1
|
Ortega-Alarcon D, Claveria-Gimeno R, Vega S, Kalani L, Jorge-Torres OC, Esteller M, Ausio J, Abian O, Velazquez-Campoy A. Extending MeCP2 interactome: canonical nucleosomal histones interact with MeCP2. Nucleic Acids Res 2024; 52:3636-3653. [PMID: 38321951 DOI: 10.1093/nar/gkae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
MeCP2 is a general regulator of transcription involved in the repression/activation of genes depending on the local epigenetic context. It acts as a chromatin regulator and binds with exquisite specificity to gene promoters. The set of epigenetic marks recognized by MeCP2 has been already established (mainly, cytosine modifications in CpG and CpA), as well as many of the constituents of its interactome. We unveil a new set of interactions for MeCP2 with the four canonical nucleosomal histones. MeCP2 interacts with high affinity with H2A, H2B, H3 and H4. In addition, Rett syndrome associated mutations in MeCP2 and histone epigenetic marks modulate these interactions. Given the abundance and the structural/functional relevance of histones and their involvement in epigenetic regulation, this new set of interactions and its modulating elements provide a new addition to the 'alphabet' for this epigenetic reader.
Collapse
Affiliation(s)
- David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | | | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BCV8W 2Y2, Canada
| | - Olga C Jorge-Torres
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08907 l'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BCV8W 2Y2, Canada
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Huang J, Huang C, Huang C, Xiang Z, Ni Y, Zeng J, Cai S. Comprehensive analysis reveals the prognostic and immunogenic characteristics of DNA methylation regulators in lung adenocarcinoma. Respir Res 2024; 25:74. [PMID: 38317133 PMCID: PMC10845581 DOI: 10.1186/s12931-024-02695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
DNA methylation regulators (DMRs) play a key role in DNA methylation, thus mediating tumor occurrence, metastasis, and immunomodulation. However, the effects of DMRs on clinical outcomes and immunotherapy response remain unexplored in lung adenocarcinoma (LUAD). In this study, eight LUAD cohorts and one immunotherapeutic cohort of lung cancer were utilized. We constructed a DNA methylation regulators-related signature (DMRRS) using univariate and multivariate COX regression analysis. The DMRRS-defined low-risk group was preferentially associated with favorable prognosis, tumor-inhibiting microenvironment, more sensitivity to several targeted therapy drugs, and better immune response. Afterward, the prognostic value and predictive potential in immunotherapy response were validated. Collectively, our findings uncovered that the DMRRS was closely associated with the tumor immune microenvironment and could effectively predict the clinical outcome and immune response of LUAD patients.
Collapse
Affiliation(s)
- Jing Huang
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Chujian Huang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Can Huang
- Eight-year MD program, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100087, China
| | - Zichang Xiang
- Shenzhen University Medical School, Shenzhen, 518055, Guangdong, China
| | - Yao Ni
- Shenzhen University Medical School, Shenzhen, 518055, Guangdong, China
| | - Jian Zeng
- Department of Anesthesiology, Longgang District Central Hospital of Shenzhen, Shenzhen, 518116, Guangdong, China.
| | - Songhua Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
3
|
Wang Q, Luo S, Xiong D, Xu X, Zhao X, Duan L. Quantitative investigation of the effects of DNA modifications and protein mutations on MeCP2-MBD-DNA interactions. Int J Biol Macromol 2023; 247:125690. [PMID: 37423448 DOI: 10.1016/j.ijbiomac.2023.125690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
DNA methylation as an important epigenetic marker, has gained attention for the significance of three oxidative modifications (hydroxymethyl-C (hmC), formyl-C (fC), and carboxyl-C (caC)). Mutations occurring in the methyl-CpG-binding domain (MBD) of MeCP2 result in Rett. However, uncertainties persist regarding DNA modification and MBD mutation-induced interaction changes. Here, molecular dynamics simulations were used to investigate the underlying mechanisms behind changes due to different modifications of DNA and MBD mutations. Alanine scanning combined with the interaction entropy method was employed to accurately evaluate the binding free energy. The results show that MBD has the strongest binding ability for mCDNA, followed by caC, hmC, and fCDNA, with the weakest binding ability observed for CDNA. Further analysis revealed that mC modification induces DNA bending, causing residues R91 and R162 closer to the DNA. This proximity enhances van der Waals and electrostatic interactions. Conversely, the caC/hmC and fC modifications lead to two loop regions (near K112 and K130) closer to DNA, respectively. Furthermore, DNA modifications promote the formation of stable hydrogen bond networks, however mutations in the MBD significantly reduce the binding free energy. This study provides detailed insight into the effects of DNA modifications and MBD mutations on binding ability. It emphasizes the necessity for research and development of targeted Rett compounds that induce conformational compatibility between MBD and DNA, enhancing the stability and strength of their interactions.
Collapse
Affiliation(s)
- Qihang Wang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
4
|
Xu YJ, Liu PP, Yan ZZ, Mi TW, Wang YY, Li Q, Teng ZQ, Liu CM. KW-2449 and VPA exert therapeutic effects on human neurons and cerebral organoids derived from MECP2-null hESCs. Stem Cell Res Ther 2022; 13:534. [PMID: 36575558 PMCID: PMC9795779 DOI: 10.1186/s13287-022-03216-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MECP2), is one of the most prevalent neurodevelopmental disorders in girls. However, the underlying mechanism of MECP2 remains largely unknown and currently there is no effective treatment available for RTT. METHODS We generated MECP2-KO human embryonic stem cells (hESCs), and differentiated them into neurons and cerebral organoids to investigate phenotypes of MECP2 loss-of-function, potential therapeutic agents, and the underlying mechanism by transcriptome sequencing. RESULTS We found that MECP2 deletion caused reduced number of hESCs-derived neurons and simplified dendritic morphology. Moreover, MECP2-KO cortical organoids exhibited fewer neural progenitor cells and neurons at day 60. Electrophysiological recordings showed that MECP2 deletion altered synaptic activity in organoids. Transcriptome analysis of organoids identified many genes in the PI3K-AKT pathway downregulated following MECP2 deletion. Treatment with either KW-2449 or VPA, small molecules for the activation of PI3K-AKT signaling pathway, alleviated neuronal deficits and transcriptome changes in MECP2-KO human neuronal models. CONCLUSIONS These findings suggest that KW-2449 and VPA might be promising drugs for RTT treatment.
Collapse
Affiliation(s)
- Ya-Jie Xu
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Pei-Pei Liu
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Zhong-Ze Yan
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Ting-Wei Mi
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ying-Ying Wang
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Qian Li
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Zhao-Qian Teng
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| | - Chang-Mei Liu
- grid.9227.e0000000119573309State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
5
|
Zhao L, Wang X, Yang J, Jiang Q, Zhang J, Wu F, Ni L, Tong D, Huang C. MECP2 promotes the migration and invasion of gastric cancer cells by modulating the Notch1/c-Myc/mTOR signaling pathways by suppressing FBXW7 transcription. Am J Cancer Res 2022; 12:5183-5204. [PMID: 36504898 PMCID: PMC9729893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MECP2), an epigenetic regulatory factor, promotes the carcinogenesis and progression of a number of cancers. However, its role in the migration and invasion of gastric cancer (GC), as well as the underlying molecular mechanisms, remain unclear. In this study, we found that MECP2 promoted the migration, invasion and metastasis of GC cells. Investigation of the molecular mechanism revealed that MECP2 repressed F-box and WD40 domain protein 7 (FBXW7) transcription in GC by binding to the methylated CpG sites in the FBXW7 promoter region. MECP2 expression was markedly negatively correlated with the FBXW7 level in GC tissues. FBXW7 expression was significantly downregulated in GC tissues and cell lines, and low FBXW7 expression was correlated with unfavorable clinicopathologic features. FBXW7 inhibited cell migration and invasion by regulating the Notch1/c-Myc/mTOR signaling pathways, and knockdown of FBXW7 reversed the effects of silencing MECP2. Moreover, MECP2 upregulated the Notch1/c-Myc/mTOR signaling pathways by inhibiting FBXW7 expression at the transcriptional level. This study demonstrates that MECP2 promotes the migration and invasion of GC cells by modulating the Notch1/c-Myc/mTOR signaling pathways via suppression of FBXW7 transcription. These findings suggest that MECP2 may be a novel effective therapeutic target in GC.
Collapse
Affiliation(s)
- Lingyu Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China
| | - Juan Yang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China
| | - Jing Zhang
- Department of Clinical Medicine, Medical College of Yan’an UniversityYan’an 716000, Shaanxi, China
| | - Feng Wu
- Center of Teaching and Experiment for Medical Post Graduates, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China
| | - Lei Ni
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China
| | - Dongdong Tong
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China
| | - Chen Huang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science CenterXi’an 710061, Shaanxi, China
| |
Collapse
|
6
|
MeCP2 and transcriptional control of eukaryotic gene expression. Eur J Cell Biol 2022; 101:151237. [DOI: 10.1016/j.ejcb.2022.151237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
|
7
|
Guo B, Cai S, Li W, Guo C, Liu Y, Ma X, Ma H, Zhao L. MeCP2 Increases Cisplatin Resistance in Human Gastric Cancer through the Activation of the AKT Pathway by Facilitating PDK-1 Transcription. Curr Cancer Drug Targets 2022; 22:414-425. [PMID: 35209822 DOI: 10.2174/1568009622666220223115216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/28/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Increasing evidence indicates that an imbalance of oncogenes is implicated in chemotherapy resistance in cancers. Methyl-CpG binding protein 2 (MeCP2), which acts as a master epigenetic regulator of various gene expressions, is involved in the carcinogenesis and progression of gastric cancer. However, whether this vital role may participates in acquired cisplatin resistance in GC remains unknown. OBJECTIVE This study aimed to determine whether inhibition of MeCP2 expression could sensitize DDP-resistant GC cells to DDP and to elucidate its underlying molecular mechanism. METHODS qRT-PCR and western blotting were used to evaluate MeCP2 expression in GC DDP-resistant GC cells. Subsequently, cell viability, colony formation, cell cycle, cell apoptosis and tumorigenicity assays were performed to explore the role of MeCP2 in vitro and in vivo. Chromatin immunoprecipitation-qPCR and luciferase reporter assays were used to identify whether 3-phosphoinositide-dependent protein kinase 1 (PDK-1) is a direct target gene of MeCP2. RESULTS MeCP2 was upregulated in malignant DDP-resistant cells compared to that in non-DDP-resistant GC cells or normal gastric epithelial cells. MeCP2 knockdown increased the sensitivity of DDP-resistant GC cells to DDP, resulting in reduced cell growth, G0/G1 phase arrest and increased apoptosis, wheras MeCP2 overexpression attenuated DDP sensitivity of DDP-resistant GC cells. In addition, MeCP2 knockdown enhanced DDP sensitivity in tumors in vivo. MeCP2 elevated PDK-1 expression by binding to its CpG sites in promoter regions, and inhibition of PDK-1 reversed the inductive effect of MeCP2 overexpression on DDP resistance in GC cells. CONCLUSION These findings indicate that silencing MeCP2 may potentiate DDP induced cell death, providing a promising therapeutic strategy for GC.
Collapse
Affiliation(s)
- Bo Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| | - Shuang Cai
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| | - Wen Li
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| | - Chen Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| | - Yijie Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| | - Xiaoping Ma
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| | - Hailin Ma
- Department of Radiation Oncology, the First Affiliated Hospital of Medical Colledge, Xi\'an Jiaotong University, Xi'an, P. R. China
| | - Lingyu Zhao
- Department of Radiation Oncology, the First Affiliated Hospital of Medical Colledge, Xi\'an Jiaotong University, Xi'an, P. R. China
- Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| |
Collapse
|
8
|
Bo G, Liu Y, Li W, Wang L, Zhao L, Tong D, Ni L, Liu L, Qin Y, Wang W, Huang C. The novel lncRNA GPC5-AS1 stabilizes GPC5 mRNA by competitively binding with miR-93/106a to suppress gastric cancer cell proliferation. Aging (Albany NY) 2022; 14:1767-1781. [PMID: 35183057 PMCID: PMC8908922 DOI: 10.18632/aging.203901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
Long non-coding RNAs (lncRNAs) are of importance in the genesis and progression of gastric cancer (GC). GPC5-AS1 is a novel lncRNA associated with methyl-CpG-binding protein 2 (MeCP2), identified in our previous microarray analysis; however, the role of GPC5-AS1 in GC remains unknown. In the present study, we demonstrate that GPC5-AS1 is downregulated in GC cells and tissues, and this aberrant expression is regulated by MeCP2 through CpG site binding in the promoter region. Importantly, we also demonstrate that GPC5-AS1 overexpression suppresses cell proliferation, colony formation, and cell cycle transition; induces apoptosis in vitro; and inhibits tumorigenicity in vivo. The expression of the controversial gene GPC5 was downregulated in GC tissues, and elevated GPC5 level could inhibit GC cell growth. Mechanistically, we demonstrated that GPC5-AS1 stabilizes GPC5 mRNA by acting as a molecular sponge for miR-93 and miR-106a, thereby reducing GC tumor progression. In conclusion, our results suggest that GPC5-AS1 may play a pivotal role in GC and serve as a potential diagnostic biomarker and a powerful therapeutic target for GC.
