1
|
Biselli A, Willenbrink AL, Leipnitz M, Jupke A. Development, evaluation, and optimisation of downstream process concepts for rhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Recent progress and trends in the analysis and identification of rhamnolipids. Appl Microbiol Biotechnol 2020; 104:8171-8186. [PMID: 32845366 DOI: 10.1007/s00253-020-10841-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Rhamnolipids have extensive potential applications and are the most promising biosurfactants for commercialization. The efficient and accurate identification and analysis of these are important to their production, application and commercialization. Accordingly, significant efforts have been made to identify and analyse rhamnolipids during screening of producing strains, fermentation and application processes. Cationic cetyltrimethylammonium bromide-methylene blue (CTAB-MB) test combines a series of indirect assays to efficiently assist in the primary screening of rhamnolipids-producing strains, while the secretion of rhamnolipids by these strains can be identified through TLC, FTIR, NMR, electrospray ionization mass spectrometry (ESI-MS) and HPLC-MS analysis. Rhamnolipids can be quantified by colorimetric methods requiring the use of concentrated acid, and this approach has the advantages of reliability, simplicity, low-cost and excellent reproducibility with very low technological requirements. HPLC-MS can also be employed as required as a more accurate quantification method. In addition, HPLC-ELSD has been established as the internationally acceptable measure of rhamnolipids for commercial purposes. The preparation of well-accepted rhamnolipids standards and modifications of analysis operations are essential to further enhance the accuracy and improve the simplicity of rhamnolipid analysis.Key points• Current status of R&D works on determination of rhamnolipids is listed• Advantages and disadvantages of various types analysis are summarized• Limitations of current rhamnolipid quantification are discussed Graphical abstract.
Collapse
|
3
|
Simultaneous Application of Biosurfactant and Bioaugmentation with Rhamnolipid-Producing Shewanella for Enhanced Bioremediation of Oil-Polluted Soil. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9183773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, a combined treatment strategy involving the addition of rhamnolipid, rhamnolipid-producing bacteria (Shewanella sp. BS4) and a native soil microbial community for the remediation of hydrocarbon-contaminated soil under pilot-scale conditions was adopted. The isolate BS4 (rhl+), demonstrating the highest emulsification activity and surface tension reduction efficiency, was identified based on 16 S rDNA sequencing as Shewanella sp. strain. Growth conditions for rhamnolipid production were optimized based on Central Composite Design (CCD) as 2.9% crude oil, a 54 × 106 CFU g−1 inoculation load of soil, a temperature of 30.5 °C, and a pH of 6.7. In situ bioremediation experiments, conducted using hydrocarbon-contaminated soil treated with the combination of rhamnolipid and rhamnolipid-producing bacteria, showed that the inoculated Shewanella sp. BS4, along with the indigenous soil microbial community, supported the highest hydrocarbon-degrading bacterial population and soil respiration activity, and this treatment resulted in 75.8% hydrocarbon removal efficiency, which was higher compared to contaminated soil devoid of any treatment.
Collapse
|
4
|
Crespo R, Juárez MP, Cafferata LFR. Biochemical interaction between entomopathogenous fungi and their insect-host-like hydrocarbons. Mycologia 2019. [DOI: 10.1080/00275514.2000.12061189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rosana Crespo
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, UNLP, calles 60 y 120, La Plata 1900, Argentina
| | - M. Patricia Juárez
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, UNLP, calles 60 y 120, La Plata 1900, Argentina
| | - Lázaro F. R. Cafferata
- Laboratorio de Química Orgánica, Ladecor, Facultad de Ciencias Exactas, UNLP, calles 47 y 115, La Plata, 1900, Argentina
| |
Collapse
|
5
|
Christopher FC, Ponnusamy SK, Ganesan JJ, Ramamurthy R. Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis - a comprehensive review. IET Nanobiotechnol 2019; 13:243-249. [PMID: 31053685 PMCID: PMC8676648 DOI: 10.1049/iet-nbt.2018.5184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 11/04/2023] Open
Abstract
Establishing biological synthesis of nanoparticles is increasing nowadays in the field of nanotechnology. The search for an optimal source with durability, stability, capacity to withstand higher environmental conditions with excellent characteristics is yet to meet. Consequently, there is need to create an eco-friendly strategy for metal nanoparticle synthesis. One approach investigated in this review is the use of biosurfactants to enhance the synthesis biologically. In comparison with the other technologies, biosurfactants are less toxic and exhibit higher properties. This method is different from the conventional practice like physical and chemical methods. Several research studies represented that the biosurfactant influences the production of nanoparticles about 2-50 nm. In this manner, the research towards the biosurfactant has raised. This review also addressed the feasibility of biosurfactant and their benefits in the synthesis of metallic nanoparticles. The findings from this review can recommend a conceivable use of biosurfactant as a source for metal nanoparticle synthesis.
Collapse
Affiliation(s)
| | - Senthil Kumar Ponnusamy
- SSN-Centre for Radiation, Environmental Science and Technology (SSN-CREST), SSN College of Engineering, Chennai 603110, India.
| | - Janet Joshiba Ganesan
- Department of Chemical Engineering, SSN College of Engineering, Chennai 603110, India
| | - Racchana Ramamurthy
- Department of Chemical Engineering, SSN College of Engineering, Chennai 603110, India
| |
Collapse
|
6
|
He Q, Xu P, Zhang C, Zeng G, Liu Z, Wang D, Tang W, Dong H, Tan X, Duan A. Influence of surfactants on anaerobic digestion of waste activated sludge: acid and methane production and pollution removal. Crit Rev Biotechnol 2019; 39:746-757. [DOI: 10.1080/07388551.2018.1530635] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, PR China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, PR China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, PR China
| |
Collapse
|
7
|
Experimental Investigations of Behaviour of Biosurfactants in Brine Solutions Relevant to Hydrocarbon Reservoirs. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3010024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we investigated the behaviour of rhamnolipid and Greenzyme in brine solutions relevant to hydrocarbon reservoir. Prior to this work, several studies only reported the behaviour of the biosurfactants dissolved in sodium chloride solutions of varied salinity. The results of this study are relevant to the application of the biosurfactants in enhanced oil recovery, during which the compounds are injected into reservoir saturated with formation water, typically of high salinity and complex composition. Surface tension and conductivity methods were used to determine the critical micelle concentrations of the biosurfactants, Gibbs surface excess concentrations and standard free energy at water-air interface. The results show that rhamnolipid and Greenzyme could reduce the surface tension of water from 72.1 ± 0.2 mN/m to 34.7 ± 0.4 mN/m and 47.1 ± 0.1 mN/m respectively. They were also found to be stable in high salinity and high temperature with rhamnolipid being sensitive to brine salinity, composition and pH while Greenzyme showed tolerance for high salinity. Furthermore, the Gibbs standard free energy of micellisation shows that rhamnolipid and Greenzyme have the tendency to spontaneously form micelles with rhamnolipid showing more surface adsorption. However from maximal Gibbs surface excess concentration calculations, Greenzyme monomers tend to favour aggregation more than that of rhamnolipid.
