1
|
Mainardi E, Corino C, Rossi R. The Effect of Vitamins on the Immune Systems of Pigs. Animals (Basel) 2024; 14:2126. [PMID: 39061588 PMCID: PMC11273632 DOI: 10.3390/ani14142126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
In modern pig farming, there are many environmental, physiological or social stresses that weaken the immune response and increase susceptibility to disease. Nutritional management has a significant impact on the efficiency of the immune system in pigs. Among the various nutrients, vitamins have been shown to have specific effects on immune system activity. However, the needs of modern genetic types are not met by the dietary recommendations for vitamins in pig diets. The present study therefore summarises the data on dietary integration with supranutritional doses of vitamins in gestating and lactating sows and post-weaning piglets in terms of the immune response. The present data highlight that high doses of dietary vitamins are an effective way to improve the immune system, antioxidant status and gut health. Further studies are needed to deepen the understanding of the role of dietary supplementation with vitamins in pigs on immune system and gut functionality.
Collapse
Affiliation(s)
| | | | - Raffaella Rossi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (E.M.); (C.C.)
| |
Collapse
|
2
|
Zhang H, Nuermaimaiti Y, Hao K, Qi Y, Xu Y, Zhuang Y, Wang F, Hou G, Chen T, Xiao J, Guo G, Wang Y, Li S, Cao Z, Liu S. Supplementation with Combined Additive Improved the Production of Dairy Cows and Their Offspring with Maintenance of Antioxidative Stability. Antioxidants (Basel) 2024; 13:650. [PMID: 38929089 PMCID: PMC11200508 DOI: 10.3390/antiox13060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress damage in periparturient cows decreases both production and their health; supplementation with complex additives during the periparturient period has been used as an important strategy to enhance the antioxidant status and production of dairy cows. The periparturient cows not only risk a negative energy balance due to reduced dry matter intake but also represent a sensitive period for oxidative stress. Therefore, we have developed an immunomodulatory and nutritional regulation combined additive (INC) that hopefully can improve the immune status and production of cows during the periparturient period and their offspring health and growth by improving their antioxidant stress status. The INC comprised a diverse array of additives, including water-soluble and fat-soluble vitamins, Selenomethionine, and active dry Saccharomyces cerevisiae. Forty-five multiparous Holstein cows were randomly assigned to three treatments: CON (no INC supplementation, n = 15), INC30 (30 g/d INC supplementation, n = 15), and INC60 (60 g/d INC supplementation, n = 15) based on last lactation milk yield, body condition score, and parity. Newborn calves were administered 4 L of maternal colostrum originating from the corresponding treatment and categorized based on the treatment received by their respective dams. The INC not only served to maintain the antioxidative stress system of dairy cows during the periparturient period but also showed a tendency to improve the immune response (lower tumor necrosis factor and interleukin-6) during the perinatal period. A linear decrease in concentrations of alkaline phosphatase postpartum and β-hydroxybutyrate was observed with INC supplementation. Milk fat yield, milk protein yield, and energy-corrected milk yield were also increased linearly with increasing additive supplementation. Calves in the INC30 group exhibited greater wither height and chest girth but no significant effect on average daily gain or body weight. The diarrhea frequency was linearly decreased with the incremental level of INC. Results indicate that supplementation with INC in peripartum dairy cows could be a major strategy to improve immune response, decrease inflammation, maintain antioxidant stress status in transition dairy cows, and have merit in their calves. In conclusion, this study underlines the benefits of INC supplementation during the transition period, as it improved anti-inflammatory capacity, could positively impact antioxidative stress capacity, and eventually enhanced the production performance of dairy cows and the health and growth of calves.
Collapse
Affiliation(s)
- Hongxing Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.N.); (Y.X.); (Y.Z.); (F.W.); (G.H.); (T.C.); (J.X.); (Y.W.); (S.L.); (Z.C.)
| | - Yiliyaer Nuermaimaiti
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.N.); (Y.X.); (Y.Z.); (F.W.); (G.H.); (T.C.); (J.X.); (Y.W.); (S.L.); (Z.C.)
| | - Kebi Hao
- Beijing Sunlon Livestock Development Co., Ltd., Beijing 100176, China; (K.H.); (G.G.)
| | - Yan Qi
- China Animal Husbandry Group, Beijing 100070, China;
| | - Yiming Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.N.); (Y.X.); (Y.Z.); (F.W.); (G.H.); (T.C.); (J.X.); (Y.W.); (S.L.); (Z.C.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yimin Zhuang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.N.); (Y.X.); (Y.Z.); (F.W.); (G.H.); (T.C.); (J.X.); (Y.W.); (S.L.); (Z.C.)
| | - Fei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.N.); (Y.X.); (Y.Z.); (F.W.); (G.H.); (T.C.); (J.X.); (Y.W.); (S.L.); (Z.C.)
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Guobin Hou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.N.); (Y.X.); (Y.Z.); (F.W.); (G.H.); (T.C.); (J.X.); (Y.W.); (S.L.); (Z.C.)
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.N.); (Y.X.); (Y.Z.); (F.W.); (G.H.); (T.C.); (J.X.); (Y.W.); (S.L.); (Z.C.)
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.N.); (Y.X.); (Y.Z.); (F.W.); (G.H.); (T.C.); (J.X.); (Y.W.); (S.L.); (Z.C.)
| | - Gang Guo
- Beijing Sunlon Livestock Development Co., Ltd., Beijing 100176, China; (K.H.); (G.G.)
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.N.); (Y.X.); (Y.Z.); (F.W.); (G.H.); (T.C.); (J.X.); (Y.W.); (S.L.); (Z.C.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.N.); (Y.X.); (Y.Z.); (F.W.); (G.H.); (T.C.); (J.X.); (Y.W.); (S.L.); (Z.C.)
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.N.); (Y.X.); (Y.Z.); (F.W.); (G.H.); (T.C.); (J.X.); (Y.W.); (S.L.); (Z.C.)
