1
|
Rabha M, Das D, Konwar T, Acharjee S, Sarmah BK. Whole genome sequencing of a novel Bacillus thuringiensis isolated from Assam soil. BMC Microbiol 2023; 23:91. [PMID: 37003972 PMCID: PMC10064770 DOI: 10.1186/s12866-023-02821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Bacillus thuringiensis (Bt) is a gram-positive ubiquitous saprophytic bacterium that produces proteins (Crystal protein, Vegetative insecticidal protein, and Secreted insecticidal protein) toxic to insects during its growth cycle. In the present study, the whole genome of a locally isolated B. thuringiensis strain BA04 was sequenced to explore the genetic makeup and to identify the genes responsible to produce insecticidal proteins including the virulence factors. The strain was isolated from the soil sample of the Kaziranga National Park, Assam, North-Eastern part of India (Latitude: 26°34'39.11''N and Longitude: 93°10'16.04''E). RESULTS The whole genome sequencing (WGS) of the BA04 strain revealed that it has a circular genome of size 6,113,005 bp with four numbers of plasmids. A total of 6,111 genes including two novel crystal protein-encoding genes (MH753362.1 and MH753363.1) were identified. The BLASTn analysis of MH753362.1 showed 84% similarities (maximum identity) with Cry1Ia (KJ710646.1) gene, whereas MH753363.1 exhibited 66% identity with Insecticidal Crystal Protein (ICP)-6 gene (KM053257.1). At the protein level, MH753362.1 and MH753363.1 shared 79% identity with Cry1Ia (AIW52613.1) and 40% identity with Insecticidal Crystal Protein (ICP)-6 (AJW76687.1) respectively. Three-dimensional structures of these two novel protein sequences revealed that MH753362.1 have 48% structural similarity with Cry8ea1 protein, whereas MH753363.1 showed only 20% structural similarity with Cry4Aa protein. Apart from these insecticidal genes, the strain was also found to contain virulence and virulence-associated factors including the antibiotic resistance genes and Clustered regularly interspaced short palindromic repeat (CRISPR) sequences. CONCLUSION This is the first report on the whole genome sequence of Bt strain BA04 isolated from Assam, a North-Eastern state of India. The WGS of strain BA04 unveils the presence of two novel types of insecticidal crystal protein-encoding genes which can be used for the development of insect-resistant transgenic crops. Additionally, the strain could be used for the formulations of effective biopesticides. The WGS provides the fastest and cheapest platform for a better understanding of the genetic makeup of a strain and helps to explore the role of virulence genes in pathogenicity against the insect host.
Collapse
Affiliation(s)
- Mihir Rabha
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Silkworm Pathology Section, Central Sericultural Research and Training Institute, Central Silk Board, Ministry of Textile, Govt of India, Berhampore, West Bengal, 7421 01, India
| | - Debajit Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India
| | - Trishna Konwar
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India.
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India.
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India.
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India.
| |
Collapse
|
2
|
Chelliah R, Wei S, Park BJ, Rubab M, Banan-Mwine Dalirii E, Barathikannan K, Jin YG, Oh DH. Whole genome sequence of Bacillus thuringiensis ATCC 10792 and improved discrimination of Bacillus thuringiensis from Bacillus cereus group based on novel biomarkers. Microb Pathog 2019; 129:284-297. [DOI: 10.1016/j.micpath.2019.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 11/17/2022]
|
3
|
Lone SA, Malik A, Padaria JC. Selection and characterization of Bacillus thuringiensis strains from northwestern Himalayas toxic against Helicoverpa armigera. Microbiologyopen 2017; 6:e00484. [PMID: 29047221 PMCID: PMC5727364 DOI: 10.1002/mbo3.484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/02/2022] Open
Abstract
In this study, we present the selection and the characterization of Bacillus thuringiensis (Bt) strains with respect to their cry/cyt gene content and toxicity evaluation toward one of the most important polyphagous lepidopteran pest, Helicoverpa armigera. Fifty-six Bt isolates were obtained from 10 different regions of northwestern Himalayas, recording a total B. thuringiensis index of 0.62. Scanning electron microscopy revealed presence of bipyramidal, spherical, flat and irregular crystal shapes; SDS-PAGE analysis of spore-crystal mixtures showed the prominence of 130, 70, and 100 kDa protein bands in majority of the isolates; PCR analysis with primers for eight cry and cyt gene families and 13 cry gene subfamilies resulted in isolates showing different combinations of insecticidal genes. Strains containing cry1 were the most abundant (57.1%) followed by cyt2 (46.42%), cry11 (37.5%), cry2 (28.57%), cry4 (21.42%), cyt1 (19.64%), cry3 (8.9%), and cry7, 8 (7.14%). A total of 30.35% of the strains did not amplify with any of the primers used in this study. Median lethal concentration 50 (LC50 ) estimates of spore-crystal mixtures of Bt-JK12, 17, 22, 48, and 72 against second instar larvae of H. armigera was observed to be 184.62, 275.39, 256.29, 259.93 μg ml-1 , respectively. B. thuringiensis presents great diversity with respect to the presence of crystal protein encoding genes and insecticidal activity. Four putative toxic isolates identified in this study have potential application in insect pest control. B. thuringiensis isolate JK12 exhibited higher toxicity against H. armigera than that of B. thuringiensis HD1, hence can be commercially exploited to control insect pest for sustainable crop production. The results of this study confirm the significance of continuous exploration of new Bt stains from different ecological regions of the world.