Collapse
|
8
|
Reddy PV, Karegoudar TB, Nayak AS. Enhanced utilization of fluorene by Paenibacillus sp. PRNK-6: Effect of rhamnolipid biosurfactant and synthetic surfactants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:206-211. [PMID: 29407558 DOI: 10.1016/j.ecoenv.2018.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
The present investigation was to study the effect of different non-ionic surfactants (Tween-80, Tween-60, Tween-40, Tween-20, Triton X-100) and a rhamnolipid biosurfactant on the degradation of fluorene by Paenibacillus sp. PRNK-6. An enhancement in the growth, as well as fluorene utilization by this strain were observed in the presence of biosurfactant and non-ionic surfactants except Tween-20 and Triton X-100. Triton X-100 and Tween-20 were toxic to this bacterium. The strain PRNK-6 utilized 75% of fluorene (280mg/L) in 24h in an unamended condition. On the other hand, the complete utilization of higher concentration fluorene (320mg/L) by this strain was noticed when the medium was amended with Tween-80 (1.5% v/v) within 24h of incubation. Whereas, 90.6%, 96.5% and 96.7% of fluorene (280mg/L) was utilized when amended with Tween-60 (3.5% v/v), Tween-40 (3% v/v) and biosurfactant (25mg/L) respectively. Biosurfactant promoted the fluorene degradation potential of PRNK-6 as 96.2% of 320mg/L fluorene was degraded within 24h. Further, the added tween series surfactants and a biosurfactant have increased the cell surface hydrophobicity of the PRNK-6. Thus correlating with the enhanced degradation of the fluorene.
Collapse
Affiliation(s)
- Pooja V Reddy
- Department of Biochemistry, Gulbarga University, Kalaburagi 585106, Karnataka, India
| | - T B Karegoudar
- Department of Biochemistry, Gulbarga University, Kalaburagi 585106, Karnataka, India
| | - Anand S Nayak
- Department of Biochemistry, Gulbarga University, Kalaburagi 585106, Karnataka, India.
| |
Collapse
|
9
|
Soares dos Santos A, Pereira Jr N, Freire DM. Strategies for improved rhamnolipid production by Pseudomonas aeruginosa PA1. PeerJ 2016; 4:e2078. [PMID: 27257553 PMCID: PMC4888285 DOI: 10.7717/peerj.2078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
Rhamnolipids are biosurfactants with potential for diversified industrial and environmental uses. The present study evaluated three strategies for increasing the production of rhamnolipid-type biosurfactants produced by Pseudomonas aeruginosa strain PA1. The influence of pH, the addition of P. aeruginosa spent culture medium and the use of a fed-batch process were examined. The culture medium adjusted to pH 7.0 was the most productive. Furthermore, the pH of the culture medium had a measurable effect on the ratio of synthesized mono- and dirhamnolipids. At pH values below 7.3, the proportion of monorhamnolipids decreased from 45 to 24%. The recycling of 20% of the spent culture medium in where P. aeruginosa was grown up to the later stationary phase was responsible for a 100% increase in rhamnolipid volumetric productivity in the new culture medium. Finally, the use of fed-batch operation under conditions of limited nitrogen resulted in a 3.8-fold increase in the amount of rhamnolipids produced (2.9 g L(-1)-10.9 g L(-1)). These results offer promising pathways for the optimization of processes for the production of rhamnolipids.
Collapse
Affiliation(s)
- Alexandre Soares dos Santos
- Department of Basic Science/Faculty of Biological Science and Health, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Nei Pereira Jr
- Department of Biochemical Engineering/School of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise M.G. Freire
- Department of Biochemistry/Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Rahman PKSM, Sekhon Randhawa KK. Commentary: Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3. Front Microbiol 2016; 6:1557. [PMID: 26793185 PMCID: PMC4709408 DOI: 10.3389/fmicb.2015.01557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pattanathu K. S. M. Rahman
- Technology Futures Institute, School of Science and Engineering, Teesside UniversityMiddlesbrough, UK
- *Correspondence: Pattanathu K. S. M. Rahman
| | | |
Collapse
|
11
|
Maikudi Usman M, Dadrasnia A, Tzin Lim K, Fahim Mahmud A, Ismail S. Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.3.289] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
12
|
Biswas B, Sarkar B, Rusmin R, Naidu R. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction. ENVIRONMENT INTERNATIONAL 2015; 85:168-181. [PMID: 26408945 DOI: 10.1016/j.envint.2015.09.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/29/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.
Collapse
Affiliation(s)
- Bhabananda Biswas
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia.
| | - Ruhaida Rusmin
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Faculty of Applied Science, Universiti Teknologi MARA Negeri Sembilan, Kuala Pilah 72000, Malaysia
| | - Ravi Naidu
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia; Global Centre for Environmental Remediation, ATC Building, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
13
|
Wang W, Cai B, Shao Z. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3. Front Microbiol 2014; 5:711. [PMID: 25566224 PMCID: PMC4267283 DOI: 10.3389/fmicb.2014.00711] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/29/2014] [Indexed: 11/29/2022] Open
Abstract
Recent investigations of extreme environments have revealed numerous bioactive natural products. However, biosurfactant-producing strains from deep sea extreme environment are largely unknown. Here, we show that Dietzia maris As-13-3 isolated from deep sea hydrothermal field could produce di-rhamnolipid as biosurfactant. The critical micelle concentration (CMC) of the purified di-rhamnolipid was determined to be 120 mgL−1, and it lowered the surface tension of water from 74 ± 0.2 to 38 ± 0.2 mN m−1. Further, the alkane metabolic pathway-related genes and di-rhamnolipid biosynthesis-related genes were also analyzed by the sequencing genome of D. maris As-13-3 and quantitative real-time PCR (Q-PCR), respectively. Q-PCR analysis showed that all these genes were induced by n-Tetradecane, n-Hexadecane, and pristane. To the best of our knowledge, this is first report about the complete pathway of the di-rhamnolipid synthesis process in the genus Dietzia. Thus, our study provided the insights into Dietzia in respects of oil degradation and biosurfactant production, and will help to evaluate the potential of Dietzia in marine oil removal.