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.N.); (Y.X.); (Y.Z.); (F.W.); (G.H.); (T.C.); (J.X.); (Y.W.); (S.L.); (Z.C.)
| |
Collapse
|
3
|
El-Sayed A, Ebissy E, Mohamed R, Ateya A. Effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) administration on gene expression, metabolic, antioxidants and immunological profiles during transition period in dromedary camels. BMC Vet Res 2024; 20:101. [PMID: 38481237 PMCID: PMC10936106 DOI: 10.1186/s12917-024-03959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Nutrition has a primary role for optimum expression of genetic potential, and most of the farmers have limited resources of green fodder. Hence, a fat-soluble vitamin, especially vitamin A and E and trace elements remained most critical in the animal's ration and affects their productive and reproductive performance adversely. Animals cannot be able to produce these vitamins in their bodies; hence, an exogenous regular supply is needed to fulfil the physiological needs and to maintain high production performance. This study elucidated effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) administration on gene expression, metabolic, antioxidants and immunological parameters in dromedary camels during transition period. RESULTS At 0 day, there were no appreciable differences in the expression patterns of the metabolic (IGF-I, ACACA, SCD, FASN, LPL, and BTN1A1) genes between the control and treatment groups, despite lower levels. A substantial variation in the mRNA levels of SOD1, SOD3, PRDX2, PRDX3, PRDX4, PRDX6, and AhpC/TSA was observed between the control and treatment groups, according to the antioxidant markers. In comparison to the control group, the treatment group displayed a significant up-regulation at 0 and 21 days. The treatment and control groups exhibited substantial differences in the mRNA values of IL-1α, IL-1β, IL-6, and TNFα, as indicated by immunological markers. In comparison to the control group, there was a noticeable down-regulation in the treatment group at 0 and + 21 days. But IL10 produced the opposite pattern. No significant difference was observed in glucose, cholesterol, triglyceride, HDL, total protein, NEFA, BHBA, cortisol and IGF-1 levels between control and treatment group. The activity of serum GPx, SOD and TAC was significantly affected by time and treatment x time in supplemented groups as compared with control group. IL-1, IL-1, IL-6, and TNF were noticeably greater in the control group and lower in the treatment group. Additionally, in all groups, the concentration of all pro-inflammatory cytokines peaked on the day of delivery and its lowest levels showed on day 21 following calving. The IL-10 level was at its peak 21 days prior to calving and was lowest on calving day. CONCLUSION The results demonstrated a beneficial effect of antioxidant vitamins and trace elements on the metabolic, antioxidant and immunological markers in dromedary camels throughout their transition period.
Collapse
Affiliation(s)
- Ahmed El-Sayed
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt.
| | - Eman Ebissy
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Ragab Mohamed
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Santos MJ, Ludke MC, Silva LM, Rabello CB, Barros MR, Costa FS, Santos CS, Wanderley JS. Complexed amino acid minerals vs. bis-glycinate chelated minerals: Impact on the performance of old laying hens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:395-408. [PMID: 38371472 PMCID: PMC10874725 DOI: 10.1016/j.aninu.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 02/20/2024]
Abstract
The present study was to evaluate the effect of trace minerals (Zn, Mn, and Cu) from complexed amino acid minerals (ZMCAA) and bis-glycinate chelated minerals (ZMCGly) in laying hen diets on performance, internal and external egg quality, yolk mineral deposition, intestinal morphometry, and bone characteristics. From 78 to 98 weeks of age, 400 White LSL-Lite strain laying hens were distributed in a randomized design with 4 treatments with 10 replicates per treatment. Treatments were distributed in a 2 × 2 factorial arrangement using either Zn, Mn, and Cu of ZMCAA or ZMCGly source at 2 levels: low (20, 20, and 3.5 mg/kg of Zn, Mn, and Cu, respectively) or high (40, 40, and 7 mg/kg of Zn, Mn, and Cu, respectively). The analysis of variance was performed, and in cases where differences were observed, the means were compared using Tukey's test (P < 0.05). The source and level of trace mineral supplementation had a significant impact on the performance of laying hens. Hens fed ZMCAA had higher egg production (P = 0.01), egg weight (P = 0.02), egg mass (P = 0.01), and lower feed conversion ratio (P = 0.05) compared to those fed ZMCGly. The ZMCAA supplementation showed higher albumen height (P = 0.01), albumen weight (P = 0.01), and eggshell thickness (P < 0.01). The deposition of Zn (P < 0.01), Mn (P < 0.01), and Cu (P < 0.01) in the egg yolk was greater for hens received ZMCAA. Tibia weight (P = 0.04) and bone densitometry (P < 0.01) in the tibia were higher with ZMCAA supplementation. In the small intestine, ZMCAA resulted in longer villi (P = 0.02) and shorter crypt depth (P = 0.01) in the duodenum. Jejunum and ileum measurements were influenced by the level and source of trace minerals (P < 0.05). Laying hens fed ZMCAA exhibited superior performance, egg quality, deposition of trace minerals in the egg yolk, and bone density compared to hens fed ZMCGly. In this study, older laying hens supplemented with ZMCAA at lower levels demonstrated adequate levels of supplementation.