Collapse
Affiliation(s)
- Guo Bo
- Department of Cell Biology and Genetics, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Yijie Liu
- Department of Cell Biology and Genetics, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Wen Li
- Department of Cell Biology and Genetics, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Lumin Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Dongdong Tong
- Department of Cell Biology and Genetics, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Lei Ni
- Department of Cell Biology and Genetics, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Liying Liu
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, P.R. China
| | - Yannan Qin
- Department of Cell Biology and Genetics, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Wenjing Wang
- Department of Cell Biology and Genetics, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Chen Huang
- Department of Cell Biology and Genetics, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, P.R. China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an, P.R. China
| |
Collapse
|
9
|
Chávez-García C, Hénin J, Karttunen M. Multiscale Computational Study of the Conformation of the Full-Length Intrinsically Disordered Protein MeCP2. J Chem Inf Model 2022; 62:958-970. [PMID: 35130441 DOI: 10.1021/acs.jcim.1c01354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The malfunction of the methyl-CpG binding protein 2 (MeCP2) is associated with the Rett syndrome, one of the most common causes of cognitive impairment in females. MeCP2 is an intrinsically disordered protein (IDP), making its experimental characterization a challenge. There is currently no structure available for the full-length MeCP2 in any of the databases, and only the structure of its MBD domain has been solved. We used this structure to build a full-length model of MeCP2 by completing the rest of the protein via ab initio modeling. Using a combination of all-atom and coarse-grained simulations, we characterized its structure and dynamics as well as the conformational space sampled by the ID and transcriptional repression domain (TRD) domains in the absence of the rest of the protein. The present work is the first computational study of the full-length protein. Two main conformations were sampled in the coarse-grained simulations: a globular structure similar to the one observed in the all-atom force field and a two-globule conformation. Our all-atom model is in good agreement with the available experimental data, predicting amino acid W104 to be buried, amino acids R111 and R133 to be solvent-accessible, and having a 4.1% α-helix content, compared to the 4% found experimentally. Finally, we compared the model predicted by AlphaFold to our Modeller model. The model was not stable in water and underwent further folding. Together, these simulations provide a detailed (if perhaps incomplete) conformational ensemble of the full-length MeCP2, which is compatible with experimental data and can be the basis of further studies, e.g., on mutants of the protein or its interactions with its biological partners.
Collapse
Affiliation(s)
- Cecilia Chávez-García
- Department of Chemistry, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,The Centre of Advanced Materials and Biomaterials Research, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique UPR 9080, CNRS and Université de Paris, Paris 75005, France
| | - Mikko Karttunen
- Department of Chemistry, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,The Centre of Advanced Materials and Biomaterials Research, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Department of Physics and Astronomy, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| |
Collapse
|
10
|
Bouzroud W, Tazzite A, Berrada S, Gazzaz B, Dehbi H. R306X Mutation in the MECP2 Gene Causes an Atypical Rett Syndrome in a Moroccan Patient: A Case Report. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2022; 15:2632010X221124269. [PMID: 36147795 PMCID: PMC9486266 DOI: 10.1177/2632010x221124269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Rett syndrome (RTT) is a rare X-linked syndrome that predominantly affects girls.
It is characterized by a severe and progressive neurodevelopmental disorder with
neurological regression and autism spectrum features. The Rett syndrome is
associated with a broad phenotypic spectrum. It ranges from a classical Rett
syndrome defined by well-established criteria to atypical cases with symptoms
similar to other syndromes, such as Angelman syndrome. The first case of a
Moroccan female child carrying a R306X mutation in the MECP2
(Methyl-CpG-Binding Protein 2) gene, with an unusual manifestation of Rett
syndrome, is presented here. She showed autistic regression, behavioral
stagnation, epilepsy, unmotivated laughter, and craniofacial dysmorphia. Whole
exome sequencing revealed a nonsense mutation (R306X), resulting in a truncated,
nonfunctional MECP2 protein. The overlapping phenotypic spectrums between Rett
and Angelman syndromes have been described, and an interaction between the
MECP2 gene and the UBE3A (Ubiquitin
Protein Ligase E3A) gene pathways is possible but has not yet been proven. An
extensive genetic analysis is highly recommended in atypical cases to ensure an
accurate diagnosis and to improve patient management and genetic counseling.
Collapse
Affiliation(s)
- Wafaa Bouzroud
- Medical Genetics Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Amal Tazzite
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Berrada
- Medical Genetics Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Bouchaïb Gazzaz
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco.,Genetics Analysis Institute, Royal Gendarmerie, Rabat, Morocco
| | - Hind Dehbi
- Medical Genetics Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco.,Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
11
|
Valencia-Ortega J, Saucedo R, Sánchez-Rodríguez MA, Cruz-Durán JG, Martínez EGR. Epigenetic Alterations Related to Gestational Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22179462. [PMID: 34502370 PMCID: PMC8430976 DOI: 10.3390/ijms22179462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most common metabolic complication in pregnancy, which affects the future health of both the mother and the newborn. Its pathophysiology involves nutritional, hormonal, immunological, genetic and epigenetic factors. Among the latter, it has been observed that alterations in DNA (deoxyribonucleic acid) methylation patterns and in the levels of certain micro RNAs, whether in placenta or adipose tissue, are related to well-known characteristics of the disease, such as hyperglycemia, insulin resistance, inflammation and excessive placental growth. Furthermore, epigenetic alterations of gestational diabetes mellitus are observable in maternal blood, although their pathophysiological roles are completely unknown. Despite this, it has not been possible to determine the causes of the epigenetic characteristics of GDM, highlighting the need for integral and longitudinal studies. Based on this, this article summarizes the most relevant and recent studies on epigenetic alterations in placenta, adipose tissue and maternal blood associated with GDM in order to provide the reader with a general overview of the subject and indicate future research topics.
Collapse
Affiliation(s)
- Jorge Valencia-Ortega
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Mexico City 06600, Mexico;
| | - Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Mexico City 06600, Mexico;
- Correspondence: ; Tel.: +55-55887521
| | - Martha A. Sánchez-Rodríguez
- Unidad de Investigación en Gerontología, Facultad de Estudios Superiores Zaragoza, Universidad Autónoma de México, Mexico City 04510, Mexico;
| | - José G. Cruz-Durán
- UMAE Hospital de Gineco-Obstetricia No. 3, Instituto Mexicano del Seguro Social, Mexico City 06600, Mexico;
| | - Edgar G. Ramos Martínez
- Universidad Autónoma Benito Juárez de Oaxaca and Instituto de Cómputo Aplicado en Ciencias, Oaxaca 68120, Mexico;
| |
Collapse
|
12
|
Landers CC, Rabeler CA, Ferrari EK, D'Alessandro LR, Kang DD, Malisa J, Bashir SM, Carone DM. Ectopic expression of pericentric HSATII RNA results in nuclear RNA accumulation, MeCP2 recruitment, and cell division defects. Chromosoma 2021; 130:75-90. [PMID: 33585981 PMCID: PMC7889552 DOI: 10.1007/s00412-021-00753-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Within the pericentric regions of human chromosomes reside large arrays of tandemly repeated satellite sequences. Expression of the human pericentric satellite HSATII is prevented by extensive heterochromatin silencing in normal cells, yet in many cancer cells, HSATII RNA is aberrantly expressed and accumulates in large nuclear foci in cis. Expression and aggregation of HSATII RNA in cancer cells is concomitant with recruitment of key chromatin regulatory proteins including methyl-CpG binding protein 2 (MeCP2). While HSATII expression has been observed in a wide variety of cancer cell lines and tissues, the effect of its expression is unknown. We tested the effect of stable expression of HSATII RNA within cells that do not normally express HSATII. Ectopic HSATII expression in HeLa and primary fibroblast cells leads to focal accumulation of HSATII RNA in cis and triggers the accumulation of MeCP2 onto nuclear HSATII RNA bodies. Further, long-term expression of HSATII RNA leads to cell division defects including lagging chromosomes, chromatin bridges, and other chromatin defects. Thus, expression of HSATII RNA in normal cells phenocopies its nuclear accumulation in cancer cells and allows for the characterization of the cellular events triggered by aberrant expression of pericentric satellite RNA.
Collapse
Affiliation(s)
- Catherine C Landers
- Department of Nutritional Sciences, University of Connecticut , Storrs, CT, USA
| | | | | | | | - Diana D Kang
- Division of Pharmaceutics and Pharmacology College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Jessica Malisa
- Stanford University School of Medicine, Stanford, CA, USA
| | - Safia M Bashir
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
| |
Collapse
|
13
|
D'Mello SR. MECP2 and the Biology of MECP2 Duplication Syndrome. J Neurochem 2021; 159:29-60. [PMID: 33638179 DOI: 10.1111/jnc.15331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
MECP2 duplication syndrome (MDS), a rare X-linked genomic disorder affecting predominantly males, is caused by duplication of the chromosomal region containing the methyl CpG binding protein-2 (MECP2) gene, which encodes methyl-CpG-binding protein 2 (MECP2), a multi-functional protein required for proper brain development and maintenance of brain function during adulthood. Disease symptoms include severe motor and cognitive impairment, delayed or absent speech development, autistic features, seizures, ataxia, recurrent respiratory infections and shortened lifespan. The cellular and molecular mechanisms by which a relatively modest increase in MECP2 protein causes such severe disease symptoms are poorly understood and consequently there are no treatments available for this fatal disorder. This review summarizes what is known to date about the structure and complex regulation of MECP2 and its many functions in the developing and adult brain. Additionally, recent experimental findings on the cellular and molecular underpinnings of MDS based on cell culture and mouse models of the disorder are reviewed. The emerging picture from these studies is that MDS is a neurodegenerative disorder in which neurons die in specific parts of the central nervous system, including the cortex, hippocampus, cerebellum and spinal cord. Neuronal death likely results from astrocytic dysfunction, including a breakdown of glutamate homeostatic mechanisms. The role of elevations in the expression of glial acidic fibrillary protein (GFAP) in astrocytes and the microtubule-associated protein, Tau, in neurons to the pathogenesis of MDS is discussed. Lastly, potential therapeutic strategies to potentially treat MDS are discussed.
Collapse
|
14
|
Ortega-Alarcon D, Claveria-Gimeno R, Vega S, Jorge-Torres OC, Esteller M, Abian O, Velazquez-Campoy A. Influence of the disordered domain structure of MeCP2 on its structural stability and dsDNA interaction. Int J Biol Macromol 2021; 175:58-66. [PMID: 33548325 DOI: 10.1016/j.ijbiomac.2021.01.206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/17/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a transcriptional regulator and a chromatin-associated structural protein. MeCP2 deregulation results in two neurodevelopmental disorders: MeCP2 dysfunction is associated with Rett syndrome, while excess of activity is associated with MeCP2 duplication syndrome. MeCP2 is an intrinsically disordered protein (IDP) constituted by six structural domains with variable, small percentage of well-defined secondary structure. Two domains, methyl-CpG binding domain (MBD) and transcription repressor domain (TRD), are the elements responsible for dsDNA binding ability and recruitment of the gene transcription/silencing machinery, respectively. Previously we studied the influence of the completely disordered, MBD-flanking domains (N-terminal domain, NTD, and intervening domain, ID) on the structural and functional features of the MBD (Claveria-Gimeno, R. et al. Sci Rep. 2017, 7, 41,635). Here we report the biophysical study of the influence of the remaining domains (transcriptional repressor domain, TRD, and C-terminal domains, CTDα and CTDβ) on the structural stability of MBD and the dsDNA binding capabilities of MBD and ID. The influence of distant disordered domains on MBD properties makes it necessary to consider the NTD-MBD-ID variant as the minimal protein construct for studying dsDNA/chromatin binding properties, while the full-length protein should be considered for transcriptional regulation studies.