Collapse
Affiliation(s)
- Showkat A. Lone
- Department of Agricultural MicrobiologyFaculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia
- Biotechnology and Climate Change GroupICAR‐National Research Centre on Plant Biotechnology (NRCPB)New DelhiIndia
| | - Abdul Malik
- Department of Agricultural MicrobiologyFaculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia
| | - Jasdeep C. Padaria
- Biotechnology and Climate Change GroupICAR‐National Research Centre on Plant Biotechnology (NRCPB)New DelhiIndia
| |
Collapse
|
4
|
Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley. 3 Biotech 2017; 7:143. [PMID: 28597156 DOI: 10.1007/s13205-017-0756-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/30/2017] [Indexed: 10/19/2022] Open
Abstract
Bacillus thuringiensis (Bt) being an eco-friendly bioinsecticide is effectively used in pest management strategies and, therefore, isolation and identification of new strains effective against a broad range of target pests is important. In the present study, new indigenous B. thuringiensis strains were isolated and investigated so that these could be used as an alternative and/or support the current commercial strains/cry proteins in use. For this, 159 samples including soil, leaf and spider webs were collected from ten districts of Kashmir valley (India). Of 1447 bacterial strains screened, 68 Bt strains were identified with 4 types of crystalline inclusions. Crystal morphology ranking among the Bt strains was spherical (69.11%) > spore attached (8.82%) > rod (5.88%) = bipyramidal (5.88%) > spherical plus rod (4.41%) > spherical plus bipyramidal (2.94%) = cuboidal (2.94%). SDS-PAGE investigation of the spore-crystal mixture demonstrated Bt strains contained proteins of various molecular weights ranging from 150 to 28 kDa. Insecticidal activity of the 68 indigenous Bt strains against Spodoptera litura neonates showed that Bt strain SWK1 strain had the highest mortality. Lepidopteron active genes (cry1, cry2Ab, cry2Ab) were present in six Bt strains. Further, analysis of a full-length cry2A gene (~1.9 kb) by PCR-RFLP in strain SWK1 revealed that it was a new cry2A gene in Bt strain SWK1 and was named as cry2Al1 (GenBank Accession No. KJ149819.1) using the Bt toxin nomenclature ( http://www.btnomenclature.info ). Insect bioassays with neonate larvae of S. litura and H. armigera showed that the purified Cry2Al1 is toxic to S. litura with LC50 2.448 µg/ml and H. armigera with LC50 3.374 µg/ml, respectively. However, it did not produce any mortality in third instar larvae of Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi larvae/pupae insects (100 µg/ml) at 28 ± 2 °C and 75 to 85% relative humidity under a photoperiod of 14L:10D.
Collapse
|
5
|
Lone SA, Malik A, Padaria JC. Characterization of lepidopteran-specific cry1 and cry2 gene harbouring native Bacillus thuringiensis isolates toxic against Helicoverpa armigera. ACTA ACUST UNITED AC 2017. [PMID: 28649558 PMCID: PMC5472238 DOI: 10.1016/j.btre.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacillus thuringiensis (Bt) based biopesticides are feasible alternatives to chemical pesticides. Here, we present the distribution of lepidopteran-specific cry1 and cry2 genes in native B. thuringiensis. Forty four out of 86 colonies were found to harbour crystals by phase contrast microscopy exhibiting a Bt index of 0.51. PCR analysis resulted in the amplification of cry1 in 24 and cry2 in 14 isolates. Twelve of the isolates showed presence of both cry1 and cry2, while 18 isolates did not show presence of either of the genes. Toxicity screening using spore-crystal mixtures against 2nd instar larvae of Helicoverpa armigera revealed that the isolates (50%) were either mildly toxic or not toxic (36.36%), and only 13.63% were toxic. The results are interesting, particularly so because the same isolates were previously reported to contain lepidopteran specific vip3A genes also, hence can complement the toxicity of the isolates harbouring vip3A genes.
Collapse
Affiliation(s)
- Showkat Ahmad Lone
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
- Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology, New Delhi, India
| | - Abdul Malik
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Jasdeep Chatrath Padaria
- Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology, New Delhi, India
- Corresponding author at: Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology (NRCPB), Pusa Campus, New Delhi, 110012, India.Biotechnology and Climate Change GroupNational Research Centre on Plant BiotechnologyNew DelhiIndia
| |
Collapse
|
6
|
A promising HD133-like strain of Bacillus thuringiensis with dual efficiency to the two Lepidopteran pests: Spodoptera littoralis (Noctuidae) and Ephestia kuehniella (Pyralidae). Toxicon 2016; 118:112-20. [DOI: 10.1016/j.toxicon.2016.04.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 11/20/2022]
|
7
|
Abdelmalek N, Sellami S, Ben Kridis A, Tounsi S, Rouis S. Molecular characterisation of Bacillus thuringiensis strain MEB4 highly toxic to the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). PEST MANAGEMENT SCIENCE 2016; 72:913-921. [PMID: 26103535 DOI: 10.1002/ps.4066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/01/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Cry2 proteins play an essential role in current Bacillus thuringiensis (Bt) applications and in the prevention of insect resistance to Cry1A toxins. This paper reports on the screening and characterisation of novel Bt strains harbouring effective cry2A-type genes and higher insecticidal activity to Ephestia kuehniella. RESULTS A total of 29 native Bt strains were screened to search for the potent strain against E. kuehniella. The plasmid pattern of the selected strains showed interesting variability. PCR-RFLP analysis of two amplified regions showed high sequence identity within the selected cry2A-type genes. SDS-PAGE and western blot analysis revealed the presence of Cry2Aa toxin only in the MEB4 and BLB240 strains. The activation of Cry2Aa protoxins by larval midgut juice, trypsin or chymotrypsin enzymes revealed significant differences in terms of proteolysis profiles. Interestingly, a 49 kDa band was detected in the proteolysis pattern of BLB240, suggesting the presence of a chymotrypsin cleavage site that might have affected its insecticidal activity. Further, bioassays demonstrated that MEB4 (103.08 ± 36 µg g(-1)) was more active than BLB240 (153.77 ± 45.65 µg g(-1)) against E. kuehniella. CONCLUSION Based on its potent insecticidal activity, the MEB4 strain could be considered to be an effective alternative agent for the control of E. kuehniella.
