1
|
Gómez-Gaviria M, Contreras-López LM, Aguilera-Domínguez JI, Mora-Montes HM. Strategies of Pharmacological Repositioning for the Treatment of Medically Relevant Mycoses. Infect Drug Resist 2024; 17:2641-2658. [PMID: 38947372 PMCID: PMC11214559 DOI: 10.2147/idr.s466336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Fungal infections represent a worldwide concern for public health, due to their prevalence and significant increase in cases each year. Among the most frequent mycoses are those caused by members of the genera Candida, Cryptococcus, Aspergillus, Histoplasma, Pneumocystis, Mucor, and Sporothrix, which have been treated for years with conventional antifungal drugs, such as flucytosine, azoles, polyenes, and echinocandins. However, these microorganisms have acquired the ability to evade the mechanisms of action of these drugs, thus hindering their treatment. Among the most common evasion mechanisms are alterations in sterol biosynthesis, modifications of drug transport through the cell wall and membrane, alterations of drug targets, phenotypic plasticity, horizontal gene transfer, and chromosomal aneuploidies. Taking into account these problems, some research groups have sought new therapeutic alternatives based on drug repositioning. Through repositioning, it is possible to use existing pharmacological compounds for which their mechanism of action is already established for other diseases, and thus exploit their potential antifungal activity. The advantage offered by these drugs is that they may be less prone to resistance. In this article, a comprehensive review was carried out to highlight the most relevant repositioning drugs to treat fungal infections. These include antibiotics, antivirals, anthelmintics, statins, and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Luisa M Contreras-López
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Julieta I Aguilera-Domínguez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, México
| |
Collapse
|
2
|
Ingle SM, Miro JM, May MT, Cain LE, Schwimmer C, Zangerle R, Sambatakou H, Cazanave C, Reiss P, Brandes V, Bucher HC, Sabin C, Vidal F, Obel N, Mocroft A, Wittkop L, d'Arminio Monforte A, Torti C, Mussini C, Furrer H, Konopnicki D, Teira R, Saag MS, Crane HM, Moore RD, Jacobson JM, Mathews WC, Geng E, Eron JJ, Althoff KN, Kroch A, Lang R, Gill MJ, Sterne JAC. Early Antiretroviral Therapy Not Associated With Higher Cryptococcal Meningitis Mortality in People With Human Immunodeficiency Virus in High-Income Countries: An International Collaborative Cohort Study. Clin Infect Dis 2023; 77:64-73. [PMID: 36883578 PMCID: PMC10320049 DOI: 10.1093/cid/ciad122] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/13/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Randomized controlled trials (RCTs) from low- and middle-income settings suggested that early initiation of antiretroviral therapy (ART) leads to higher mortality rates among people with HIV (PWH) who present with cryptococcal meningitis (CM). There is limited information about the impact of ART timing on mortality rates in similar people in high-income settings. METHODS Data on ART-naive PWH with CM diagnosed from 1994 to 2012 from Europe/North America were pooled from the COHERE, NA-ACCORD, and CNICS HIV cohort collaborations. Follow-up was considered to span from the date of CM diagnosis to earliest of the following: death, last follow-up, or 6 months. We used marginal structural models to mimic an RCT comparing the effects of early (within 14 days of CM) and late (14-56 days after CM) ART on all-cause mortality, adjusting for potential confounders. RESULTS Of 190 participants identified, 33 (17%) died within 6 months. At CM diagnosis, their median age (interquartile range) was 38 (33-44) years; the median CD4+ T-cell count, 19/μL (10-56/μL); and median HIV viral load, 5.3 (4.9-5.6) log10 copies/mL. Most participants (n = 157 [83%]) were male, and 145 (76%) started ART. Mimicking an RCT, with 190 people in each group, there were 13 deaths among participants with an early ART regimen and 20 deaths among those with a late ART regimen. The crude and adjusted hazard ratios comparing late with early ART were 1.28 (95% confidence interval, .64-2.56) and 1.40 (.66-2.95), respectively. CONCLUSIONS We found little evidence that early ART was associated with higher mortality rates among PWH presenting with CM in high-income settings, although confidence intervals were wide.
