1
|
Haghayegh F, Norouziazad A, Haghani E, Feygin AA, Rahimi RH, Ghavamabadi HA, Sadighbayan D, Madhoun F, Papagelis M, Felfeli T, Salahandish R. Revolutionary Point-of-Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery through Intelligent Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400595. [PMID: 38958517 PMCID: PMC11423253 DOI: 10.1002/advs.202400595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Early-stage disease detection, particularly in Point-Of-Care (POC) wearable formats, assumes pivotal role in advancing healthcare services and precision-medicine. Public benefits of early detection extend beyond cost-effectively promoting healthcare outcomes, to also include reducing the risk of comorbid diseases. Technological advancements enabling POC biomarker recognition empower discovery of new markers for various health conditions. Integration of POC wearables for biomarker detection with intelligent frameworks represents ground-breaking innovations enabling automation of operations, conducting advanced large-scale data analysis, generating predictive models, and facilitating remote and guided clinical decision-making. These advancements substantially alleviate socioeconomic burdens, creating a paradigm shift in diagnostics, and revolutionizing medical assessments and technology development. This review explores critical topics and recent progress in development of 1) POC systems and wearable solutions for early disease detection and physiological monitoring, as well as 2) discussing current trends in adoption of smart technologies within clinical settings and in developing biological assays, and ultimately 3) exploring utilities of POC systems and smart platforms for biomarker discovery. Additionally, the review explores technology translation from research labs to broader applications. It also addresses associated risks, biases, and challenges of widespread Artificial Intelligence (AI) integration in diagnostics systems, while systematically outlining potential prospects, current challenges, and opportunities.
Collapse
Affiliation(s)
- Fatemeh Haghayegh
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Alireza Norouziazad
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Elnaz Haghani
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Ariel Avraham Feygin
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Reza Hamed Rahimi
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Hamidreza Akbari Ghavamabadi
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Deniz Sadighbayan
- Department of BiologyFaculty of ScienceYork UniversityTorontoONM3J 1P3Canada
| | - Faress Madhoun
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Manos Papagelis
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| | - Tina Felfeli
- Department of Ophthalmology and Vision SciencesUniversity of TorontoOntarioM5T 3A9Canada
- Institute of Health PolicyManagement and EvaluationUniversity of TorontoOntarioM5T 3M6Canada
| | - Razieh Salahandish
- Laboratory of Advanced Biotechnologies for Health Assessments (Lab‐HA)Biomedical Engineering ProgramLassonde School of EngineeringYork UniversityTorontoM3J 1P3Canada
- Department of Electrical Engineering and Computer Science (EECS)Lassonde School of EngineeringYork UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
2
|
Yan L, Zheng P, Wang Z, Wang W, Chen X, Liu Q. Multimodal biosensing systems based on metal nanoparticles. Analyst 2024; 149:4116-4134. [PMID: 39007333 DOI: 10.1039/d4an00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biosensors are currently among the most commonly used devices for analysing biomarkers and play an important role in environmental detection, food safety, and disease diagnosis. Researchers have developed multimodal biosensors instead of single-modal biosensors to meet increasing sensitivity, accuracy, and stability requirements. Metal nanoparticles (MNPs) are beneficial for preparing core probes for multimodal biosensors because of their excellent physical and chemical properties, such as easy regulation and modification, and because they can integrate diverse sensing strategies. This review mainly summarizes the excellent physicochemical properties of MNPs applied as biosensing probes and the principles of commonly used MNP-based multimodal sensing strategies. Recent applications and possible improvements of multimodal biosensors based on MNPs are also described, among which on-site inspection and sensitive detection are particularly important. The current challenges and prospects for multimodal biosensors based on MNPs may provide readers with a new perspective on this field.
Collapse
Affiliation(s)
- Liang Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Peijia Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhicheng Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjie Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Xiaoman Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Qi Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- School of Stomatology, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
3
|
Zeng Z, Li H, Li Q, Sun R, Zhang X, Zhang D, Zhu Q, Chen C. Quantitative measurement of acute myocardial infarction cardiac biomarkers by "All-in-One" immune microfluidic chip for early diagnosis of myocardial infarction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124256. [PMID: 38615418 DOI: 10.1016/j.saa.2024.124256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Acute myocardial infarction (AMI) is a life-threatening condition with a narrow treatment window, necessitating rapid and accurate diagnostic methods. We present an "all-in-one" convenient and rapid immunoassay system that combines microfluidic technology with a colloidal gold immunoassay. A degassing-driven chip replaces a bulky external pump, resulting in a user-friendly and easy-to-operate immunoassay system. The chip comprises four units: an inlet reservoir, an immunoreaction channel, a waste pool, and an immunocomplex collection chamber, allowing single-channel flow for rapid and accurate AMI biomarker detection. In this study, we focused on cardiac troponin I (cTnI). With a minimal sample of just 4 μL and a total detection time of under 3 min, the chip enabled a quantitative visual analysis of cTnI concentration within a range of 0.5 ∼ 60.0 ng mL-1. This all-in-one integrated microfluidic chip with colloidal gold immunoassay offers a promising solution for rapid AMI diagnosis. The system's portability, small sample requirement, and quantitative visual detection capabilities make it a valuable tool for AMI diagnostics.
Collapse
Affiliation(s)
- Zhaokui Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Huimin Li
- Yueyang Inspection and Testing Center, Yueyang 414000, China
| | - Qi Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang 410300, China
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang 410300, China
| | - Di Zhang
- Department of Laboratory, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
4
|
Wang S, Zhou Y, Li Z. A microfluidic cover converts a standard 96-well plate into a mass-transport-controlled immunoassay system. BIOMICROFLUIDICS 2024; 18:014102. [PMID: 38249129 PMCID: PMC10798817 DOI: 10.1063/5.0183651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024]
Abstract
96-well microtiter plates, widely used in immunoassays, face challenges such as prolonged assay time and limited sensitivity due to the lack of analyte transport control. Orbital shakers, commonly employed to facilitate mass transport, offer limited improvements and can introduce assay inconsistencies. While microfluidic devices offer performance enhancements, their complexity and incompatibility with existing platforms limit their wide adoption. This study introduces a novel microfluidic 96-well cover designed to convert a standard 96-well plate to a mass-transport-controlled surface bioreactor. The cover employs microfluidic methods to enhance the diffusion flux of analytes toward the receptors immobilized on the well bottom. Both simulation and experimental results demonstrated that the cover significantly enhances the capture rate of analyte molecules, resulting in increased signal strength for various detection methods and a lower detection limit. The cover serves as an effective add-on to standard 96-well plates, offering enhanced assay performance without requiring modifications to existing infrastructure or reagents. This innovation holds promise for improving the efficiency and reliability of microtiter plate based immunoassays.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Biomedical Engineering, The George Washington University, District of Columbia, 20052, USA
| | - You Zhou
- Department of Electrical and Computer Engineering, The George Washington University, District of Columbia, 20052, USA
| | - Zhenyu Li
- Department of Biomedical Engineering, The George Washington University, District of Columbia, 20052, USA
| |
Collapse
|
5
|
Oliveira MJ, Caetano S, Dalot A, Sabino F, Calmeiro TR, Fortunato E, Martins R, Pereira E, Prudêncio M, Byrne HJ, Franco R, Águas H. A simple polystyrene microfluidic device for sensitive and accurate SERS-based detection of infection by malaria parasites. Analyst 2023; 148:4053-4063. [PMID: 37529888 PMCID: PMC10440799 DOI: 10.1039/d3an00971h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Early and accurate detection of infection by pathogenic microorganisms, such as Plasmodium, the causative agent of malaria, is critical for clinical diagnosis and ultimately determines the patient's outcome. We have combined a polystyrene-based microfluidic device with an immunoassay which utilises Surface-Enhanced Raman Spectroscopy (SERS) to detect malaria. The method can be easily translated to a point-of-care testing format and shows excellent sensitivity and specificity, when compared to the gold standard for laboratorial detection of Plasmodium infections. The device can be fabricated in less than 30 min by direct patterning on shrinkable polystyrene sheets of adaptable three-dimensional microfluidic chips. To validate the microfluidic system, samples of P. falciparum-infected red blood cell cultures were used. The SERS-based immunoassay enabled the detection of 0.0012 ± 0.0001% parasitaemia in a P. falciparum-infected red blood cell culture supernatant, an ∼7-fold higher sensitivity than that attained by most rapid diagnostic tests. Our approach successfully overcomes the main challenges of the current Plasmodium detection methods, including increased reproducibility, sensitivity, and specificity. Furthermore, our system can be easily adapted for detection of other pathogens and has excellent properties for early diagnosis of infectious diseases, a decisive step towards lowering their high burden on healthcare systems worldwide.