Collapse
Affiliation(s)
- Wanpeng Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Key Laboratory of Marine Genetic Resources of Fujian Province Xiamen, China ; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources Xiamen, China
| | - Bobo Cai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Key Laboratory of Marine Genetic Resources of Fujian Province Xiamen, China ; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources Xiamen, China ; Life Science College, Xiamen University Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Collaborative Innovation Center of Deep Sea Biology, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Key Laboratory of Marine Genetic Resources of Fujian Province Xiamen, China ; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources Xiamen, China
| |
Collapse
|
14
|
Wang W, Cai B, Shao Z. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3. Front Microbiol 2014. [DOI: 10.3389/fmicb.2014.00711 pmid: 25566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Thermodynamic properties of rhamnolipid micellization and adsorption. Colloids Surf B Biointerfaces 2014; 119:22-9. [DOI: 10.1016/j.colsurfb.2014.04.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/21/2022]
|
16
|
Szulc A, Ambrożewicz D, Sydow M, Ławniczak Ł, Piotrowska-Cyplik A, Marecik R, Chrzanowski Ł. The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 132:121-8. [PMID: 24291585 DOI: 10.1016/j.jenvman.2013.11.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/04/2013] [Accepted: 11/08/2013] [Indexed: 05/26/2023]
Abstract
The study focused on assessing the influence of bioaugmentation and addition of rhamnolipids on diesel oil biodegradation efficiency during field studies. Initial laboratory studies (measurement of emitted CO2 and dehydrogenase activity) were carried out in order to select the consortium for bioaugmentation as well as to evaluate the most appropriate concentration of rhamnolipids. The selected consortium consisted of following bacterial taxa: Aeromonas hydrophila, Alcaligenes xylosoxidans, Gordonia sp., Pseudomonas fluorescens, Pseudomonas putida, Rhodococcus equi, Stenotrophomonas maltophilia, Xanthomonas sp. It was established that the application of rhamnolipids at 150 mg/kg of soil was most appropriate in terms of dehydrogenase activity. Based on the obtained results, four treatment methods were designed and tested during 365 days of field studies: I) natural attenuation; II) addition of rhamnolipids; III) bioaugmentation; IV) bioaugmentation and addition of rhamnolipids. It was observed that bioaugmentation contributed to the highest diesel oil biodegradation efficiency, whereas the addition of rhamnolipids did not notably influence the treatment process.
Collapse
Affiliation(s)
- Alicja Szulc
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland.
| | - Damian Ambrożewicz
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Mateusz Sydow
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Łukasz Ławniczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
| | - Agnieszka Piotrowska-Cyplik
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Roman Marecik
- Department of Biotechnology and Food Microbiology, University of Life Sciences in Poznań, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
| |
Collapse
|
17
|
Liu JF, Wu G, Yang SZ, Mu BZ. Structural characterization of rhamnolipid produced by Pseudomonas aeruginosa strain FIN2 isolated from oil reservoir water. World J Microbiol Biotechnol 2013; 30:1473-84. [PMID: 24297330 DOI: 10.1007/s11274-013-1565-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/23/2013] [Indexed: 11/30/2022]
Abstract
Biosurfactant-producing microorganisms inhabiting oil reservoirs are of great potential in industrial applications. Yet, till now, the knowledge about the structure and physicochemical property of their metabolites are still limited. The aim of this study was to purify and structurally characterize the biosurfactant from Pseudomonas aeruginosa strain FIN2, a newly isolated strain from an oil reservoir. The purification was conducted by silica gel column chromatography followed by pre-RP HPLC and the structural characterization was carried out by GC-MS combined with MS/MS. The results show that the biosurfactant produced by FIN2 is rhamnolipid in nature and its four main fractions were identified to be Rha-C10-C10(46.1 %), Rha-Rha-C10-C10(20.1 %), Rha-C8-C10 (7.5 %) and Rha-C10-C12:1(5.5 %), respectively. Meanwhile, the rarely reported rhamnolipid congeners containing β-hydroxy fatty acids of C6, C9, C10:1 and C11 were also proved to be present in the rhamnolipid mixture produced. The rhamnolipid mixture exhibited a strong surface activity by lowering the surface tension of distilled water to 28.6 mN/m with a CMC value of 195 mg/l.
Collapse
Affiliation(s)
- Jin-Feng Liu
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | | | | |
Collapse
|
18
|
Optimization of biosurfactant production using waste from biodiesel industry in a new membrane assisted bioreactor. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Abstract
The removal of No. 0 diesel oil from two kinds of soils artificially by natural rhamnolipid and synthetic sodium dodecyl sulfonate (SDS) were performed in a batch of soil washing studies. Results showed that both surfactants could remove significant amount of diesel oil from the contaminated soil at different solution concentrations compared with water alone. The maximum removal was obtained at surfactant concentrations below or equal to the critical micelle concentration (CMC). At surfactant concentrations higher than the CMC, removal of diesel oil did not increase further. SDS remained more in solution than rhamnolipid, thus, it was expected to be more effective than rhamnolipid to remove diesel oil. However, the next washing experiment showed that rhamnolipid had more considerable ability in removing diesel oil.
Collapse
|
20
|
Janek T, Lukaszewicz M, Krasowska A. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids Surf B Biointerfaces 2013; 110:379-86. [PMID: 23751417 DOI: 10.1016/j.colsurfb.2013.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/23/2013] [Accepted: 05/07/2013] [Indexed: 11/28/2022]
Abstract
One hundred and thirty bacterial strains, isolated from Arctic soil on the Svalbard Archipelago, were screened for biosurfactant production. Among them, an isolate identified as Pseudomonas putida BD2 was selected as a potential biosurfactant-producer based on the surface/interfacial activity of the culture supernatant. The ability of the strain to produce simultaneously phosphatidylethanolamines and rhamnolipid, using glucose as a sole carbon source, was demonstrated. The rhamnolipid Rha-Rha-C10-C10 and two homologs of phosphatidylethanolamine were extracted from cell-free supernatant of P. putida BD2 culture with ethyl acetate and identified by UPLC-MS analysis. For Rha-Rha-C10-C10 the surface tension decreased from 72 to 31mN/m and the critical micelle concentration was 0.130mg/mL. The Rha-Rha-C10-C10 was able to form stable aggregates (80-121nm). Pretreatment of a polystyrene surface with 0.5mg/mL rhamnolipid inhibited bacterial adhesion by 43-79% and that of the pathogenic fungal species C. albicans by 89-90%. The same concentration of phosphatidylethanolamines inhibited bacterial adhesion by 23-72% and that of C. albicans by 96-98%. To our knowledge, this is the first report where one type rhamnolipid and two homologs of phospholipid biosurfactants were produced by P. putida isolated from Arctic soil.
Collapse
Affiliation(s)
- Tomasz Janek
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wrocław, Poland.
| | | | | |
Collapse
|
21
|
Dusane DH, Zinjarde SS, Venugopalan VP, McLean RJC, Weber MM, Rahman PKSM. Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev 2011; 27:159-84. [PMID: 21415897 DOI: 10.1080/02648725.2010.10648149] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Quorum sensing (QS) has received significant attention in the past few decades. QS describes population density dependent cell to cell communication in bacteria using diffusible signal molecules. These signal molecules produced by bacterial cells, regulate various physiological processes important for social behavior and pathogenesis. One such process regulated by quorum sensing molecules is the production of a biosurfactant, rhamnolipid. Rhamnolipids are important microbially derived surface active agents produced by Pseudomonas spp. under the control of two interrelated quorum sensing systems; namely las and rhl. Rhamnolipids possess antibacterial, antifungal and antiviral properties. They are important in motility, cell to cell interactions, cellular differentiation and formation of water channels that are characteristics of Pseudomonas biofilms. Rhamnolipids have biotechnological applications in the uptake of hydrophobic substrates, bioremediation of contaminated soils and polluted waters. Rhamnolipid biosurfactants are biodegradable as compared to chemical surfactants and hence are more preferred in environmental applications. In this review, we examine the biochemical and genetic mechanism of rhamnolipid production by P. aeruginosa and propose the application of QS signal molecules in enhancing the rhamnolipid production.
