1
|
Chen J, Chen L, Quan H, Lee S, Khan KF, Xie Y, Li Q, Valero M, Dai Z, Xie Y. A Comparative Analysis of SARS-CoV-2 Variants of Concern (VOC) Spike Proteins Interacting with hACE2 Enzyme. Int J Mol Sci 2024; 25:8032. [PMID: 39125601 PMCID: PMC11311974 DOI: 10.3390/ijms25158032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
In late 2019, the emergence of a novel coronavirus led to its identification as SARS-CoV-2, precipitating the onset of the COVID-19 pandemic. Many experimental and computational studies were performed on SARS-CoV-2 to understand its behavior and patterns. In this research, Molecular Dynamic (MD) simulation is utilized to compare the behaviors of SARS-CoV-2 and its Variants of Concern (VOC)-Alpha, Beta, Gamma, Delta, and Omicron-with the hACE2 protein. Protein structures from the Protein Data Bank (PDB) were aligned and trimmed for consistency using Chimera, focusing on the receptor-binding domain (RBD) responsible for ACE2 interaction. MD simulations were performed using Visual Molecular Dynamics (VMD) and Nanoscale Molecular Dynamics (NAMD2), and salt bridges and hydrogen bond data were extracted from the results of these simulations. The data extracted from the last 5 ns of the 10 ns simulations were visualized, providing insights into the comparative stability of each variant's interaction with ACE2. Moreover, electrostatics and hydrophobic protein surfaces were calculated, visualized, and analyzed. Our comprehensive computational results are helpful for drug discovery and future vaccine designs as they provide information regarding the vital amino acids in protein-protein interactions (PPIs). Our analysis reveals that the Original and Omicron variants are the two most structurally similar proteins. The Gamma variant forms the strongest interaction with hACE2 through hydrogen bonds, while Alpha and Delta form the most stable salt bridges; the Omicron is dominated by positive potential in the binding site, which makes it easy to attract the hACE2 receptor; meanwhile, the Original, Beta, Delta, and Omicron variants show varying levels of interaction stability through both hydrogen bonds and salt bridges, indicating that targeted therapeutic agents can disrupt these critical interactions to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jiawei Chen
- College of Computing, Data Science and Society, University of California, Berkeley, CA 94720, USA;
| | - Lingtao Chen
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Y.X.); (Q.L.); (M.V.)
| | - Heng Quan
- Department of Civil and Urban Engineering, New York University, Brooklyn, NY 10012, USA;
| | - Soongoo Lee
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Kaniz Fatama Khan
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Ying Xie
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Y.X.); (Q.L.); (M.V.)
| | - Qiaomu Li
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Y.X.); (Q.L.); (M.V.)
| | - Maria Valero
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Y.X.); (Q.L.); (M.V.)
| | - Zhiyu Dai
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Yixin Xie
- College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA; (L.C.); (Y.X.); (Q.L.); (M.V.)
| |
Collapse
|
2
|
Bates TA, Trank-Greene M, Nguyenla X, Anastas A, Gurmessa SK, Merutka IR, Dixon SD, Shumate A, Groncki AR, Parson MAH, Ingram JR, Barklis E, Burke JE, Shinde U, Ploegh HL, Tafesse FG. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6-specific nanobody restricts M. tuberculosis growth in macrophages. eLife 2024; 12:RP91930. [PMID: 38805257 PMCID: PMC11132683 DOI: 10.7554/elife.91930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH-dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.
Collapse
Affiliation(s)
- Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Mila Trank-Greene
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Xammy Nguyenla
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Aidan Anastas
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Sintayehu K Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Ilaria R Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Shandee D Dixon
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Abigail R Groncki
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Jessica R Ingram
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| |
Collapse
|
3
|
Bates TA, Trank-Greene M, Nguyenla X, Anastas A, Gurmessa SK, Merutka IR, Dixon SD, Shumate A, Groncki AR, Parson MAH, Ingram JR, Barklis E, Burke JE, Shinde U, Ploegh HL, Tafesse FG. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6 specific nanobody restricts M. tuberculosis growth in macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.16.553641. [PMID: 37645775 PMCID: PMC10462100 DOI: 10.1101/2023.08.16.553641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.