Collapse
Affiliation(s)
- Maria João Oliveira
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Soraia Caetano
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ana Dalot
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Filipe Sabino
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Tomás R Calmeiro
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
| | - Elvira Fortunato
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
| | - Rodrigo Martins
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
| | - Eulália Pereira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Street, Dublin 8, Ireland
| | - Ricardo Franco
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hugo Águas
- CENIMAT-i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.
| |
Collapse
|
6
|
Lu L, Zhang H, Wang Y, Zhang P, Zhu Z, Yang C. Dissolution-Enhanced Luminescence Enhanced Digital Microfluidics Immunoassay for Sensitive and Automated Detection of H5N1. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6526-6535. [PMID: 36708351 DOI: 10.1021/acsami.2c20289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein bioassay is a critical tool for the screening and detection of protein biomarkers in disease diagnostics and biological applications. However, the detection sensitivity and system automation of current immunoassays do not meet the emerging demands of clinical applications. Here, we developed a dissolution-enhanced luminescence-enhanced digital microfluidics immunoassay (DEL-DMF), which significantly improves the sensitivity and automation of the protein bioassay. In DEL-DMF, the sample and reagent droplets are controlled to complete the processes of sample transport, immunoreaction, and buffer washing, which not only minimizes sample consumption to 2 μL and enhances the binding efficiency of immunoreaction but also streamlines all the procedures and simplifies the process of immunoassay. Moreover, dissolution-enhanced luminescence using NaEuF4 NPs as nanoprobes boosts the fluorescence and increases the sensitivity of the bioassay. We demonstrate the enhanced analytical performance of our DEL-DMF immunoassay to detect H5N1 hemagglutinin in human serum and saliva. A limit of detection of 1.16 pM was achieved in less than 0.5 h with only 2 μL sample consumption. Overall, our DEL-DMF immunoassay combines the merits of the microfluidics platform and dissolution-enhanced luminescence, thus affording superior detection sensitivity and system automation for protein biomarkers. This novel immunoassay microsystem holds great potential in clinical and biological applications.
Collapse
Affiliation(s)
- Lianyu Lu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yang Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peng Zhang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
7
|
Berwanger JD, Lake MA, Ganguly S, Yang J, Welch CJ, Linnes JC, Bruening M. Microporous affinity membranes and their incorporation into microfluidic devices for monitoring of therapeutic antibodies. Talanta 2023; 252:123842. [DOI: 10.1016/j.talanta.2022.123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
|
8
|
Oliveira MJ, Dalot A, Fortunato E, Martins R, Byrne HJ, Franco R, Águas H. Microfluidic SERS devices: brightening the future of bioanalysis. DISCOVER MATERIALS 2022; 2:12. [PMID: 36536830 PMCID: PMC9751519 DOI: 10.1007/s43939-022-00033-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A new avenue has opened up for applications of surface-enhanced Raman spectroscopy (SERS) in the biomedical field, mainly due to the striking advantages offered by SERS tags. SERS tags provide indirect identification of analytes with rich and highly specific spectral fingerprint information, high sensitivity, and outstanding multiplexing potential, making them very useful in in vitro and in vivo assays. The recent and innovative advances in nanomaterial science, novel Raman reporters, and emerging bioconjugation protocols have helped develop ultra-bright SERS tags as powerful tools for multiplex SERS-based detection and diagnosis applications. Nevertheless, to translate SERS platforms to real-world problems, some challenges, especially for clinical applications, must be addressed. This review presents the current understanding of the factors influencing the quality of SERS tags and the strategies commonly employed to improve not only spectral quality but the specificity and reproducibility of the interaction of the analyte with the target ligand. It further explores some of the most common approaches which have emerged for coupling SERS with microfluidic technologies, for biomedical applications. The importance of understanding microfluidic production and characterisation to yield excellent device quality while ensuring high throughput production are emphasised and explored, after which, the challenges and approaches developed to fulfil the potential that SERS-based microfluidics have to offer are described.
Collapse
Affiliation(s)
- Maria João Oliveira
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Dalot
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Row, Dublin 8, Dublin, Ireland
| | - Ricardo Franco
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hugo Águas
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and, CEMOP/UNINOVA, Caparica, Portugal
| |
Collapse
|
9
|
Chavez‐Pineda OG, Rodriguez‐Moncayo R, Cedillo‐Alcantar DF, Guevara‐Pantoja PE, Amador‐Hernandez JU, Garcia‐Cordero JL. Microfluidic systems for the analysis of blood‐derived molecular biomarkers. Electrophoresis 2022; 43:1667-1700. [DOI: 10.1002/elps.202200067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Oriana G. Chavez‐Pineda
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Roberto Rodriguez‐Moncayo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Diana F. Cedillo‐Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Pablo E. Guevara‐Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Josue U. Amador‐Hernandez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Jose L. Garcia‐Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
- Roche Institute for Translational Bioengineering (ITB) Roche Pharma Research and Early Development, Roche Innovation Center Basel Basel Switzerland
| |
Collapse
|
10
|
Xie X, Wang Y, Siu SY, Chan CW, Zhu Y, Zhang X, Ge J, Ren K. Microfluidic synthesis as a new route to produce novel functional materials. BIOMICROFLUIDICS 2022; 16:041301. [PMID: 36035887 PMCID: PMC9410731 DOI: 10.1063/5.0100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
By geometrically constraining fluids into the sub-millimeter scale, microfluidics offers a physical environment largely different from the macroscopic world, as a result of the significantly enhanced surface effects. This environment is characterized by laminar flow and inertial particle behavior, short diffusion distance, and largely enhanced heat exchange. The recent two decades have witnessed the rapid advances of microfluidic technologies in various fields such as biotechnology; analytical science; and diagnostics; as well as physical, chemical, and biological research. On the other hand, one additional field is still emerging. With the advances in nanomaterial and soft matter research, there have been some reports of the advantages discovered during attempts to synthesize these materials on microfluidic chips. As the formation of nanomaterials and soft matters is sensitive to the environment where the building blocks are fed, the unique physical environment of microfluidics and the effectiveness in coupling with other force fields open up a lot of possibilities to form new products as compared to conventional bulk synthesis. This Perspective summarizes the recent progress in producing novel functional materials using microfluidics, such as generating particles with narrow and controlled size distribution, structured hybrid materials, and particles with new structures, completing reactions with a quicker rate and new reaction routes and enabling more effective and efficient control on reactions. Finally, the trend of future development in this field is also discussed.
Collapse
Affiliation(s)
- Xinying Xie
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yisu Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Sin-Yung Siu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chiu-Wing Chan
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | | | - Xuming Zhang
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong 999077, China
| | | | - Kangning Ren
- Author to whom correspondence should be addressed: and
| |
Collapse
|
11
|
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Environmental Studies, University of Delhi, Delhi - 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
| |
Collapse
|
12
|
Abstract
Microfluidics has enabled a new era of cellular and molecular assays due to the small length scales, parallelization, and the modularity of various analysis and actuation functions. Droplet microfluidics, in particular, has been instrumental in providing new tools for biology with its ability to quickly and reproducibly generate drops that act as individual reactors. A notable beneficiary of this technology has been single-cell RNA sequencing, which has revealed new heterogeneities and interactions for the fundamental unit of life. However, viruses far surpass the diversity of cellular life, affect the dynamics of all ecosystems, and are a chronic source of global health crises. Despite their impact on the world, high-throughput and high-resolution viral profiling has been difficult, with conventional methods being limited to population-level averaging, large sample volumes, and few cultivable hosts. Consequently, most viruses have not been identified and studied. Droplet microfluidics holds the potential to address many of these limitations and offers new levels of sensitivity and throughput for virology. This Feature highlights recent efforts that have applied droplet microfluidics to the detection and study of viruses, including for diagnostics, virus-host interactions, and cell-independent virus assays. In combination with traditional virology methods, droplet microfluidics should prove a potent tool toward achieving a better understanding of the most abundant biological species on Earth.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hee-Sun Han
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Nix C, Ghassemi M, Crommen J, Fillet M. Overview on microfluidics devices for monitoring brain disorder biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
|
15
|
Mukunda DC, Rodrigues J, Joshi VK, Raghushaker CR, Mahato KK. A comprehensive review on LED-induced fluorescence in diagnostic pathology. Biosens Bioelectron 2022; 209:114230. [PMID: 35421670 DOI: 10.1016/j.bios.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Sensitivity, specificity, mobility, and affordability are important criteria to consider for developing diagnostic instruments in common use. Fluorescence spectroscopy has been demonstrating substantial potential in the clinical diagnosis of diseases and evaluating the underlying causes of pathogenesis. A higher degree of device integration with appropriate sensitivity and reasonable cost would further boost the value of the fluorescence techniques in clinical diagnosis and aid in the reduction of healthcare expenses, which is a key economic concern in emerging markets. Light-emitting diodes (LEDs), which are inexpensive and smaller are attractive alternatives to conventional excitation sources in fluorescence spectroscopy, are gaining a lot of momentum in the development of affordable, compact analytical instruments of clinical relevance. The commercial availability of a broad range of LED wavelengths (255-4600 nm) has opened up new avenues for targeting a wide range of clinically significant molecules (both endogenous and exogenous), thereby diagnosing a range of clinical illnesses. As a result, we have specifically examined the uses of LED-induced fluorescence (LED-IF) in preclinical and clinical evaluations of pathological conditions, considering the present advancements in the field.