Collapse
Affiliation(s)
- Devendra H Dusane
- Institute of Bioinformatics and Biotechnology, University of Pune, India.
| | | | | | | | | | | |
Collapse
|
22
|
Bharali P, Konwar BK. Production and Physico-chemical Characterization of a Biosurfactant Produced by Pseudomonas aeruginosa OBP1 Isolated from Petroleum Sludge. Appl Biochem Biotechnol 2011; 164:1444-60. [DOI: 10.1007/s12010-011-9225-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 03/01/2011] [Indexed: 11/28/2022]
|
23
|
Abdel-Mawgoud AM, Hausmann R, Lépine F, Müller MM, Déziel E. Rhamnolipids: Detection, Analysis, Biosynthesis, Genetic Regulation, and Bioengineering of Production. MICROBIOLOGY MONOGRAPHS 2011. [DOI: 10.1007/978-3-642-14490-5_2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L. Microbial communities to mitigate contamination of PAHs in soil--possibilities and challenges: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:12-30. [PMID: 20623198 DOI: 10.1007/s11356-010-0371-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/23/2010] [Indexed: 05/26/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Although highly diverse and specialized prokaryotic and eukaryotic microbial communities in soil degrade polycyclic aromatic hydrocarbons (PAHs), most of these are removed slowly. This review will discuss the biotechnological possibilities to increase the microbial dissipation of PAHs from soil as well as the main biological and biotechnological challenges. DISCUSSION AND CONCLUSIONS Microorganism provides effective and economically feasible solutions for soil cleanup and restoration. However, when the PAHs contamination is greater than the microbial ability to dissipate them, then applying genetically modified microorganisms might help to remove the contaminant. Nevertheless, it is necessary to have a more holistic review of the different individual reactions that are simultaneously taking place in a microbial cell and of the interactions microorganism-microorganism, microorganism-plant, microorganism-soil, and microorganisms-PAHs. PERSPECTIVES Elucidating the function of genes from the PAHs-polluted soil and the study in pure cultures of isolated PAHs-degrading organisms as well as the generation of microorganisms in the laboratory that will accelerate the dissipation of PAHs and their safe application in situ have not been studied extensively. There is a latent environmental risk when genetically engineered microorganisms are used to remedy PAHs-contaminated soil.
Collapse
Affiliation(s)
- F Fernández-Luqueño
- Renewable Energy Engineering, Universidad Tecnológica de Tulancingo, Tulancingo, Hidalgo 43642, México.
| | | | | | | | | | | |
Collapse
|
25
|
Cohen R, Todorov R, Vladimirov G, Exerowa D. Effect of rhamnolipids on pulmonary surfactant foam films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9423-9428. [PMID: 20423060 DOI: 10.1021/la1004374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The effect of a rhamnolipid biosurfactant on pulmonary surfactant is studied employing the black foam film method. Pulmonary surfactant is modeled by a commercially available lung surfactant preparation (LSP). The effect of rhamnolipid concentration on the formation and stability of films formed from mixtures of LSP and rhamnolipids is experimentally studied by measurements of the probability W of formation of black foam films as a function of both LSP and rhamnolipid concentrations at the physiologically relevant electrolyte concentration C(el) = 0.15 mol dm(-3) NaCl. The obtained curves show that addition of rhamnolipid at a concentration C(RhL) = C(c) (critical concentration of black foam film formation) to LSP suspensions causes destabilization of the foam films. In this case, additional quantities of lung surfactant preparation are needed to obtain black films with probability W = 100%. Rhamnolipid adsorption and formation of mixed adsorbed layers at the solution/air interfaces of foam films formed from mixtures of lung surfactant and rhamnolipids are experimentally studied by monitoring the effect of electrolyte and rhamnolipid concentrations on the thickness h of the foam films. The incorporation of rhamnolipid ions in the adsorbed layers at the film interfaces is evidenced also by direct measurements of the disjoining pressure Pi in the films. The Pi(h) isotherms demonstrate that the added rhamnolipids change the surface electric parameters of the films and their thickness and stability at higher pressures. The obtained results show that the different molecular components in the mixture and the increased surface charge at the film interfaces originating from the rhamnolipid ions have a significant effect on the surface forces operative in the studied films.
Collapse
Affiliation(s)
- R Cohen
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. bl.11, Sofia 1113, Bulgaria.
| | | | | | | |
Collapse
|
26
|
Applications of Biological Surface Active Compounds in Remediation Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 672:121-34. [DOI: 10.1007/978-1-4419-5979-9_9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Kolomytseva MP, Randazzo D, Baskunov BP, Scozzafava A, Briganti F, Golovleva LA. Role of surfactants in optimizing fluorene assimilation and intermediate formation by Rhodococcus rhodochrous VKM B-2469. BIORESOURCE TECHNOLOGY 2009; 100:839-844. [PMID: 18723343 DOI: 10.1016/j.biortech.2008.06.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/27/2008] [Accepted: 06/27/2008] [Indexed: 05/26/2023]
Abstract
Biodegradation of fluorene by Rhodococcus rhodochrous VKM B-2469 was investigated and optimized by adding non-ionic surfactants to the liquid media. The utilization of 1-1.5% Tween 60 or 1% Triton X100 allowed to solubilize 1 mM fluorene over 150 times more than in water medium (from 9-11 microM to above 1.5 mM at 28 degrees C). We observed that Tween 60 was useful to enhance the fluorene biodegradation rates further supporting R. rhodochrous VKM B-2469 growth as an additional carbon source and to decrease fluorene toxicity for bacterial cells whereas Triton X100 resulted to be toxic for this strain. An additional enzyme induction step before starting the bioconversion process and the increase of incubation temperature during fluorene bioconversion led to further improvements in rates of fluorene utilization and formation of its intermediates. In the optimized conditions 1 mM fluorene was degraded completely within 24h of incubation. Some intermediates in fluorene degradation built up during the process reaching maxima of 31% for 9-hydroxyfluorene, 2.1% for 9-fluorenone and 1.9% for 2-hydroxy-9-fluorenone (starting from 1 mM substrate). In the presence of Tween 60 the appearance and following conversion of 2-hydroxy-9-fluorenone was observed for R. rhodochrous VKM B-2469 revealing the existence of a new pathway of 9-fluorenone bioconversion.