Collapse
Affiliation(s)
- Nouha Abdelmalek
- Laboratory of Plant Protection and Improvement (Biopesticides Team), Centre of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Sameh Sellami
- Laboratory of Plant Protection and Improvement (Biopesticides Team), Centre of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Asma Ben Kridis
- Laboratory of Plant Protection and Improvement (Biopesticides Team), Centre of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Slim Tounsi
- Laboratory of Plant Protection and Improvement (Biopesticides Team), Centre of Biotechnology, University of Sfax, Sfax, Tunisia
| | - Souad Rouis
- Laboratory of Plant Protection and Improvement (Biopesticides Team), Centre of Biotechnology, University of Sfax, Sfax, Tunisia
| |
Collapse
|
8
|
Isolation and characterization of a new Bacillus thuringiensis strain with a promising toxicity against Lepidopteran pests. Microbiol Res 2016; 186-187:9-15. [PMID: 27242138 DOI: 10.1016/j.micres.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/14/2016] [Accepted: 02/18/2016] [Indexed: 11/22/2022]
Abstract
Insecticides derived from Bacillus thuringiensis are gaining worldwide importance as environmentally desirable alternatives to chemicals for the control of pests in public health and agriculture. Isolation and characterization of new strains with higher and broader spectrum of activity is an ever growing field. In the present work, a novel Tunisian B. thuringiensis isolate named BLB459 was characterized and electrophoresis assay showed that among a collection of 200 B. thuringiensis strains, the plasmid profile of BLB459 was distinctive. SmaI-PFGE typing confirmed the uniqueness of the DNA pattern of this strain, compared with BUPM95 and HD1 reference strains. PCR and sequencing assays revealed that BLB459 harbored three cry genes (cry30, cry40 and cry54) corresponding to the obtained molecular sizes in the protein pattern. Interestingly, PCR-RFLP assay demonstrated the originality of the BLB459 cry30-type gene compared to the other published cry30 genes. Insecticidal bioassays showed that BLB459 spore-crystal suspension was highly toxic to both Ephestia kuehniella and Spodoptera littoralis with LC50 values of about 64 (53-75) and 80 (69-91) μg of toxin cm(-2), respectively, comparing with that of the commercial strain HD1 used as reference. Important histopathological effects of BLB459 δ-endotoxins on the two tested larvae midguts were detected, traduced by the vacuolization of the apical cells, the damage of microvilli, and the disruption of epithelial cells. These results proved that BLB459 strain could be of a great interest for lepidopteran biocontrol.
Collapse
|
9
|
Lone SA, Yadav R, Malik A, Padaria JC. Molecular and insecticidal characterization of Vip3A protein producing Bacillus thuringiensis strains toxic against Helicoverpa armigera (Lepidoptera: Noctuidae). Can J Microbiol 2015; 62:179-90. [PMID: 26751639 DOI: 10.1139/cjm-2015-0328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vegetative insecticidal proteins (Vip) represent the second generation of insecticidal proteins produced by Bacillus thuringiensis (Bt) during the vegetative growth stage of growth. Bt-based biopesticides are recognized as viable alternatives to chemical insecticides; the latter cause environmental pollution and lead to the emergence of pest resistance. To perform a systematic study of vip genes encoding toxic proteins, a total of 30 soil samples were collected from diverse locations of Kashmir valley, India, and characterized by molecular and analytical methods. Eighty-six colonies showing Bacillus-like morphology were selected. Scanning electron microscopy observations confirmed the presence of different crystal shapes, and PCR analysis of insecticidal genes revealed a predominance of the lepidopteran-specific vip3 (43.18%) gene followed by coleopteran-specific vip1 (22.72%) and vip2 (15.90%) genes in the isolates tested. Multi-alignment of the deduced amino acid sequences revealed that vip3 sequences were highly conserved, whereas vip1 and vip2 showed adequate differences in amino acid sequences compared with already reported sequences. Screening for toxicity against Helicoverpa armigera larvae was performed using partially purified soluble fractions containing Vip3A protein. The mortality levels observed ranged between 70% and 96.6% in the isolates. The LC50 values of 2 of the native isolates, JK37 and JK88, against H. armigera were found to be on par with that of Bt subsp. kurstaki HD1, suggesting that these isolates could be developed as effective biopesticides against H. armigera.