Collapse
Affiliation(s)
- Suzanne M Ingle
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jose M Miro
- Infectious Diseases Service Hospital Clinic–IDIBAPS, University of Barcelona, Barcelona, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Margaret T May
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lauren E Cain
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Global Epidemiology, AbbVie, Chicago, Illinois, USA
| | - Christine Schwimmer
- University of Bordeaux, INSERM, Institut Bergonié, CHU de Bordeaux, CIC-EC 1401, Bordeaux, France
| | - Robert Zangerle
- Department of Dermatology, Venereology, and Allergy, Medical University Innsbruck, Innsbruck, Austria
| | - Helen Sambatakou
- 2nd Department of Internal Medicine, HIV Unit, Medical School, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Charles Cazanave
- Infectious and Tropical Diseases Department, CHU de Bordeaux, Bordeaux, France
| | - Peter Reiss
- Stichting HIV Monitoring, Amsterdam, The Netherlands
| | - Vanessa Brandes
- Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Cologne, Germany
| | - Heiner C Bucher
- Basel Institute for Clinical Epidemiology & Biostatistics, Division of Infectious Diseases & Hospital Hygiene, University Hospital Basel, Basel, Switzerland
| | - Caroline Sabin
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, University College London, London, United Kingdom
| | - Francesc Vidal
- Infectious Diseases Unit, Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
- CIBER Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Niels Obel
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Amanda Mocroft
- Centre of Excellence for Health, Immunity and Infections (CHIP) and PERSIMUNE, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Linda Wittkop
- ISPED, INSERM, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Antonella d'Arminio Monforte
- Clinic of Infectious and Tropical Diseases, Department of Health Sciences, University of Milan, San Paolo Hospital, Milan, Italy
| | - Carlo Torti
- Department of Surgical and Medical Sciences, University “Magna Graecia,”, Catanzaro, Italy
| | - Cristina Mussini
- Infectious Diseases Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Hansjakob Furrer
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deborah Konopnicki
- Infectious Diseases Department, Saint-Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Ramon Teira
- Service of Internal Medicine, Hospital Universitario de Sierrallana, Torrelavega, Spain
| | - Michael S Saag
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Heidi M Crane
- Division of Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Richard D Moore
- School of Medicine, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - W Chris Mathews
- Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Elvin Geng
- Division of Infectious Diseases, Department of Medicine and the Center for Dissemination and Implementation, Institute for Public Health, Washington University in St Louis, St Louis, Missouri, USA
| | - Joseph J Eron
- Department of Medicine, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - Keri N Althoff
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Raynell Lang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - M John Gill
- Department of Medicine, University of Calgary, Southern Alberta HIV Clinic, Calgary, Alberta, Canada
| | - Jonathan A C Sterne
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
3
|
Gutierrez-Gongora D, Geddes-McAlister J. Peptidases: promising antifungal targets of the human fungal pathogen, Cryptococcus neoformans. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cryptococcus neoformans is a globally important fungal pathogen, primarily inflicting disease on immunocompromised individuals. The widespread use of antifungal agents in medicine and agriculture supports the development of antifungal resistance through evolution, and the emergence of new strains with intrinsic resistance drives the need for new therapeutics. For C. neoformans, the production of virulence factors, including extracellular peptidases (e.g., CnMpr-1 and May1) with mechanistic roles in tissue invasion and fungal survival, constitute approximately 2% of the fungal proteome and cover five classes of enzymes. Given their role in fungal virulence, peptidases represent promising targets for anti-virulence discovery in the development of new approaches against C. neoformans. Additionally, intracellular peptidases, which are involved in resistance mechanisms against current treatment options (e.g., azole drugs), as well as capsule biosynthesis and elaboration of virulence factors, present additional opportunities to combat the pathogen. In this review, we highlight key cryptococcal peptidases with defined or predicted roles in fungal virulence and assess sequence alignments against their human homologs. With this information, we define the feasibility of the select peptidases as “druggable” targets for inhibition, representing prospective therapeutic options against the deadly fungus.