Collapse
Affiliation(s)
- Marina P Kolomytseva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences (IBPM RAS), 142290 Pushchino, Moscow Region, Prospect Nauki 5, Russian Federation
| | | | | | | | | | | |
Collapse
|
28
|
Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Appl Biochem Biotechnol 2008; 157:329-45. [PMID: 18584127 DOI: 10.1007/s12010-008-8285-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 05/13/2008] [Indexed: 10/21/2022]
Abstract
Rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20 is viscous sticky oily yellowish brown liquid with a fruity odor. It showed solubility at aqueous pH > 4 with optimum solubility at pH 7-7.5 and freely soluble in ethyl acetate. This biosurfactant has a very high surface activity as it could lower the surface tension of water to 30 mN/m at about 13.4 mg/L, and it exhibited excellent stabilities at high temperatures (heating at 100 degrees C for 1 h and autoclaving at 121 degrees C for 10 min), salinities (up to 6% NaCl), and pH values (up to pH 13). The produced biosurfactant can be used in the crude form either as cell-free or cell-containing culture broth of the grown bacteria, since both preparations showed high emulsification indices ranged between 59% and 66% against kerosene, diesel, and motor oil. These characters make the test rhamnolipid a potential candidate for use in bioremediation of hydrocarbon-contaminated sites or in the petroleum industry. High-performance thin-layer chromatography densitometry revealed that the extracted rhamnolipid contained the two most active rhamnolipid homologues dirhamno dilipidic rhamnolipid and monorhamno dilipidic rhamnolipid at 44% and 56%, respectively, as compared to 51% and 29.5%, respectively, in a standard rhamnolipid preparation. The nature and ratio of these two rhamnolipid homologues showed to be strain dependent rather than medium-component dependent.
Collapse
|
29
|
Rahman PK, Gakpe E. Production, Characterisation and Applications of Biosurfactants-Review. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/biotech.2008.360.370] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Mercadé M, Monleón L, de Andrés C, Rodón I, Martinez E, Espuny M, Manresa A. Screening and selection of surfactant-producing bacteria from waste lubricating oil. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1996.tb04494.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem 2008; 391:1579-90. [DOI: 10.1007/s00216-007-1828-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/14/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
|
32
|
Leglize P, Alain S, Jacques B, Corinne L. Adsorption of phenanthrene on activated carbon increases mineralization rate by specific bacteria. JOURNAL OF HAZARDOUS MATERIALS 2008; 151:339-47. [PMID: 17629618 DOI: 10.1016/j.jhazmat.2007.05.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 05/28/2007] [Accepted: 05/29/2007] [Indexed: 05/16/2023]
Abstract
Bioavailability of polycyclic aromatic hydrocarbons (PAH) in soil is affected by PAH sorption to solid phase. We studied the influence of activated carbon (AC) on phenanthrene (PHE) mineralization by five degrading bacterial strains isolated from contaminated soil. PHE adsorption on AC was important and reduced PHE aqueous concentration up to 90%. PHE degradation was improved in the presence of activated carbon with three of the bacterial strains, named NAH1, MATE3 and MATE7, which produced biofilms, whereas it was not improved with the two other ones, which did not produce biofilms, MATE10 and MATE12. Monitoring PHE distribution during incubation showed that aqueous PHE concentration was significantly higher with the biofilm-producing NAH1 than with MATE10. Bacterial adhesion on AC was also investigated. The precoating of AC with PHE increased NAH1 and MATE3 adhesion to the solid surface (>16 and >13%, respectively). Bacterial properties, such as biofilm production and adhesion to AC capacity seemed to be related to their ability to optimize PHE degradation by improving PHE diffusion and reducing diffusion path length.
Collapse
Affiliation(s)
- Pierre Leglize
- Laboratoire des Interactions Microorganismes, Minéraux, Matière Organique dans les Sols (LIMOS) UMR 7137 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, F54506 Vandoeuvre-lès-Nancy Cedex, France.
| | | | | | | |
Collapse
|
33
|
Doyle E, Muckian L, Hickey AM, Clipson N. Microbial PAH Degradation. ADVANCES IN APPLIED MICROBIOLOGY 2008; 65:27-66. [DOI: 10.1016/s0065-2164(08)00602-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Cohen R, Exerowa D. Surface forces and properties of foam films from rhamnolipid biosurfactants. Adv Colloid Interface Sci 2007; 134-135:24-34. [PMID: 17553444 DOI: 10.1016/j.cis.2007.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Foam films are considered as a convenient model to study the interaction behaviour and surface properties of microbial rhamnolipid type biosurfactants. The Scheludko-Exerowa microinterferometric methodology of film thickness measurements is employed for experimental studies of microscopic foam films formed from aqueous solutions of a single rhamnolipid Rh1 (with one rhamnosyl head group) and of mixtures of rhamnolipid surfactants Rh1 and Rh2 (with two rhamnosyl head groups) at ratios Rh2/Rh1=1.2 and Rh2/Rh1=0.69. The measurements of the equilibrium thickness (h) of the obtained films as a function of surfactant concentration (Cs) and electrolyte (NaCl) concentration (C el) determine the conditions for obtaining common, common black and Newton black films. The saturation values of the diffuse electric layer potential phi 0 approximately 60 mV for the Rh1.2 and phi 0 approximately 94 mV for the Rh0.69 common films conform the ionic character of the rhamnolipids. The h(C el) curves of the rhamnolipid foam films and the directly measured disjoining pressure (Pi(h)) isotherms indicate the ranges of action of the DLVO and non-DLVO surface forces. The obtained foam film parameters allow their practical use in ecology and in various technological processes where rhamnolipid surfactants are used. Experiments with model lung surfactant (Infasurf) foam films with rhamnolipid added outline a perspective for the potential application of the foam film for investigating the effect of rhamnolipids on human alveoli.
Collapse
Affiliation(s)
- R Cohen
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia, Bulgaria.
| | | |
Collapse
|
35
|
Zhong H, Zeng GM, Yuan XZ, Fu HY, Huang GH, Ren FY. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol 2007; 77:447-55. [PMID: 17899072 DOI: 10.1007/s00253-007-1154-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Revised: 08/02/2007] [Accepted: 08/04/2007] [Indexed: 10/22/2022]
Abstract
In this study, adsorption of dirhamnolipid biosurfactant on a Gram-negative Pseudomonas aeruginosa, two Gram-positive Bacillus subtilis, and a yeast, Candida lipolytica, was investigated, and the causality between the adsorption and change of cell surface hydrophobicity was discussed. The adsorption was not only specific to the microorganisms but also depended on the physiological status of the cells. Components of the biosurfactant with different rhamnosyl number or aliphatic chain length also exhibited slight difference in adsorption manner. The adsorption indeed caused the cell surface hydrophobicity to change regularly; however, the changes depended on both the concentrations of rhamnolipid solutions applied and the adsorbent physiological conditions. Orientation of rhamnolipid monomers on cell surface and micelle deposition are supposed to be the basic means of adsorption to change cell hydrophobicity at low and high rhamnolipid concentrations, respectively. This study proposed the possibility to modify cell surface hydrophobicity with biosurfactant of low concentrations, which may be of importance in in situ soil remediation.