Collapse
Affiliation(s)
- Marcos J.B. Santos
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Maria C.M.M. Ludke
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Leandro M. Silva
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Carlos B.V. Rabello
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Mércia R. Barros
- Department of Veterinary Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Fabiano S. Costa
- Department of Veterinary Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Clariana S. Santos
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| | - Jamille S.S. Wanderley
- Department of Animal Science, Rural Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
5
|
Shotyk W, Cuss CW, Grant-Weaver I, Haas-Neill S, Hood GA, MacDonald E, Noernberg T, Than K. Comparison of trace elements in tissue of beaver (Castor canadensis) and local vegetation from a rural region of southern Ontario, Canada. ENVIRONMENTAL RESEARCH 2024; 241:117462. [PMID: 37939800 DOI: 10.1016/j.envres.2023.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Beavers have been analyzed in several studies examining trace elements (TEs) in wildlife; however, most of these studies were undertaken in areas with known environmental pollutants. To understand and quantify natural enrichments of TEs in beaver tissue, samples of kidney, liver, muscle from 28 animals were compared with bark from 40 species of trees and shrubs, from the same, uncontaminated watershed. Pearson correlation and factor analysis show that conservative, lithophile elements such as Al, Ga, Th, and Y, all surrogates for mineral dust particles, explain 61% of the variation in the bark data. In contrast, Cd, Co, Cu, Mn, Mo, Ni, Rb, Se, Sr, and Tl in bark are independent of Al, and therefore most likely occur in non-mineral forms. Comparing tissue concentrations of beaver and bark, the organs are enriched in micronutrients such as Cu, Fe, Mo, Se, and Zn, but also non-essential, benign elements such as Cs and Rb, and potentially toxic elements such as Cd and Tl. Thus, the elements most enriched in beaver organs are those that apparently occur in biological form in the plant tissue. The elements enriched in these animals, relative to bark, appear to offer the most promise for monitoring environmental contamination by TEs using beavers. The majority of TEs of environmental relevance are most abundant in beaver kidney. However, monitoring studies must consider the variation in TE concentrations in beaver tissue, including those due to sex and age. Also, due consideration must be given to background concentrations of TEs in the vegetation composing the diet of the animals. The natural enrichment in the case of elements such as Cd, in beaver tissue relative to bark, is profound. These data establish critical baseline values for TEs in beavers in an unpolluted environment, thereby allowing for their use as model organisms in tracking how heavy metal pollutants may affect wildlife.
Collapse
Affiliation(s)
- William Shotyk
- Bocock Chair for Agriculture and the Environment, Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, Alberta, T6G 2H1, Canada.
| | - Chad W Cuss
- Department of Renewable Resources, University of Alberta, Canada.
| | | | | | - Glynnis A Hood
- University of Alberta, Augustana Campus, Camrose, Alberta, Canada.
| | - Emmily MacDonald
- University of Alberta, Augustana Campus, Camrose, Alberta, Canada.
| | - Tommy Noernberg
- Department of Renewable Resources, University of Alberta, Canada.
| | - Kimberly Than
- Department of Renewable Resources, University of Alberta, Canada.
| |
Collapse
|
6
|
Zhang J, Wang H, Ai C, Lu R, Chen L, Xiao J, Teng H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit Rev Food Sci Nutr 2023; 64:11124-11145. [PMID: 37427580 DOI: 10.1080/10408398.2023.2232880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Flavonoid compounds exhibit a wide range of health benefits as plant-derived dietary components. Typically, co-consumed with the food matrix,they must be released from the matrix and converted into an absorbable form (bioaccessibility) before reaching the small intestine, where they are eventually absorbed and transferred into the bloodstream (bioavailability) to exert their biological activity. However, a large number of studies have revealed the biological functions of individual flavonoid compounds in different experimental models, ignoring the more complex but common relationships established in the diet. Besides, it has been appreciated that the gut microbiome plays a crucial role in the metabolism of flavonoids and food substrates, thereby having a significant impact on their interactions, but much progress still needs to be made in this area. Therefore, this review intends to comprehensively investigate the interactions between flavonoids and food matrices, including lipids, proteins, carbohydrates and minerals, and their effects on the nutritional properties of food matrices and the bioaccessibility and bioavailability of flavonoid compounds. Furthermore, the health effects of the interaction of flavonoid compounds with the gut microbiome have also been discussed.HIGHLIGHTSFlavonoids are able to bind to nutrients in the food matrix through covalent or non-covalent bonds.Flavonoids affect the digestion and absorption of lipids, proteins, carbohydrates and minerals in the food matrix (bioaccessibility).Lipids, proteins and carbohydrates may favorably affect the bioavailability of flavonoids.Improved intestinal flora may improve flavonoid bioavailability.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Rui Lu
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Lei Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| | - Jianbo Xiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Nutrition and Bromatology Group, Universidade de Vigo Ourense, Spain
| | - Hui Teng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University Zhanjiang, China
| |
Collapse
|
7
|
Fikri F, Hendrawan D, Wicaksono AP, Purnomo A, Khairani S, Chhetri S, Maslamama ST, Purnama MTE. Incidence, risk factors, and therapeutic management of equine colic in Lamongan, Indonesia. Vet World 2023; 16:1408-1414. [PMID: 37621536 PMCID: PMC10446712 DOI: 10.14202/vetworld.2023.1408-1414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/31/2023] [Indexed: 08/26/2023] Open
Abstract
Background and Aim Colic is among the common health issues in equine health management. Gastrointestinal (GI) disorders are the most frequent causes of colic, but dysfunction of other organs and systems inside the abdominal cavity may also contribute. Therefore, it is crucial to identify risk factors for colic of specific etiologies. This study aimed to examine the incidence, risk factors, and best therapeutic management practices for horses with colic. Materials and Methods A cohort of 256 horses living in Lamongan, East Java, Indonesia, was randomly recruited based on reports of colic symptoms by owners. Diagnosis and treatment were then conducted with the help of owners. Symptom profiles, risk factors, and therapeutic management strategies were analyzed by Chi-square tests. Results Of 256 horses enrolled, 217 (84%) were diagnosed with colic, of which 172 (79.3%) were cases of spasmodic colic, 33 (15.2%) of impaction colic, and 12 (5.5%) of intestinal obstruction/displacement. Male sex (χ2 = 16.27; p < 0.001), wheat bran feeding (χ2 = 15.49; p < 0.001), concentrate feed intake >5 kg/day (χ2 = 24.95; p < 0.001), no regular anthelmintic drug treatment (χ2 = 67.24; p < 0.001), GI parasite infection (χ2 = 65.11; p < 0.001), recurrent colic (χ2 = 91.09; p < 0.001), poor body condition score (χ2 = 71.81; p < 0.001), limited daily water access (χ2 = 127.92; p < 0.001), and indications of dental disease (χ2 = 9.03; p < 0.001) were identified as risk factors. The most effective therapies were gastric intubation (χ2 = 153.54; p < 0.001), Vitamin B complex injection (χ2 = 32.09; p < 0.001), fluid therapy (χ2 = 42.59; p < 0.001), and non-steroidal anti-inflammatory drug injection (NSAID). Conclusion Colic is highly prevalent among horses in Lamongan, East Java, Indonesia. Proper diet, workload management, regular access to clean drinking water, and dental care can reduce colic risk. Recommended therapies include NSAID injection without other analgesics or spasmolytics, fluid therapy, Vitamin B complex, and gastric intubation.