Collapse
Affiliation(s)
- David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Rafael Claveria-Gimeno
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Olga C Jorge-Torres
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08907, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain; Fundación ARAID, Gobierno de Aragón, 50018 Zaragoza, Spain.
| |
Collapse
|
15
|
Pejhan S, Rastegar M. Role of DNA Methyl-CpG-Binding Protein MeCP2 in Rett Syndrome Pathobiology and Mechanism of Disease. Biomolecules 2021; 11:75. [PMID: 33429932 PMCID: PMC7827577 DOI: 10.3390/biom11010075] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/16/2022] Open
Abstract
Rett Syndrome (RTT) is a severe, rare, and progressive developmental disorder with patients displaying neurological regression and autism spectrum features. The affected individuals are primarily young females, and more than 95% of patients carry de novo mutation(s) in the Methyl-CpG-Binding Protein 2 (MECP2) gene. While the majority of RTT patients have MECP2 mutations (classical RTT), a small fraction of the patients (atypical RTT) may carry genetic mutations in other genes such as the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1. Due to the neurological basis of RTT symptoms, MeCP2 function was originally studied in nerve cells (neurons). However, later research highlighted its importance in other cell types of the brain including glia. In this regard, scientists benefitted from modeling the disease using many different cellular systems and transgenic mice with loss- or gain-of-function mutations. Additionally, limited research in human postmortem brain tissues provided invaluable findings in RTT pathobiology and disease mechanism. MeCP2 expression in the brain is tightly regulated, and its altered expression leads to abnormal brain function, implicating MeCP2 in some cases of autism spectrum disorders. In certain disease conditions, MeCP2 homeostasis control is impaired, the regulation of which in rodents involves a regulatory microRNA (miR132) and brain-derived neurotrophic factor (BDNF). Here, we will provide an overview of recent advances in understanding the underlying mechanism of disease in RTT and the associated genetic mutations in the MECP2 gene along with the pathobiology of the disease, the role of the two most studied protein variants (MeCP2E1 and MeCP2E2 isoforms), and the regulatory mechanisms that control MeCP2 homeostasis network in the brain, including BDNF and miR132.
Collapse
Affiliation(s)
| | - Mojgan Rastegar
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
16
|
Himeda CL, Jones TI, Jones PL. Targeted epigenetic repression by CRISPR/dSaCas9 suppresses pathogenic DUX4-fl expression in FSHD. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:298-311. [PMID: 33511244 PMCID: PMC7806950 DOI: 10.1016/j.omtm.2020.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by incomplete silencing of the disease locus, leading to pathogenic misexpression of DUX4 in skeletal muscle. Previously, we showed that CRISPR inhibition could successfully target and repress DUX4 in FSHD myocytes. However, an effective therapy will require both efficient delivery of therapeutic components to skeletal muscles and long-term repression of the disease locus. Thus, we re-engineered our platform to allow in vivo delivery of more potent epigenetic repressors. We designed an FSHD-optimized regulatory cassette to drive skeletal muscle-specific expression of dCas9 from Staphylococcus aureus fused to HP1α, HP1γ, the MeCP2 transcriptional repression domain, or the SUV39H1 SET domain. Targeting each regulator to the DUX4 promoter/exon 1 increased chromatin repression at the locus, specifically suppressing DUX4 and its target genes in FSHD myocytes and in a mouse model of the disease. Importantly, minimizing the regulatory cassette and using the smaller Cas9 ortholog allowed our therapeutic cassettes to be effectively packaged into adeno-associated virus (AAV) vectors for in vivo delivery. By engineering a muscle-specific epigenetic CRISPR platform compatible with AAV vectors for gene therapy, we have laid the groundwork for clinical use of dCas9-based chromatin effectors in skeletal muscle disorders.
Collapse
Affiliation(s)
- Charis L. Himeda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Takako I. Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Peter L. Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- Corresponding author Peter L. Jones, Department of Pharmacology, Center for Molecular Medicine/MS-0318, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, USA.
| |
Collapse
|
17
|
Castro-Piedras I, Vartak D, Sharma M, Pandey S, Casas L, Molehin D, Rasha F, Fokar M, Nichols J, Almodovar S, Rahman RL, Pruitt K. Identification of Novel MeCP2 Cancer-Associated Target Genes and Post-Translational Modifications. Front Oncol 2020; 10:576362. [PMID: 33363010 PMCID: PMC7758440 DOI: 10.3389/fonc.2020.576362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal regulation of DNA methylation and its readers has been associated with a wide range of cellular dysfunction. Disruption of the normal function of DNA methylation readers contributes to cancer progression, neurodevelopmental disorders, autoimmune disease and other pathologies. One reader of DNA methylation known to be especially important is MeCP2. It acts a bridge and connects DNA methylation with histone modifications and regulates many gene targets contributing to various diseases; however, much remains unknown about how it contributes to cancer malignancy. We and others previously described novel MeCP2 post-translational regulation. We set out to test the hypothesis that MeCP2 would regulate novel genes linked with tumorigenesis and that MeCP2 is subject to additional post-translational regulation not previously identified. Herein we report novel genes bound and regulated by MeCP2 through MeCP2 ChIP-seq and RNA-seq analyses in two breast cancer cell lines representing different breast cancer subtypes. Through genomics analyses, we localize MeCP2 to novel gene targets and further define the full range of gene targets within breast cancer cell lines. We also further examine the scope of clinical and pre-clinical lysine deacetylase inhibitors (KDACi) that regulate MeCP2 post-translationally. Through proteomics analyses, we identify many additional novel acetylation sites, nine of which are mutated in Rett Syndrome. Our study provides important new insight into downstream targets of MeCP2 and provide the first comprehensive map of novel sites of acetylation associated with both pre-clinical and FDA-approved KDACi used in the clinic. This report examines a critical reader of DNA methylation and has important implications for understanding MeCP2 regulation in cancer models and identifying novel molecular targets associated with epigenetic therapies.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - David Vartak
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Monica Sharma
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Somnath Pandey
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Laura Casas
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Deborah Molehin
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Fahmida Rasha
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Mohamed Fokar
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX, United States
| | - Jacob Nichols
- Department of Internal Medicine, Texas Tech University, Lubbock, TX, United States
| | - Sharilyn Almodovar
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
18
|
Ortega-Alarcon D, Claveria-Gimeno R, Vega S, Jorge-Torres OC, Esteller M, Abian O, Velazquez-Campoy A. Molecular Context-Dependent Effects Induced by Rett Syndrome-Associated Mutations in MeCP2. Biomolecules 2020; 10:biom10111533. [PMID: 33182787 PMCID: PMC7696773 DOI: 10.3390/biom10111533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 01/21/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a transcriptional regulator and a chromatin-binding protein involved in neuronal development and maturation. Loss-of-function mutations in MeCP2 result in Rett syndrome (RTT), a neurodevelopmental disorder that is the main cause of mental retardation in females. MeCP2 is an intrinsically disordered protein (IDP) constituted by six domains. Two domains are the main responsible elements for DNA binding (methyl-CpG binding domain, MBD) and recruitment of gene transcription/silencing machinery (transcription repressor domain, TRD). These two domains concentrate most of the RTT-associated mutations. R106W and R133C are associated with severe and mild RTT phenotype, respectively. We have performed a comprehensive characterization of the structural and functional impact of these substitutions at molecular level. Because we have previously shown that the MBD-flanking disordered domains (N-terminal domain, NTD, and intervening domain, ID) exert a considerable influence on the structural and functional features of the MBD (Claveria-Gimeno, R. et al. Sci Rep. 2017, 7, 41635), here we report the biophysical study of the influence of the protein scaffold on the structural and functional effect induced by these two RTT-associated mutations. These results represent an example of how a given mutation may show different effects (sometimes opposing effects) depending on the molecular context.
Collapse
Affiliation(s)
- David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (R.C.-G.); (S.V.)
| | - Rafael Claveria-Gimeno
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (R.C.-G.); (S.V.)
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (R.C.-G.); (S.V.)
| | - Olga C. Jorge-Torres
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (O.C.J.-T.); (M.E.)
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (O.C.J.-T.); (M.E.)
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), l’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (R.C.-G.); (S.V.)
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (O.A.); (A.V.-C.); Tel.: +34-876-555-417 (O.A.); +34-976-762-996 (A.V.-C.)
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; (D.O.-A.); (R.C.-G.); (S.V.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Fundación ARAID, Gobierno de Aragón, 50009 Zaragoza, Spain
- Correspondence: (O.A.); (A.V.-C.); Tel.: +34-876-555-417 (O.A.); +34-976-762-996 (A.V.-C.)
| |
Collapse
|
19
|
Kucukkal TG, Amin RU. Computational and structural studies of MeCP2 and associated mutants. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620410011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rett Syndrome is a rare genetic disorder exclusively seen in girls. Approximately 95% of RTT cases is caused by mutations in the MeCP2 gene which codes for Methyl-CpG-binding protein 2 (MeCP2). In this review, first, a brief introductory review of Rett Syndrome, MeCP2 protein structure and function, mutation types and frequencies, and phenotype–genotype relationships were provided. After that, the current knowledge on the wild-type and mutant MeCP2 protein structure and dynamics as well as its binding to DNA is reviewed. The review particularly focuses on computational (such as molecular dynamics) and experimental (such as electrophoretic mobility shift assays) studies on the MeCP2 binding to different types of DNA as well as the computational and experimental (such as circular dichroism) studies on the stability changes upon mutations. In the end, a brief opinion on future outlook for further computational studies is provided.
Collapse
Affiliation(s)
- Tugba G. Kucukkal
- Department of Science, Technology and Mathematics, Gallaudet University, 800 Florida Ave NE, Washington, DC 20002, USA
- Quest Student Research Institute, 14153 Robert Paris Ct Chantilly, VA 20151, USA
| | - Rijul U. Amin
- Quest Student Research Institute, 14153 Robert Paris Ct Chantilly, VA 20151, USA
- Department of Biological Sciences, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| |
Collapse
|
20
|
MeCP2 facilitates breast cancer growth via promoting ubiquitination-mediated P53 degradation by inhibiting RPL5/RPL11 transcription. Oncogenesis 2020; 9:56. [PMID: 32483207 PMCID: PMC7264296 DOI: 10.1038/s41389-020-0239-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) facilitates the carcinogenesis and progression of several types of cancer. However, its role in breast cancer and the relevant molecular mechanism remain largely unclear. In this study, analysis of the Cancer Genome Atlas (TCGA) data that MeCP2 expression was significantly upregulated in breast cancer tissues, and high MeCP2 expression was correlated with poor overall survival. Knockdown of MeCP2 inhibited breast cancer cell proliferation and G1–S cell cycle transition and migration as well as induced cell apoptosis in vitro. Moreover, MeCP2 knockdown suppressed cancer cell growth in vivo. Investigation of the molecular mechanism showed that MeCP2 repressed RPL11 and RPL5 transcription by binding to their promoter regions. TCGA data revealed significantly lower RPL11 and RPL5 expression in breast cancer tissues; additionally, overexpression of RPL11/RPL5 significantly suppressed breast cancer cell proliferation and G1–S cell cycle transition and induced apoptosis in vitro. Furthermore, RPL11 and RPL5 suppressed ubiquitination-mediated P53 degradation through direct binding to MDM2. This study demonstrates that MeCP2 promotes breast cancer cell proliferation and inhibits apoptosis through suppressing RPL11 and RPL5 transcription by binding to their promoter regions.
Collapse
|
21
|
MeCP2 Promotes Colorectal Cancer Metastasis by Modulating ZEB1 Transcription. Cancers (Basel) 2020; 12:cancers12030758. [PMID: 32210086 PMCID: PMC7140043 DOI: 10.3390/cancers12030758] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Recurrence and distant organ metastasis is a major cause of death in colorectal cancer (CRC); however, the underlying molecular mechanisms regulating this phenomenon are poorly understood. MeCP2 is a key epigenetic regulator and is amplified in many types of cancer. Its role in CRC and the molecular mechanisms underlying its action remain unknown. Methods: We used western blot and immunohistochemistry to detect MeCP2 expression in CRC tissues, and then investigated its biological functions in vitro and in vivo. Chromatin immunoprecipitation, co-immunoprecipitation, and electrophoretic mobility shift assays were used to detect the associations among MeCP2 (Methyl-CpG binding protein 2), SPI1 (Spi-1 Proto-Oncogene), and ZEB1 (Zinc Finger E-Box Binding Homeobox 1). Results: Using the Cancer Genome Atlas and Oncomine databases, we found MeCP2 expression was upregulated in CRC tissues and this upregulation was related to poor prognosis. Meanwhile, MeCP2 depletion (KO/KD) in CRC cells significantly inhibited stem cell frequency, and invasion and migration ability in vitro, and suppressed CRC metastasis in vivo. Mechanistically, we show MeCP2 binds to the transcription factor SPI1, and aids its recruitment to the ZEB1 promoter. SPI1 then facilitates ZEB1 expression at the transcription level. In turn, ZEB1 induces the expression of MMP14, CD133, and SOX2, thereby maintaining CRC stemness and metastasis. Conclusions: MeCP2 is a novel regulator of CRC metastasis. MeCP2 suppression may be a promising therapeutic strategy in CRC.