Collapse
Affiliation(s)
- Showkat Ahmad Lone
- a Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.,b Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Radha Yadav
- b Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Abdul Malik
- a Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Jasdeep Chatrath Padaria
- b Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
10
|
Huang T, Xiao Y, Pan J, Zhang L, Gelbič I, Guan X. Characterization of cry1Cb3 and cry1Fb7 from Bacillus thuringiensis subsp. galleriae. Open Life Sci 2015. [DOI: 10.1515/biol-2015-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractTwo cry1-type genes encoding insecticidal crystal proteins (ICPs) were detected by PCR-RFLP and cloned from Bacillus thuringiensis subsp. galleriae 87. The nucleotide sequences were deposited in GenBank with accession numbers EU679501 and EU679502, and designated as cry1Fb7 and cry1Cb3 respectively by B. thuringiensis Delta- Endotoxin Nomenclature Committee. cry1Cb3 shared 99% homology with other cry1Cb genes. The existence of two additional stop codons indicated cry1Cb3 was a silent gene. The cry1Cb3 was 3531 bp with 38.98% G+C content and its first open reading frame (ORF) encoded a protein of 213 amino acid residues with a calculated molecular weight of 23.8 kDa and a predicted pI value of 4.63. Five amino acid sequence blocks (block 1, block 2, block 3, block 4 and block 5) were found in Cry1Cb3. Translation of cry1Fb7 revealed an ORF of 3525 bp with 39.12% G+C content and a protein with a calculated molecular weight of 133.2 kDa and a predicted pI value of 5.18. Cry1Fb7 had five amino acid sequence blocks (blocks 1, 2, 3, 4 and 5) and three domains (I, II and III), which consisted of 218 residues (Leu
Collapse
|
11
|
García K, Ibarra JE, Bravo A, Díaz J, Gutiérrez D, Torres PV, Gomez de Leon P. Variability of Bacillus thuringiensis strains by ERIC-PCR and biofilm formation. Curr Microbiol 2014; 70:10-8. [PMID: 25129641 DOI: 10.1007/s00284-014-0675-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/07/2014] [Indexed: 10/24/2022]
Abstract
Bacillus thuringiensis (Bt) is a soil-dwelling bacterium of great interest for agronomical research because of its use as biological pesticide. There are some limitations regarding the subspecies classification. Phenotyping and genotyping studies are important to ascertain its variability. The diversity of 40 environmental strains, isolated from different regions in Mexico, was analyzed by ERIC-PCR and the ability of biofilm formation. Thirty-nine different fingerprinting patterns revealed enough data to discriminate among the 40 strains. A total of 24 polymorphic fragments with sizes between 139 and 1,468 bp were amplified. Almost all (95 %) strains showed biofilm formation after 96 h of incubation. At 96 h of incubation the biofilm-forming strains from the CINVESTAV collection showed a more heterogeneous ability as biofilms producers. Results showed a large intra-species genomic variability in Bt. However, some strains could be correlated as they were found within clusters depending on the location of isolation.
Collapse
Affiliation(s)
- Karina García
- Departamento de Salud Pública, Facultad de Medicina UNAM, Circuito escolar s/n Ciudad Universitaria, Col, Copilco Universidad, C.P. 04510, Mexico D. F, Mexico,
| | | | | | | | | | | | | |
Collapse
|
12
|
Katara J, Deshmukh R, Singh NK, Kaur S. Diversity Analysis of Bacillus thuringiensis Isolates Recovered from Diverse Habitats in India using Random Amplified Polymorphic DNA (RAPD) Markers. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/jbs.2013.514.520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
González A, Rodríguez G, Bruzón RY, Díaz M, Companionis A, Menéndez Z, Gato R. Isolation and characterization of entomopathogenic bacteria from soil samples from the western region of Cuba. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2013; 38:46-52. [PMID: 23701606 DOI: 10.1111/j.1948-7134.2013.12007.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The use of insect pathogens is a viable alternative for insect control because of their relative specificity and lower environmental impact. The search for wild strains against dipterans could have an impact on mosquito control programs. We have made an extensive screening of soil in western Cuba to find bacteria with larvicidal activity against mosquitoes. A total of 150 soil samples were collected and isolates were identifying using the API 50 CHB gallery. Phenotypic characteristics were analyzed by hierarchical ascending classification. Quantitative bioassays were conducted under laboratory conditions following the World Health Organization protocol in order to ascertain the toxicity and efficacy of isolates. The protein profiles of the crystal components were determined by SDS-PAGE. Eight hundred and eighty-one bacterial isolates were obtained, and 13 isolates with entomopathogenic activity were isolated from nine samples. Nine isolates displayed higher entomopathogenic activity against both Cx. quinquefasciatus and Ae. aegypti compared with the reference strain 266/2. All toxic isolates showed higher biological potency than the 266/2 strain. These isolates with high entomopathogenic activity displayed a protein pattern similar to the B. thuringiensis var. israelensis IPS-82 and 266/2 strains. These results are a valuable tool for the control of Diptera of medical importance.