Collapse
Affiliation(s)
- Faisal Fikri
- Department of Veterinary Science, School of Health and Life Sciences, Universitas Airlangga, Surabaya, Indonesia
| | - Dodit Hendrawan
- Animal Health Division, Indonesian Horse Veterinarian Association, Surabaya, Indonesia
| | | | - Agus Purnomo
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Shafia Khairani
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia
| | - Shekhar Chhetri
- Department of Animal Science, College of Natural Resources, Royal University of Bhutan, Lobesa, Punakha, Bhutan
| | - Salipudin Tasil Maslamama
- Department of Agricultural Biotechnology, Faculty of Agriculture, Eskişehir Osmangazi Üniversitesi, Eskişehir, Turkey
| | - Muhammad Thohawi Elziyad Purnama
- Department of Veterinary Science, School of Health and Life Sciences, Universitas Airlangga, Surabaya, Indonesia
- Department of Biology, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi Üniversitesi, Eskişehir, Turkey
| |
Collapse
|
8
|
Somagond YM, Alhussien MN, Dang AK. Repeated injection of multivitamins and multiminerals during the transition period enhances immune response by suppressing inflammation and oxidative stress in cows and their calves. Front Immunol 2023; 14:1059956. [PMID: 36845154 PMCID: PMC9950815 DOI: 10.3389/fimmu.2023.1059956] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Periparturient dairy cows undergo major physiological and metabolic changes as well as immunosuppression, associated with decrease in plasma concentrations of various minerals and vitamins. The present study was conducted to investigate effects of repeated injections of vitamins and minerals on oxidative stress, innate and adaptive immune response in periparturient dairy cows and their offspring. Experiment was carried out on 24 peripartum Karan-Fries cows, randomly divided into four groups (n=6): control, Multi-mineral (MM), Multi-vitamin (MV) and Multi-minerals and Multi-vitamin (MMMV). Five ml of MM (Zinc 40 mg/ml, Manganese 10 mg/ml, Copper 15 mg/ml, Selenium 5 mg/ml) and five ml of MV (Vitamin E 5 mg/ml, Vitamin A 1000 IU/ml, B-Complex 5 mg/ml, and Vitamin D3 500 IU/ml) were injected intramuscularly (IM) to the MM and MV groups. MMMV group cows were injected with both. In all treatment groups, injections and blood sampling were carried out on 30th, 15th, 7th days before and after expected date of parturition and at calving. In calves, blood was collected at calving and on 1, 2, 3, 4, 7, 8, 15, 30 and 45 days post-calving. Colostrum/milk were collected at calving and at days 2, 4, and 8 post-calving. A lower percentage of total neutrophils and immature neutrophils, higher percentage of lymphocytes together with increased phagocytic activity of neutrophils and proliferative capacity of lymphocytes found in blood of MMMV cows/calves. Lower relative mRNA expression of TLRs and CXCRs and higher mRNA expression of GR-α, CD62L, CD11b, CD25 and CD44 found in blood neutrophils of MMMV groups. Total antioxidant capacity was higher, activity of antioxidant enzymes (SOD and CAT), TBARS levels were lower in the blood plasma of treated cows/calves. In both cows/calves, plasma pro-inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-8, IL-17A, IFN-γ and TNF-α) increased, whereas anti-inflammatory cytokines (IL-4 and IL-10) decreased in MMMV groups. Total immunoglobulins increased in colostrum/milk of MMMV injected cows and plasma of their calves. Results indicate that repeated injections of multivitamins and multiminerals to peripartum dairy cows could be a major strategy to improve immune response and decrease in inflammation and oxidative stress in transition dairy cows and their calves.
Collapse
Affiliation(s)
- Yallappa M. Somagond
- Lactation and Immuno-Physiology Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India
| | - Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India,Reproductive Biotechnology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal, Haryana, India,*Correspondence: Ajay Kumar Dang, ;
| |
Collapse
|
9
|
Winter SN, Fernandez MDP, Taylor KR, Wild MA. Associations between hair trace mineral concentrations and the occurrence of treponeme-associated hoof disease in elk (Cervus canadensis). BMC Vet Res 2022; 18:446. [PMID: 36564777 PMCID: PMC9783704 DOI: 10.1186/s12917-022-03547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Trace minerals are important for animal health. Mineral deficiency or excess can negatively affect immune function, wound healing, and hoof health in domestic livestock, but normal concentrations and health impairment associated with mineral imbalances in wild animals are poorly understood. Treponeme-associated hoof disease (TAHD) is an emerging disease of free-ranging elk (Cervus canadensis) in the U.S. Pacific Northwest. Selenium and copper levels identified in a small number of elk from areas where TAHD is established (i.e., southwestern Washington) suggested a mineral deficiency may have increased susceptibility to TAHD. Our objectives were to determine trace mineral concentrations using hair from elk originating in TAHD affected areas of Washington, California, Idaho, and Oregon and assess their associations with the occurrence of the disease. RESULTS We identified limited associations between TAHD occurrence and severity with hair mineral concentrations in 72 free-ranging elk, using Firth's logistic regression and multinomial regression models. We found consistent support for a priori hypotheses that selenium concentration, an important mineral for hoof health, is inversely associated with the occurrence of TAHD. Less consistent support was observed for effects of other minerals previously associated with hoof health (e.g., copper or zinc) or increased disease risk from potential toxicants. CONCLUSION Trace mineral analysis of hair is a non-invasive sampling technique that offers feasibility in storage and collection from live animals and carcasses. For some minerals, levels in hair correlate with visceral organs that are challenging to obtain. Our study using hair collected opportunistically from elk feet submitted for diagnostic investigations provides a modest reference of hair mineral levels in elk from the U.S. Pacific Northwest that may be useful in future determination of reference ranges. Although our results revealed high variability in mineral concentrations between elk, consistent relationship of possibly low selenium levels and TAHD suggest that further investigations are warranted.