Collapse
Affiliation(s)
- Davier Gutierrez-Gongora
- The Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Jennifer Geddes-McAlister
- The Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Canadian Proteomics and Artificial Intelligence Research and Training Consortium
| |
Collapse
|
4
|
From Naturally-Sourced Protease Inhibitors to New Treatments for Fungal Infections. J Fungi (Basel) 2021; 7:jof7121016. [PMID: 34946998 PMCID: PMC8704869 DOI: 10.3390/jof7121016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023] Open
Abstract
Proteases are involved in a broad range of physiological processes, including host invasion by fungal pathogens, and enzymatic inhibition is a key molecular mechanism controlling proteolytic activity. Importantly, inhibitors from natural or synthetic sources have demonstrated applications in biochemistry, biotechnology, and biomedicine. However, the need to discover new reservoirs of these inhibitory molecules with improved efficacy and target range has been underscored by recent protease characterization related to infection and antimicrobial resistance. In this regard, naturally-sourced inhibitors show promise for application in diverse biological systems due to high stability at physiological conditions and low cytotoxicity. Moreover, natural sources (e.g., plants, invertebrates, and microbes) provide a large reservoir of undiscovered and/or uncharacterized bioactive molecules involved in host defense against predators and pathogens. In this Review, we highlight discoveries of protease inhibitors from environmental sources, propose new opportunities for assessment of antifungal activity, and discuss novel applications to combat biomedically-relevant fungal diseases with in vivo and clinical purpose.
Collapse
|
5
|
Santos ALS, Braga-Silva LA, Gonçalves DS, Ramos LS, Oliveira SSC, Souza LOP, Oliveira VS, Lins RD, Pinto MR, Muñoz JE, Taborda CP, Branquinha MH. Repositioning Lopinavir, an HIV Protease Inhibitor, as a Promising Antifungal Drug: Lessons Learned from Candida albicans-In Silico, In Vitro and In Vivo Approaches. J Fungi (Basel) 2021; 7:jof7060424. [PMID: 34071195 PMCID: PMC8229492 DOI: 10.3390/jof7060424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
The repurposing strategy was applied herein to evaluate the effects of lopinavir, an aspartic protease inhibitor currently used in the treatment of HIV-infected individuals, on the globally widespread opportunistic human fungal pathogen Candida albicans by using in silico, in vitro and in vivo approaches in order to decipher its targets on fungal cells and its antifungal mechanisms of action. Secreted aspartic proteases (Saps) are the obviously main target of lopinavir. To confirm this hypothesis, molecular docking assays revealed that lopinavir bound to the Sap2 catalytic site of C. albicans as well as inhibited the Sap hydrolytic activity in a typically dose-dependent manner. The inhibition of Saps culminated in the inability of C. albicans yeasts to assimilate the unique nitrogen source (albumin) available in the culture medium, culminating with fungal growth inhibition (IC50 = 39.8 µM). The antifungal action of lopinavir was corroborated by distinct microscopy analyses, which evidenced drastic and irreversible changes in the morphology that justified the fungal death. Furthermore, our results revealed that lopinavir was able to (i) arrest the yeasts-into-hyphae transformation, (ii) disturb the synthesis of neutral lipids, including ergosterol, (iii) modulate the surface-located molecules, such as Saps and mannose-, sialic acid- and N-acetylglucosamine-containing glycoconjugates, (iv) diminish the secretion of hydrolytic enzymes, such as Saps and esterase, (v) negatively influence the biofilm formation on polystyrene surface, (vi) block the in vitro adhesion to epithelial cells, (vii) contain the in vivo infection in both immunocompetent and immunosuppressed mice and (viii) reduce the Sap production by yeasts recovered from kidneys of infected animals. Conclusively, the exposed results highlight that lopinavir may be used as a promising repurposing drug against C. albicans infection as well as may be used as a lead compound for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Correspondence: (A.L.S.S.); (M.H.B.); Tel.: +55-21-3938-0366 (A.L.S.S.)
| | - Lys A. Braga-Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Diego S. Gonçalves
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
- Programa de Pós-Graduação em Bioquímica (PPGBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
| | - Simone S. C. Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
| | - Lucieri O. P. Souza
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
| | - Vanessa S. Oliveira
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife 50740-465, Brazil; (V.S.O.); (R.D.L.)