Collapse
Affiliation(s)
- Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Mila Trank-Greene
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Xammy Nguyenla
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Aidan Anastas
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Sintayehu K Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Ilaria R Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Shandee D Dixon
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Abigail R Groncki
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Jessica R Ingram
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| |
Collapse
|
4
|
Sun S, Rodriguez G, Xie Y, Guo W, Hernandez AEL, Sanchez JE, Kirken RA, Li L. Phosphorylation of Tyrosine 841 Plays a Significant Role in JAK3 Activation. Life (Basel) 2023; 13:981. [PMID: 37109511 PMCID: PMC10141632 DOI: 10.3390/life13040981] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Janus Kinase 3 (JAK3) plays a key role in the development, proliferation, and differentiation of various immune cells. It regulates gene expression by phosphorylation of Signal Transducers and Activators of Transcriptions (STATs) via the JAK/STAT pathway. Recently, we found a new JAK3 phosphorylation site, tyrosine 841 (Y841). The results showed that pY841 helps the kinase domain flip around the pseudo kinase domain, which may cause JAK3 conformational changes. It also reduces the size of the cleft between the N-lobe and the C-lobe of the JAK3 kinase domain. However, pY841 was found to enlarge the cleft when ATP/ADP was bound to the kinase. The increase in the cleft size suggested that pY841 enhanced the elasticity of the kinase domain. For unphosphorylated JAK3 (JAK3-Y841), the binding forces between the kinase domain and ATP or ADP were similar. After phosphorylation of Y841, JAK3-pY841 exhibited more salt bridges and hydrogen bonds between ATP and the kinase than between ADP and the kinase. Consequently, the electrostatic binding force between ATP and the kinase was higher than that between ADP and the kinase. The result was that compared to ADP, ATP was more attractive to JAK3 when Y841 was phosphorylated. Therefore, JAK3-pY841 tended to bind ATP rather than ADP. This work provides new insights into the role of phosphorylation in kinase activation and ATP hydrolysis and sheds light on the importance of understanding the molecular mechanisms that regulate the kinase function.
Collapse
Affiliation(s)
- Shengjie Sun
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Yixin Xie
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Department of Information Technology, College of Computing and Software Engineering, Kennesaw State University, 1100 South Marietta Pkwy SE, Marietta, GA 30060, USA
| | - Wenhan Guo
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Alan E. Lopez Hernandez
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Jason E. Sanchez
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Robert Arthur Kirken
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Lin Li
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
- Department of Physics, The University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| |
Collapse
|
5
|
Sun S, Xu H, Xie Y, Sanchez JE, Guo W, Liu D, Li L. HIT-2: Implementing machine learning algorithms to treat bound ions in biomolecules. Comput Struct Biotechnol J 2023; 21:1383-1389. [PMID: 36817955 PMCID: PMC9929202 DOI: 10.1016/j.csbj.2023.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Electrostatic features are fundamental to protein functions and protein-protein interactions. Studying highly charged biomolecules is challenging given the heterogeneous distribution of the ionic cloud around such biomolecules. Here we report a new computational method, Hybridizing Ions Treatment-2 (HIT-2), which is used to model biomolecule-bound ions using the implicit solvation model. By modeling ions, HIT-2 allows the user to calculate important electrostatic features of the biomolecules. HIT-2 applies an efficient algorithm to calculate the position of bound ions from molecular dynamics simulations. Modeling parameters were optimized by machine learning methods from thousands of datasets. The optimized parameters produced results with errors lower than 0.2 Å. The testing results on bound Ca2+ and Zn2+ in NAMD simulations also proved that HIT-2 can effectively identify bound ion types, numbers, and positions. Also, multiple tests performed on HIT-2 suggest the method can handle biomolecules that undergo remarkable conformational changes. HIT-2 can significantly improve electrostatic calculations for many problems in computational biophysics.