Collapse
Affiliation(s)
- Aileen González
- LABIOFAM, Havana, Cuba Department of Vector Control, Institute of Tropical Medicine Pedro Kourí, Havana Cuba, Marianao 13, Havana, Cuba.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ricieto APS, Fazion FAP, Carvalho Filho CD, Vilas-Boas LA, Vilas-Bôas GT. Effect of vegetation on the presence and genetic diversity of Bacillus thuringiensis in soil. Can J Microbiol 2013; 59:28-33. [PMID: 23391226 DOI: 10.1139/cjm-2012-0462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus thuringiensis isolates were obtained from soil samples collected at different sites located in the same region but with different vegetation. The sites showed different frequencies of B. thuringiensis, depending on the type of vegetation. Strains of B. thuringiensis were found to be less common in samples of riparian forest soil than in soil of other types of vegetation. The rate of occurrence of B. thuringiensis in the samples also varied according to the vegetation. These results show that whenever this bacterium was found, it showed a high rate of occurrence, indicating that this species could be better adapted to using soil as a reservoir than other Bacillus species. The presence of cry genes was analyzed by polymerase chain reaction, and genes that exhibited activity against Diptera species were the most commonly found. The isolates obtained were characterized by random amplified polymorphic DNA, and 50% were clustered into clonal groups. These results demonstrated the possible occurrence of a high number of genetically similar strains when samples are collected from the same region, even if they are from locations with different vegetation.
Collapse
Affiliation(s)
- Ana Paula Scaramal Ricieto
- Departamento de Biologia Geral, Universidade Estadual de Londrina, CP6001, 86051-990, Londrina/PR, Brazil
| | | | | | | | | |
Collapse
|
15
|
Santos F, Lopes J, Vilas-Bôas G, Zequi J. Characterization of Bacillus thuringiensis isolates with potential for control of Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Acta Trop 2012; 122:64-70. [PMID: 22178674 DOI: 10.1016/j.actatropica.2011.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
Aedes aegypti (Linnaeus) is the vector of dengue virus in Brazil. Bioinsecticides based on Bacillus thuringiensis have shown satisfactory results in the control of Diptera, due to the production of proteins called Cry and Cyt. The aim of the present study was to select B. thuringiensis isolates carrying the cry and cyt genes, which are efficient in the control of Ae. aegypti. A collection of 27 isolates of B. thuringiensis, derived from various regions in Brazil, was evaluated using selective bioassays against A. aegypti larvae. Of the 27 isolates, five showed 100% larval mortality at a concentration of 0.05 ppm and the toxicity of these isolates in quantitative bioassays did not differ significantly at temperatures of 15, 25 and 35 °C. In addition, these isolates showed statistical differences for the LC50 values only above pH 9, which indicates a maintenance in insecticide potential in a wide range of alkaline pH values. This result is promising, considering that waste treatment reservoirs generally show an acid pH and higher temperatures. These isolates were also evaluated by PCR using specific primers for the genes cry4A, cry4B, cry10A, cry11, cyt1 and cyt2. The analyses demonstrated that all the five isolates showed amplification products for all the studied genes showing four different Cry proteins, besides Cyt proteins. The obtained results of bioassays and PCR demonstrates the great potential for the use of these isolates in controlling populations of Ae. Aegypti and perhaps other species of mosquitoes in a wide range of environments.
Collapse
|
16
|
Zhang W, Crickmore N, George Z, Xie L, He YQ, Li Y, Tang JL, Tian L, Wang X, Fang X. Characterization of a new highly mosquitocidal isolate of Bacillus thuringiensis – An alternative to Bti? J Invertebr Pathol 2012; 109:217-22. [DOI: 10.1016/j.jip.2011.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/31/2011] [Accepted: 11/05/2011] [Indexed: 11/26/2022]
|
17
|
Cloning, characterization and diversity of insecticidal crystal protein genes of bacillus thuringiensis native isolates from soils of Andaman and Nicobar Islands. Curr Microbiol 2011; 63:420-5. [PMID: 21858696 DOI: 10.1007/s00284-011-9998-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 08/07/2011] [Indexed: 10/17/2022]
Abstract
Bt strains were isolated from soils of Andaman and Nicobar Islands and characterized by microscopic and molecular methods. Diversity was observed both in protein and cry gene profiles, where majority of the isolates showed presence of 65 kDa protein band on SDS-PAGE while rest of them showed 130, 72, 44, and 29 kDa bands. PCR analysis revealed predominance of cry1I and cry7, 8 genes in these isolates. The PCR screening strategy presented here led us to identify putative novel cry genes which could be active against Coleoptera insects. Variation in the nucleotide sequences of cry genes from the isolates suggests that the genetic diversity of Bt isolates results from the influence of different ecological factors and spatial separation between strains generated by the conquest of different habitats in the soils of Andaman and Nicobar islands. The implications of our studies are important from the point of view of identifying novel cry genes that could be toxic to insects other than lepidoptera.