| | - Roberto D. Lins
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife 50740-465, Brazil; (V.S.O.); (R.D.L.)
| | - Marcia R. Pinto
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense (UFF), Niterói 24210-130, Brazil;
| | - Julian E. Muñoz
- MICROS Group, Medicine Traslacional Institute, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Carlos P. Taborda
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo 05508-060, Brazil;
- Laboratório de Micologia Médica—LIM53/IMTSP, Universidade de São Paulo (USP), São Paulo 05508-000, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (L.A.B.-S.); (D.S.G.); (L.S.R.); (S.S.C.O.); (L.O.P.S.)
- Correspondence: (A.L.S.S.); (M.H.B.); Tel.: +55-21-3938-0366 (A.L.S.S.)
| |
Collapse
|
6
|
Kryštůfek R, Šácha P, Starková J, Brynda J, Hradilek M, Tloušt'ová E, Grzymska J, Rut W, Boucher MJ, Drąg M, Majer P, Hájek M, Řezáčová P, Madhani HD, Craik CS, Konvalinka J. Re-emerging Aspartic Protease Targets: Examining Cryptococcus neoformans Major Aspartyl Peptidase 1 as a Target for Antifungal Drug Discovery. J Med Chem 2021; 64:6706-6719. [PMID: 34006103 PMCID: PMC8165695 DOI: 10.1021/acs.jmedchem.0c02177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cryptococcosis is
an invasive infection that accounts for 15% of
AIDS-related fatalities. Still, treating cryptococcosis remains a
significant challenge due to the poor availability of effective antifungal
therapies and emergence of drug resistance. Interestingly, protease
inhibitor components of antiretroviral therapy regimens have shown
some clinical benefits in these opportunistic infections. We investigated
Major aspartyl peptidase 1 (May1), a secreted Cryptococcus
neoformans protease, as a possible target for the
development of drugs that act against both fungal and retroviral aspartyl
proteases. Here, we describe the biochemical characterization of May1,
present its high-resolution X-ray structure, and provide its substrate
specificity analysis. Through combinatorial screening of 11,520 compounds,
we identified a potent inhibitor of May1 and HIV protease. This dual-specificity
inhibitor exhibits antifungal activity in yeast culture, low cytotoxicity,
and low off-target activity against host proteases and could thus
serve as a lead compound for further development of May1 and HIV protease
inhibitors.
Collapse
Affiliation(s)
- Robin Kryštůfek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles UniversityHlavova 8, Prague 2 12843, Czech Republic
| | - Pavel Šácha
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles UniversityHlavova 8, Prague 2 12843, Czech Republic
| | - Jana Starková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 14220, Czech Republic
| | - Martin Hradilek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Eva Tloušt'ová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Justyna Grzymska
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370, Poland
| | - Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370, Poland
| | - Michael J Boucher
- Department of Biochemistry & Biophysics, University of California, San Francisco, UCSF Genentech Hall, 600 16th St Rm N374, San Francisco, California 94158, United States
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370, Poland
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Miroslav Hájek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic.,Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 14220, Czech Republic
| | - Hiten D Madhani
- Department of Biochemistry & Biophysics, University of California, San Francisco, UCSF Genentech Hall, 600 16th St Rm N374, San Francisco, California 94158, United States.,Chan-Zuckerberg Biohub, 499 Illinois Street, San Francisco, California 94158, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, UCSF Genentech Hall, 600 16th St Rm S512, San Francisco, California 94158, United States
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles UniversityHlavova 8, Prague 2 12843, Czech Republic
| |
Collapse
|
7
|
Granato MQ, Sousa IS, Rosa TLSA, Gonçalves DS, Seabra SH, Alviano DS, Pessolani MCV, Santos ALS, Kneipp LF. Aspartic peptidase of Phialophora verrucosa as target of HIV peptidase inhibitors: blockage of its enzymatic activity and interference with fungal growth and macrophage interaction. J Enzyme Inhib Med Chem 2020; 35:629-638. [PMID: 32037904 PMCID: PMC7034032 DOI: 10.1080/14756366.2020.1724994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Phialophora verrucosa causes several fungal human diseases, mainly chromoblastomycosis, which is extremely difficult to treat. Several studies have shown that human immunodeficiency virus peptidase inhibitors (HIV-PIs) are attractive candidates for antifungal therapies. This work focused on studying the action of HIV-PIs on peptidase activity secreted by P. verrucosa and their effects on fungal proliferation and macrophage interaction. We detected a peptidase activity from P. verrucosa able to cleave albumin, sensitive to pepstatin A and HIV-PIs, especially lopinavir, ritonavir and amprenavir, showing for the first time that this fungus secretes aspartic-type peptidase. Furthermore, lopinavir, ritonavir and nelfinavir reduced the fungal growth, causing remarkable ultrastructural alterations. Lopinavir and ritonavir also affected the conidia-macrophage adhesion and macrophage killing. Interestingly, P. verrucosa had its growth inhibited by ritonavir combined with either itraconazole or ketoconazole. Collectively, our results support the antifungal action of HIV-PIs and their relevance as a possible alternative therapy for fungal infections.