Collapse
Affiliation(s)
| | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vijay Kumar Joshi
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| |
Collapse
|
16
|
Digital Microfluidic qPCR Cartridge for SARS-CoV-2 Detection. MICROMACHINES 2022; 13:mi13020196. [PMID: 35208320 PMCID: PMC8874717 DOI: 10.3390/mi13020196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
Point-of-care (POC) tests capable of individual health monitoring, transmission reduction, and contact tracing are especially important in a pandemic such as the coronavirus disease 2019 (COVID-19). We develop a disposable POC cartridge that can be mass produced to detect the SARS-CoV-2 N gene through real-time quantitative polymerase chain reaction (qPCR) based on digital microfluidics (DMF). Several critical parameters are studied and improved, including droplet volume consistency, temperature uniformity, and fluorescence intensity linearity on the designed DMF cartridge. The qPCR results showed high accuracy and efficiency for two primer-probe sets of N1 and N2 target regions of the SARS-CoV-2 N gene on the DMF cartridge. Having multiple droplet tracks for qPCR, the presented DMF cartridge can perform multiple tests and controls at once.
Collapse
|
17
|
Gao Z, Song Y, Hsiao TY, He J, Wang C, Shen J, MacLachlan A, Dai S, Singer BH, Kurabayashi K, Chent P. Machine-Learning-Assisted Microfluidic Nanoplasmonic Digital Immunoassay for Cytokine Storm Profiling in COVID-19 Patients. ACS NANO 2021; 15:18023-18036. [PMID: 34714639 PMCID: PMC8577373 DOI: 10.1021/acsnano.1c06623] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 05/08/2023]
Abstract
Cytokine storm, known as an exaggerated hyperactive immune response characterized by elevated release of cytokines, has been described as a feature associated with life-threatening complications in COVID-19 patients. A critical evaluation of a cytokine storm and its mechanistic linkage to COVID-19 requires innovative immunoassay technology capable of rapid, sensitive, selective detection of multiple cytokines across a wide dynamic range at high-throughput. In this study, we report a machine-learning-assisted microfluidic nanoplasmonic digital immunoassay to meet the rising demand for cytokine storm monitoring in COVID-19 patients. Specifically, the assay was carried out using a facile one-step sandwich immunoassay format with three notable features: (i) a microfluidic microarray patterning technique for high-throughput, multiantibody-arrayed biosensing chip fabrication; (ii) an ultrasensitive nanoplasmonic digital imaging technology utilizing 100 nm silver nanocubes (AgNCs) for signal transduction; (iii) a rapid and accurate machine-learning-based image processing method for digital signal analysis. The developed immunoassay allows simultaneous detection of six cytokines in a single run with wide working ranges of 1-10,000 pg mL-1 and ultralow detection limits down to 0.46-1.36 pg mL-1 using a minimum of 3 μL serum samples. The whole chip can afford a 6-plex assay of 8 different samples with 6 repeats in each sample for a total of 288 sensing spots in less than 100 min. The image processing method enhanced by convolutional neural network (CNN) dramatically shortens the processing time ∼6,000 fold with a much simpler procedure while maintaining high statistical accuracy compared to the conventional manual counting approach. The immunoassay was validated by the gold-standard enzyme-linked immunosorbent assay (ELISA) and utilized for serum cytokine profiling of COVID-19 positive patients. Our results demonstrate the nanoplasmonic digital immunoassay as a promising practical tool for comprehensive characterization of cytokine storm in patients that holds great promise as an intelligent immunoassay for next generation immune monitoring.
Collapse
Affiliation(s)
- Zhuangqiang Gao
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Yujing Song
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Te Yi Hsiao
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Jiacheng He
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Chuanyu Wang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Jialiang Shen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Alana MacLachlan
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Siyuan Dai
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Benjamin H. Singer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Pengyu Chent
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
18
|
Multiplexed Prostate Cancer Companion Diagnostic Devices. SENSORS 2021; 21:s21155023. [PMID: 34372259 PMCID: PMC8347987 DOI: 10.3390/s21155023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PCa) remains one of the most prominent forms of cancer for men. Since the early 1990s, Prostate-Specific Antigen (PSA) has been a commonly recognized PCa-associated protein biomarker. However, PSA testing has been shown to lack in specificity and sensitivity when needed to diagnose, monitor and/or treat PCa patients successfully. One enhancement could include the simultaneous detection of multiple PCa-associated protein biomarkers alongside PSA, also known as multiplexing. If conventional methods such as the enzyme-linked immunosorbent assay (ELISA) are used, multiplexed detection of such protein biomarkers can result in an increase in the required sample volume, in the complexity of the analytical procedures, and in adding to the cost. Using companion diagnostic devices such as biosensors, which can be portable and cost-effective with multiplexing capacities, may address these limitations. This review explores recent research for multiplexed PCa protein biomarker detection using optical and electrochemical biosensor platforms. Some of the novel and potential serum-based PCa protein biomarkers will be discussed in this review. In addition, this review discusses the importance of converting research protocols into multiplex point-of-care testing (xPOCT) devices to be used in near-patient settings, providing a more personalized approach to PCa patients’ diagnostic, surveillance and treatment management.
Collapse
|
19
|
Park J, Park JK. Pushbutton-activated microfluidic cartridge as a user-friendly sample preparation tool for diagnostics. BIOMICROFLUIDICS 2021; 15:041302. [PMID: 34257794 PMCID: PMC8270647 DOI: 10.1063/5.0056580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Microfluidic technologies have several advantages in sample preparation for diagnostics but suffer from the need for an external operation system that hampers user-friendliness. To overcome this limitation in microfluidic technologies, a number of user-friendly methods utilizing capillary force, degassed poly(dimethylsiloxane), pushbutton-driven pressure, a syringe, or a pipette have been reported. Among these methods, the pushbutton-driven, pressure-based method has a great potential to be widely used as a user-friendly sample preparation tool for point-of-care testing or portable diagnostics. In this Perspective, we focus on the pushbutton-activated microfluidic technologies toward a user-friendly sample preparation tool. The working principle and recent advances in pushbutton-activated microfluidic technologies are briefly reviewed, and future perspectives for wide application are discussed in terms of integration with the signal analysis system, user-dependent variation, and universal and facile use.
Collapse
Affiliation(s)
| | - Je-Kyun Park
- Author to whom correspondence should be addressed:
| |
Collapse
|
20
|
Gupta R, Sharma D. Therapeutic response differences between 2D and 3D tumor models of magnetic hyperthermia. NANOSCALE ADVANCES 2021; 3:3663-3680. [PMID: 36133021 PMCID: PMC9418625 DOI: 10.1039/d1na00224d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/05/2021] [Indexed: 05/02/2023]
Abstract
Magnetic hyperthermia-based cancer therapy (MHCT) has surfaced as one of the promising techniques for inaccessible solid tumors. It involves generation of localized heat in the tumor tissues on application of an alternating magnetic field in the presence of magnetic nanoparticles (MNPs). Unfortunately, lack of precise temperature and adequate MNP distribution at the tumor site under in vivo conditions has limited its application in the biomedical field. Evaluation of in vitro tumor models is an alternative for in vivo models. However, generally used in vitro two-dimensional (2D) models cannot mimic all the characteristics of a patient's tumor and hence, fail to establish or address the experimental variables and concerns. Considering that three-dimensional (3D) models have emerged as the best possible state to replicate the in vivo conditions successfully in the laboratory for most cell types, it is possible to conduct MHCT studies with higher clinical relevance for the analysis of the selection of magnetic parameters, MNP distribution, heat dissipation, action and acquired thermotolerance in cancer cells. In this review, various forms of 3D cultures have been considered and the successful implication of MHCT on them has been summarized, which includes tumor spheroids, and cultures grown in scaffolds, cell culture inserts and microfluidic devices. This review aims to summarize the contrast between 2D and 3D in vitro tumor models for pre-clinical MHCT studies. Furthermore, we have collated and discussed the usefulness, suitability, pros and cons of these tumor models. Even though numerous cell culture models have been established, further investigations on the new pre-clinical models and selection of best fit model for successful MHCT applications are still necessary to confer a better understanding for researchers.