Collapse
Affiliation(s)
- Hua Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | | | | | | | | | | |
Collapse
|
36
|
Pedrini N, Crespo R, Juárez MP. Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:124-137. [PMID: 17052960 DOI: 10.1016/j.cbpc.2006.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 08/15/2006] [Accepted: 08/20/2006] [Indexed: 11/27/2022]
Abstract
The biochemical interaction between fungal pathogens and their insect host epicuticle was studied by examining fungal hydrocarbon degrading ability. As a contact insecticide, entomopathogenic fungi invade their host through the cuticle, covered by an outermost lipid layer mainly composed of highly stable, very long chain structures. Strains of Beauveria bassiana and Metarhizium anisopliae (Deuteromycotina: Hyphomycetes), pathogenic both to the blood-sucking bug Triatoma infestans (Hemiptera: Reduviidae) and the bean-weevil Acanthoscelides obtectus (Coleoptera, Bruchidae), were grown on different carbon sources. Alkane-grown cells showed a lipid pattern different from that of glucose-grown cells, evidenced by a major switch in the triacylglycerol and sterol components. Radiolabelled hydrocarbons were used to investigate the catabolic pathway and the by-product incorporation into fungal cellular components. The first oxidation round is presumably carried out by a cytochrome P450 enzyme system, the metabolites will traverse the peroxisomal membrane, and after successive transformations will eventually provide the appropriate fatty acyl CoA for complete degradation in the peroxisomes, the site of beta-oxidation in fungi. In this review, we will show the relationship between fungal ability to catabolize very long chain hydrocarbons and virulence parameters.
Collapse
Affiliation(s)
- Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de CienciasMedicas, calles 60 y 120, La Plata, 1900, Argentina
| | - Rosana Crespo
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de CienciasMedicas, calles 60 y 120, La Plata, 1900, Argentina
| | - M Patricia Juárez
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de CienciasMedicas, calles 60 y 120, La Plata, 1900, Argentina.
| |
Collapse
|
37
|
Stroud JL, Paton GI, Semple KT. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. J Appl Microbiol 2007; 102:1239-53. [PMID: 17448159 DOI: 10.1111/j.1365-2672.2007.03401.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aliphatic hydrocarbons make up a substantial portion of organic contamination in the terrestrial environment. However, most studies have focussed on the fate and behaviour of aromatic contaminants in soil. Despite structural differences between aromatic and aliphatic hydrocarbons, both classes of contaminants are subject to physicochemical processes, which can affect the degree of loss, sequestration and interaction with soil microflora. Given the nature of hydrocarbon contamination of soils and the importance of bioremediation strategies, understanding the fate and behaviour of aliphatic hydrocarbons is imperative, particularly microbe-contaminant interactions. Biodegradation by microbes is the key removal process of hydrocarbons in soils, which is controlled by hydrocarbon physicochemistry, environmental conditions, bioavailability and the presence of catabolically active microbes. Therefore, the aims of this review are (i) to consider the physicochemical properties of aliphatic hydrocarbons and highlight mechanisms controlling their fate and behaviour in soil; (ii) to discuss the bioavailability and bioaccessibility of aliphatic hydrocarbons in soil, with particular attention being paid to biodegradation, and (iii) to briefly consider bioremediation techniques that may be applied to remove aliphatic hydrocarbons from soil.
Collapse
Affiliation(s)
- J L Stroud
- Department of Environmental Science, Faculty of Science and Technology, Lancaster University, Lancaster, UK
| | | | | |
Collapse
|
38
|
Ochoa-Loza FJ, Noordman WH, Jannsen DB, Brusseau ML, Maier RM. Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil. CHEMOSPHERE 2007; 66:1634-42. [PMID: 16965801 DOI: 10.1016/j.chemosphere.2006.07.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 07/22/2006] [Accepted: 07/26/2006] [Indexed: 05/11/2023]
Abstract
Rhamnolipids produced by Pseudomonas aeruginosa have been proposed as soil washing agents for enhanced removal of metal and organic contaminants from soil. A potential limitation for the application of rhamnolipids is sorption by soil matrix components. The objective of this study is to empirically determine the contribution of representative soil constituents (clays, metal oxides, and organic matter) to sorption of the rhamnolipid form most efficient at metal complexation (monorhamnolipid). Sorption studies show that monorhamnolipid (R1) sorption is concentration dependent. At low R1 concentrations that are relevant for enhancing organic contaminant biodegradation, R1 sorption followed the order: hematite (Fe(2)O(3))>kaolinite>MnO(2) approximately illite approximately Ca-montmorillonite>gibbsite (Al(OH)(3))>humic acid-coated silica. At high R1 concentrations, relevant for use in complexation/removal of metals or organics, R1 sorption followed the order: illite>>humic acid-coated silica>Ca-montmorillonite>hematite>MnO(2)>gibbsite approximately kaolinite. These results allowed prediction of R1 sorption by a series of six soils. Finally, a comparison of R1 and R2 (dirhamnolipid) shows that the R1 form sorbs more strongly alone than when in a mixture of both the R1 and R2 forms. The information presented can be used to estimate, on an individual soil basis, the extent of rhamnolipid sorption. This is important for determining: (1) whether rhamnolipid addition is a feasible remediation option and (2) the amount of rhamnolipid required to efficiently remove the contaminant.
Collapse
Affiliation(s)
- Francisco J Ochoa-Loza
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, 85721, United States
| | | | | | | | | |
Collapse
|
39
|
Hickey AM, Gordon L, Dobson ADW, Kelly CT, Doyle EM. Effect of surfactants on fluoranthene degradation by Pseudomonas alcaligenes PA-10. Appl Microbiol Biotechnol 2006; 74:851-6. [PMID: 17106676 DOI: 10.1007/s00253-006-0719-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/10/2006] [Accepted: 10/10/2006] [Indexed: 11/29/2022]
Abstract
Two surfactants, Tween 80 and JBR, were investigated for their effect on fluoranthene degradation by a Pseudomonad. Both surfactants enhanced fluoranthene degradation by Pseudomonas alcaligenes PA-10 in shake flask culture. This bacterium was capable of utilising the synthetic surfactant and the biosurfactant as growth substrates and the critical micelle concentration of neither compound inhibited bacterial growth. The biosurfactant JBR significantly increased polycyclic aromatic hydrocarbon (PAH) desorption from soil. Inoculation of fluoranthene-contaminated soil microcosms with P. alcaligenes PA-10 resulted in the removal of significant amounts (45 +/- 5%) of the PAH after 28 days compared to an uninoculated control. Addition of the biosurfactant increased the initial rate of fluoranthene degradation in the inoculated microcosm. The presence of a lower molecular weight PAH, phenanthrene, had a similar effect on the rate of fluoranthene removal.