Collapse
|
18
|
Aboussaid H, Vidal-Quist JC, Oufdou K, El Messoussi S, Castañera P, González-Cabrera J. Occurrence, characterization and insecticidal activity of Bacillus thuringiensis strains isolated from argan fields in Morocco. ENVIRONMENTAL TECHNOLOGY 2011; 32:1383-1391. [PMID: 21970180 DOI: 10.1080/09593330.2010.536789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Soils collected from five locations in the argan forest (an endemic plant) in Morocco were used to form the first collection of Bacillus thuringiensis (Bt) strains from this area (58 strains). Here we found that the argan forest is a major source of Bt, as 90.62% of the samples contained Bt strains. These strains produced mainly spherical or irregular crystals that in some cases remained adhered to the spore after cell lysis. There was no strain producing bipyramidal crystals, suggesting the absence of strains bearing crv1 genes. This was confirmed by PCR analysis using eight primer pairs that can potentially detect 13 different groups of cry and cyt genes. Strains containing cry7/8 were the most abundant (25.53%), followed by strains harbouring cry9A (14.89%), cry11 (8.51%) and cry4 (4.25%). The mixtures of spores and crystals as well as culture supernatants were assayed for toxicity towards Ceratitis capitata (Medfly), showing up to 30% mortality. Our findings suggest that the argan region is a suitable target for future and wider screening programmes looking for strains bearing toxins or combinations of them to develop more efficient Bt-based formulates.
Collapse
Affiliation(s)
- H Aboussaid
- Laboratory of Biology and Biotechnology of Microorganisms, Cadi Ayyad University, Faculty of Sciences-Semlalia, Marrakesh, Morocco
| | | | | | | | | | | |
Collapse
|
19
|
Shen XS, Su Q, Qiu ZP, Xu JY, Xie YX, Liu HF, Liu Y. Effects of artemisinin derivative on the growth metabolism of Tetrahymena thermophila BF5 based on expression of thermokinetics. Biol Trace Elem Res 2010; 136:117-25. [PMID: 19806328 DOI: 10.1007/s12011-009-8527-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/16/2009] [Indexed: 11/28/2022]
Abstract
The toxic effects of artesunate and dihydroartemisinin on the growth metabolism of Tetrahymena thermophila BF5 were studied by microcalorimetry. The results showed that: (1) low concentrations of artesunate (<or=1 mg L(-1)) and dihydroartemisinin (<or= 2 mg L(-1)) promoted the growth metabolism of T. thermophila BF5, whereas high concentrations of artesunate (1-60 mg L(-1)) and dihydroartemisinin (2-60 mg L(-1)) inhibited its growth; (2) the half inhibition concentrations IC(50) of artesunate and dihydroartemisinin were 17.5817 and 9.5089 mg L(-1), respectively. It was concluded that the inhibition of dihydroartemisinin was stronger than that of artesunate.
Collapse
Affiliation(s)
- Xue-Song Shen
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, 541004, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kleter GA, Peijnenburg AACM, Aarts HJM. Health considerations regarding horizontal transfer of microbial transgenes present in genetically modified crops. J Biomed Biotechnol 2010; 2005:326-52. [PMID: 16489267 PMCID: PMC1364539 DOI: 10.1155/jbb.2005.326] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The potential effects of horizontal gene transfer on human health
are an important item in the safety assessment of genetically
modified organisms. Horizontal gene transfer from genetically
modified crops to gut microflora most likely occurs with
transgenes of microbial origin. The characteristics of microbial
transgenes other than antibiotic-resistance genes in
market-approved genetically modified crops are reviewed. These
characteristics include the microbial source, natural function,
function in genetically modified crops, natural prevalence,
geographical distribution, similarity to other microbial genes,
known horizontal transfer activity, selective conditions and
environments for horizontally transferred genes, and potential
contribution to pathogenicity and virulence in humans and animals.
The assessment of this set of data for each of the microbial genes
reviewed does not give rise to health concerns. We recommend
including the above-mentioned items into the premarket safety
assessment of genetically modified crops carrying transgenes other
than those reviewed in the present study.
Collapse
Affiliation(s)
- Gijs A Kleter
- RIKILT, Institute of Food Safety, Wageningen University and Research Center, Wageningen, The Netherlands.
| | | | | |
Collapse
|
21
|
Characterization of Tunisian Bacillus thuringiensis strains with abundance of kurstaki subspecies harbouring insecticidal activities against the lepidopteran insect Ephestia kuehniella. Curr Microbiol 2010; 61:541-8. [PMID: 20424844 DOI: 10.1007/s00284-010-9650-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
Abstract
The study of 257 crystal-producing Bacillus thuringiensis isolates from bioinsecticide free soil samples collected from different sites in Tunisia, was performed by PCR amplification, using six primer pairs specific for cry1, cry2, cry3, cry4, and vip3A genes, by the investigation of strain plasmid pattern, crystal morphology and delta-endotoxin content and by the assessment of insecticidal activities against the lepidopteran insect Ephestia kuehniella. Based on plasmid pattern study, 11 representative strains of the different classes were subjected to morphological and molecular analyses. The comparison of the PFGE fingerprints confirmed the heterogeneity of these strains. B. thuringiensis kurstaki strains, harbouring at the same time the genes cry1A, cry2, cry1Ia, and vip3A, were the most abundant (65.4%). 33.34% of the new isolates showed particular delta-endotoxin profiles but no PCR products with the used primer sets. B. thuringiensis israelensis was shown to be also very rare among the Tunisian B. thuringiensis isolates diversity. These findings could have considerable impacts for the set up of new pest control biological agents.