Collapse
Affiliation(s)
- Marcela Q. Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ingrid S. Sousa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Diego S. Gonçalves
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Instituto de Microbiologia Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Sergio H. Seabra
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, Brazil
| | - Daniela S. Alviano
- Laboratório de Estrutura de Microrganismos, IMPPG, UFRJ, Rio de Janeiro, Brazil
| | | | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Instituto de Microbiologia Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil
| | - Lucimar F. Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Brilhante RSN, Silva JAT, Araújo GDS, Pereira VS, Gotay WJP, Oliveira JSD, Guedes GMDM, Pereira-Neto WA, Castelo-Branco DDSCM, Cordeiro RDA, Sidrim JJC, Rocha MFG. Darunavir inhibits Cryptococcus neoformans/ Cryptococcus gattii species complex growth and increases the susceptibility of biofilms to antifungal drugs. J Med Microbiol 2020; 69:830-837. [PMID: 32459616 DOI: 10.1099/jmm.0.001194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Cryptococcus species are pathogens commonly associated with cases of meningoencephalitis in individuals who are immunosuppressed due to AIDS.Aim. The aim was to evaluate the effects of the antiretroviral darunavir alone or associated with fluconazole, 5-flucytosine and amphotericin B against planktonic cells and biofilms of Cryptococcus species.Methodology. Susceptibility testing of darunavir and the common antifungals against 12 members of the Cryptococcus neoformans/Cryptococcus gattii species complex was evaluated by broth microdilution. The interaction between darunavir and antifungals against planktonic cells was tested by a checkerboard assay. The effects of darunavir against biofilm metabolic activity and biomass were evaluated by the XTT reduction assay and crystal violet staining, respectively.Results. Darunavir combined with amphotericin B showed a synergistic interaction against planktonic cells. No antagonistic interaction was observed between darunavir and the antifungals used. All Cryptococcus species strains were strong biofilm producers. Darunavir alone reduced biofilm metabolic activity and biomass when added during and after biofilm formation (P<0.05). The combination of darunavir with antifungals caused a significant reduction in biofilm metabolic activity and biomass when compared to darunavir alone (P<0.05).Conclusion. Darunavir presents antifungal activity against planktonic cells of Cryptococcus species and synergism with amphotericin B. In addition, darunavir led to reduced biofilm formation and showed activity against mature biofilms of Cryptococcus species. Activity of the antifungals against mature biofilms was enhanced in the presence of darunavir.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - José Alexandre Telmos Silva
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Géssica Dos Santos Araújo
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará. Av. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
| | - Vandbergue Santos Pereira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Wilker Jose Perez Gotay
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Jonathas Sales de Oliveira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Glaucia Morgana de Melo Guedes
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Waldemiro Aquino Pereira-Neto
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará. Rua Cel. Nunes de Melo, 1315 - Rodolfo Teófilo - CEP: 60430-275, Fortaleza, Ceará, Brazil
| |
Collapse
|
9
|
e Silva KSF, da S Neto BR, Zambuzzi-Carvalho PF, de Oliveira CMA, Pires LB, Kato L, Bailão AM, Parente-Rocha JA, Hernández O, Ochoa JGM, de A Soares CM, Pereira M. Response of Paracoccidioides lutzii to the antifungal camphene thiosemicarbazide determined by proteomic analysis. Future Microbiol 2018; 13:1473-1496. [DOI: 10.2217/fmb-2018-0176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: To perform the proteomic profile of Paracoccidioides lutzii after treatment with the compound camphene thiosemicarbazide (TSC-C) in order to study its mode of action. Methods: Proteomic analysis was carried out after cells were incubated with TSC-C in a subinhibitory concentration. Validation of the proteomic results comprised the azocasein assay, western blot and determination of the susceptibility of a mutant to the compound. Results: Proteins related to metabolism, energy and protein fate were regulated after treatment. In addition, TSC-C reduces the proteolytic activity of the protein extract similarly to different types of protease inhibitors. Conclusion: TSC-C showed encouraging antifungal activity, working as a protease inhibitor and downregulating important pathways impairing the ability of the fungi cells to produce important precursors.