Collapse
|
22
|
Xiang Z, Zhou Q, Hu M, Sanders YY. MeCP2 epigenetically regulates alpha-smooth muscle actin in human lung fibroblasts. J Cell Biochem 2020; 121:3616-3625. [PMID: 32115750 DOI: 10.1002/jcb.29655] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND A critical feature for fibroblasts differentiation into myofibroblasts is the expression of alpha-smooth muscle actin (α-SMA) during the tissue injury and repair process. The epigenetic mechanism, DNA methylation, is involved in regulating α-SMA expression. It is not clear how methyl-CpG-binding protein 2 (MeCP2) interacts with CpG-rich region in α-SMA, and if the CpG methylation status would affect MeCP2 binding and regulation of α-SMA expression. METHODS The association of MeCP2 with α-SMA CpG rich region were examined by chromatin immunoprecipitation (ChIP) assays in primary fibroblasts from idiopathic pulmonary fibrosis (IPF) and non-IPF control individuals, and in the lung fibroblasts treated with profibrotic cytokine transforming growth factor β1 (TGF-β1). The regulation of α-SMA by MeCP2 was examined by knocking down MeCP2 with small interfering RNA (siRNA). To explore the effects of the DNA methylation status of the CpG rich region on α-SMA expression, the cells were treated with DNA methyltransferase inhibitor, 5'-azacytidine (5'-aza). The expression of α-SMA was examined by Western blot and quantitative polymerase chain reaction, the association with MeCP2 was assessed by ChIP assays, and the methylation status was checked by bisulfate sequencing. RESULTS The human lung fibroblasts with increased α-SMA showed an enriched association of MeCP2, while knockdown MeCP2 by siRNA reduced α-SMA upregulation by TGF-β1. The 5'-Aza-treated cells have decreased α-SMA expression with reduced MeCP2 association. However, bisulfite sequencing revealed that most CpG sites are unmethylated despite the different expression levels of α-SMA after being treated by TGF-β1 or 5'-aza. CONCLUSION Our data indicate that the methyl-binding protein MeCP2 is critical for α-SMA expression in human lung myofibroblast, and the DNA methylation status at the CpG rich region of α-SMA is not a determinative factor for its inducible expression.
Collapse
Affiliation(s)
- Zheyi Xiang
- Laboratory of Clinical Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qingxian Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Min Hu
- Laboratory of Clinical Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
23
|
Liu Y, Niu Y, Li L, Timani KA, He VL, Sanburns C, Xie J, He JJ. Tat expression led to increased histone 3 tri-methylation at lysine 27 and contributed to HIV latency in astrocytes through regulation of MeCP2 and Ezh2 expression. J Neurovirol 2019; 25:508-519. [PMID: 31020497 PMCID: PMC6750972 DOI: 10.1007/s13365-019-00751-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/03/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are susceptible to HIV infection and potential latent HIV reservoirs. Tat is one of three abundantly expressed HIV early genes in HIV-infected astrocytes and has been shown to be a major pathogenic factor for HIV/neuroAIDS. In this study, we sought to determine if and how Tat expression would affect HIV infection and latency in astrocytes. Using the glycoprotein from vesicular stomatitis virus-pseudotyped red-green HIV (RGH) reporter viruses, we showed that HIV infection was capable of establishing HIV latency in astrocytes. We also found that Tat expression decreased the generation of latent HIV-infected cells. Activation of latent HIV-infected astrocytes showed that treatment of GSK126, a selective inhibitor of methyltransferase enhancer of zeste homolog 2 (Ezh2) that is specifically responsible for tri-methylation of histone 3 lysine 27 (H3K27me3), led to activation of significantly more latent HIV-infected Tat-expressing astrocytes. Molecular analysis showed that H3K27me3, Ezh2, MeCP2, and Tat all exhibited a similar bimodal expression kinetics in the course of HIV infection and latency in astrocytes, although H3K27me3, Ezh2, and MeCP2 were expressed higher in Tat-expressing astrocytes and their expression were peaked immediately preceding Tat expression. Subsequent studies showed that Tat expression alone was sufficient to induce H3K27me3 expression, likely through its regulation of Ezh2 and MeCP2 expression. Taken together, these results showed for the first time that Tat expression induced H3K27me3 expression and contributed to HIV latency in astrocytes and suggest a new role and novel mechanism for Tat in HIV latency.
Collapse
Affiliation(s)
- Ying Liu
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Yinghua Niu
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Lu Li
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Khalid A Timani
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Victor L He
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Chris Sanburns
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Jiafeng Xie
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | | |
Collapse
|
24
|
Rajavelu A, Lungu C, Emperle M, Dukatz M, Bröhm A, Broche J, Hanelt I, Parsa E, Schiffers S, Karnik R, Meissner A, Carell T, Rathert P, Jurkowska RZ, Jeltsch A. Chromatin-dependent allosteric regulation of DNMT3A activity by MeCP2. Nucleic Acids Res 2019; 46:9044-9056. [PMID: 30102379 PMCID: PMC6158614 DOI: 10.1093/nar/gky715] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Despite their central importance in mammalian development, the mechanisms that regulate the DNA methylation machinery and thereby the generation of genomic methylation patterns are still poorly understood. Here, we identify the 5mC-binding protein MeCP2 as a direct and strong interactor of DNA methyltransferase 3 (DNMT3) proteins. We mapped the interaction interface to the transcriptional repression domain of MeCP2 and the ADD domain of DNMT3A and find that binding of MeCP2 strongly inhibits the activity of DNMT3A in vitro. This effect was reinforced by cellular studies where a global reduction of DNA methylation levels was observed after overexpression of MeCP2 in human cells. By engineering conformationally locked DNMT3A variants as novel tools to study the allosteric regulation of this enzyme, we show that MeCP2 stabilizes the closed, autoinhibitory conformation of DNMT3A. Interestingly, the interaction with MeCP2 and its resulting inhibition were relieved by the binding of K4 unmodified histone H3 N-terminal tail to the DNMT3A-ADD domain. Taken together, our data indicate that the localization and activity of DNMT3A are under the combined control of MeCP2 and H3 tail modifications where, depending on the modification status of the H3 tail at the binding sites, MeCP2 can act as either a repressor or activator of DNA methylation.
Collapse
Affiliation(s)
- Arumugam Rajavelu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cristiana Lungu
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Max Emperle
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Michael Dukatz
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Alexander Bröhm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Julian Broche
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Ines Hanelt
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Edris Parsa
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Sarah Schiffers
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Rahul Karnik
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas Carell
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Renata Z Jurkowska
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Faculty of Chemistry, University Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
25
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
26
|
Glaze DG, Neul JL, Kaufmann WE, Berry-Kravis E, Condon S, Stoms G, Oosterholt S, Della Pasqua O, Glass L, Jones NE, Percy AK. Double-blind, randomized, placebo-controlled study of trofinetide in pediatric Rett syndrome. Neurology 2019; 92:e1912-e1925. [PMID: 30918097 PMCID: PMC6550498 DOI: 10.1212/wnl.0000000000007316] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 12/19/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine safety, tolerability, and pharmacokinetics of trofinetide and evaluate its efficacy in female children/adolescents with Rett syndrome (RTT), a debilitating neurodevelopmental condition for which no pharmacotherapies directed at core features are available. METHODS This was a phase 2, multicenter, double-blind, placebo-controlled, parallel-group study, in which safety/tolerability, pharmacokinetics, and clinical response to trofinetide were characterized in 82 children/adolescents with RTT, aged 5 to 15 years. Sixty-two participants were randomized 1:1:1:1 to receive placebo twice a day (bid) for 14 days, followed by placebo, 50, 100, or 200 mg/kg bid of trofinetide for 42 days. Following blinded safety data review, 20 additional participants were randomized 1:1 to the 200 mg/kg or placebo bid groups. Safety assessments included adverse events, clinical laboratory tests, physical examinations, and concomitant medications. Clinician- and caregiver-based efficacy measurements assessed clinically relevant, phenotypic dimensions of impairment of RTT. RESULTS All dose levels were well tolerated and generally safe. Trofinetide at 200 mg/kg bid showed statistically significant and clinically relevant improvements relative to placebo on the Rett Syndrome Behaviour Questionnaire, RTT-Clinician Domain Specific Concerns-Visual Analog Scale, and Clinical Global Impression Scale-Improvement. Exploratory analyses suggested that observed changes correlated with trofinetide exposure. CONCLUSION These results, together with those from a previous adolescent/adult trial, indicate trofinetide's potential for treating core RTT symptoms and support further trials. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that for children/adolescents with RTT, trofinetide was safe, well-tolerated, and demonstrated improvement over placebo at 200 mg/kg bid in functionally important dimensions of RTT.
Collapse
Affiliation(s)
- Daniel G Glaze
- From the Department of Pediatrics and Neurology (D.G.G.), Baylor College of Medicine, Houston, TX; Department of Neurosciences (J.L.N.), University of California, San Diego; Greenwood Genetic Center (W.E.K.), Center for Translational Research, Greenwood, SC; Pediatrics, Neurological Sciences, and Biochemistry (E.B.K.), Rush University Medical Center, Chicago, IL;Vital Systems, Inc. (S.C., G.S.), Rolling Meadows, IL; Clinical Pharmacology & Therapeutics Group (S.O., O.D.P.), University College London, UK; Neuren Pharmaceuticals, Ltd. (L.G., N.E.J.), Camberwell, VIC, Australia; Department of Pediatrics (A.K.P.), Division of Neurology, University of Alabama at Birmingham. J.L.N. is currently affiliated with the Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN
| | - Jeffrey L Neul
- From the Department of Pediatrics and Neurology (D.G.G.), Baylor College of Medicine, Houston, TX; Department of Neurosciences (J.L.N.), University of California, San Diego; Greenwood Genetic Center (W.E.K.), Center for Translational Research, Greenwood, SC; Pediatrics, Neurological Sciences, and Biochemistry (E.B.K.), Rush University Medical Center, Chicago, IL;Vital Systems, Inc. (S.C., G.S.), Rolling Meadows, IL; Clinical Pharmacology & Therapeutics Group (S.O., O.D.P.), University College London, UK; Neuren Pharmaceuticals, Ltd. (L.G., N.E.J.), Camberwell, VIC, Australia; Department of Pediatrics (A.K.P.), Division of Neurology, University of Alabama at Birmingham. J.L.N. is currently affiliated with the Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN
| | - Walter E Kaufmann
- From the Department of Pediatrics and Neurology (D.G.G.), Baylor College of Medicine, Houston, TX; Department of Neurosciences (J.L.N.), University of California, San Diego; Greenwood Genetic Center (W.E.K.), Center for Translational Research, Greenwood, SC; Pediatrics, Neurological Sciences, and Biochemistry (E.B.K.), Rush University Medical Center, Chicago, IL;Vital Systems, Inc. (S.C., G.S.), Rolling Meadows, IL; Clinical Pharmacology & Therapeutics Group (S.O., O.D.P.), University College London, UK; Neuren Pharmaceuticals, Ltd. (L.G., N.E.J.), Camberwell, VIC, Australia; Department of Pediatrics (A.K.P.), Division of Neurology, University of Alabama at Birmingham. J.L.N. is currently affiliated with the Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN
| | - Elizabeth Berry-Kravis