Collapse
Affiliation(s)
- Steven N Winter
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, 99164, USA
| | | | - Kyle R Taylor
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, 99164, USA
| | - Margaret A Wild
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
10
|
Jachimowicz-Rogowska K, Topczewska J, Krupa W, Bajcar M, Kwiecień M, Winiarska-Mieczan A. Seasonal Changes in Trace-Element Content in the Coat of Hucul Horses. Animals (Basel) 2022; 12:ani12202770. [PMID: 36290155 PMCID: PMC9597826 DOI: 10.3390/ani12202770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of the study was to evaluate seasonal changes in selected trace elements such as Fe, Cu, Mn, Zn, and Al in the coat of healthy Hucul horses kept in south-eastern Poland in two different facilities and fed with locally sourced feed. The coat for the study was collected from 24 individuals in autumn, winter, and spring. The concentration of elements in the feed was also determined. The date of collection had a significant effect on the concentration of the micronutrients analysed in the coat of Hucul horses. The highest concentration of Zn was found in the coat taken in summer. The coat taken in autumn had the highest concentrations of Fe, Cu, Mn, and Al compared with the other seasons. The highest concentrations of Fe, Mn, and Al were found in fur taken in winter, with the lowest levels of Zn. Positive correlations were found between the content of iron and manganese, iron and aluminium, and manganese and aluminium in the coat of Hucul horses. A clear inter-individual and inter-stable variability was found, which may indicate the need for further research that also takes into account other factors.
Collapse
Affiliation(s)
- Karolina Jachimowicz-Rogowska
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
- Correspondence: (K.J.-R.); (J.T.)
| | - Jadwiga Topczewska
- Department of Animal Production and Poultry Products Evaluation, College of Natural Sciences, University of Rzeszów, Zelwerowicza Str. 4, 35-601 Rzeszow, Poland
- Correspondence: (K.J.-R.); (J.T.)
| | - Wanda Krupa
- Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| | - Marcin Bajcar
- Department of Bioenergetics, Food Analysis and Microbiology, College of Natural Sciences, University of Rzeszów, Ćwiklińskiej St. 2D, 35-601 Rzeszow, Poland
| | - Małgorzata Kwiecień
- Department of Animal Nutrition, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka Str. 13, 20-950 Lublin, Poland
| |
Collapse
|
11
|
Aboul-Naga AM, Alsamman AM, El Allali A, Elshafie MH, Abdelal ES, Abdelkhalek TM, Abdelsabour TH, Mohamed LG, Hamwieh A. Genome-wide analysis identified candidate variants and genes associated with heat stress adaptation in Egyptian sheep breeds. Front Genet 2022; 13:898522. [PMID: 36263427 PMCID: PMC9574253 DOI: 10.3389/fgene.2022.898522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Heat stress caused by climatic changes is one of the most significant stresses on livestock in hot and dry areas. It has particularly adverse effects on the ability of the breed to maintain homeothermy. Developing countries are advised to protect and prepare their animal resources in the face of potential threats such as climate change. The current study was conducted in Egypt's three hot and dry agro-ecological zones. Three local sheep breeds (Saidi, Wahati, and Barki) were studied with a total of 206 ewes. The animals were exercised under natural heat stress. The heat tolerance index of the animals was calculated to identify animals with high and low heat tolerance based on their response to meteorological and physiological parameters. Genomic variation in these breeds was assessed using 64,756 single nucleotide polymorphic markers (SNPs). From the perspective of comparative adaptability to harsh conditions, our objective was to investigate the genomic structure that might control the adaptability of local sheep breeds to environmental stress under hot and dry conditions. In addition, indices of population structure and diversity of local breeds were examined. Measures of genetic diversity showed a significant influence of breed and location on populations. The standardized index of association (rbarD) ranged from 0.0012 (Dakhla) to 0.026 (Assuit), while for the breed, they ranged from 0.004 (Wahati) to 0.0103 (Saidi). The index of association analysis (Ia) ranged from 1.42 (Dakhla) to 35.88 (Assuit) by location and from 6.58 (Wahati) to 15.36 (Saidi) by breed. The most significant SNPs associated with heat tolerance were found in the MYO5A, PRKG1, GSTCD, and RTN1 genes (p ≤ 0.0001). MYO5A produces a protein widely distributed in the melanin-producing neural crest of the skin. Genetic association between genetic and phenotypic variations showed that OAR1_18300122.1, located in ST3GAL3, had the greatest positive effect on heat tolerance. Genome-wide association analysis identified SNPs associated with heat tolerance in the PLCB1, STEAP3, KSR2, UNC13C, PEBP4, and GPAT2 genes.