Collapse
Affiliation(s)
- Kleber SF e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Benedito R da S Neto
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Patrícia F Zambuzzi-Carvalho
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Cecília MA de Oliveira
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Ludmila B Pires
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lucilia Kato
- Laboratório de Produtos Naturais, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliana A Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Orville Hernández
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB) & Escuela de Microbiología Universidad de Antioquia, Medellín, Colombia
| | - Juan GM Ochoa
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB) & Facultad de Medicina Universidad de Antioquia, Medellín, Colombia
| | - Célia M de A Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
10
|
Castilho DG, Chaves AFA, Navarro MV, Conceição PM, Ferreira KS, da Silva LS, Xander P, Batista WL. Secreted aspartyl proteinase (PbSap) contributes to the virulence of Paracoccidioides brasiliensis infection. PLoS Negl Trop Dis 2018; 12:e0006806. [PMID: 30260953 PMCID: PMC6177206 DOI: 10.1371/journal.pntd.0006806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/09/2018] [Accepted: 08/31/2018] [Indexed: 11/18/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is the most prevalent deep mycosis in Latin America and is caused by fungi from the Paracoccidioides genus. Virulence factors are important fungal characteristics that support the development of disease. Aspartyl proteases (Saps) are virulence factors in many human fungal pathogens that play an important role in the host invasion process. We report here that immunization with recombinant Sap from Paracoccidioides brasiliensis (rPbSap) imparted a protective effect in an experimental PCM model. The rPbSap-immunized mice had decreased fungal loads, and their lung parenchyma were notably preserved. An aspartyl protease inhibitor (pepstatin A) significantly decreased pulmonary injury and reduced fungal loads in the lung. Additionally, we observed that pepstatin A enhanced the fungicidal and phagocytic profile of macrophages against P. brasiliensis. Furthermore, PbSAP expression was highly altered by environmental conditions, including thermal stress, dimorphism switching and low pH. Hence, our data suggest that PbSap is an important virulence regulator in P. brasiliensis.
Collapse
Affiliation(s)
- Daniele Gonçalves Castilho
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Alison Felipe Alencar Chaves
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marina Valente Navarro
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Palloma Mendes Conceição
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Karen Spadari Ferreira
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Luiz Severino da Silva
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Patricia Xander
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Wagner Luiz Batista
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
- * E-mail:
| |
Collapse
|
11
|
Mourad A, Perfect JR. Present and Future Therapy of Cryptococcus Infections. J Fungi (Basel) 2018; 4:jof4030079. [PMID: 29970809 PMCID: PMC6162641 DOI: 10.3390/jof4030079] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/05/2023] Open
Abstract
Cryptococcal infections burden the immunocompromised population with unacceptably high morbidity and mortality. This population includes HIV-infected individuals and those undergoing organ transplants, as well as seemingly immunocompetent patients (non-HIV, non-transplant). These groups are difficult to manage with the current therapeutic options and strategies, particularly in resource-limited settings. New trials aimed at providing the best treatment strategies for resource-limited countries that will reduce costs and adverse reactions have focused on decreasing the length of therapy and using more readily accessible antifungal agents such as fluconazole. Furthermore, the emergence of antifungal resistance poses another challenge for successful treatment and may require the development of new agents for improved management. This review will discuss the principles of management, current and future antifungal agents, as well as emerging techniques and future directions of care for this deadly infection.