Collapse
Affiliation(s)
- Anne Marie Hickey
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Republic of Ireland, UK
| | | | | | | | | |
Collapse
|
40
|
Clifford JS, Ioannidis MA, Legge RL. Enhanced aqueous solubilization of tetrachloroethylene by a rhamnolipid biosurfactant. J Colloid Interface Sci 2006; 305:361-5. [PMID: 17081555 DOI: 10.1016/j.jcis.2006.10.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/11/2006] [Accepted: 10/15/2006] [Indexed: 11/23/2022]
Abstract
A rhamnolipid biosurfactant produced by Pseudomonas aeruginosa ATCC 9027 was isolated, purified and characterized in terms of its ability to mobilize and solubilize tetrachloroethylene (PCE) for potential use in surfactant-enhanced aquifer remediation (SEAR) applications. Using a drop volume method, the PCE-biosurfactant steady-state interfacial tension was determined and found to be ca. 10 mN/m which is not low enough to cause significant PCE nonaqueous phase liquid (NAPL) mobilization. It was observed that the biosurfactant partitioned significantly into PCE at aqueous concentrations higher than the critical micelle concentration (CMC). After accounting for rhamnolipid partitioning into the PCE phase, a weight solubilization ratio (WSR) of 1.2 g(PCE)/g(rhamnolipid) was determined and through this mechanism the biosurfactant significantly improved the apparent aqueous solubility of PCE.
Collapse
Affiliation(s)
- Joseph S Clifford
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | | | | |
Collapse
|
41
|
Leglize P, Saada A, Berthelin J, Leyval C. Evaluation of matrices for the sorption and biodegradation of phenanthrene. WATER RESEARCH 2006; 40:2397-404. [PMID: 16735045 DOI: 10.1016/j.watres.2006.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 03/27/2006] [Accepted: 03/29/2006] [Indexed: 05/09/2023]
Abstract
Permeable reactive barriers (PRBs), a new cost effective technology for the remediation of contaminated groundwater, have rarely been considered for PAH contamination. We evaluated three candidate matrices (activated carbon (AC), pouzzolana coated (PzF) or not (Pz) with heavy fuel oil) for phenanthrene (PHE) sorption capacity and the biodegradation of adsorbed PHE. Adsorption-desorption batch experiments showed higher sorption capacity of AC than PzF (60 fold) and Pz (1,500 fold). Sorption isotherms were not linear for all matrices as described by a Freundlich model. Phenanthrene desorption from AC and PzF within 48 h was limited (1-3%). Mineralization of (14)C-PHE by a PAH-degrading bacterial strain increased in the presence of AC and Pz (+16 and +12%). Among the three matrices, AC may be a good candidate for PRBs due to high adsorption, low desorption and increased PHE degradation.
Collapse
Affiliation(s)
- Pierre Leglize
- Laboratoire des Interactions Microorganismes, Minéraux, Matière Organique dans les Sols, LIMOS, UMR 7137 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, F54506 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | |
Collapse
|
42
|
Mulligan CN. Environmental applications for biosurfactants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2005; 133:183-198. [PMID: 15519450 DOI: 10.1016/j.envpol.2004.06.009] [Citation(s) in RCA: 706] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 06/22/2004] [Indexed: 05/24/2023]
Abstract
Biosurfactants are surfactants that are produced extracellularly or as part of the cell membrane by bacteria, yeasts and fungi. Examples include Pseudomonas aeruginosa which produces rhamnolipids, Candida (formerly Torulopsis) bombicola, one of the few yeasts to produce biosurfactants, which produces high yields of sophorolipids from vegetable oils and sugars and Bacillus subtilis which produces a lipopeptide called surfactin. This review includes environmental applications of these biosurfactants for soil and water treatment. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. However, more information is needed to be able to predict and model their behaviour. Full scale tests will be required. The role of biosurfactants in natural attenuation processes has not been determined. Very little information is available concerning the influence of soil components on the remediation process with biosurfactants. As most of the research until now has been performed with rhamnolipids, other biosurfactants need to be investigated as they may have more promising properties.
Collapse
Affiliation(s)
- Catherine N Mulligan
- Department Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Boulevard W., Montreal, Quebec, Canada, H3G 1M8.
| |
Collapse
|
43
|
Urum K, Pekdemir T. Evaluation of biosurfactants for crude oil contaminated soil washing. CHEMOSPHERE 2004; 57:1139-1150. [PMID: 15504473 DOI: 10.1016/j.chemosphere.2004.07.048] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 07/28/2004] [Accepted: 07/30/2004] [Indexed: 05/24/2023]
Abstract
An evaluation of the ability of aqueous biosurfactant solutions (aescin, lecithin, rhamnolipid, saponin and tannin) for possible applications in washing crude oil contaminated soil was carried out. The biosurfactants behaviour in soil-water, water-oil and oil-soil systems (such as foaming, solubilization, sorption to soil, emulsification, surface and interfacial tension) was measured and compared with a well-known chemical surfactant (sodium dodecyl sulphate, SDS) at varying concentrations. Results showed that the biosurfactants were able to remove significant amount of crude oil from the contaminated soil at different solution concentrations for instance rhamnolipid and SDS removed up to 80% oil and lecithin about 42%. The performance of water alone in crude oil removal was equally as good as those of the other biosurfactants. Oil removal was due to mobilization, caused by the reduction of surface and interfacial tensions. Solubilization and emulsification effects in oil removal were negligible due to the low crude oil solubilization of 0.11%. Therefore, these studies suggest that knowledge of surfactants' behaviour across different systems is paramount before their use in the practical application of oil removal.
Collapse
Affiliation(s)
- Kingsley Urum
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | | |
Collapse
|
44
|
Urum K, Pekdemir T, Copur M. Surfactants treatment of crude oil contaminated soils. J Colloid Interface Sci 2004; 276:456-64. [PMID: 15271574 DOI: 10.1016/j.jcis.2004.03.057] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 03/19/2004] [Indexed: 11/27/2022]
Abstract
This study reports experimental measurements investigating the ability of a biological (rhamnolipid) and a synthetic (sodium dodecyl sulfate, SDS) surfactant to remove the North Sea Ekofisk crude oil from various soils with different particle size fractions under varying washing conditions. The washing parameters and ranges tested were as follows: temperature (5 to 50 degrees C), time (5 to 20 min), shaking speed (80 to 200 strokes/min), volume (5 to 20 cm3), and surfactant concentration (0.004 to 5 mass%). The contaminated soils were prepared in the laboratory by mixing crude oil and soils using a rotating cylindrical mixer. Two contamination cases were considered: (1) weathered contamination was simulated by keeping freshly contaminated soils in a fan assisted oven at 50 degrees C for 14 days, mimicking the weathering effect in a natural hot environment, and (2) nonweathered contamination which was not subjected to the oven treatment. The surfactants were found to have considerable potential in removing crude oil from different contaminated soils and the results were comparable with those reported in literature for petroleum hydrocarbons. The removal of crude oil with either rhamnolipid or SDS was within the repeatability range of +/-6%. The most influential parameters on oil removal were surfactant concentration and washing temperature. The soil cation exchange capacity and pH also influenced the removal of crude oil from the individual soils. However, due to the binding of crude oil to soil during weathering, low crude oil removal was achieved with the weathered contaminated soil samples.