Collapse
Affiliation(s)
- Adel M. Aboul-Naga
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | | | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mohmed H. Elshafie
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Ehab S. Abdelal
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Tarek M. Abdelkhalek
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Taha H. Abdelsabour
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Layaly G. Mohamed
- Animal Production Research Institute, Agriculture Research Center (ARC), Cairo, Egypt
| | - Aladdin Hamwieh
- International Center For Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| |
Collapse
|
12
|
Zhang L, Liu J, Dai Z, Wang J, Wu M, Su R, Zhang D. Crosstalk between regulated necrosis and micronutrition, bridged by reactive oxygen species. Front Nutr 2022; 9:1003340. [PMID: 36211509 PMCID: PMC9543034 DOI: 10.3389/fnut.2022.1003340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
The discovery of regulated necrosis revitalizes the understanding of necrosis from a passive and accidental cell death to a highly coordinated and genetically regulated cell death routine. Since the emergence of RIPK1 (receptor-interacting protein kinase 1)-RIPK3-MLKL (mixed lineage kinase domain-like) axis-mediated necroptosis, various other forms of regulated necrosis, including ferroptosis and pyroptosis, have been described, which enrich the understanding of pathophysiological nature of diseases and provide novel therapeutics. Micronutrients, vitamins, and minerals, position centrally in metabolism, which are required to maintain cellular homeostasis and functions. A steady supply of micronutrients benefits health, whereas either deficiency or excessive amounts of micronutrients are considered harmful and clinically associated with certain diseases, such as cardiovascular disease and neurodegenerative disease. Recent advance reveals that micronutrients are actively involved in the signaling pathways of regulated necrosis. For example, iron-mediated oxidative stress leads to lipid peroxidation, which triggers ferroptotic cell death in cancer cells. In this review, we illustrate the crosstalk between micronutrients and regulated necrosis, and unravel the important roles of micronutrients in the process of regulated necrosis. Meanwhile, we analyze the perspective mechanism of each micronutrient in regulated necrosis, with a particular focus on reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jinting Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ziyan Dai
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jia Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Mengyang Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ruicong Su
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- *Correspondence: Di Zhang,
| |
Collapse
|
13
|
Batiha GES, Al-Gareeb AI, Qusti S, Alshammari EM, Kaushik D, Verma R, Al-Kuraishy HM. Deciphering the immunoboosting potential of macro and micronutrients in COVID support therapy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43516-43531. [PMID: 35391642 PMCID: PMC8989262 DOI: 10.1007/s11356-022-20075-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/30/2022] [Indexed: 04/16/2023]
Abstract
The immune system protects human health from the effects of pathogenic organisms; however, its activity is affected when individuals become infected. These activities require a series of molecules, substrates, and energy sources that are derived from diets. The consumed nutrients from diets help to enhance the immunity of infected individuals as it relates to COVID-19 patients. This study aims to review and highlight requirement and role of macro- and micronutrients of COVID-19 patients in enhancing their immune systems. Series of studies were found to have demonstrated the enhancing potentials of macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins, copper, zinc, iron, calcium, magnesium, and selenium) in supporting the immune system's fight against respiratory infections. Each of these nutrients performs a vital role as an antiviral defense in COVID-19 patients. Appropriate consumption or intake of dietary sources that yield these nutrients will help provide the daily requirement to support the immune system in its fight against pathogenic viruses such as COVID-19.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| |
Collapse
|
14
|
Pan Y, Li H, Shahidi F, Luo T, Deng Z. Interactions among dietary phytochemicals and nutrients: Role of cell membranes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
López-Constantino S, Barragan EA, Alfonseca-Silva E. Reduced levels of serum 25(OH)D 3 are associated with tuberculosis positive cattle under conditions of high natural exposure to Mycobacterium bovis. Comp Immunol Microbiol Infect Dis 2022; 81:101746. [PMID: 35030535 DOI: 10.1016/j.cimid.2022.101746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 12/31/2022]
Abstract
Serum vitamin D (25(OH)D3) concentrations of < 30 ng/mL in cattle are insufficient to induce an adequate immune response against intracellular pathogens, which suggests that the efficacy of the immune response may be highly dependent on the bioavailability of 25(OH)D3. This study shows an overview of both in vitro and in vivo 25(OH)D3-mediated immune modulation amongst dairy cattle naturally exposed to M. bovis. Tuberculin status was confirmed by interferon gamma release assay (IGRA), and natural exposure was demonstrated by polymerase chain reaction (PCR). Tuberculin (-) cattle have a higher serum concentration of 25(OH)D3 (X¯= 87.12 ng/mL) when compared to tuberculin (+) cattle (X¯ = 45.86 ng/mL). Reduced serum 25(OH)D3 levels are associated with the presence of bovine TB, and serum 25(OH)D3 levels of > 80 ng/mL are necessary to counteract infection by M. bovis. Kill assays were performed to evaluate in vitro 25(OH)D3 modulation of intracellular M. bovis growth in bovine macrophages, which showed that reduced serum 25(OH)D3 levels are associated with diminished mycobactericidal capacity in this experimental model. On the other hand, increased 25(OH)D3 in culture media enhances phagocytosis and nitric oxide production, which in turn improves capacity to combat M. bovis.
Collapse
Affiliation(s)
- Sofía López-Constantino
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Evaristo A Barragan
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Edgar Alfonseca-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| |
Collapse
|
16
|
De Luca LM, Petrides VH, Darwiche N, Armey L, Palmer A, West KP. Immunodeficiency Accelerates Vitamin A Deficiency. Curr Dev Nutr 2021; 5:nzab129. [PMID: 34870072 PMCID: PMC8634461 DOI: 10.1093/cdn/nzab129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/29/2021] [Accepted: 10/20/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Vitamin A deficiency increases susceptibility to infection caused by impaired immune function. OBJECTIVES We investigated whether immunodeficiency could facilitate the development of vitamin A deficiency. METHODS Vitamin A deficiency was followed in 2 mouse models of immunodeficiency: the athymic nude mouse (nu/nu) and the humoral immunodeficient SENCAR (SENsitive to CARcinogenesis) mouse. Vitamin A deficiency was also monitored in outbred Balb/c and in NIH mice. The monitoring of vitamin A deficiency was done after feeding the mice and their mothers a semisynthetic, vitamin A-deficient diet from birth of the experimental mice. These mice were weaned onto the same deficient diet at 3-4 wk of age, while control groups were fed the same diet containing 3 μg retinoic acid per gram of diet. RESULTS The immunodeficient nu/nu and SENCAR mice developed vitamin A deficiency earlier than either the heterozygous nu/+ controls or the Balb/c and NIH strains. In female mice, symptoms included depletion of liver retinol and retinyl palmitate, squamous metaplasia of the uterus, and death. Male mice lost weight more frequently and sooner than female mice, in which mortality generally occurred in the absence of loss of body weight. Pairwise comparisons using Tukey's honest significant difference test of the nu/nu and SENCAR mice versus the Balb/c and NIH mice showed a faster loss of retinol and retinyl palmitate in all pairs (P ≤ 0.0001) except for retinol when comparing nu/nu and NIH strains (P = 0.3383). CONCLUSIONS Our findings are consistent with an increased usage of liver retinol and retinyl palmitate in the immunocompromised nu/nu and in the immunodeficient SENCAR mice and suggest that compensatory mechanisms dependent on vitamin A utilization are called upon to rescue immunodeficiency both in the T-cell-deficient phenotype of the nu/nu mice and in the humoral immunodeficient SENCAR mice.