Collapse
Affiliation(s)
- Ahmad Mourad
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Cordeiro RDA, Serpa R, Mendes PBL, Evangelista AJDJ, Andrade ARC, Franco JDS, Pereira VDS, Alencar LPD, Oliveira JSD, Camargo ZPD, Lima Neto RGD, Castelo-Branco DDSCM, Brilhante RSN, Rocha MFG, Sidrim JJC. The HIV aspartyl protease inhibitor ritonavir impairs planktonic growth, biofilm formation and proteolytic activity in Trichosporon spp. BIOFOULING 2017; 33:640-650. [PMID: 28871863 DOI: 10.1080/08927014.2017.1350947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the effect of the protease inhibitor ritonavir (RIT) on Trichosporon asahii and Trichosporon inkin. Susceptibility to RIT was assessed by the broth microdilution assay and the effect of RIT on protease activity was evaluated using azoalbumin as substrate. RIT was tested for its anti-biofilm properties and RIT-treated biofilms were assessed regarding protease activity, ultrastructure and matrix composition. In addition, antifungal susceptibility, surface hydrophobicity and biofilm formation were evaluated after pre-incubation of planktonic cells with RIT for 15 days. RIT (200 μg ml-1) inhibited Trichosporon growth. RIT (100 μg ml-1) also reduced protease activity of planktonic and biofilm cells, decreased cell adhesion and biofilm formation, and altered the structure of the biofilm and the protein composition of the biofilm matrix. Pre-incubation with RIT (100 μg ml-1) increased the susceptibility to amphotericin B, and reduced surface hydrophobicity and cell adhesion. These results highlight the importance of proteases as promising therapeutic targets and reinforce the antifungal potential of protease inhibitors.
Collapse
Affiliation(s)
| | - Rosana Serpa
- a Medical Mycology Specialized Center , Federal University of Ceará , Fortaleza , Brazil
| | | | | | | | | | | | | | | | - Zoilo Pires de Camargo
- b Department of Microbiology, Immunology and Parasitology , Federal University of São Paulo , São Paulo , Brazil
| | | | | | | | - Marcos Fabio Gadelha Rocha
- a Medical Mycology Specialized Center , Federal University of Ceará , Fortaleza , Brazil
- d Post Graduate Program in Veterinary Sciences, College of Veterinary Medicine , State University of Ceará , Fortaleza , Brazil
| | | |
Collapse
|
13
|
Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence. PLoS Pathog 2016; 12:e1006051. [PMID: 27977806 PMCID: PMC5158083 DOI: 10.1371/journal.ppat.1006051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/09/2016] [Indexed: 12/29/2022] Open
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans is a major cause of mortality in immunocompromised individuals, resulting in more than 600,000 deaths per year. Many human fungal pathogens secrete peptidases that influence virulence, but in most cases the substrate specificity and regulation of these enzymes remains poorly understood. The paucity of such information is a roadblock to our understanding of the biological functions of peptidases and whether or not these enzymes are viable therapeutic targets. We report here an unbiased analysis of secreted peptidase activity and specificity in C. neoformans using a mass spectrometry-based substrate profiling strategy and subsequent functional investigations. Our initial studies revealed that global peptidase activity and specificity are dramatically altered by environmental conditions. To uncover the substrate preferences of individual enzymes and interrogate their biological functions, we constructed and profiled a ten-member gene deletion collection of candidate secreted peptidases. Through this deletion approach, we characterized the substrate specificity of three peptidases within the context of the C. neoformans secretome, including an enzyme known to be important for fungal entry into the brain. We selected a previously uncharacterized peptidase, which we term Major aspartyl peptidase 1 (May1), for detailed study due to its substantial contribution to extracellular proteolytic activity. Based on the preference of May1 for proteolysis between hydrophobic amino acids, we screened a focused library of aspartyl peptidase inhibitors and identified four high-affinity antagonists. Finally, we tested may1Δ strains in a mouse model of C. neoformans infection and found that strains lacking this enzyme are significantly attenuated for virulence. Our study reveals the secreted peptidase activity and specificity of an important human fungal pathogen, identifies responsible enzymes through genetic