Collapse
|
22
|
Zhu J, Tan F, Tang J, Li Y, Zheng A, Li P. Characterization of insecticidal crystal proteincry gene ofBacillus thuringiensis from soil of Sichuan Basin, China and cloning of novel haplotypescry gene. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175591] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
23
|
Guidelli-Thuler A, Sena J, Abreu I, Davolos C, Alves S, Polanczyk R, Valicente F, Lemos M. BACILLUS THURINGIENSIS: DIVERSIDADE GÊNICA EM ISOLADOS LEPIDOPTERA-ESPECÍFICOS. ARQUIVOS DO INSTITUTO BIOLÓGICO 2008. [DOI: 10.1590/1808-1657v75p4052008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O presente trabalho teve como objetivo caracterizar geneticamente 1.073 isolados de Bacillus thuringiensis, de três coleções brasileiras, provenientes da UNESP, Jaboticabal, da ESALQ/ Piracicaba e da EMBRAPA. Sete Lagoas, analisando os tipos de genes cry1 apresentados pelos isolados. Para isso, foram elaborados oligonucleotídeos iniciadores a partir de 16 regiões conservadas e 4 regiões não conservadas das seqüências de cada uma das 16 subclasses do gene cry1. Essas seqüências foram amplificadas por PCR e a presença de amplicons para cada subclasse foi calculada em porcentagem por gene e por coleção. Nessa análise, 55,7% dos isolados apresentaram amplificação para o gene cry1, e as subclassescry1Aa, cry1Ab, cry1Ac, cry1Ad, cry1Ae, cry1Af, cry1Ag, e cry1Bf, cry1Ca e cry1Fa estão presentes em alta proporção de isolados, variando de 43,4% a 54,9%. Verificou-se que existe uma distribuição das subclasses dentro do banco de isolados de B. thuringiensis em estudo, com maior porcentagem de isolados portadores dos genes cry1Ab (42,12%) e com menor porcentagem de representantes da subclasse cry1Db (0,6%). A variabilidade gênica, nas coleções analisadas, destaca as coleções de Jaboticabal e Piracicaba como fontes de isolados promissores para uso em programas de Controle Biológico de pragas da ordem Lepidoptera. A coleção de Sete Lagoas, na qual as freqüências das subclasses estudadas foram relativamente baixas (abaixo de 20%), destaca somente o gene cry1Ab, presente em 38,5% dos isolados desta coleção.
Collapse
|
24
|
Peruca APS, Vilas-Bôas GT, Arantes OMN. Genetic relationships between sympatric populations of Bacillus cereus and Bacillus thuringiensis, as revealed by rep-PCR genomic fingerprinting. Mem Inst Oswaldo Cruz 2008; 103:497-500. [DOI: 10.1590/s0074-02762008000500016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 07/18/2008] [Indexed: 11/22/2022] Open
|
25
|
LI HR, KU ZJ, QIN CQ, ZHANG ZH, LIU Y. Microcalorimetric Investigation of Influence of Fungicide SYP-L190 on Growth Metabolism ofTetrahymena thermophilaandBacillus thuringiensis. CHINESE J CHEM 2007. [DOI: 10.1002/cjoc.200790332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Abstract
Practically all Bacillus thuringiensis strains contain a set of self-replicating, extrachromosomal DNA molecules or plasmids, which vary in number and size in the different strains. The plasmid patterns obtained from gel electrophoresis have previously been used as a tool to characterize strains, but comparison of the plasmid patterns has been limited in the number and diversity of strains analyzed. In this report, we were able to compare the plasmid patterns of 83 type strains (out of 84) and 47 additional strains from six serotypes. The information obtained from this comparison showed the importance of this tool as a strain characterization procedure and indicates the complexity and uniqueness of this feature. For example, with one exception, all type strains showed a unique plasmid pattern. All were unique in such a way that none showed even a single comigrating plasmid in the agarose gels, and therefore, cluster analysis was impossible, indicating that plasmid patterns are qualitative rather than quantitative features. Furthermore, comparison between strains belonging to the same serotype showed a great difference in variability. Some serotypes (e.g., israelensis) showed the same basic pattern among all its strains, while other serotypes (e.g., morrisoni) showed a great diversity of patterns. These results indicate that plasmid patterns are valuable tools to discriminate strains below the serotype level.
Collapse
|
27
|
Vilas-Bôas GT, Peruca APS, Arantes OMN. Biology and taxonomy ofBacillus cereus,Bacillus anthracis, andBacillus thuringiensis. Can J Microbiol 2007; 53:673-87. [PMID: 17668027 DOI: 10.1139/w07-029] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three species of the Bacillus cereus group (Bacillus cereus, Bacillus anthracis , and Bacillus thuringiensis ) have a marked impact on human activity. Bacillus cereus and B. anthracis are important pathogens of mammals, including humans, and B. thuringiensis is extensively used in the biological control of insects. The microbiological, biochemical, and genetic characteristics of these three species are reviewed, together with a discussion of several genomic studies conducted on strains of B. cereus group. Using bacterial systematic concepts, we speculate that to understand the taxonomic relationship within this group of bacteria, special attention should be devoted also to the ecology and the population genetics of these species.