Collapse
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| | - Deepika Sharma
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| |
Collapse
|
21
|
ESSENCE – A rapid, shear-enhanced, flow-through, capacitive electrochemical platform for rapid detection of biomolecules. Biosens Bioelectron 2021; 182:113163. [DOI: 10.1016/j.bios.2021.113163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 01/24/2023]
|
22
|
Multistory Stairs-based, Fast and Point-of-care Testing for Disease Biomarker Using One-step Capillary Microfluidic Fluoroimmunoassay Chip via Continuous On-chip Labelling. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00025-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Ghodake GS, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Syed A, Elgorban AM, Marraiki N, Kim DY. Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures. Biosens Bioelectron 2021; 177:112969. [PMID: 33434780 PMCID: PMC7836906 DOI: 10.1016/j.bios.2021.112969] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023]
Abstract
Existing coronavirus named as a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has speeded its spread across the globe immediately after emergence in China, Wuhan region, at the end of the year 2019. Different techniques, including genome sequencing, structural feature classification by electron microscopy, and chest imaging using computed tomography, are primarily used to diagnose and screen SARS-CoV-2 suspected individuals. Determination of the viral structure, surface proteins, and genome sequence has provided a design blueprint for the diagnostic investigations of novel SARS-CoV-2 virus and rapidly emerging diagnostic technologies, vaccine trials, and cell-entry-inhibiting drugs. Here, we describe recent understandings on the spike glycoprotein (S protein), receptor-binding domain (RBD), and angiotensin-converting enzyme 2 (ACE2) and their receptor complex. This report also aims to review recently established diagnostic technologies and developments in surveillance measures for SARS-CoV-2 as well as the characteristics and performance of emerging techniques. Smartphone apps for contact tracing can help nations to conduct surveillance measures before a vaccine and effective medicines become available. We also describe promising point-of-care (POC) diagnostic technologies that are under consideration by researchers for advancement beyond the proof-of-concept stage. Developing novel diagnostic techniques needs to be facilitated to establish automatic systems, without any personal involvement or arrangement to curb an existing SARS-CoV-2 epidemic crisis, and could also be appropriate for avoiding the emergence of a future epidemic crisis.
Collapse
Affiliation(s)
- Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Surendra Krushna Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea.
| |
Collapse
|
24
|
Nishiyama K, Maeki M, Ishida A, Tani H, Hisamoto H, Tokeshi M. Simple Approach for Fluorescence Signal Amplification Utilizing a Poly(vinyl alcohol)-Based Polymer Structure in a Microchannel. ACS OMEGA 2021; 6:8340-8345. [PMID: 33817494 PMCID: PMC8015073 DOI: 10.1021/acsomega.1c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Analytical methods with fluorescence detection are in widespread use for detecting low abundance analytes. Here, we report a simple method for fluorescence signal amplification utilizing a structure of an azide-unit pendant water-soluble photopolymer (AWP) in a microchannel. The AWP is a poly(vinyl alcohol)-based photocross-linkable polymer, which is often used in biosensors. We determined that the wall-like structure of the AWP (AWP-wall) constructed in a microchannel functioned as an amplifier of a fluorescence signal. When a solution of fluorescent molecules was introduced into the microchannel having the AWP-wall, the fluorescent molecules accumulated inside the AWP-wall by diffusion. Consequently, the fluorescence intensity inside the AWP-wall increased locally. Among the fluorescent molecules considered in this paper, 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) (DDAO) showed the highest efficiency of fluorescence signal amplification. We prepared a calibration curve for DDAO using the fluorescence intensity inside the AWP-wall, and the sensitivity was 5-fold that for the microchannel without the AWP-wall. This method realizes the improved sensitivity of fluorescence detection easily because the fluorescence signal was amplified only by injecting the solution into the microchannel having the AWP-wall. Furthermore, since this method is not limited to only the use of microchannel, we expect it to be applicable in various fields.
Collapse
Affiliation(s)
- Keine Nishiyama
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Masatoshi Maeki
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Akihiko Ishida
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hirofumi Tani
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hideaki Hisamoto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Osaka, Sakai 599-8531, Japan
| | - Manabu Tokeshi
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Innovative
Research Centre for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute
of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
25
|
Han DK, Oh J, Lee J, Cho YG, Park JS, Choi JS, Kim DS, Kwon J. Paper-based multiplex analytical device for simultaneous detection of Clostridioides difficile toxins and glutamate dehydrogenase. Biosens Bioelectron 2021; 176:112894. [PMID: 33358286 DOI: 10.1016/j.bios.2020.112894] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/04/2023]
Abstract
We report a new paper-based multiplex analytical device (mPAD) for simultaneous screening of three analytes (glutamate dehydrogenase, toxin A, and toxin B) known as biomarkers for Clostridioides difficile infection (CDI). To overcome the limitation of common rapid assays (e.g. lateral flow immunochromatographic and enzyme immunoassays) in terms of multiplexing, sensitivity, simplicity, and ease-of-use, the mPAD is constructed with a three dimensional (3D) configuration of paper components with a multi-channel design. Multiple fluidic paths developed with wax-patterned paper allow the simultaneous detection of glutamate dehydrogenase, toxin A, and toxin B without any cross-reactivity. The 3D fluidic network on the mPAD facilitates a self-operating test procedure for the mixing and addition of amplification reagents with a one-step sliding operation. The results of the multiplex CDI assay can be easily interpreted by the naked eye within 10 min, and are visually intensified over time resulting in up to 3-fold signal amplification. Our device exhibited remarkable analytical performances for the simultaneous detection of three CDI biomarkers, providing a sensitivity of 97%, specificity of 88%, accuracy of 95%, and limits of detection for glutamate dehydrogenase, toxin A, and toxin B of 0.16 ng mL-1, 0.09 ng mL-1, and 0.03 ng mL-1, respectively. These results indicate the high applicability and feasibility of mPAD for multiplex testing for CDI with the advantages of being simple, sensitive, inexpensive, user-friendly, and equipment-free.
Collapse
Affiliation(s)
- Do Kyoung Han
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-Gu, Daejeon, 34133, Republic of Korea
| | - Jeonghyun Oh
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-Gu, Daejeon, 34133, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaehyeon Lee
- Department of Laboratory Medicine, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Yong Gon Cho
- Department of Laboratory Medicine, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Ju Seong Park
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-Gu, Daejeon, 34133, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-Gu, Daejeon, 34133, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Dal Sik Kim
- Department of Laboratory Medicine, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, 54907, Republic of Korea.
| | - Joseph Kwon
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-Gu, Daejeon, 34133, Republic of Korea.
| |
Collapse
|
26
|
Microdevice immunoassay with conjugated magnetic nanoparticles for rapid anti-cyclic citrullinated peptide (anti-CCP) detection. Talanta 2021; 224:121801. [DOI: 10.1016/j.talanta.2020.121801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022]
|
27
|
He Z, Huffman J, Curtin K, Garner KL, Bowdridge EC, Li X, Nurkiewicz TR, Li P. Composable Microfluidic Plates (cPlate): A Simple and Scalable Fluid Manipulation System for Multiplexed Enzyme-Linked Immunosorbent Assay (ELISA). Anal Chem 2021; 93:1489-1497. [PMID: 33326204 DOI: 10.1021/acs.analchem.0c03651] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is the gold standard method for protein biomarkers. However, scaling up ELISA for multiplexed biomarker analysis is not a trivial task due to the lengthy procedures for fluid manipulation and high reagent/sample consumption. Herein, we present a highly scalable multiplexed ELISA that achieves a similar level of performance to commercial single-target ELISA kits as well as shorter assay time, less consumption, and simpler procedures. This ELISA is enabled by a novel microscale fluid manipulation method, composable microfluidic plates (cPlate), which are comprised of miniaturized 96-well plates and their corresponding channel plates. By assembling and disassembling the plates, all of the fluid manipulations for 96 independent ELISA reactions can be achieved simultaneously without any external fluid manipulation equipment. Simultaneous quantification of four protein biomarkers in serum samples is demonstrated with the cPlate system, achieving high sensitivity and specificity (∼ pg/mL), short assay time (∼1 h), low consumption (∼5 μL/well), high scalability, and ease of use. This platform is further applied to probe the levels of three protein biomarkers related to vascular dysfunction under pulmonary nanoparticle exposure in rat's plasma. Because of the low cost, portability, and instrument-free nature of the cPlate system, it will have great potential for multiplexed point-of-care testing in resource-limited regions.