- From the Department of Pediatrics and Neurology (D.G.G.), Baylor College of Medicine, Houston, TX; Department of Neurosciences (J.L.N.), University of California, San Diego; Greenwood Genetic Center (W.E.K.), Center for Translational Research, Greenwood, SC; Pediatrics, Neurological Sciences, and Biochemistry (E.B.K.), Rush University Medical Center, Chicago, IL;Vital Systems, Inc. (S.C., G.S.), Rolling Meadows, IL; Clinical Pharmacology & Therapeutics Group (S.O., O.D.P.), University College London, UK; Neuren Pharmaceuticals, Ltd. (L.G., N.E.J.), Camberwell, VIC, Australia; Department of Pediatrics (A.K.P.), Division of Neurology, University of Alabama at Birmingham. J.L.N. is currently affiliated with the Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN
| | - Sean Condon
- From the Department of Pediatrics and Neurology (D.G.G.), Baylor College of Medicine, Houston, TX; Department of Neurosciences (J.L.N.), University of California, San Diego; Greenwood Genetic Center (W.E.K.), Center for Translational Research, Greenwood, SC; Pediatrics, Neurological Sciences, and Biochemistry (E.B.K.), Rush University Medical Center, Chicago, IL;Vital Systems, Inc. (S.C., G.S.), Rolling Meadows, IL; Clinical Pharmacology & Therapeutics Group (S.O., O.D.P.), University College London, UK; Neuren Pharmaceuticals, Ltd. (L.G., N.E.J.), Camberwell, VIC, Australia; Department of Pediatrics (A.K.P.), Division of Neurology, University of Alabama at Birmingham. J.L.N. is currently affiliated with the Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN
| | - George Stoms
- From the Department of Pediatrics and Neurology (D.G.G.), Baylor College of Medicine, Houston, TX; Department of Neurosciences (J.L.N.), University of California, San Diego; Greenwood Genetic Center (W.E.K.), Center for Translational Research, Greenwood, SC; Pediatrics, Neurological Sciences, and Biochemistry (E.B.K.), Rush University Medical Center, Chicago, IL;Vital Systems, Inc. (S.C., G.S.), Rolling Meadows, IL; Clinical Pharmacology & Therapeutics Group (S.O., O.D.P.), University College London, UK; Neuren Pharmaceuticals, Ltd. (L.G., N.E.J.), Camberwell, VIC, Australia; Department of Pediatrics (A.K.P.), Division of Neurology, University of Alabama at Birmingham. J.L.N. is currently affiliated with the Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN
| | - Sean Oosterholt
- From the Department of Pediatrics and Neurology (D.G.G.), Baylor College of Medicine, Houston, TX; Department of Neurosciences (J.L.N.), University of California, San Diego; Greenwood Genetic Center (W.E.K.), Center for Translational Research, Greenwood, SC; Pediatrics, Neurological Sciences, and Biochemistry (E.B.K.), Rush University Medical Center, Chicago, IL;Vital Systems, Inc. (S.C., G.S.), Rolling Meadows, IL; Clinical Pharmacology & Therapeutics Group (S.O., O.D.P.), University College London, UK; Neuren Pharmaceuticals, Ltd. (L.G., N.E.J.), Camberwell, VIC, Australia; Department of Pediatrics (A.K.P.), Division of Neurology, University of Alabama at Birmingham. J.L.N. is currently affiliated with the Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN
| | - Oscar Della Pasqua
- From the Department of Pediatrics and Neurology (D.G.G.), Baylor College of Medicine, Houston, TX; Department of Neurosciences (J.L.N.), University of California, San Diego; Greenwood Genetic Center (W.E.K.), Center for Translational Research, Greenwood, SC; Pediatrics, Neurological Sciences, and Biochemistry (E.B.K.), Rush University Medical Center, Chicago, IL;Vital Systems, Inc. (S.C., G.S.), Rolling Meadows, IL; Clinical Pharmacology & Therapeutics Group (S.O., O.D.P.), University College London, UK; Neuren Pharmaceuticals, Ltd. (L.G., N.E.J.), Camberwell, VIC, Australia; Department of Pediatrics (A.K.P.), Division of Neurology, University of Alabama at Birmingham. J.L.N. is currently affiliated with the Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN
| | - Larry Glass
- From the Department of Pediatrics and Neurology (D.G.G.), Baylor College of Medicine, Houston, TX; Department of Neurosciences (J.L.N.), University of California, San Diego; Greenwood Genetic Center (W.E.K.), Center for Translational Research, Greenwood, SC; Pediatrics, Neurological Sciences, and Biochemistry (E.B.K.), Rush University Medical Center, Chicago, IL;Vital Systems, Inc. (S.C., G.S.), Rolling Meadows, IL; Clinical Pharmacology & Therapeutics Group (S.O., O.D.P.), University College London, UK; Neuren Pharmaceuticals, Ltd. (L.G., N.E.J.), Camberwell, VIC, Australia; Department of Pediatrics (A.K.P.), Division of Neurology, University of Alabama at Birmingham. J.L.N. is currently affiliated with the Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN
| | - Nancy E Jones
- From the Department of Pediatrics and Neurology (D.G.G.), Baylor College of Medicine, Houston, TX; Department of Neurosciences (J.L.N.), University of California, San Diego; Greenwood Genetic Center (W.E.K.), Center for Translational Research, Greenwood, SC; Pediatrics, Neurological Sciences, and Biochemistry (E.B.K.), Rush University Medical Center, Chicago, IL;Vital Systems, Inc. (S.C., G.S.), Rolling Meadows, IL; Clinical Pharmacology & Therapeutics Group (S.O., O.D.P.), University College London, UK; Neuren Pharmaceuticals, Ltd. (L.G., N.E.J.), Camberwell, VIC, Australia; Department of Pediatrics (A.K.P.), Division of Neurology, University of Alabama at Birmingham. J.L.N. is currently affiliated with the Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN.
| | - Alan K Percy
- From the Department of Pediatrics and Neurology (D.G.G.), Baylor College of Medicine, Houston, TX; Department of Neurosciences (J.L.N.), University of California, San Diego; Greenwood Genetic Center (W.E.K.), Center for Translational Research, Greenwood, SC; Pediatrics, Neurological Sciences, and Biochemistry (E.B.K.), Rush University Medical Center, Chicago, IL;Vital Systems, Inc. (S.C., G.S.), Rolling Meadows, IL; Clinical Pharmacology & Therapeutics Group (S.O., O.D.P.), University College London, UK; Neuren Pharmaceuticals, Ltd. (L.G., N.E.J.), Camberwell, VIC, Australia; Department of Pediatrics (A.K.P.), Division of Neurology, University of Alabama at Birmingham. J.L.N. is currently affiliated with the Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN
| | | |
Collapse
|
27
|
Elevated MeCP2 in Mice Causes Neurodegeneration Involving Tau Dysregulation and Excitotoxicity: Implications for the Understanding and Treatment of MeCP2 Triplication Syndrome. Mol Neurobiol 2018; 55:9057-9074. [PMID: 29637441 DOI: 10.1007/s12035-018-1046-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022]
Abstract
Expression of MeCP2 must be carefully regulated as a reduction or increase results in serious neurological disorders. We are studying transgenic mice in which the MeCP2 gene is expressed at about three times higher than the normal level. Male MeCP2-Tg mice, but not female mice, suffer motor and cognitive deficits and die at 18-20 weeks of age. MeCP2-Tg mice display elevated GFAP and Tau expression within the hippocampus and cortex followed by neuronal loss in these brain regions. Loss of Purkinje neurons, but not of granule neurons in the cerebellar cortex is also seen. Exposure of cultured cortical neurons to either conditioned medium from astrocytes (ACM) derived from male MeCP2-Tg mice or normal astrocytes in which MeCP2 is expressed at elevated levels promotes their death. Interestingly, ACM from male, but not female MeCP2-Tg mice, displays this neurotoxicity reflecting the gender selectivity of neurological symptoms in mice. Male ACM, but not female ACM, contains highly elevated levels of glutamate, and its neurotoxicity can be prevented by MK-801, indicating that it is caused by excitotoxicity. Based on the close phenotypic resemblance of MeCP2-Tg mice to patients with MECP2 triplication syndrome, we suggest for the first time that the human syndrome is a neurodegenerative disorder resulting from astrocyte dysfunction that leads to Tau-mediated excitotoxic neurodegeneration. Loss of cortical and hippocampal neurons may explain the mental retardation and epilepsy in patients, whereas ataxia likely results from the loss of Purkinje neurons.
Collapse
|
28
|
Sheikh TI, de Paz AM, Akhtar S, Ausió J, Vincent JB. MeCP2_E1 N-terminal modifications affect its degradation rate and are disrupted by the Ala2Val Rett mutation. Hum Mol Genet 2018; 26:4132-4141. [PMID: 28973632 DOI: 10.1093/hmg/ddx300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
Methyl CpG-binding protein 2 (MeCP2), the mutated protein in Rett syndrome (RTT), is a crucial chromatin-modifying and gene-regulatory protein that has two main isoforms (MeCP2_E1 and MeCP2_ E2) due to the alternative splicing and switching between translation start codons in exons one and two. Functionally, these two isoforms appear to be virtually identical; however, evidence suggests that only MeCP2_E1 is relevant to RTT, including a single RTT missense mutation in exon 1, Ala2Val. Here, we show that N-terminal co- and post-translational modifications differ for MeCP2_E1 and MeCP2_E1-Ala2Val, which result in different protein degradation rates in vitro. We report complete N-methionine excision (NME) for MeCP2_E1 and evidence of excision of multiple alanine residues from the N-terminal polyalanine stretch. For MeCP2_E1-Ala2Val, we observed only partial NME and N-acetylation (NA) of either methionine or valine. The localization of MeCP2_E1 and co-localization with chromatin appear to be unaffected by the Ala2Val mutation. However, a higher proteasomal degradation rate was observed for MeCP2_E1-Ala2Val compared with that for wild type MeCP2_E1. Thus, the etiopathology of Ala2Val is likely due to a reduced bio-availability of MeCP2 because of the faster degradation rate of the unmodified defective protein. Our data on the effects of the Ala2Val mutation on N-terminal modifications of MeCP2 may be applicable to Ala2Val mutations in other disease genes for which no etiopathological mechanism has been established.
Collapse
Affiliation(s)
- Taimoor I Sheikh
- Molecular Neuropsychiatry & Development (MiND) Lab, Brain Science Division, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Shamim Akhtar
- University of Engineering and Technology Taxila, Taxila, Punjab 47080, Pakistan
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, BC V8P 5C2, Canada
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Brain Science Division, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
29
|
Glaze DG, Neul JL, Percy A, Feyma T, Beisang A, Yaroshinsky A, Stoms G, Zuchero D, Horrigan J, Glass L, Jones NE. A Double-Blind, Randomized, Placebo-Controlled Clinical Study of Trofinetide in the Treatment of Rett Syndrome. Pediatr Neurol 2017; 76:37-46. [PMID: 28964591 DOI: 10.1016/j.pediatrneurol.2017.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND This study aimed to determine the safety and tolerability of trofinetide and to evaluate efficacy measures in adolescent and adult females with Rett syndrome, a serious and debilitating neurodevelopmental condition for which no therapies are available for its core features. METHODS This was an exploratory, phase 2, multicenter, double-blind, placebo-controlled, dose-escalation study of the safety and tolerability of trofinetide in 56 adolescent and adult females with Rett syndrome. Subjects were randomly assigned in a 2:1 ratio to 35 mg/kg twice daily of trofinetide or placebo for 14 days; 35 mg/kg twice daily or placebo for 28 days; or 70 mg/kg twice daily or placebo for 28 days. Safety assessments included adverse events, clinical laboratory tests, vital signs, electrocardiograms, physical examinations, and concomitant medications. Efficacy measurements were categorized into four efficacy domains, which related to clinically relevant, phenotypic dimensions of impairment associated with Rett syndrome. RESULTS Both 35 mg/kg and 70 mg/kg dose levels of trofinetide were well tolerated and generally safe. Trofinetide at 70 mg/kg demonstrated efficacy compared with placebo based on prespecified criteria. CONCLUSION Trofinetide was well tolerated in adolescent and adult females with Rett syndrome. Although this study had a relatively short duration in a small number of subjects with an advanced stage of disease, consistent efficacy trends at the higher dose were observed in several outcome measures that assess important dimensions of Rett syndrome. These results represented clinically meaningful improvement from the perspective of the clinicians as well as the caregivers.