Collapse
Affiliation(s)
- Kingsley Urum
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.
| | | | | |
Collapse
|
45
|
Helvaci SS, Peker S, Ozdemir G. Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2. Colloids Surf B Biointerfaces 2004; 35:225-33. [PMID: 15261035 DOI: 10.1016/j.colsurfb.2004.01.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2003] [Revised: 10/14/2003] [Accepted: 01/07/2004] [Indexed: 11/29/2022]
Abstract
The surface behavior of solutions of the rhamnolipids, R1 and R2, were investigated in the absence and presence of an electrolyte (NaCl) through surface tension measurements and optical microscopy at pH 6.8. The NaCl concentrations studied are 0.05, 0.5 and 1M. Electrolytes directly affect the carboxylate groups of the rhamnolipids. The solution/air interface has a net negative charge due to the dissociated carboxylate ions at pH 6.8 with strong repulsive electrostatic forces between the rhamnolipid molecules. This negative charge is shielded by the Na(+) ions in the electrical double layer in the presence of NaCl, causing the formation of a close-packed monolayer, and a decrease in CMC, and surface tension values. The maximum compaction is observed at 0.5M NaCl concentrations for R1 and R2 monolayers, with the R1 monolayer more compact than R2. The larger spaces left below the hydrophobic tails of R1 with respect to that of R2, due to the missing second rhamnosyl groups are thought to be responsible for the higher compaction. The rigidity of both R1 and R2 monolayers increases with the electrolyte concentration. The rigidity of the R1 monolayer is greater than that of R2 at all NaCl concentrations due to the lower hydrophilic character of R1. The variation of CMC values as a function of NaCl concentration obtained from the surface tension measurements and critical packing parameter (CPP) calculations show that spherical micelles, bilayer and rod like micelles are formed in the rhamnolipid solutions as a function of the NaCl concentration. The results of optical microscopy supported these aggregation states indicating lamellar nematic liquid crystal, cubic lamellar and hexagonal liquid crystal phases in R1 and R2 solutions depending on the NaCl concentration.
Collapse
Affiliation(s)
- S S Helvaci
- Chemical Engineering Department, Ege University, Izmir 35100, Turkey.
| | | | | |
Collapse
|
46
|
Bach H, Gutnick D. Chapter 9 Potential applications of bioemulsifiers in the oil industry. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-2991(04)80150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
47
|
Abstract
In summary, biosurfactants are an example of a class of microbial natural products that has coevolved among many genera. But whereas the biosurfactants produced in the bacterial and archaeal domains are convergent in function (suggesting that they are very important), they have developed in parallel with respect to genotype and phenotype (the surfactants are not related genetically or in terms of molecular structure). Because of this parallel evolution, currently available molecular screening techniques are of little use for the discovery of new biosurfactants. Development of such techniques will continue to be problematic because there is no relationship between the surfactants produced by different microbial genera and even species. Yet, the potential for application of biosurfactants and other natural products is great due to growing demand for biodegradable and environmentally friendly analogues for synthetic chemicals.
Collapse
Affiliation(s)
- Raina M Maier
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
48
|
De Souza JT, De Boer M, De Waard P, Van Beek TA, Raaijmakers JM. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 2003; 69:7161-72. [PMID: 14660362 PMCID: PMC309978 DOI: 10.1128/aem.69.12.7161-7172.2003] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Accepted: 09/04/2003] [Indexed: 11/20/2022] Open
Abstract
Zoospores play an important role in the infection of plant and animal hosts by oomycetes and other zoosporic fungi. In this study, six fluorescent Pseudomonas isolates with zoosporicidal activities were obtained from the wheat rhizosphere. Zoospores of multiple oomycetes, including Pythium species, Albugo candida, and Phytophthora infestans, were rendered immotile within 30 s of exposure to cell suspensions or cell culture supernatants of the six isolates, and subsequent lysis occurred within 60 s. The representative strain SS101, identified as Pseudomonas fluorescens biovar II, reduced the surface tension of water from 73 to 30 mN m-1. The application of cell suspensions of strain SS101 to soil or hyacinth bulbs provided significant protection against root rot caused by Pythium intermedium. Five Tn5 mutants of strain SS101lacked the abilities to reduce the surface tension of water and to cause lysis of zoospores. Genetic characterization of two surfactant-deficient mutants showed that the transposons had integrated into condensation domains of peptide synthetases. A partially purified extract from strain SS101 reduced the surface tension of water to 30 mN m-1 and reached the critical micelle concentration at 25 micrograms ml-1. Reverse-phase high-performance liquid chromatography yielded eight different fractions, five of which had surface activity and caused lysis of zoospores. Mass spectrometry and nuclear magnetic resonance analyses allowed the identification of the main constituent as a cyclic lipopeptide (1,139 Da) containing nine amino acids and a 10-carbon hydroxy fatty acid. The other four zoosporicidal fractions were closely related to the main constituent, with molecular massesranging from 1,111 to 1,169 Da.
Collapse
Affiliation(s)
- Jorge T De Souza
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University, 6709 PD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
England LS, Gorzelak M, Trevors JT. Growth and membrane polarization in Pseudomonas aeruginosa UG2 grown in randomized microgravity in a high aspect ratio vessel. Biochim Biophys Acta Gen Subj 2003; 1624:76-80. [PMID: 14642816 DOI: 10.1016/j.bbagen.2003.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Growth and membrane polarization of Pseudomonas aeruginosa UG2 cells grown under randomized microgravity (RMG) and 1xg were measured in a high aspect ratio vessel (HARV) and also in batch cultures mixed at 12 and 150 rpm in Erlenmeyer shake flasks. Membrane polarization was measured using the fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). No differences were observed in the growth curves or membrane polarization values (about 0.300) under all three culture conditions. However, the net effect of RMG at the single cell level may be still unknown. It may be possible that RMG effects are species-dependent or bacterial cells with a small mass and volume may be near the threshold where RMG exerts a minimal effect.
Collapse
Affiliation(s)
- L S England
- Laboratory of Microbial Technology, Department of Environmental Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | |
Collapse
|
50
|
Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M, May U, Pisacane T, Granmo A, Adams DR. The development of a marine natural product-based antifouling paint. BIOFOULING 2003; 19 Suppl:197-205. [PMID: 14618721 DOI: 10.1080/0892701031000061778] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Problems with tin and copper antifouling compounds have highlighted the need to develop new environmentally friendly antifouling coatings. Bacteria isolated from living surfaces in the marine environment are a promising source of natural antifouling compounds. Four isolates were used to produce extracts that were formulated into ten water-based paints. All but one of the paints showed activity against a test panel of fouling bacteria. Five of the paints were further tested for their ability to inhibit the settlement of barnacle larvae, Balanus amphitrite, and algal spores of Ulva lactuca, and for their ability to inhibit the growth of U. lactuca. Two paints caused a significant decrease in the number of settled barnacles. One paint containing extract of Pseudomonas sp. strain NUDMB50-11, showed excellent activity in all assays. The antifouling chemicals responsible for the activity of the extract were isolated, using bioassay guided fractionation, and their chemical structures determined.
Collapse
Affiliation(s)
- J Grant Burgess
- School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|