Collapse
Affiliation(s)
- G T Vilas-Bôas
- Departamento de Biologia Geral, CCB, UEL, CP 6001, Londrina/PR, 86051-990, Brazil.
| | | | | |
Collapse
|
28
|
Yan X, Gai Y, Liang L, Liu G, Tan H. A gene encoding alanine racemase is involved in spore germination in Bacillus thuringiensis. Arch Microbiol 2006; 187:371-8. [PMID: 17165028 DOI: 10.1007/s00203-006-0201-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/16/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
Alanine racemase is a major component of the exosporium of Bacillus cereus spores. A gene homologous to that of alanine racemase (alrA) was cloned from Bacillus thuringiensis subsp. kurstaki, and RT-PCR showed that alrA was transcribed only in the sporulating cells. Disruption of alrA did not affect the growth and sporulation of B. thuringiensis, but promoted L-alanine-induced spore germination. When the spore germination rate was measured by monitoring DPA release, complementation of the alrA disruptant reduced the rate of L-alanine-induced spore germination below that of even wild-type spores. As previously reported for spores of other Bacillus species, D-alanine was an effective and competitive inhibitor of L-alanine-induced germination of B. thuringiensis spores. D-cycloserine alone stimulated inosine-induced germination of B. thuringiensis spores in addition to increasing L-alanine-induced germination by inhibiting alanine racemase. D-alanine also increased the rate of inosine-induced germination of wild-type spores. However, D-alanine inhibited inosine-induced germination of the alrA disruptant spores. It is possible that AlrA converted D-alanine to L-alanine, and this in turn, stimulated spore germination in B. thuringiensis. These results suggest that alrA plays a crucial role in moderating the germination rate of B. thuringiensis spores.
Collapse
Affiliation(s)
- Xiaohua Yan
- Center for Microbial Genetics and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, 100080 Beijing, China
| | | | | | | | | |
Collapse
|
29
|
Gai Y, Liu G, Tan H. Identification and characterization of a germination operon from Bacillus thuringiensis. Antonie Van Leeuwenhoek 2006; 89:251-9. [PMID: 16710636 DOI: 10.1007/s10482-005-9026-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 11/30/2005] [Indexed: 10/24/2022]
Abstract
Spore cortex-lytic enzymes are essential for germination in Bacillus. A homologue of the cwlJ gene involved in spore germination was isolated from Bacillus thuringiensis. The deduced product of this gene exhibits striking sequence similarity to CwlJ of Bacillus subtilis. Another open reading frame (ORF) was found 27 bp downstream of cwlJ and its deduced product shows high similarity to YwdL of B. subtilis. Reverse transcription polymerase chain reaction analysis indicated that cwlJ and ywdL formed a bicistronic operon in B. thuringiensis. Disruption of this operon did not affect sporulation and the spores of corresponding mutant showed the same refractility as the wild-type strain. In contrast, the fall of optical density at 600 nm in the mutant culture was slower than that of the wild-type strain during the spore germination response to different germinants such as L: -alanine, inosine or CaDPA. The spore germination of the cwlJ mutant was restored by introducing this operon into the disruption mutant. These results suggest this operon is essential for normal spore germination in B. thuringiensis. The expression of cwlJ was observed in the sporulating cells through Western blot experiments.
Collapse
Affiliation(s)
- Yuling Gai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Science, Beijing, 100080, P.R. China
| | | | | |
Collapse
|
30
|
Rampersad J, Ammons D. A Bacillus thuringiensis isolation method utilizing a novel stain, low selection and high throughput produced atypical results. BMC Microbiol 2005; 5:52. [PMID: 16181492 PMCID: PMC1253514 DOI: 10.1186/1471-2180-5-52] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 09/24/2005] [Indexed: 11/23/2022] Open
Abstract
Background Bacillus thuringiensis is a bacterium known for producing protein crystals with insecticidal properties. These toxins are widely sought after for controlling agricultural pests due to both their specificity and their applicability in transgenic plants. There is great interest in isolating strains with improved or novel toxin characteristics, however isolating B. thuringiensis from the environment is time consuming and yields relatively few isolates of interest. New approaches to B. thuringiensis isolation have been, and continue to be sought. In this report, candidate B. thuringiensis isolates were recovered from environmental samples using a combination of a novel stain, high throughput and reduced selection. Isolates were further characterized by SDS-PAGE, light microscopy, PCR, probe hybridization, and with selected isolates, DNA sequencing, bioassay or Electron Microscopy. Results Based on SDS-PAGE patterns and the presence of cry genes or a crystal, 79 candidate, non-clonal isolates of B. thuringiensis were identified from 84 samples and over 10,000 colonies. Although only 16/79 (20%) of the isolates showed DNA homology by Probe Hybridization or PCR to common cry genes, initial characterization revealed a surprisingly rich library that included a putative nematocidal gene, a novel filamentous structure associated with a crystal, a spore with spikes originating from a very small parasporal body and isolates with unusually small crystals. When compared to reports of other screens, this screen was also atypical in that only 3/79 isolates (3.8%) produced a bipyramidal crystal and 24/79 (30%) of the isolates' spores possessed an attached, dark-staining body. Conclusion Results suggest that the screening methodology adopted in this study might deliver a vastly richer and potentially more useful library of B. thuringiensis isolates as compared to that obtained with commonly reported methodologies, and that by extension, methodologies fundamentally different from current methods should also be explored.
Collapse
Affiliation(s)
- Joanne Rampersad
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad, Trinidad and Tobago
| | - David Ammons
- The School of Veterinary Medicine, The University of the West Indies, Mt. Hope, Trinidad, Trinidad and Tobago
| |
Collapse
|