Collapse
Affiliation(s)
- Shengjie Sun
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| | - Honglun Xu
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| | - Yixin Xie
- Department of Information Technology, College of Computing and Software Engineering, Kennesaw State University, 1000 Chastain Rd NW, Kennesaw, GA 30144, USA
| | - Jason E. Sanchez
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| | - Wenhan Guo
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| | - Dongfang Liu
- Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Lin Li
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave, TX 79968, USA
- Department of Physics, the University of Texas at El Paso, 500 W University Ave, TX 79968, USA
| |
Collapse
|
6
|
Electrostatics in Computational Biophysics and Its Implications for Disease Effects. Int J Mol Sci 2022; 23:ijms231810347. [PMID: 36142260 PMCID: PMC9499338 DOI: 10.3390/ijms231810347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/25/2022] Open
Abstract
This review outlines the role of electrostatics in computational molecular biophysics and its implication in altering wild-type characteristics of biological macromolecules, and thus the contribution of electrostatics to disease mechanisms. The work is not intended to review existing computational approaches or to propose further developments. Instead, it summarizes the outcomes of relevant studies and provides a generalized classification of major mechanisms that involve electrostatic effects in both wild-type and mutant biological macromolecules. It emphasizes the complex role of electrostatics in molecular biophysics, such that the long range of electrostatic interactions causes them to dominate all other forces at distances larger than several Angstroms, while at the same time, the alteration of short-range wild-type electrostatic pairwise interactions can have pronounced effects as well. Because of this dual nature of electrostatic interactions, being dominant at long-range and being very specific at short-range, their implications for wild-type structure and function are quite pronounced. Therefore, any disruption of the complex electrostatic network of interactions may abolish wild-type functionality and could be the dominant factor contributing to pathogenicity. However, we also outline that due to the plasticity of biological macromolecules, the effect of amino acid mutation may be reduced, and thus a charge deletion or insertion may not necessarily be deleterious.
Collapse
|
7
|
The pH Effects on SARS-CoV and SARS-CoV-2 Spike Proteins in the Process of Binding to hACE2. Pathogens 2022; 11:pathogens11020238. [PMID: 35215181 PMCID: PMC8879864 DOI: 10.3390/pathogens11020238] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
COVID-19 has been threatening human health since the late 2019, and has a significant impact on human health and economy. Understanding SARS-CoV-2 and other coronaviruses is important to develop effective treatments for COVID-19 and other coronavirus-caused diseases. In this work, we applied multi-scale computational approaches to study the electrostatic features of spike (S) proteins for SARS-CoV and SARS-CoV-2. From our results, we found that SARS-CoV and SARS-CoV-2 have similar charge distributions and electrostatic features when binding with the human angiotensin-converting enzyme 2 (hACE2). Energy pH-dependence calculations revealed that the complex structures of hACE2 and the S proteins of SARS-CoV/SARS-CoV-2 are stable at pH values ranging from 7.5 to 9. Three independent 100 ns molecular dynamics (MD) simulations were performed using NAMD to investigate the hydrogen bonds between S proteins RBD and hACE2 RBD. From MD simulations, we found that SARS-CoV-2 forms 19 pairs (average of three simulations) of hydrogen bonds with high occupancy (>50%) to hACE2, compared to 16 pairs between SARS-CoV and hACE2. Additionally, SARS-CoV viruses prefer sticking to the same hydrogen bond pairs, while SARS-CoV-2 tends to have a larger range of selections on hydrogen bonds acceptors. We also labelled key residues involved in forming the top five hydrogen bonds that were found in all three independent 100 ns simulations. This identification is important to potential drug designs for COVID-19 treatments. Our work will shed the light on current and future coronavirus-caused diseases.
Collapse
|
8
|
Sun S, Karki C, Gao BZ, Li L. Molecular mechanisms of cardiac actomyosin transforming from rigor state to post-rigor state. J Chem Phys 2022; 156:035101. [PMID: 35065578 PMCID: PMC9305598 DOI: 10.1063/5.0078166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Sudden cardiac death contributed to half of all deaths from cardiovascular diseases. The mechanism of the kinetic cycle of cardiac myosin is crucial for heart protection and drug development. The state change in the myosin kinetic cycle from the rigor state to the post-rigor state is fundamental to explain binding and dissociation. Here, we used β-cardiac myosin in the rigor and post-rigor states to model the actomyosin complexes. Molecular dynamics simulations, electrostatic analysis, and energetic analysis of actomyosin complexes were performed in this work. The results showed that there are fewer interactions and lower electrostatic binding strength in the post-rigor state than in the rigor state. In the post-rigor state, there were higher free binding energy, fewer salt bridges, and fewer hydrogen bonds. The results showed a lower binding affinity in the post-rigor state than in the rigor state. The decrease in the binding affinity provided important conditions for dissociation of the myosin from the actin filament. Although previous studies focused mostly on the binding process, this study provides evidence of dissociation, which is even more important in the myosin kinetic cycle. This research on the mechanism of myosin kinetic cycles provides a novel direction for future genetic disease studies.