Collapse
Affiliation(s)
- Ziyi He
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Justin Huffman
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Kathrine Curtin
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Krista L Garner
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia 26506, United States.,Center for Inhalation Toxicology, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia 26506, United States.,Center for Inhalation Toxicology, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Xiaojun Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia 26506, United States.,Center for Inhalation Toxicology, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
28
|
Karimzadeh Z, Hasanzadeh M, Isildak I, Khalilzadeh B. Multiplex bioassaying of cancer proteins and biomacromolecules: Nanotechnological, structural and technical perspectives. Int J Biol Macromol 2020; 165:3020-3039. [PMID: 33122068 DOI: 10.1016/j.ijbiomac.2020.10.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
Since the specific proteins (carbohydrate antigens, ligands and interleukins) get raised up in body tissue or fluids in cancer cases, early detection of them will provide an effective treatment and survival rate. Sensitive and accurate determination of multiple cancer proteins can be engaged in chorus by simultaneous/multiplex detection in the biomedical fields. Bioassaying technology is one of the non-invasive, high-sensitive, and economical methods. Currently, extensive application of nanomaterial (biocompatible polymers, metallic and metal oxide) in bioassays resulted in ultra-high sensitive and selective diagnosis. This review article focuses on types of multiplex bioassays for delicate and specific determination of cancer proteins for diagnostic aims. It also covers two modes of multiplex bioassays as multi labeled bioassays and spatially-separated test zones (multi-electrode mode). In this review, the nanotechnological, structural, and technical perspectives in the multiplex analysis of cancer proteins were discussed. Finally, the use of different types of nanomaterials, polysaccharides, biopolymers and their advantages in signal amplification are discussed.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, 34220 Istanbul, Turkey
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biosensor Sciences and Technologies Research Center (BSTRC), Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
29
|
Arima A, Tsutsui M, Washio T, Baba Y, Kawai T. Solid-State Nanopore Platform Integrated with Machine Learning for Digital Diagnosis of Virus Infection. Anal Chem 2020; 93:215-227. [PMID: 33251802 DOI: 10.1021/acs.analchem.0c04353] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Akihide Arima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takashi Washio
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
30
|
Arima A, Tsutsui M, Yoshida T, Tatematsu K, Yamazaki T, Yokota K, Kuroda S, Washio T, Baba Y, Kawai T. Digital Pathology Platform for Respiratory Tract Infection Diagnosis via Multiplex Single-Particle Detections. ACS Sens 2020; 5:3398-3403. [PMID: 32933253 DOI: 10.1021/acssensors.0c01564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The variability of bioparticles remains a key barrier to realizing the competent potential of nanoscale detection into a digital diagnosis of an extraneous object that causes an infectious disease. Here, we report label-free virus identification based on machine-learning classification. Single virus particles were detected using nanopores, and resistive-pulse waveforms were analyzed multilaterally using artificial intelligence. In the discrimination, over 99% accuracy for five different virus species was demonstrated. This advance is accessed through the classification of virus-derived ionic current signal patterns reflecting their intrinsic physical properties in a high-dimensional feature space. Moreover, consideration of viral similarity based on the accuracies indicates the contributing factors in the recognitions. The present findings offer the prospect of a novel surveillance system applicable to detection of multiple viruses including new strains.
Collapse
Affiliation(s)
- Akihide Arima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka,
Ibaraki, Osaka 567-0047, Japan
| | - Takeshi Yoshida
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka,
Ibaraki, Osaka 567-0047, Japan
| | - Kenji Tatematsu
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka,
Ibaraki, Osaka 567-0047, Japan
| | - Tomoko Yamazaki
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka,
Ibaraki, Osaka 567-0047, Japan
| | - Kazumichi Yokota
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Shun’ichi Kuroda
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka,
Ibaraki, Osaka 567-0047, Japan
| | - Takashi Washio
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka,
Ibaraki, Osaka 567-0047, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka,
Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
31
|
Lin Q, Wen D, Wu J, Liu L, Wu W, Fang X, Kong J. Microfluidic Immunoassays for Sensitive and Simultaneous Detection of IgG/IgM/Antigen of SARS-CoV-2 within 15 min. Anal Chem 2020; 92:9454-9458. [PMID: 32615038 DOI: 10.1021/acs.analchem.0c0163510.1021/acs.analchem.0c01635.s001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The outbreak of SARS-CoV-2 is posing serious global public health problems. Facing the emergence of this pandemic, we established a portable microfluidic immunoassay system for easy-to-use, sensitive, rapid (<15 min), multiple, and on-site detection of IgG/IgM/Antigen of SARS-CoV-2 simultaneously. This integrated method was successfully applied for detecting SARS-CoV-2 IgM and IgG antibodies in clinical human serum as well as SARS-CoV-2 antigen in pharyngeal swabs from 26 patients with COVID-19 infection and 28 uninfected people. The assay demonstrated high sensitivity and specificity, which is promising for the diagnosis and monitoring as well as control of SARS-CoV-2 worldwide.
Collapse
Affiliation(s)
- Qiuyuan Lin
- Shanghai Suxin Biotechnology Co. Ltd., Shanghai 201318, P. R. China
- NingBo iGeneTec Technology Co. Ltd., Ningbo 315000, P. R. China
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Donghua Wen
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, P. R. China
| | - Jing Wu
- Shanghai Suxin Biotechnology Co. Ltd., Shanghai 201318, P. R. China
- NingBo iGeneTec Technology Co. Ltd., Ningbo 315000, P. R. China
| | - Liling Liu
- Shanghai Suxin Biotechnology Co. Ltd., Shanghai 201318, P. R. China
- NingBo iGeneTec Technology Co. Ltd., Ningbo 315000, P. R. China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, P. R. China
| | - Xueen Fang
- Shanghai Suxin Biotechnology Co. Ltd., Shanghai 201318, P. R. China
- NingBo iGeneTec Technology Co. Ltd., Ningbo 315000, P. R. China
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Jilie Kong
- Shanghai Suxin Biotechnology Co. Ltd., Shanghai 201318, P. R. China
- NingBo iGeneTec Technology Co. Ltd., Ningbo 315000, P. R. China
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
32
|
Lin Q, Wen D, Wu J, Liu L, Wu W, Fang X, Kong J. Microfluidic Immunoassays for Sensitive and Simultaneous Detection of IgG/IgM/Antigen of SARS-CoV-2 within 15 min. Anal Chem 2020; 92:9454-9458. [PMID: 32615038 PMCID: PMC7351017 DOI: 10.1021/acs.analchem.0c01635] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of SARS-CoV-2 is posing serious global public health problems. Facing the emergence of this pandemic, we established a portable microfluidic immunoassay system for easy-to-use, sensitive, rapid (<15 min), multiple, and on-site detection of IgG/IgM/Antigen of SARS-CoV-2 simultaneously. This integrated method was successfully applied for detecting SARS-CoV-2 IgM and IgG antibodies in clinical human serum as well as SARS-CoV-2 antigen in pharyngeal swabs from 26 patients with COVID-19 infection and 28 uninfected people. The assay demonstrated high sensitivity and specificity, which is promising for the diagnosis and monitoring as well as control of SARS-CoV-2 worldwide.
Collapse
Affiliation(s)
- Qiuyuan Lin
- Shanghai Suxin
Biotechnology Co. Ltd., Shanghai 201318,
P. R. China
- NingBo iGeneTec
Technology Co. Ltd., Ningbo 315000, P. R.
China
- Department of Chemistry and Institutes
of Biomedical Sciences, Fudan University,
Shanghai 200433, P. R. China
| | - Donghua Wen
- Department of Laboratory Medicine,
Shanghai East Hospital, Tongji University School of
Medicine, Shanghai 200123, P. R.
China
| | - Jing Wu
- Shanghai Suxin
Biotechnology Co. Ltd., Shanghai 201318,
P. R. China
- NingBo iGeneTec
Technology Co. Ltd., Ningbo 315000, P. R.
China
| | - Liling Liu
- Shanghai Suxin
Biotechnology Co. Ltd., Shanghai 201318,
P. R. China
- NingBo iGeneTec
Technology Co. Ltd., Ningbo 315000, P. R.
China
| | - Wenjuan Wu
- Department of Laboratory Medicine,
Shanghai East Hospital, Tongji University School of
Medicine, Shanghai 200123, P. R.
China
| | - Xueen Fang
- Shanghai Suxin
Biotechnology Co. Ltd., Shanghai 201318,
P. R. China
- NingBo iGeneTec
Technology Co. Ltd., Ningbo 315000, P. R.