Collapse
Affiliation(s)
- Luigi M De Luca
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, MD, USA
| | | | - Nadine Darwiche
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, MD, USA
| | - Laura Armey
- Naval Postgraduate School, Monterey, CA, USA
| | - Amanda Palmer
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keith P West
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
17
|
Webster AB, Callealta FJ, Ganswindt A, Bennett NC. A non-invasive assessment of essential trace element utilization at different trophic levels in African wildlife. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112820. [PMID: 34289587 DOI: 10.1016/j.jenvman.2021.112820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
The complex relationships that exist between terrestrial mammals and their habitats make African ecosystems highly interactive environments. Anthropogenic activities including climate change have altered geochemical cycles, which influence nutrient availability and deficiency at local, regional and global scales. As synergistic and antagonistic interactions occur between essential elements at both deficiency and excess concentrations, the differences in feeding strategy between trophically distinct groups of terrestrial vertebrates are likely to influence the degree to which overall nutrient needs are met or may be deficient. The overall aim of this study was to investigate and compare quantitative differences of nine essential elements in terrestrial vertebrates occupying different trophic levels within two protected areas; Tswalu Kalahari Reserve (TKR) and Manyeleti Nature Reserve (MNR) South Africa, using faeces as an analytical matrix. Results from linear mixed effects models highlight that concentrations varied widely between individuals. Overall, measured concentrations above their respective means were evident for B and Mn in herbivores, Fe in omnivores and Cu, Co, Fe, Se and Zn in carnivores. Measured concentrations of Mo and Ni did not differ significantly between trophic groups. Although site-specific differences were evident for specific elements, measured mean concentrations of B, Co, Cu, Fe, Mo, Ni, Se and Zn were significantly higher overall at the MNR study site compared to the TKR site. This is the first study to non-invasively assess essential element concentrations across trophic levels in free ranging African wildlife species within protected areas of the savannah biome. Combined with the assessment of environmental matrices, this approach can be used as an effective diagnostic tool for the assessment of animal welfare and the management of protected areas globally.
Collapse
Affiliation(s)
- A B Webster
- Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - F J Callealta
- Department of Economics, Universidad de Alcalá, Plaza Victoria, 2, Alcalá de Henares, 28802, Spain
| | - A Ganswindt
- Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - N C Bennett
- Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| |
Collapse
|
18
|
Shurson GC, Hung YT, Jang JC, Urriola PE. Measures Matter-Determining the True Nutri-Physiological Value of Feed Ingredients for Swine. Animals (Basel) 2021; 11:1259. [PMID: 33925594 PMCID: PMC8146707 DOI: 10.3390/ani11051259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023] Open
Abstract
Many types of feed ingredients are used to provide energy and nutrients to meet the nutritional requirements of swine. However, the analytical methods and measures used to determine the true nutritional and physiological ("nutri-physiological") value of feed ingredients affect the accuracy of predicting and achieving desired animal responses. Some chemical characteristics of feed ingredients are detrimental to pig health and performance, while functional components in other ingredients provide beneficial health effects beyond their nutritional value when included in complete swine diets. Traditional analytical procedures and measures are useful for determining energy and nutrient digestibility of feed ingredients, but do not adequately assess their true physiological or biological value. Prediction equations, along with ex vivo and in vitro methods, provide some benefits for assessing the nutri-physiological value of feed ingredients compared with in vivo determinations, but they also have some limitations. Determining the digestion kinetics of the different chemical components of feed ingredients, understanding how circadian rhythms affect feeding behavior and the gastrointestinal microbiome of pigs, and accounting for the functional properties of many feed ingredients in diet formulation are the emerging innovations that will facilitate improvements in precision swine nutrition and environmental sustainability in global pork-production systems.
Collapse
Affiliation(s)
- Gerald C. Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA; (Y.-T.H.); (J.C.J.); (P.E.U.)
| | | | | | | |
Collapse
|
19
|
|
20
|
Asín J, Ramírez GA, Navarro MA, Nyaoke AC, Henderson EE, Mendonça FS, Molín J, Uzal FA. Nutritional Wasting Disorders in Sheep. Animals (Basel) 2021; 11:ani11020501. [PMID: 33671862 PMCID: PMC7918192 DOI: 10.3390/ani11020501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 01/30/2023] Open
Abstract
The different ovine production and breeding systems share the cornerstone of keeping a good body condition to ensure adequate productivity. Several infectious and parasitic disorders have detrimental effects on weight gains and may lead to emaciation. Flock health management procedures are aimed to prevent such conditions. Nutritional management is equally important to guarantee adequate body condition. Persistent bouts of low ruminal pH due to excess concentrate in the diet may lead to subacute ruminal acidosis. Pre-stomach motility disorders may also lead to ill-thrift and emaciation. An adequate mineral supplementation is key to prevent the effects of copper, selenium, and other micronutrients deprivation, which may include, among others, loss of condition. This review elaborates on the clinico-pathologic, diagnostic, and therapeutic aspects of some of these conditions, and highlights the necessity of considering them as contributors to states of wasting in sheep flocks.
Collapse
Affiliation(s)
- Javier Asín
- California Animal Health and Food Safety Laboratory (CAHFS), San Bernardino Branch, University of California, Davis, CA 95616, USA; (M.A.N.); (A.C.N.); (E.E.H.); (F.A.U.)