Collapse
Affiliation(s)
- Shengjie Sun
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, Texas 79968, USA
| | - Chitra Karki
- Computational Science Program, The University of Texas at El Paso, 500 W University Ave., El Paso, Texas 79968, USA
| | - Bruce Z. Gao
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, USA
| | - Lin Li
- Author to whom correspondence should be addressed:
| |
Collapse
|
9
|
Xie Y, Guo W, Lopez-Hernadez A, Teng S, Li L. The pH Effects on SARS-CoV and SARS-CoV-2 Spike Proteins in the Process of Binding to hACE2. RESEARCH SQUARE 2021:rs.3.rs-871118. [PMID: 34518836 PMCID: PMC8437318 DOI: 10.21203/rs.3.rs-871118/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
COVID-19 has been threatening human health since the late 2019, which has significant impact on human health and economy. Understanding the SARS-CoV-2 and other coronaviruses is important to develop effective treatments for COVID-19 and other coronaviruses-caused diseases. In this work, we applied multi-scale computational approaches to study the electrostatic features of spike (S) proteins for SARS-CoV and SARS-CoV-2. From our results, we found thatSARS-CoV and SARS-CoV-2 have similar charge distributions and electrostatic features when binding with the human angiotensin-converting enzyme 2 (hACE2). The energy pH-dependence calculation srevealed that the complex structures of hACE2 and the S proteins of SARS-CoV/SARS-CoV-2 are stable at pH values ranging from 7.5 to 9. Molecular dynamics simulations were performed using NAMD to investigate the hydrogen bonds between S proteins and hACE2. From the MD simulations it was found that SARS-CoV-2 has four pairsof essential hydrogenbonds (high occupancy, >80%), while SARS-CoV has three pairs, which indicates the SARS-CoV-2 S protein has relatively more robust binding strategy than SARS-CoVS protein.Four key residues forming essential hydrogen bonds from SARS-CoV-2 are identified, which are potential drug targets for COVID-19 treatments. The findings in this study shed lights on the current and future treatments for COVID-19 and other coronaviruses-caused diseases.
Collapse
Affiliation(s)
- Yixin Xie
- Computational Science Program, University of Texas at El Paso, El Paso, TX
| | - Wenhan Guo
- Computational Science Program, University of Texas at El Paso, El Paso, TX
| | | | - Shaolei Teng
- Department of Biology, Howard University, Washington, D.C
| | - Lin Li
- Computational Science Program, University of Texas at El Paso, El Paso, TX
- Department of Physics, University of Texas at El Paso, El Paso, TX
| |
Collapse
|
10
|
A Small Protein but with Diverse Roles: A Review of EsxA in Mycobacterium-Host Interaction. Cells 2021; 10:cells10071645. [PMID: 34209120 PMCID: PMC8305481 DOI: 10.3390/cells10071645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
As a major effector of the ESX-1 secretion system, EsxA is essential for the virulence of pathogenic mycobacteria, such as Mycobacterium tuberculosis (Mtb) and Mycobacterium marinum (Mm). EsxA possesses an acidic pH-dependent membrane permeabilizing activity and plays an essential role by mediating mycobacterial escape from the phagosome and translocation to the cytosol for intracellular replication. Moreover, EsxA regulates host immune responses as a potent T-cell antigen and a strong immunoregulator. EsxA interacts with multiple cellular proteins and stimulates several signal pathways, such as necrosis, apoptosis, autophagy, and antigen presentation. Interestingly, there is a co-dependency in the expression and secretion of EsxA and other mycobacterial factors, which greatly increases the complexity of dissecting the precise roles of EsxA and other factors in mycobacterium-host interaction. In this review, we summarize the current understandings of the roles and functions of EsxA in mycobacterial infection and discuss the challenges and future directions.
Collapse
|
11
|
Li L. Editorial — Special Issue on Novel Methods in Computational Chemistry and their Applications to Biological Problems: Part 1. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Lin Li
- Department of Physics, University of Texas at El Paso, USA
| |
Collapse
|