China
- Department of Chemistry and Institutes
of Biomedical Sciences, Fudan University,
Shanghai 200433, P. R. China
| | - Jilie Kong
- Shanghai Suxin
Biotechnology Co. Ltd., Shanghai 201318,
P. R. China
- NingBo iGeneTec
Technology Co. Ltd., Ningbo 315000, P. R.
China
- Department of Chemistry and Institutes
of Biomedical Sciences, Fudan University,
Shanghai 200433, P. R. China
| |
Collapse
|
33
|
Lin Q, Wu J, Fang X, Kong J. Washing-free centrifugal microchip fluorescence immunoassay for rapid and point-of-care detection of protein. Anal Chim Acta 2020; 1118:18-25. [PMID: 32418600 DOI: 10.1016/j.aca.2020.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/01/2022]
Abstract
Simplifying the procedure of immunoassay is still a challenge due to problems such as multiple washing processes, complicated chemical modification and expensive cost. In this study, we developed a portable centrifugal microchip fluorescence immunoassay for washing-free, rapid, quantitative and point-of-care (POC) detection of protein. The designed microchip was fabricated by polycarbonate and assembled by double-sided adhesive tape using injecting molding with high scalability and low cost. The centrifugal strategy is capable of washing-out the bio-fluid and improving signal-to-noise ratio. Matrix nano-spotting method was employed to facilitate satisfactory immunological binding sites with the advantage of high capture efficiency and reproducibility. The proposed approach was capable of sensitively detecting procalcitonin (PCT) with a wide dynamic ranging from 0.10 ng/mL to 70.00 ng/mL within 10 min. Furthermore, this novel integrated diagnostic tool was successfully applied to detect PCT in 101 clinical samples with good consistency with Roche's method, indicating its attractive practical application capability. With favorable simplicity, rapidity, low cost and excellent analytical performance, our method holds great promise for POC diagnostics of proteins.
Collapse
Affiliation(s)
- Qiuyuan Lin
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | - Jing Wu
- Shanghai Suxin Biotechnology Co. Ltd, and IgeneTec Diagnostic Products Co. Ltd., Shanghai, 201318, PR China
| | - Xueen Fang
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| | - Jilie Kong
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
34
|
Lee HB, Meeseepong M, Trung TQ, Kim BY, Lee NE. A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosens Bioelectron 2020; 156:112133. [PMID: 32174559 DOI: 10.1016/j.bios.2020.112133] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
Conformable, wearable biosensor-integrated systems are a promising approach to non-invasive and quantitative on-body detection of biomarkers in body fluids. However, realizing such a system has been slowed by the difficulty of fabricating a soft affinity-based biosensor patch capable of precise on-body fluid handling with minimal wearer intervention and a simple measurement protocol. Herein, we demonstrate a conformable, wearable lab-on-a-patch (LOP) platform composed of a stretchable, label-free, impedimetric biosensor and a stretchable microfluidic device for on-body detection of the hormone biomarker, cortisol. The all-in-one, stretchable microfluidic device can precisely collect and deliver sweat for cortisol quantitation and offers one-touch operation of reagent delivery for simultaneous electrochemical signal generation and washing. Three-dimensional nanostructuring of the Au working electrode enables the high sensitivity required to detect the pM-levels of cortisol in sweat. Our integrated LOP detected sweat cortisol quantitatively and accurately during exercise. This LOP will open a new horizon for non-invasive, highly sensitive, and quantitative on-body immunodetection for wearable personal diagnostics.
Collapse
Affiliation(s)
- Han-Byeol Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea
| | - Montri Meeseepong
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea
| | - Tran Quang Trung
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea
| | - Bo-Yeong Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea; SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea; Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea; Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyunggi-do, 16419, South Korea.
| |
Collapse
|
35
|
Cheng YH, Barpaga D, Soltis JA, Shutthanandan V, Kargupta R, Han KS, McGrail BP, Motkuri RK, Basuray S, Chatterjee S. Metal-Organic Framework-Based Microfluidic Impedance Sensor Platform for Ultrasensitive Detection of Perfluorooctanesulfonate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10503-10514. [PMID: 32031779 DOI: 10.1021/acsami.9b22445] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The growing global concerns to public health from human exposure to perfluorooctanesulfonate (PFOS) require rapid, sensitive, in situ detection where current, state-of-the-art techniques are yet to adequately meet sensitivity standards of the real world. This work presents, for the first time, a synergistic approach for the targeted affinity-based capture of PFOS using a porous sorbent probe that enhances detection sensitivity by embedding it on a microfluidic platform. This novel sorbent-containing platform functions as an electrochemical sensor to directly measure PFOS concentration through a proportional change in electrical current (increase in impedance). The extremely high surface area and pore volume of mesoporous metal-organic framework (MOF) Cr-MIL-101 is used as the probe for targeted PFOS capture based on the affinity of the chromium center toward both the fluorine tail groups as well as the sulfonate functionalities as demonstrated by spectroscopic (NMR and XPS) and microscopic (TEM) studies. Answering the need for an ultrasensitive PFOS detection technique, we are embedding the MOF capture probes inside a microfluidic channel, sandwiched between interdigitated microelectrodes (IDμE). The nanoporous geometry, along with interdigitated microelectrodes, increases the signal-to-noise ratio tremendously. Further, the ability of the capture probes to interact with the PFOS at the molecular level and effectively transduce that response electrochemically has allowed us achieve a significant increase in sensitivity. The PFOS detection limit of 0.5 ng/L is unprecedented for in situ analytical PFOS sensors and comparable to quantification limits achieved using state-of-the-art ex situ techniques.
Collapse
Affiliation(s)
- Yu H Cheng
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dushyant Barpaga
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jennifer A Soltis
- National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - V Shutthanandan
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Roli Kargupta
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Kee Sung Han
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - B Peter McGrail
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sagnik Basuray
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Sayandev Chatterjee
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
36
|
Chen Q, Tian T, Xiong E, Wang P, Zhou X. CRISPR/Cas13a Signal Amplification Linked Immunosorbent Assay for Femtomolar Protein Detection. Anal Chem 2019; 92:573-577. [PMID: 31849223 DOI: 10.1021/acs.analchem.9b04403] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The enzyme-linked immunosorbent assay (ELISA) is a basic technique used in analytical and clinical investigations. However, conventional ELISA is still not sensitive enough to detect ultralow concentrations of biomarkers for the early diagnosis of cancer, cardiovascular risk, neurological disorders, and infectious diseases. Herein we show a mechanism utilizing the CRISPR/Cas13a-based signal export amplification strategy, which double-amplifies the output signal by T7 RNA polymerase transcription and CRISPR/Cas13a collateral cleavage activity. This process is termed the CRISPR/Cas13a signal amplification linked immunosorbent assay (CLISA). The proposed method was validated by detecting an inflammatory factor, human interleukin-6 (human IL-6), and a tumor marker, human vascular endothelial growth factor (human VEGF), which achieved limit of detection (LOD) values of 45.81 fg/mL (2.29 fM) and 32.27 fg/mL (0.81 fM), respectively, demonstrating that CLISA is at least 102-fold more sensitive than conventional ELISA.
Collapse
Affiliation(s)
- Qian Chen
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| | - Tian Tian
- School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| | - Erhu Xiong
- School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| | - Po Wang
- School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou 221116 , China
| | - Xiaoming Zhou
- School of Life Sciences , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
37
|
Man Y, Li A, Li B, Liu J, Pan L. A microfluidic colorimetric immunoassay for sensitive detection of altenariol monomethyl ether by UV spectroscopy and smart phone imaging. Anal Chim Acta 2019; 1092:75-84. [PMID: 31708035 DOI: 10.1016/j.aca.2019.09.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022]
Abstract
A novel microfluidic colorimetric immunoassay was developed using gold nanoparticles (GNPs) for indicating different concentrations of altenariol monomethyl ether (AME), and UV spectroscopy and smart phone imaging for monitoring color change of the GNPs. Norland Optical Adhesive 81 (NOA 81) was used for simple and rapid fabrication of the microfluidic chip. AME-BSA modified magnetic nanoparticles (MNPs-BSA-AME) were used as capture probe and the self-magnetism for rapid separation and purification. AME monoclonal antibodies modified gold nanoparticles (GNP-mAbs) which dried on conjugate pad were used as detection probe and the self-catalyst for signal amplification. Under the optimal conditions, the proposed microfluidic colorimetric immunoassay was able to detect AME as low as 12.5 pg/mL for UV spectroscopy (574 nm), and 200 pg/mL for smart phone imaging. The total analysis time is less than 15 min. The immunoassay also has a lower cross-reactivity to AME analogues. It was also evaluated by analyzing fruit samples spiked with AME. The recoveries ranged from 91.19% to 94.15% for UV spectroscopy, and from 90.63% to 93.9% for smart phone imaging. This method can be used for rapid, sensitive, low-cost and portable point-of care testing (POCT) of other mycotoxins or haptens in food samples.