Collapse
Affiliation(s)
| | | | - Alan Percy
- University of Alabama, Birmingham, Birmingham, Alabama
| | - Tim Feyma
- Gillette Children's Specialty Healthcare, Saint Paul, Minnesota
| | - Arthur Beisang
- Gillette Children's Specialty Healthcare, Saint Paul, Minnesota
| | | | | | - David Zuchero
- Chesapeake Regulatory Group, Inc., Highland, Maryland
| | - Joseph Horrigan
- University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Larry Glass
- Neuren Pharmaceuticals, Ltd., Camberwell, Victoria, Australia
| | - Nancy E Jones
- Neuren Pharmaceuticals, Ltd., Camberwell, Victoria, Australia
| |
Collapse
|
30
|
Hu Z, Shen WJ, Kraemer FB, Azhar S. Regulation of adrenal and ovarian steroidogenesis by miR-132. J Mol Endocrinol 2017; 59:269-283. [PMID: 28729436 PMCID: PMC6376965 DOI: 10.1530/jme-17-0011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
Abstract
miR-132 is hormonally regulated in steroidogenic cells of the adrenal gland, ovary and testis. Here, we examined the potential role of miR-132 in the control of steroidogenesis. Transfection of Y1 adrenal cells with miR-132 increased mRNAs of 3β-HSD and 20α-HSD enzymes, which catalyze the sequential conversion of pregnenolone to progesterone to biologically inactive 20α-hydroxyprogesterone (20α-OHP). Overexpression of miR-132 reduced MeCP2 and StAR protein expression, basal progestin (progesterone and 20α-OHP) production, but enhanced their production in response to cAMP stimulation. Use of [3H] pregnenolone and free-diffusible 22(R)-hydroxycholesterol further confirmed that miR-132 promotes the production of 20α-OHP by upregulating 3β-HSD and 20α-HSD. Evidence is also presented that StAR is a direct target of miR-132. Transient transfection of Y1 cells with miR-132 demonstrated that miR-132 induction of 3β-HSD and 20α-HSD was accompanied by significant suppression of one of its target gene products, MeCP2. In contrast, co-expression of miR-132 plus MeCP2 protein partially blocked the ability of miR-132 to upregulate the expression and function of 3β-HSD and 20α-HSD. Moreover, suppression of MeCP2 protein with siRNA resulted in increased expression of 3β-HSD and 20α-HSD, further demonstrating that miR-132 induces the expression of these two enzymes via inhibition of MeCP2. Likewise, overexpression of miR-132 increased 20α-OHP production with and without HDL loading, while knockdown of miR-132 resulted in a significant decrease of 20α-OHP production by granulosa cells. In conclusion, our data suggest that miR-132 attenuates steroidogenesis by repressing StAR expression and inducing 20α-HSD via inhibition of MeCP2 to generate a biologically inactive 20α-OHP.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric ResearchEducation and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Division of EndocrinologyGerontology and Metabolism, Stanford University, Stanford, California, USA
| | - Wen-Jun Shen
- Geriatric ResearchEducation and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Division of EndocrinologyGerontology and Metabolism, Stanford University, Stanford, California, USA
| | - Fredric B Kraemer
- Geriatric ResearchEducation and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Division of EndocrinologyGerontology and Metabolism, Stanford University, Stanford, California, USA
| | - Salman Azhar
- Geriatric ResearchEducation and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Division of EndocrinologyGerontology and Metabolism, Stanford University, Stanford, California, USA
| |
Collapse
|
31
|
Zhao LY, Tong DD, Xue M, Ma HL, Liu SY, Yang J, Liu YX, Guo B, Ni L, Liu LY, Qin YN, Wang LM, Zhao XG, Huang C. MeCP2, a target of miR-638, facilitates gastric cancer cell proliferation through activation of the MEK1/2-ERK1/2 signaling pathway by upregulating GIT1. Oncogenesis 2017; 6:e368. [PMID: 28759023 PMCID: PMC5541712 DOI: 10.1038/oncsis.2017.60] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 05/02/2017] [Accepted: 06/07/2017] [Indexed: 02/08/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is involved in the carcinogenesis and progression of multiple types of cancer. However, its precise role in gastric cancer (GC) and the relevant molecular mechanism remain unknown. In the present study, we found that miR-638 levels were lower in GC tissues and GC cell lines than in adjacent normal tissues and normal gastric epithelial cell lines, respectively. Low miR-638 levels were associated with poor tumor differentiation, tumor size and lymph node metastasis. MeCP2 expression levels were higher in GC tissues than in adjacent normal tissues. It was found that miR-638 inhibited GC cell proliferation, colony formation, G1–S transition and tumor growth, and induced cell apoptosis by directly targeting MeCP2. MeCP2 promoted GC cell proliferation, colony formation and G1–S cell-cycle transition, and suppressed apoptosis. Molecular mechanistic investigations were performed using an integrated approach with a combination of microarray analysis, chromatin immunoprecipitation sequencing and a reporter gene assay. The results showed that MeCP2 bound to the methylated CpG islands of G-protein-coupled receptor kinase-interacting protein 1 (GIT1) promoter and upregulated its expression, thereby activating the MEK1/2–ERK1/2 signaling pathway and promoting GC cell proliferation. Taken together, our study demonstrates that MeCP2, a target of miR-638, facilitates GC cell proliferation and induces cell-cycle progression through activation of the MEK1/2–ERK1/2 signaling pathway by upregulating GIT1. The findings suggest that MeCP2 plays a significant role in GC progression, and may serve as a potential target for GC therapy.
Collapse
Affiliation(s)
- L Y Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - D D Tong
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - M Xue
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - H L Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - S Y Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - J Yang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Y X Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - B Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - L Ni
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - L Y Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Y N Qin
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - L M Wang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - X G Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - C Huang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Medical College of Yan'an University, Yan'an, Shaanxi, China
| |
Collapse
|
32
|
A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro. Int J Mol Sci 2017; 18:ijms18061179. [PMID: 28587163 PMCID: PMC5486002 DOI: 10.3390/ijms18061179] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
An emerging vision for toxicity testing in the 21st century foresees in vitro assays assuming the leading role in testing for chemical hazards, including testing for carcinogenicity. Toxicity will be determined by monitoring key steps in functionally validated molecular pathways, using tests designed to reveal chemically-induced perturbations that lead to adverse phenotypic endpoints in cultured human cells. Risk assessments would subsequently be derived from the causal in vitro endpoints and concentration vs. effect data extrapolated to human in vivo concentrations. Much direct experimental evidence now shows that disruption of epigenetic processes by chemicals is a carcinogenic mode of action that leads to altered gene functions playing causal roles in cancer initiation and progression. In assessing chemical safety, it would therefore be advantageous to consider an emerging class of carcinogens, the epigenotoxicants, with the ability to change chromatin and/or DNA marks by direct or indirect effects on the activities of enzymes (writers, erasers/editors, remodelers and readers) that convey the epigenetic information. Evidence is reviewed supporting a strategy for in vitro hazard identification of carcinogens that induce toxicity through disturbance of functional epigenetic pathways in human somatic cells, leading to inactivated tumour suppressor genes and carcinogenesis. In the context of human cell transformation models, these in vitro pathway measurements ensure high biological relevance to the apical endpoint of cancer. Four causal mechanisms participating in pathways to persistent epigenetic gene silencing were considered: covalent histone modification, nucleosome remodeling, non-coding RNA interaction and DNA methylation. Within these four interacting mechanisms, 25 epigenetic toxicity pathway components (SET1, MLL1, KDM5, G9A, SUV39H1, SETDB1, EZH2, JMJD3, CBX7, CBX8, BMI, SUZ12, HP1, MPP8, DNMT1, DNMT3A, DNMT3B, TET1, MeCP2, SETDB2, BAZ2A, UHRF1, CTCF, HOTAIR and ANRIL) were found to have experimental evidence showing that functional perturbations played “driver” roles in human cellular transformation. Measurement of epigenotoxicants presents challenges for short-term carcinogenicity testing, especially in the high-throughput modes emphasized in the Tox21 chemicals testing approach. There is need to develop and validate in vitro tests to detect both, locus-specific, and genome-wide, epigenetic alterations with causal links to oncogenic cellular phenotypes. Some recent examples of cell-based high throughput chemical screening assays are presented that have been applied or have shown potential for application to epigenetic endpoints.
Collapse
|
33
|
Yon DK, Park JE, Kim SJ, Shim SH, Chae KY. A sibship with duplication of Xq28 inherited from the mother; genomic characterization and clinical outcomes. BMC MEDICAL GENETICS 2017; 18:30. [PMID: 28302064 PMCID: PMC5356410 DOI: 10.1186/s12881-017-0394-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Loss-of-function mutations in methyl-CpG-binding protein 2 (MECP2; MIM *300005) results in the Rett syndrome, whereas gain-of-function mutations are associated with the MECP2 duplication syndrome. METHODS We did research on a family with two brothers showing Xq28 duplication syndrome using various molecular cytogenetic techniques such as multiplex ligation-dependent probe amplification and array-based genomic hybridization. RESULTS The duplicated region had several genes including MECP2 and interleukin-1 receptor associated kinase 1 (IRAK1; MIM *300283). MECP2 and IRAK1 were associated with the neurological phenotypes in dose-sensitive and dose-critical manner. The brothers demonstrated severe intellectual disability, autistic features, generalized hypotonia, recurrent infections, epilepsy, choreiform movements such as hand-wringing movement, and moderate increased spasticity with the lower limbs. The X-inactivation test showed a complete skewed X inactivation pattern of mother. In this reason, the mother had the same loci duplication but showed significantly little neurological manifestation compared to the two sons. CONCLUSIONS MECP2/IRAK1 duplication at Xq28 is inherited as an X-linked recessive trait and male-specific disorder associated with severe intellectual disability. We tried to analyze the information of the relationship between neuropsychiatric phenotype and the extent of duplication at Xq28 by comparing with previous reports.
Collapse
Affiliation(s)
- Dong Keon Yon
- Department of Pediatrics, CHA Bundang Medical Center, School of Medicine, CHA University, 351 Yatap-dong, Bundang-gu, Seongnam, 463-712 Republic of Korea
| | - Ji Eun Park
- Genetics Laboratory, Fertility Center, CHA Gangnam Medical Center, School of Medicine, CHA University, 606-13 Yeoksam-dong, Gangnam-gu, Seoul, 06135 Republic of Korea
| | - Seung Jun Kim
- GenoLifeCare Division, BioCore, Seoul, Republic of Korea
| | - Sung Han Shim
- Genetics Laboratory, Fertility Center, CHA Gangnam Medical Center, School of Medicine, CHA University, 606-13 Yeoksam-dong, Gangnam-gu, Seoul, 06135 Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pankyo-ro, Bundang-gu, Seongnam, 13488 Republic of Korea
| | - Kyu Young Chae
- Department of Pediatrics, CHA Bundang Medical Center, School of Medicine, CHA University, 351 Yatap-dong, Bundang-gu, Seongnam, 463-712 Republic of Korea
| |
Collapse
|
34
|
Claveria-Gimeno R, Lanuza PM, Morales-Chueca I, Jorge-Torres OC, Vega S, Abian O, Esteller M, Velazquez-Campoy A. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site. Sci Rep 2017; 7:41635. [PMID: 28139759 PMCID: PMC5282554 DOI: 10.1038/srep41635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/22/2016] [Indexed: 01/09/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.
Collapse
Affiliation(s)
- Rafael Claveria-Gimeno
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, 50009, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain
| | - Pilar M Lanuza
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain.,Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Ignacio Morales-Chueca
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, 50009, Spain
| | - Olga C Jorge-Torres
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, 50009, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain.,Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain.,Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, 08908, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, 08907, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, 08010, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain.,Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain.,Fundacion ARAID, Government of Aragon, Zaragoza, 50018, Spain
| |
Collapse
|
35
|
MeCP2 Promotes Gastric Cancer Progression Through Regulating FOXF1/Wnt5a/β-Catenin and MYOD1/Caspase-3 Signaling Pathways. EBioMedicine 2017; 16:87-100. [PMID: 28131747 PMCID: PMC5474507 DOI: 10.1016/j.ebiom.2017.01.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 01/25/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) has recently been characterized as an oncogene frequently amplified in several types of cancer. However, its precise role in gastric cancer (GC) and the molecular mechanism of MeCP2 regulation are still largely unknown. Here we report that MeCP2 is highly expressed in primary GC tissues and the expression level is correlated with the clinicopathologic features of GC. In our experiments, knockdown of MeCP2 inhibited tumor growth. Molecular mechanism of MeCP2 regulation was investigated using an integrated approach with combination of microarray analysis and chromatin immunoprecipitation sequencing (ChIP-Seq). The results suggest that MeCP2 binds to the methylated CpG islands of FOXF1 and MYOD1 promoters and inhibits their expression at the transcription level. Furthermore, we show that MeCP2 promotes GC cell proliferation via FOXF1-mediated Wnt5a/β-Catenin signaling pathway and suppresses apoptosis through MYOD1-mediated Caspase-3 signaling pathway. Due to its high expression level in GC and its critical function in driving GC progression, MeCP2 represents a promising therapeutic target for GC treatment. MeCP2 inhibits FOXF1 and MYOD1 transcription by binding to their promoter regions. MeCP2 promotes GC cell proliferation via FOXF1-mediated Wnt/β-Catenin signaling pathway. MeCP2 suppresses GC cell apoptosis through MYOD1-mediated Caspase-3 signaling pathway.
Gastric cancer is the fourth most common malignant cancer and the third most frequent cause of cancer-related deaths worldwide. The molecular mechanism underlying gastric carcinogenesis and progression is still unknown. Methyl-CpG binding protein 2 (MeCP2) has recently been characterized as an oncogene frequently amplified in several types of cancer. However, its precise role and the molecular mechanism of MeCP2 regulation in gastric cancer are largely unknown. Our results show that MeCP2 promotes gastric cancer cell proliferation via FOXF1-mediated Wnt5a/β-Catenin signaling pathway and suppresses cell apoptosis through MYOD1-mediated Caspase-3 signaling pathway. MeCP2 represents a promising therapeutic target for gastric cancer treatment.
