateral, eccentric contractions of the plantar flexors at 110% of one repetition maximum. Data were analyzed using analysis of covariance, adjusted for gender, habitual physical activity, and baseline level of the outcome. A total of 30 young (n = 15; 22.5 ± 3.7 yr) and older (n = 15; 75.8 ± 5.0 yr) adults completed the study. Following muscle injury, force production declined 16% and 14% in young and older adults, respectively, by T2 and in each group, returned to 93% of baseline strength by T3. Despite modest differences in the pattern of response, postinjury changes in intramuscular concentrations of myogenic growth factors and number of myonuclear (4',6-diamidino-2-phenylindole+ and paired box 7+) cells were largely similar between groups. Likewise, postinjury changes in serum and intramuscular indices of inflammation (e.g., TNF-α and monocyte chemoattractant protein-1) and angiogenesis (e.g., VEGF and kinase insert domain receptor) did not differ significantly between groups. These findings suggest that declines in physical activity and increased co-morbidity may contribute to age-related impairments in active muscle regeneration rather than aging per se.
Collapse
Affiliation(s)
- Thomas W Buford
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, Florida; and Department of Applied Physiology and Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, Florida
| | - R Gavin MacNeil
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, Florida; and Department of Applied Physiology and Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, Florida
| | - Launa G Clough
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, Florida; and Department of Applied Physiology and Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, Florida
| | - Marvin Dirain
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, Florida; and
| | - Bhanuprasad Sandesara
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, Florida; and
| | - Marco Pahor
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, Florida; and
| | - Todd M Manini
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, Florida; and Department of Applied Physiology and Kinesiology, College of Health & Human Performance, University of Florida, Gainesville, Florida
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, Florida; and
| |
Collapse
|
48
|
Assis L, Moretti AIS, Abrahão TB, Cury V, Souza HP, Hamblin MR, Parizotto NA. Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg Med 2012; 44:726-35. [PMID: 23001637 DOI: 10.1002/lsm.22077] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Muscle regeneration is a complex phenomenon, involving coordinated activation of several cellular responses. During this process, oxidative stress and consequent tissue damage occur with a severity that may depend on the intensity and duration of the inflammatory response. Among the therapeutic approaches to attenuate inflammation and increase tissue repair, low-level laser therapy (LLLT) may be a safe and effective clinical procedure. The aim of this study was to evaluate the effects of LLLT on oxidative/nitrative stress and inflammatory mediators produced during a cryolesion of the tibialis anterior (TA) muscle in rats. MATERIAL AND METHODS Sixty Wistar rats were randomly divided into three groups (n = 20): control (BC), injured TA muscle without LLLT (IC), injured TA muscle submitted to LLLT (IRI). The injured region was irradiated daily for 4 consecutive days, starting immediately after the lesion using a AlGaAs laser (continuous wave, 808 nm, tip area of 0.00785 cm(2) , power 30 mW, application time 47 seconds, fluence 180 J/cm(2) ; 3.8 mW/cm(2) ; and total energy 1.4 J). The animals were sacrificed on the fourth day after injury. RESULTS LLLT reduced oxidative and nitrative stress in injured muscle, decreased lipid peroxidation, nitrotyrosine formation and NO production, probably due to reduction in iNOS protein expression. Moreover, LLLT increased SOD gene expression, and decreased the inflammatory response as measured by gene expression of NF-kβ and COX-2 and by TNF-α and IL-1β concentration. CONCLUSION These results suggest that LLLT could be an effective therapeutic approach to modulate oxidative and nitrative stress and to reduce inflammation in injured muscle.
Collapse
Affiliation(s)
- Lívia Assis
- Laboratory of Electrothermophototherapy, Department of Phisiotherapy, University of São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
van de Vyver M, Myburgh KH. Cytokine and satellite cell responses to muscle damage: interpretation and possible confounding factors in human studies. J Muscle Res Cell Motil 2012; 33:177-85. [PMID: 22673937 PMCID: PMC3413811 DOI: 10.1007/s10974-012-9303-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/22/2012] [Indexed: 01/09/2023]
Abstract
It is plausible that multiple muscle biopsies following a muscle damaging intervention can exacerbate the inflammatory and subsequent satellite cell responses. To elucidate confounding effects of muscle biopsy procedure on satellite cell number, indirect markers of damage and the inflammatory response following acute downhill running (DHR) were investigated. 10 healthy male participant were divided into a non-exercising control (n = 4) and DHR (12 × 5min bouts, 10 % decline at 85 % VO(2)max) (n = 6) group. Blood samples were taken pre, post and every 24 h for 9 days. Serum was analysed for creatine kinase (CK), myoglobin (Mb), lactate dehydrogenase (LDH), TNF-α, IL-6 and IL-10. Muscle biopsies taken on days 1 and 2 post intervention from opposing legs were analysed for Pax7(+) satellite cells. In the DHR group, Mb (536 ± 277 ng mL(-1)), IL-6 (12.6 ± 4.7 pg mL(-1)) and IL-10 (27.3 ± 11.5 pg mL(-1)) peaked immediately post DHR, while CK (2651 ± 1911 U L(-1)), LDH (202 ± 47 U L(-1)) and TNF-α (25.1 ± 8.7 pg mL(-1)) peaked on day 1. A 30 % increase in Pax7(+) satellite cells on day 1 in the DHR group was no longer apparent on day 2. H&E staining show evidence of phagocytosis in the DHR group. No significant changes over time were observed in the control group for any of the variables measured. Events observed in the DHR group were as a result of the intervention protocol and subsequent muscle damage. The relationship between SC proliferation and pro-inflammatory cytokine release appears to be complex since the IL-6/IL-10 response time differs significantly from the TNF-α response.
Collapse
Affiliation(s)
- M van de Vyver
- Department of Physiological Sciences, Stellenbosch University, Matieland, Stellenbosch, South Africa
| | | |
Collapse
|
50
|
Jensen JH, Conley LN, Hedegaard J, Nielsen M, Young JF, Oksbjerg N, Hornshøj H, Bendixen C, Thomsen B. Gene expression profiling of porcine skeletal muscle in the early recovery phase following acute physical activity. Exp Physiol 2012; 97:833-48. [DOI: 10.1113/expphysiol.2011.063727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|