Collapse
Affiliation(s)
- Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. PR China, Beijing, 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| | - An Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. PR China, Beijing, 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| | - Bingru Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. PR China, Beijing, 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| | - Jing Liu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. PR China, Beijing, 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture. PR China, Beijing, 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China.
| |
Collapse
|
38
|
FANG HS, LANG MF, SUN J. New Methods for Cell Cycle Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61186-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Gowers SAN, Rogers ML, Booth MA, Leong CL, Samper IC, Phairatana T, Jewell SL, Pahl C, Strong AJ, Boutelle MG. Clinical translation of microfluidic sensor devices: focus on calibration and analytical robustness. LAB ON A CHIP 2019; 19:2537-2548. [PMID: 31290529 PMCID: PMC7321805 DOI: 10.1039/c9lc00400a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present approaches to facilitate the use of microfluidics outside of the laboratory, in our case within a clinical setting and monitoring from human subjects, where the complexity of microfluidic devices requires high skill and expertise and would otherwise limit translation. Microfluidic devices show great potential for converting complex laboratory protocols into on-chip processes. We demonstrate a flexible microfluidic platform can be coupled to microfluidic biosensors and used in conjunction with clinical microdialysis. The versatility is demonstrated through a series of examples of increasing complexity including analytical processes relevant to a clinical environment such as automatic calibration, standard addition, and more general processes including system optimisation, reagent addition and homogenous enzyme reactions. The precision and control offered by this set-up enables the use of microfluidics by non-experts in clinical settings, increasing uptake and usage in real-world scenarios. We demonstrate how this type of system is helpful in guiding physicians in real-time clinical decision-making.
Collapse
Affiliation(s)
| | | | | | - Chi L Leong
- Department of Bioengineering, Imperial College London, UK.
| | | | - Tonghathai Phairatana
- Department of Bioengineering, Imperial College London, UK. and Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | | | - Clemens Pahl
- Department of Basic and Clinical Neuroscience, Kings College London, UK
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, Kings College London, UK
| | | |
Collapse
|
40
|
Nishiyama K, Kasama T, Nakamata S, Ishikawa K, Onoshima D, Yukawa H, Maeki M, Ishida A, Tani H, Baba Y, Tokeshi M. Ultrasensitive detection of disease biomarkers using an immuno-wall device with enzymatic amplification. Analyst 2019; 144:4589-4595. [PMID: 31237262 DOI: 10.1039/c9an00480g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present an ultrasensitive immunoassay system for disease biomarkers utilizing the immuno-wall device and an enzymatic amplification reaction. The immuno-wall device consisted of 40 microchannels, each of which contained an antibody-modified wall-like structure along the longitudinal axis of the microchannel. The wall was fabricated with a water-soluble photopolymer containing streptavidin by photolithography, and biotinylated capture antibodies were immobilized on the sides through streptavidin-biotin interaction. For an assay, introducing the target biomarker and secondary and labeled antibodies produced a sandwich complex anchored on the sides of the wall. A conventional immuno-wall device uses a fluorescence-labeled antibody as a labeling antibody. To achieve an ultrasensitive detection of a trace biomarker, we used an enzyme label and amplified the signal with the enzymatic reaction with a fluorogenic substrate in the microchannel. The highest signal/background ratio was obtained by using alkaline phosphatase-labeled antibody and 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) phosphate. To evaluate the device performance, we detected human C-reactive protein (CRP) as a model biomarker. The detection limit (LOD) of CRP in phosphate-buffered saline was 2.5 pg mL-1 with a sample volume of 0.25 μL. This LOD was approximately 3 orders of magnitude lower than that obtained with fluorescent-dye (DyLight 650)-labeled antibody. In addition, the present device provided a wide detection range of 0.0025-10 ng mL-1 for CRP. We successfully developed an ultrasensitive immunoassay system with simple operation and only a small sample volume.
Collapse
Affiliation(s)
- Keine Nishiyama
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Toshihiro Kasama
- Department of Bioengineering, School of Engineering, The University of Tokyo, Shinkawasaki, Saiwai-ku, Kawasaki-shi, Kanagawa, 212-0032, Japan and ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Seiya Nakamata
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Koya Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Onoshima
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan and Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroshi Yukawa
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan and Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan and Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Yoshinobu Baba
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan and Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan and Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Manabu Tokeshi
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan and Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan and Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan. and Innovative Research Centre for Preventive Medical Engineering, Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
41
|
Sharafeldin M, Kadimisetty K, Bhalerao KR, Bist I, Jones A, Chen T, Lee NH, Rusling JF. Accessible Telemedicine Diagnostics with ELISA in a 3D Printed Pipette Tip. Anal Chem 2019; 91:7394-7402. [PMID: 31050399 PMCID: PMC7158886 DOI: 10.1021/acs.analchem.9b01284] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report herein a novel pipet-based "ELISA in a tip" as a new versatile diagnostic tool featuring better sensitivity, shorter incubation time, accessibility, and low sample and reagent volumes compared to traditional ELISA. Capture and analysis of data by a cell phone facilitates electronic delivery of results to health care providers. Pipette tips were designed and 3D printed as adapters to fit most commercial 50-200 μL pipettes. Capture antibodies (Ab1) are immobilized on the inner walls of the pipet tip, which serves as the assay compartment where samples and reagents are moved in and out by pipetting. Signals are generated using colorimetric or chemiluminescent (CL) reagents and can be quantified using a cell phone, CCD camera, or plate reader. We utilized pipet-tip ELISA to detect four cancer biomarker proteins with detection limits similar to or lower than microplate ELISAs at 25% assay cost and time. Recoveries of these proteins from spiked human serum were 85-115% or better, depending slightly on detection mode. Using CCD camera quantification of CL with femto-luminol reagent gave limits of detection (LOD) as low as 0.5 pg/mL. Patient samples (13) were assayed for 3 biomarker proteins with results well correlated to conventional ELISA and an established microfluidic electrochemical immunoassay.
Collapse
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zakazik, Sharkia 44519, Egypt
| | - Karteek Kadimisetty
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ketki R. Bhalerao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Itti Bist
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Abby Jones
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianqi Chen
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Norman H. Lee
- Department of Pharmacology & Physiology, George Washington University, Washington, D.C. 20037, United States
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Material Science, Storrs, Connecticut 06269, United States
- Department of Surgery and Neag Cancer Center, UConn Health, Farmington, Connecticut 06032, United States
- School of Chemistry, National University of Ireland at Galway, Galway H91 TK33, Ireland
| |
Collapse
|
42
|
Dieguez A, Canals J, Franch N, Dieguez J, Alonso O, Vila A. A Compact Analog Histogramming SPAD-Based CMOS Chip for Time-Resolved Fluorescence. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:343-351. [PMID: 30640628 DOI: 10.1109/tbcas.2019.2892825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Time-resolved fluorescence measurement is extraordinarily powerful in the analysis of substances due to its effectiveness in eliminating measurement artifacts. Some fluorescence measurements are still conducted on CMOS chips with the decay times determined after reading the data off the chip and fitting the fluorescence decay histogram. We present a novel approach in which an analog CMOS chip divides the fluorescence decay time into slices and classifies the photons according to their arrival times at a CMOS SPAD sensor. The chip was fabricated in a 1P6M 0.18 μm HV-CMOS process. The slice timings can be tailored from 168 ps to 4.9 ns, covering most fluorescence decay times. 9 timing windows are generated per pixel that count up to 13 b each, with a resolution of 0.16 mV/photon, for a maximum output voltage of 1.3 V, in an area of 150 μm × 50 μm. Here, we report on the first practical application of this circuit, which integrates an array of 5 pixels in a single chip and has an excitation light and a microfluidic chip of up to 3 channels. This system could determine the decay time of quantum dots in 20 nl of solution. Thus, this paper could help in the development of a point-of-care device based on time-resolved fluorescence.