Collapse
|
36
|
From Function to Phenotype: Impaired DNA Binding and Clustering Correlates with Clinical Severity in Males with Missense Mutations in MECP2. Sci Rep 2016; 6:38590. [PMID: 27929079 PMCID: PMC5144150 DOI: 10.1038/srep38590] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations in the MECP2 gene cause Rett syndrome (RTT). MeCP2 binds to chromocentric DNA through its methyl CpG-binding domain (MBD) to regulate gene expression. In heterozygous females the variable phenotypic severity is modulated by non-random X-inactivation, thus making genotype-phenotype comparisons unreliable. However, genotype-phenotype correlations in males with hemizygousMECP2 mutations can provide more accurate insights in to the true biological effect of specific mutations. Here, we compared chromatin organization and binding dynamics for twelve MeCP2 missense mutations (including two novel and the five most common MBD missense RTT mutations) and identifiedacorrelation with phenotype in hemizygous males. We observed impaired interaction of MeCP2-DNA for mutations around the MBD-DNA binding interface, and defective chromatin clustering for distal MBD mutations. Furthermore, binding and mobility dynamics show a gradient of impairment depending on the amino acid properties and tertiary structure within the MBD. Interestingly, a wide range of phenotypic/clinical severity, ranging from neonatal encephalopathy to mild psychiatric abnormalities were observed and all are consistent with our functional/molecular results. Overall, clinical severity showed a direct correlation with the functional impairment of MeCP2. These mechanistic and phenotypic correlations of MeCP2 mutations will enable improved and individualized diagnostics, and may lead to personalized therapeutic interventions.
Collapse
|
37
|
Claveria-Gimeno R, Abian O, Velazquez-Campoy A, Ausió J. MeCP2… Nature’s Wonder Protein or Medicine’s Most Feared One? CURRENT GENETIC MEDICINE REPORTS 2016. [DOI: 10.1007/s40142-016-0107-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Khrapunov S, Tao Y, Cheng H, Padlan C, Harris R, Galanopoulou AS, Greally JM, Girvin ME, Brenowitz M. MeCP2 Binding Cooperativity Inhibits DNA Modification-Specific Recognition. Biochemistry 2016; 55:4275-85. [PMID: 27420643 DOI: 10.1021/acs.biochem.6b00451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a multifunctional protein that guides neuronal development through its binding to DNA, recognition of sites of methyl-CpG (mCpG) DNA modification, and interaction with other regulatory proteins. Our study explores the relationship between mCpG and hydroxymethyl-CpG (hmCpG) recognition mediated by its mCpG binding domain (MBD) and binding cooperativity mediated by its C-terminal polypeptide. Previous study of the isolated MBD of MeCP2 documented an unusual mechanism by which ion uptake is required for discrimination of mCpG and hmCpG from CpG. MeCP2 binding cooperativity suppresses discrimination of modified DNA and is highly sensitive to both the total ion concentration and the type of counterions. Higher than physiological total ion concentrations completely suppress MeCP2 binding cooperativity, indicating a dominant electrostatic component to the interaction. Substitution of SO4(2-) for Cl(-) at physiological total ion concentrations also suppresses MeCP2 binding cooperativity, This effect is of particular note as the intracellular Cl(-) concentration changes during neuronal development. A related effect is that the protein-stabilizing solutes, TMAO and glutamate, reduce MeCP2 (but not isolated MBD) binding affinity by 2 orders of magnitude without affecting the apparent binding cooperativity. These observations suggest that polypeptide flexibility facilitates DNA binding by MeCP2. Consistent with this view, nuclear magnetic resonance (NMR) analyses show that ions have discrete effects on the structure of MeCP2, both MBD and the C-terminal domains. Notably, anion substitution results in changes in the NMR chemical shifts of residues, including some whose mutation causes the autism spectrum disorder Rett syndrome. Binding cooperativity makes MeCP2 an effective competitor with histone H1 for accessible DNA sites. The relationship between MeCP2 binding specificity and cooperativity is discussed in the context of chromatin binding, neuronal function, and neuronal development.
Collapse
Affiliation(s)
- Sergei Khrapunov
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Yisong Tao
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Huiyong Cheng
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Camille Padlan
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Richard Harris
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Aristea S Galanopoulou
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John M Greally
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Mark E Girvin
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Michael Brenowitz
- Department of Biochemistry, ‡Departments of Neurology and Neuroscience, and §Department of Genetics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
39
|
Kim I, Lee SH, Jeong J, Park JH, Yoo MA, Kim CM. Functional Profiling of Human MeCP2 by Automated Data Comparison Analysis and Computerized Expression Pathway Modeling. Healthc Inform Res 2016; 22:120-8. [PMID: 27200222 PMCID: PMC4871842 DOI: 10.4258/hir.2016.22.2.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Methyl-CpG binding protein 2 (MeCP2) is a ubiquitous epigenetic factor that represses gene expression by modifying chromatin. Mutations in the MeCP2 gene cause Rett syndrome, a progressive neurodevelopmental disorder. Recent studies also have shown that MeCP2 plays a role in carcinogenesis. Specifically, functional ablation of MeCP2 suppresses cell growth and leads to the proliferation of cancer cells. However, MeCP2's function in adult tissues remains poorly understood. We utilized a weight matrix-based comparison software to identify transcription factor binding site (TFBS) of MeCP2-regulated genes, which were recognized by cDNA microarray analysis. METHODS MeCP2 expression was silenced using annealed siRNA in HEK293 cells, and then a cDNA microarray analysis was performed. Functional analysis was carried out, and transcriptional levels in target genes regulated by MeCP2 were investigated. TFBS analysis was done within genes selected by the cDNA microarray analysis, using a weight matrix-based program and the TRANSFAC 6.0 database. RESULTS Among the differentially expressed genes with a change in expression greater than two-fold, 189 genes were up-regulated and 91 genes were down-regulated. Genes related to apoptosis and cell proliferation (JUN, FOSL2, CYR61, SKIL, ATF3, BMABI, BMPR2, RERE, and FALZ) were highly up-regulated. Genes with anti-apoptotic and anti-proliferative functions (HNRPA0, HIS1, and FOXC1) were down-regulated. Using TFBS analysis within putative promoters of novel candidate target genes of MeCP2, disease-related transcription factors were identified. CONCLUSIONS The present results provide insights into the new target genes regulated by MeCP2 under epigenetic control. This information will be valuable for further studies aimed at clarifying the pathogenesis of Rett syndrome and neoplastic diseases.
Collapse
Affiliation(s)
- Injoo Kim
- Department of Emergency Medical Technology, Dong-Eui Institute of Technology, Busan, Korea
| | - Shin Hae Lee
- Department of Biological Sciences, Inha University, Incheon, Korea
| | - Jinwoo Jeong
- Department of Emergency Medicine, Dong-A University College of Medicine, Busan, Korea
| | | | - Mi Ae Yoo
- Department of Molecular Biology, Pusan National University, Busan, Korea
| | - Cheol Min Kim
- Supercomputing Center, Pusan National University, Busan, Korea.; Research Center for Anti-Aging Technology Development, Pusan National University, Busan, Korea.; Department of Medical Informatics, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
40
|
Rett Syndrome Mutant Neural Cells Lacks MeCP2 Immunoreactive Bands. PLoS One 2016; 11:e0153262. [PMID: 27064487 PMCID: PMC4827835 DOI: 10.1371/journal.pone.0153262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/26/2016] [Indexed: 11/19/2022] Open
Abstract
Dysfunctions of MeCP2 protein lead to various neurological disorders such as Rett syndrome and Autism. The exact functions of MeCP2 protein is still far from clear. At a molecular level, there exist contradictory data. MeCP2 protein is considered a single immunoreactive band around 75 kDa by western-blot analysis but several reports have revealed the existence of multiple MeCP2 immunoreactive bands above and below the level where MeCP2 is expected. MeCP2 immunoreactive bands have been interpreted in different ways. Some researchers suggest that multiple MeCP2 immunoreactive bands are unidentified proteins that cross-react with the MeCP2 antibody or degradation product of MeCP2, while others suggest that MeCP2 post-transcriptional processing generates multiple molecular forms linked to cell signaling, but so far they have not been properly analyzed in relation to Rett syndrome experimental models. The purpose of this study is to advance understanding of multiple MeCP2 immunoreactive bands in control neural cells and p.T158M MeCP2e1 mutant cells. We have generated stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Application of N- and C- terminal MeCP2 antibodies, and also, RFP antibody minimized concerns about nonspecific cross-reactivity, since they react with the same antigen at different epitopes. We report the existence of multiple MeCP2 immunoreactive bands in control cells, stable wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Also, MeCP2 immunoreactive bands differences were found between wild-type and p.T158M MeCP2e1-RFP mutant expressing cells. Slower migration phosphorylated band around 70kDa disappeared in p.T158M MeCP2e1-RFP mutant expressing cells. These data suggest that threonine 158 could represent an important phosphorylation site potentially involved in protein function. Our results clearly indicate that MeCP2 antibodies have no cross-reactivity with similar epitopes on others proteins, supporting the idea that MeCP2 may exist in multiple different molecular forms and that molecular pattern variations derived from altered post-transcriptional processing may underlay Rett syndrome physiophatology.
Collapse
|
41
|
Suzuki A, Shinoda M, Honda K, Shirakawa T, Iwata K. Regulation of transient receptor potential vanilloid 1 expression in trigeminal ganglion neurons via methyl-CpG binding protein 2 signaling contributes tongue heat sensitivity and inflammatory hyperalgesia in mice. Mol Pain 2016; 12:12/0/1744806916633206. [PMID: 27030715 PMCID: PMC4956183 DOI: 10.1177/1744806916633206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 01/22/2023] Open
Abstract
Background Pain hypoalgesia has been reported in Rett syndrome patients, a severe neurodevelopmental disorder which can be attributed to mutations in the methyl-CpG binding protein 2 (MeCP2). Here, we examined the role of MeCP2 signaling in tongue heat sensitivity in the normal and inflamed state using Mecp2 heterozygous (Mecp2+/−) mice. Results Heat hypoalgesia of the tongue occurred in Mecp2+/− mice and submucosal injection of complete Freund’s adjuvant into the tongue produced a long-lasting heat hyperalgesia at the inflamed site in wild-type mice but not in Mecp2+/− mice. Transient receptor potential vanilloid 1 was expressed in a large number of MeCP2-immunoreactive trigeminal ganglion neurons innervating the tongue in both wild-type and Mecp2+/− mice (70.9% in wild type; 72.1% in Mecp2+/−). The number of transient receptor potential vanilloid 1-immunoreactive trigeminal ganglion neurons innervating the tongue was smaller in Mecp2+/− mice relative to wild-type mice (30.5% in wild type; 20.2% in Mecp2+/−). Following complete Freund’s adjuvant injection, the number of transient receptor potential vanilloid 1- and MeCP2-immunoreactive trigeminal ganglion neurons innervating the tongue, as well as MeCP2 protein expression in trigeminal ganglion, was significantly increased in wild-type mice but not in Mecp2+/− mice. Additionally, tongue heat hyperalgesia following complete Freund’s adjuvant injection was completely suppressed by the administration of SB366791, a transient receptor potential vanilloid 1 antagonist, in the tongue. Conclusions These findings indicate that tongue heat sensitivity and hypersensitivity are dependent on the expression of transient receptor potential vanilloid 1 which is regulated via MeCP2 signaling in trigeminal ganglion neurons innervating the tongue.