tests of their function, and demonstrates how this information can guide the development of high affinity small molecule inhibitors. Many pathogenic organisms secrete peptidases. The activity of these enzymes often contributes to virulence, making their study crucial for understanding host-pathogen biology and developing therapeutics. In this report, we employed an unbiased, activity-based profiling assay to examine the secreted peptidases of a fungal pathogen, Cryptococcus neoformans, which is responsible for 40% of AIDS-related deaths. We discovered which peptidases are secreted, identified their substrate specificity, and interrogated their biological functions. Through this analysis, we identified a principal enzyme responsible for the extracellular peptidase activity of C. neoformans, May1, and demonstrated its importance for growth in acidic environments. Characterization of its substrate preferences allowed us to identify compounds that are potent substrate-based inhibitors of May1 activity. Finally, we found that the presence of this enzyme promotes virulence in a mouse model of infection. Our comprehensive study reveals the expression, regulation and function of C. neoformans secreted peptidases, including evidence for the role of a novel aspartyl peptidase in virulence.
Collapse
|
14
|
Brilhante RSN, Caetano ÉP, Riello GB, Guedes GMDM, Castelo-Branco DDSCM, Fechine MAB, Oliveira JSD, Camargo ZPD, Mesquita JRLD, Monteiro AJ, Cordeiro RDA, Rocha MFG, Sidrim JJC. Antiretroviral drugs saquinavir and ritonavir reduce inhibitory concentration values of itraconazole against Histoplasma capsulatum strains in vitro. Braz J Infect Dis 2015; 20:155-9. [PMID: 26748233 PMCID: PMC9427650 DOI: 10.1016/j.bjid.2015.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 10/26/2015] [Accepted: 11/25/2015] [Indexed: 10/29/2022] Open
Abstract
Recent studies have shown that some drugs that are not routinely used to treat fungal infections have antifungal activity, such as protease inhibitor antiretroviral drugs. This study investigated the in vitro susceptibility of Histoplasma capsulatum var. capsulatum to saquinavir and ritonavir, and its combination with the antifungal itraconazole. The susceptibility assay was performed according to Clinical and Laboratory Standards Institute guidelines. All strains were inhibited by the protease inhibitor antiretroviral drugs. Saquinavir showed minimum inhibitory concentrations ranging from 0.125 to 1μgmL(-1) for both phases, and ritonavir presented minimum inhibitory concentrations ranging from 0.0312 to 4μgmL(-1)and from 0.0625 to 1μgmL(-1) for filamentous and yeast phase, respectively. Concerning the antifungal itraconazole, the minimum inhibitory concentration values ranged from 0.0019 to 0.125μgmL(-1) and from 0.0039 to 0.0312μgmL(-1) for the filamentous and yeast phase, respectively. The combination of saquinavir or ritonavir with itraconazole was synergistic against H. capsulatum, with a significant reduction in the minimum inhibitory concentrations of both drugs against the strains (p<0.05). These data show an important in vitro synergy between protease inhibitors and itraconazole against the fungus H. capsulatum.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Postgraduate Program in Medical Sciences, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil.
| | - Érica Pacheco Caetano
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Giovanna Barbosa Riello
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Glaucia Morgana de Melo Guedes
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Postgraduate Program in Medical Sciences, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | | | - Jonathas Sales de Oliveira
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Zoilo Pires de Camargo
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - André Jalles Monteiro
- Department of Statistics and Applied Mathematics, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Rossana de Aguiar Cordeiro
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Postgraduate Program in Medical Sciences, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Marcos Fábio Gadelha Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Postgraduate Program in Veterinary Sciences, Universidade Estadual do Ceará (UECE), Fortaleza, CE, Brazil
| | - José Júlio Costa Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil; Postgraduate Program in Medical Sciences, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| |
Collapse
|