Collapse
|
43
|
Kamuri MF, Zainal Abidin Z, Yaacob MH, Hamidon MN, Md Yunus NA, Kamarudin S. Separation and Detection of Escherichia coli and Saccharomyces cerevisiae Using a Microfluidic Device Integrated with an Optical Fibre. BIOSENSORS 2019; 9:E40. [PMID: 30875829 PMCID: PMC6468503 DOI: 10.3390/bios9010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
This paper describes the development of an integrated system using a dry film resistant (DFR) microfluidic channel consisting of pulsed field dielectrophoretic field-flow-fractionation (DEP-FFF) separation and optical detection. The prototype chip employs the pulse DEP-FFF concept to separate the cells (Escherichia coli and Saccharomyces cerevisiae) from a continuous flow, and the rate of release of the cells was measured. The separation experiments were conducted by changing the pulsing time over a pulsing time range of 2⁻24 s and a flow rate range of 1.2⁻9.6 μ L min - 1 . The frequency and voltage were set to a constant value of 1 M Hz and 14 V pk-pk, respectively. After cell sorting, the particles pass the optical fibre, and the incident light is scattered (or absorbed), thus, reducing the intensity of the transmitted light. The change in light level is measured by a spectrophotometer and recorded as an absorbance spectrum. The results revealed that, generally, the flow rate and pulsing time influenced the separation of E. coli and S. cerevisiae. It was found that E. coli had the highest rate of release, followed by S. cerevisiae. In this investigation, the developed integrated chip-in-a lab has enabled two microorganisms of different cell dielectric properties and particle size to be separated and subsequently detected using unique optical properties. Optimum separation between these two microorganisms could be obtained using a longer pulsing time of 12 s and a faster flow rate of 9.6 μ L min - 1 at a constant frequency, voltage, and a low conductivity.
Collapse
Affiliation(s)
- Mohd Firdaus Kamuri
- Department of Chemical and Environmental Engineering, University Putra Malaysia, Selangor 43400, Malaysia.
| | - Zurina Zainal Abidin
- Department of Chemical and Environmental Engineering, University Putra Malaysia, Selangor 43400, Malaysia.
| | - Mohd Hanif Yaacob
- Department of Computer and Communications Engineering, University Putra Malaysia, Selangor 43400, Malaysia.
| | - Mohd Nizar Hamidon
- Department of Electrical and Electronic Engineering, University Putra Malaysia, Selangor 43400, Malaysia.
| | - Nurul Amziah Md Yunus
- Department of Electrical and Electronic Engineering, University Putra Malaysia, Selangor 43400, Malaysia.
| | - Suryani Kamarudin
- Department of Chemical and Environmental Engineering, University Putra Malaysia, Selangor 43400, Malaysia.
| |
Collapse
|
44
|
Liao Z, Zhang Y, Li Y, Miao Y, Gao S, Lin F, Deng Y, Geng L. Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review. Biosens Bioelectron 2019; 126:697-706. [DOI: 10.1016/j.bios.2018.11.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022]
|
45
|
Nishiyama K, Sugiura K, Kaji N, Tokeshi M, Baba Y. Development of a microdevice for facile analysis of theophylline in whole blood by a cloned enzyme donor immunoassay. LAB ON A CHIP 2019; 19:233-240. [PMID: 30547178 DOI: 10.1039/c8lc01105b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have developed a microdevice for therapeutic drug monitoring. In this device, dispensing of sample and reagent was accomplished by simple manual operation of a syringe. Moreover, for a simple and rapid measurement, we used cloned enzyme donor immunoassay as a detection principle. These features and the reagent that is enclosed in microdevice beforehand make it possible to complete the facile analysis. In this paper, our model analyte was 1,3-dimethylxanthine (theophylline), a kind of bronchodilator. The fluorescence measurement of theophylline in whole blood was achieved with the limit of detection of 0.73 μg mL-1. This microdevice provides rapid analysis (4 min), requires only a small volume of sample (2 μL) and features simple operation; hence, it is readily applicable to point of care testing.
Collapse
Affiliation(s)
- Keine Nishiyama
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | | | | | | | | |
Collapse
|
46
|
Modeling the transport and capture of analytes in a two-phase heterogeneous microfluidic immunosensor. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Yang Y, Zeng Y. Microfluidic communicating vessel chip for expedited and automated immunomagnetic assays. LAB ON A CHIP 2018; 18:3830-3839. [PMID: 30394473 PMCID: PMC6279511 DOI: 10.1039/c8lc00927a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rapid, sensitive analysis of protein biomarkers is of tremendous biological and clinical significance. Immunoassays are workhorse tools for protein analysis and have been under continuous investigation to develop new methods and to improve the analytical performance. Herein we report a pneumatically gated microfluidic communicating vessel (μCOVE) chip for rapid and sensitive immunomagnetic ELISA. A distinct feature of our device is that it employs the communicating vessel principle as a simple means to generate a fast transient hydrodynamic flow to enable effective flow washing without the need for excessive incubation, which greatly simplifies and expedites the assay workflow, compared to conventional microfluidic flow-based immunoassays. Stationary multi-phase microfluidic techniques have been developed for fast bead washing. However, they have some limitations, such as the need for careful control of interfacial properties, large bead quantity required for reliable interphase bead transport, and relatively high bead loss during surface tension-gated traverse. Our single-phase μCOVE chip can overcome such limitations and facilitate the manipulation of magnetic beads to streamline the assay workflow. We showed that the μCOVE device affords highly sensitive quantification of the CEA and EGFR proteins with a LOD down to the sub-picogram per mL level. Direct detection of the EGFR in the crude A431 cell lysate was also demonstrated to further validate the ability of our device for rapid and quantitative analysis of complex biological samples. Overall, our work presents a unique platform that combines the merits of the stationary multi-phase systems and the flow-based microfluidics. This novel immunoassay microsystem has promising potential for a broad range of biological and clinical applications, owing to its simplicity and high performance.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | | |
Collapse
|
48
|
Hao N, Nie Y, Tadimety A, Shen T, Zhang JX. Microfluidics-enabled rapid manufacturing of hierarchical silica-magnetic microflower toward enhanced circulating tumor cell screening. Biomater Sci 2018; 6:3121-3125. [PMID: 30375583 PMCID: PMC6246810 DOI: 10.1039/c8bm00851e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The emergence of microfluidic techniques provides new opportunities for chemical synthesis and biomedical applications. Herein, we first develop a microfluidics-based flow and sustainable strategy to synthesize hierarchical silica-magnetic microflower with unique multilayered structure for the efficient capture of circulating tumor cells through our engineered microfluidic screening chip. The production of microflower materials can be realized within 94 milliseconds and a yield of nearly 5 grams per hour can be achieved. The enhanced bioaccessibility of such a multilayered microflower towards cancer cells (MCF-7 and MDA-MB-231) is demonstrated, and the cancer cell capture efficiency of this hierarchical immunomagnetic system in clinical blood samples is significantly increased compared with a standard CellSearch™ assay. These findings bring new insights for engineering functional micro-/nanomaterials in liquid biopsy.
Collapse
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Amogha Tadimety
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Ting Shen
- NanoLite Systems, 1521 Concord Pike, Wilmington, DE 19803, United States
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| |
Collapse
|
49
|
Quantitative Determination of Urine Glucose: Combination of Laminar Flow in Microfluidic Chip with SERS Probe Technique. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8163-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Morin TJ, McKenna WL, Shropshire TD, Wride DA, Deschamps JD, Liu X, Stamm R, Wang H, Dunbar WB. A handheld platform for target protein detection and quantification using disposable nanopore strips. Sci Rep 2018; 8:14834. [PMID: 30287843 PMCID: PMC6172217 DOI: 10.1038/s41598-018-33086-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
Abstract
Accessible point-of-care technologies that can provide immunoassay and molecular modalities could dramatically enhance diagnostics, particularly for infectious disease control in low-resource settings. Solid-state nanopores are simple and durable sensors with low-energy instrumentation requirements. While nanopore sensors have demonstrated efficacy for nucleic acid targets, selective detection and quantification of target proteins from sample background has not been demonstrated. We present a simple approach for electronic detection and quantification of target proteins that combines novel biomolecular engineering methods, a portable reader device and disposable nanopore test strips. The target of interest can be varied by swapping the binding domain on our engineered detection reagent, which eficiently binds in the bulk-phase to the target and subsequently generates a unique signature when passing through the pore. We show modularity of the detection reagent for two HIV antibodies, TNFα and tetanus toxin as targets. A saliva swab-to-result is demonstrated for clinically relevant HIV antibody levels (0.4–20 mg/liter) in under 60 seconds. While other strip-like assays are qualitative, the presented method is quantitative and sets the stage for simultaneous immunoassay and molecular diagnostic functionality within a single portable platform.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu Liu
- Two Pore Guys Inc., Santa Cruz, CA, USA
| | | | - Hongyun Wang
- Two Pore Guys Inc., Santa Cruz, CA, USA.,Baskin School of Engineering, University of California, Santa Cruz, CA, USA
| | | |
Collapse
|