Collapse
Affiliation(s)
- Azumi Suzuki
- Department of Pediatric Dentistry, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Kuniya Honda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Tetsuro Shirakawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
42
|
Signorini C, De Felice C, Leoncini S, Møller RS, Zollo G, Buoni S, Cortelazzo A, Guerranti R, Durand T, Ciccoli L, D’Esposito M, Ravn K, Hayek J. MECP2 Duplication Syndrome: Evidence of Enhanced Oxidative Stress. A Comparison with Rett Syndrome. PLoS One 2016; 11:e0150101. [PMID: 26930212 PMCID: PMC4773238 DOI: 10.1371/journal.pone.0150101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/09/2016] [Indexed: 11/30/2022] Open
Abstract
Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) are neurodevelopmental disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2) gene expression. A relationship between MECP2 loss-of-function mutations and oxidative stress has been previously documented in RTT patients and murine models. To date, no data on oxidative stress have been reported for the MECP2 gain-of-function mutations in patients with MDS. In the present work, the pro-oxidant status and oxidative fatty acid damage in MDS was investigated (subjects n = 6) and compared to RTT (subjects n = 24) and healthy condition (subjects n = 12). Patients with MECP2 gain-of-function mutations showed increased oxidative stress marker levels (plasma non-protein bound iron, intraerythrocyte non-protein bound iron, F2-isoprostanes, and F4-neuroprostanes), as compared to healthy controls (P ≤ 0.05). Such increases were similar to those observed in RTT patients except for higher plasma F2-isoprostanes levels (P < 0.0196). Moreover, plasma levels of F2-isoprostanes were significantly correlated (P = 0.0098) with the size of the amplified region. The present work shows unique data in patients affected by MDS. For the first time MECP2 gain-of-function mutations are indicated to be linked to an oxidative damage and related clinical symptoms overlapping with those of MECP2 loss-of-function mutations. A finely tuned balance of MECP2 expression appears to be critical to oxidative stress homeostasis, thus shedding light on the relevance of the redox balance in the central nervous system integrity.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Silvia Leoncini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Rikke S. Møller
- Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Gloria Zollo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Sabrina Buoni
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies,University of Siena, Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Montpellier, France
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maurizio D’Esposito
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy
- IRCSS Neuromed, Pozzilli, Italy
| | - Kirstine Ravn
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
43
|
MeCP2 regulation of cardiac fibroblast proliferation and fibrosis by down-regulation of DUSP5. Int J Biol Macromol 2016; 82:68-75. [DOI: 10.1016/j.ijbiomac.2015.10.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023]
|
44
|
SONG NING, LI KEQIANG, WANG YAN, CHEN ZONGYOU, SHI LIUBIN. Lentivirus-mediated knockdown of MeCP2 inhibits the growth of colorectal cancer cells in vitro. Mol Med Rep 2015; 13:860-6. [DOI: 10.3892/mmr.2015.4612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 10/14/2015] [Indexed: 11/06/2022] Open
|
45
|
MECP2, a gene associated with Rett syndrome in humans, shows conserved coding regions, independent Alu insertions, and a novel transcript across primate evolution. BMC Genet 2015; 16:77. [PMID: 26148505 PMCID: PMC4493987 DOI: 10.1186/s12863-015-0240-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/25/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The methyl-CpG Binding Protein two gene (MECP2) encodes a multifunctional protein comprising two isoforms involved in nuclear organization and regulation of splicing and mRNA template activity. This gene is normally expressed in all tissues, with a higher expression level in the brain during neuronal maturation. Loss of MECP2 function is the primary cause of Rett syndrome (RTT) in humans, a dominant, X-linked disorder dramatically affecting neural and motor development. RESULTS We investigated the molecular evolution of MECP2 in several primate taxa including 36 species in 16 genera of neotropical (platyrrhine) primates. The coding region of the MECP2_e2 isoform showed a high level of evolutionary conservation among humans and other primates, with amino acid substitutions in 14 codons and one in-frame insertion of a single serine codon, between codons 357 and 358, in Ateles paniscus. Most substitutions occurred in noncritical regions of MECP2 and the majority of the algorithms used for analyzing selection did not provide evidence of positive selection. Conversely, we found 48 sites under negative selection in different regions, 23 of which were consistently found by three different algorithms. Similar to an inverted Alu insert found previously in a lesser ape at a parallel location, one Alu insertion of approximately 300 bp in Cebus and Sapajus was found in intron 3. Phylogenetic reconstruction of the intron 3 data provided a topology that was coincident with the consensus arrangement of the primate taxa. RNAseq data in the neotropical primate Callimico goeldii revealed a novel transcript consisting of a noncontinuous region of the human-homologous intron 2 in this species; this transcript accounted for two putative polypeptides. CONCLUSIONS Despite the remarkable evolutionary conservation of MECP2, one in-frame codon insertion was observed in A. paniscus, and one region of intron 3 was affected by a trans-specific Alu retrotransposition in two neotropical primate genera. Moreover, identification of novel MECP2 transcripts in Callimico suggests that part of a homologous human intronic region might be expressed, and that the potential open reading frame in this region might be a subject of interest in RTT patients who carry an apparently normal MECP2 sequence.
Collapse
|
46
|
Jimenez-Mateos EM. Role of MicroRNAs in innate neuroprotection mechanisms due to preconditioning of the brain. Front Neurosci 2015; 9:118. [PMID: 25954143 PMCID: PMC4404827 DOI: 10.3389/fnins.2015.00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/23/2015] [Indexed: 01/27/2023] Open
Abstract
Insults to the brain that are sub-threshold for damage activate endogenous protective pathways, which can temporarily protect the brain against a subsequent harmful episode. This mechanism has been named as tolerance and its protective effects have been shown in experimental models of ischemia and epilepsy. The preconditioning-stimulus can be a short period of ischemia or mild seizures induced by low doses of convulsant drugs. Gene-array profiling has shown that both ischemic and epileptic tolerance feature large-scale gene down-regulation but the mechanism are unknown. MicroRNAs are a class of small non-coding RNAs of ~20-22 nucleotides length which regulate gene expression at a post-transcriptional level via mRNA degradation or inhibition of protein translation. MicroRNAs have been shown to be regulated after non-harmful and harmful stimuli in the brain and to contribute to neuroprotective mechanisms. This review focuses on the role of microRNAs in the development of tolerance following ischemic or epileptic preconditioning.
Collapse
Affiliation(s)
- Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland Dublin, Ireland
| |
Collapse
|
47
|
Gong M, Liu J, Sakurai R, Corre A, Anthony S, Rehan VK. Perinatal nicotine exposure suppresses PPARγ epigenetically in lung alveolar interstitial fibroblasts. Mol Genet Metab 2015; 114:604-12. [PMID: 25661292 PMCID: PMC4390504 DOI: 10.1016/j.ymgme.2015.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
Abstract
Due to the active inhibition of the adipogenic programming, the default destiny of the developing lung mesenchyme is to acquire a myogenic phenotype. We have previously shown that perinatal nicotine exposure, by down-regulating PPARγ expression, accentuates this property, culminating in myogenic pulmonary phenotype, though the underlying mechanisms remained incompletely understood. We hypothesized that nicotine-induced PPARγ down-regulation is mediated by PPARγ promoter methylation, controlled by DNA methyltransferase 1 (DNMT1) and methyl CpG binding protein 2 (MeCP2), two known key regulators of DNA methylation. Using cultured alveolar interstitial fibroblasts and an in vivo perinatal nicotine exposure rat model, we found that PPARγ promoter methylation is strongly correlated with inhibition of PPARγ expression in the presence of nicotine. Methylation inhibitor 5-aza-2'-deoxycytidine restored the nicotine-induced down-regulation of PPARγ expression and the activation of its downstream myogenic marker fibronectin. With nicotine exposure, a specific region of PPARγ promoter was significantly enriched with antibodies against chromatin repressive markers H3K9me3 and H3K27me3, dose-dependently. Similar data were observed with antibodies against DNA methylation regulatory factors DNMT1 and MeCP2. The knock down of DNMT1 and MeCP2 abolished nicotine-mediated increases in DNMT1 and MeCP2 protein levels, and PPARγ promoter methylation, restoring nicotine-induced down regulation of PPARγ and upregulation of the myogenic protein, fibronectin. The nicotine-induced alterations in DNA methylation modulators DNMT1 and MeCP2, PPARγ promoter methylation, and its down-stream targets, were also validated in perinatally nicotine exposed rat lung tissue. These data provide novel mechanistic insights into nicotine-induced epigenetic silencing of PPARγ that could be exploited to design novel targeted molecular interventions against the smoke exposed lung injury in general and perinatal nicotine exposure induced lung damage in particular.
Collapse
Affiliation(s)
- M Gong
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - J Liu
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - R Sakurai
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - A Corre
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - S Anthony
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA
| | - V K Rehan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, CA, USA.
| |
Collapse
|
48
|
Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med 2015; 49:1567-78. [PMID: 25824446 DOI: 10.1136/bjsports-2014-094073] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 01/16/2023]
Abstract
BACKGROUND Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). OBJECTIVE We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). DESIGN Gene ontology (ie, gene product elucidation)/meta-analysis. DATA SOURCES 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. DATA EXTRACTION g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. DATA SYNTHESIS Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. RESULTS Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. CONCLUSIONS Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. TRIAL REGISTRATION NUMBER CRD42014009800.
Collapse
|
49
|
Sanders YY, Liu H, Liu G, Thannickal VJ. Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radic Biol Med 2015; 79:197-205. [PMID: 25526894 DOI: 10.1016/j.freeradbiomed.2014.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 11/25/2022]
Abstract
Aging is a well-known risk factor for a large number of chronic diseases, including those of the lung. Cellular senescence is one of the hallmarks of aging, and contributes to the pathogenesis of age-related diseases. Recent studies implicate the reactive oxygen species (ROS)-generating enzyme, NADPH oxidase 4 (Nox4) in cellular senescence. In this study, we investigated potential mechanisms for epigenetic regulation of Nox4. We observed constitutively high levels of Nox4 gene/protein and activity in a model of replication-induced cellular senescence of lung fibroblasts. In replicative senescent fibroblasts, the Nox4 gene is enriched with the activation histone mark, H4K16Ac, and inversely associated with the repressive histone mark, H4K20Me3, supporting an active transcriptional chromatin conformation. Silencing of the histone acetyltransferase Mof, which specifically acetylates H4K16, down-regulates Nox4 gene/protein expression. The Nox4 gene promoter is rich in CpG sites; mixed copies of methylated and unmethylated Nox4 DNA were detected in both nonsenescent and senescent cells. Interestingly, the Nox4 gene is variably associated with specific DNA methyltransferases and methyl binding proteins in these two cell populations. These results indicate a critical role for histone modifications involving H4K16Ac in epigenetic activation of the Nox4 gene, while the role of DNA methylation may be contextual. Defining mechanisms for the epigenetic regulation of Nox4 will aid in the development of novel therapeutic strategies for age-related diseases in which this gene is overexpressed, in particular idiopathic pulmonary fibrosis and cancer.
Collapse
Affiliation(s)
- Yan Y Sanders
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Hui Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gang Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
50
|
Chu Y, Wang Y, Zhang G, Chen H, Dowdy SC, Xiong Y, Liu F, Zhang R, Li J, Jiang SW. Chromatin composition alterations and the critical role of MeCP2 for epigenetic silencing of progesterone receptor-B gene in endometrial cancers. Cell Mol Life Sci 2014; 71:3393-408. [PMID: 24531693 PMCID: PMC11113436 DOI: 10.1007/s00018-014-1580-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To understand the epigenetic mechanism underlying the PR-B gene silencing in endometrial cancer (EC) cells, we compared the chromatin composition between transcriptionally active and silenced PR-B genes in EC cell lines and cancer tissues. METHODS Chromatin Immunoprecipitation (ChIP) assay was performed to measure MBD occupancy and histone acetylation/methylation in transcriptionally active and silenced PR-B genes. PR-B-positive/-negative, as well as epigenetic inhibitor-treated/-untreated EC cells were used as study models. Real-time polymerase chain reaction (PCR) and Western blot analysis were applied to measure the mRNA and protein levels of PR-B, MBD, and histones. RESULTS A close association among PR-B methylation, MBD binding and PR-B gene silencing was observed. Treatment with epigenetic inhibitors led to dynamic changes in the PR-B chromatin composition and gene expression. Increased H3/H4 acetylation and H3-K4 methylation, and decreased H3-K9 methylation were found to be associated with re-activation of silenced PR-B genes. MeCP2 knockdown resulted in a decreased MeCP2 binding to PR-B genes and an increased PR-B expression. ChIP analysis of MeCP2 binding to PR-B genes in the PR-B-positive/-negative EC samples confirmed the significant role of MeCP2 in PR-B silencing. CONCLUSION PR-B gene expression is regulated by a concerted action of epigenetic factors including DNA methylation, MBD binding, and histone modifications. MeCP2 occupancy of PR-B genes plays a critical role in PR-B gene silencing. These findings enriched our knowledge of the epigenetic regulation of PR-B expression in EC, and suggested that the epigenetic re-activation of PR-B could be explored as a potential strategy to sensitize the PR-B-negative endometrial cancers to progestational therapy.
Collapse
Affiliation(s)
- Yongli Chu
- Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000 China
| | - Yanlin Wang
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, 256603 China
| | - Guanghua Zhang
- Tianjin Medical University Cancer Hospital, Tianjin, 300060 China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Guangdong, China
| | - Sean C. Dowdy
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
| | - Yuning Xiong
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
| | - Fengming Liu
- Department of Research and Development, Guangxi Medicinal Botanical Institute, Nanning, 530024 China
| | - Run Zhang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| | - Jinping Li
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
- Curtis & Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, 4700 Waters Avenue, Savannah, GA 31404 USA
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| | - Shi-Wen Jiang
- Department of Obstetrics and Gynecology, Mayo Clinic and Mayo Medical School, Rochester, MN 55905 USA
- Curtis & Elizabeth Anderson Cancer Institute, Memorial Health University Medical Center, 4700 Waters Avenue, Savannah, GA 31404 USA
- Department of Obstetrics and Gynecology, Memorial Health University Medical Center, 4700 Waters Avenue, Savannah, GA 31404 USA
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| |
Collapse
|