- Correspondence: ; Tel.: +1-909-751-3314
| | - Gustavo A. Ramírez
- Animal Science Department, University of Lleida, 25198 Lleida, Spain; (G.A.R.); (J.M.)
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory (CAHFS), San Bernardino Branch, University of California, Davis, CA 95616, USA; (M.A.N.); (A.C.N.); (E.E.H.); (F.A.U.)
| | - Akinyi C. Nyaoke
- California Animal Health and Food Safety Laboratory (CAHFS), San Bernardino Branch, University of California, Davis, CA 95616, USA; (M.A.N.); (A.C.N.); (E.E.H.); (F.A.U.)
| | - Eileen E. Henderson
- California Animal Health and Food Safety Laboratory (CAHFS), San Bernardino Branch, University of California, Davis, CA 95616, USA; (M.A.N.); (A.C.N.); (E.E.H.); (F.A.U.)
| | - Fábio S. Mendonça
- Laboratory of Animal Diagnosis, DMFA/UFRPE, Recife, Pernambuco 52171-900, Brazil;
| | - Jéssica Molín
- Animal Science Department, University of Lleida, 25198 Lleida, Spain; (G.A.R.); (J.M.)
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory (CAHFS), San Bernardino Branch, University of California, Davis, CA 95616, USA; (M.A.N.); (A.C.N.); (E.E.H.); (F.A.U.)
| |
Collapse
|
21
|
Hosain MZ, Kabir SML, Kamal MM. Antimicrobial uses for livestock production in developing countries. Vet World 2021; 14:210-221. [PMID: 33642806 PMCID: PMC7896880 DOI: 10.14202/vetworld.2021.210-221] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/15/2020] [Indexed: 01/13/2023] Open
Abstract
Antimicrobial is an indispensable part of veterinary medicine used for the treatment and control of diseases as well as a growth promoter in livestock production. Frequent use of antimicrobials in veterinary practices may lead to the residue in animal originated products and creates some potential problems for human health. The presence of antimicrobial residues in animal originated foods may induce serious health problems such as allergic reaction, antimicrobial resistance (AMR), and lead to carcinogenic and mutagenic effects in the human body. The misuse or abuse of antibiotics in human medicine is thought to be a principal cause of AMR but some antimicrobial-resistant bacteria and their resistant genes originating from animals are also responsible for developing AMR. However, the residual effect of antimicrobials in feed and food products of animal origin is undeniable. In developing countries, the community is unaware of this residual effect due to lack of proper information about antibiotic usage, AMR surveillance, and residue monitoring system. It is imperative to reveal the current situation of antimicrobial use in livestock production and its impacts on public health. Moreover, the safety levels of animal feeds and food products of animal origin must be strictly monitored and public awareness should be developed against the indiscriminate use of antimicrobial in animal production. Therefore, the current review summarizes the literature on antimicrobial use in livestock production and its hazardous residual impacts on the human body in developing countries.
Collapse
Affiliation(s)
- Md. Zahangir Hosain
- Quality Control Laboratory, Department of Livestock Services, Savar, Dhaka-1343, Bangladesh
| | - S. M. Lutful Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md. Mostofa Kamal
- Quality Control Laboratory, Department of Livestock Services, Savar, Dhaka-1343, Bangladesh
| |
Collapse
|
22
|
Williams AR, Andersen-Civil AIS, Zhu L, Blanchard A. Dietary phytonutrients and animal health: regulation of immune function during gastrointestinal infections. J Anim Sci 2020; 98:5718206. [PMID: 31999321 DOI: 10.1093/jas/skaa030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022] Open
Abstract
The composition of dietary macronutrients (proteins, carbohydrates, and fibers) and micronutrients (vitamins, phytochemicals) can markedly influence the development of immune responses to enteric infection. This has important implications for livestock production, where a significant challenge exists to ensure healthy and productive animals in an era of increasing drug resistance and concerns about the sector's environmental footprint. Nutritional intervention may ultimately be a sustainable method to prevent disease and improve efficiency of livestock enterprises, and it is now well established that certain phytonutrients can significantly improve animal performance during challenge with infectious pathogens. However, many questions remain unanswered concerning the complex interplay between diet, immunity, and infection. In this review, we examine the role of phytonutrients in regulating immune and inflammatory responses during enteric bacterial and parasitic infections in livestock, with a specific focus on some increasingly well-studied phytochemical classes-polyphenols (especially proanthocyanidins), essential oil components (cinnamaldehyde, eugenol, and carvacrol), and curcumin. Despite the contrasting chemical structures of these molecules, they appear to induce a number of similar immunological responses. These include promotion of mucosal antibody and antimicrobial peptide production, coupled with a strong suppression of inflammatory cytokines and reactive oxygen species. Although there have been some recent advances in our understanding of the mechanisms underlying their bioactivity, how these phytonutrients modulate immune responses in the intestine remains mostly unknown. We discuss the complex inter-relationships between metabolism of dietary phytonutrients, the gut microbiota, and the mucosal immune system, and propose that an increased understanding of the basic immunological mechanisms involved will allow the rational development of novel dietary additives to promote intestinal health in farmed animals.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
23
|
Elliott CT, Connolly L, Kolawole O. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res 2020; 36:115-126. [PMID: 31515765 PMCID: PMC6971152 DOI: 10.1007/s12550-019-00375-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022]
Abstract
The contamination of feed with mycotoxins is a continuing feed quality and safety issue, leading to significant losses in livestock production and potential human health risks. Consequently, various methods have been developed to reduce the occurrence of mycotoxins in feed; however, feed supplementation with clay minerals or mineral adsorbents is the most prominent approach widely practiced by farmers and the feed industry. Due to a negatively charged and high surface area, pore volume, swelling ability, and high cation exchange capacity, mineral adsorbents including bentonite, zeolite, montmorillonite, and hydrated sodium calcium aluminosilicate can bind or adsorb mycotoxins to their interlayer spaces, external surface, and edges. Several studies have shown these substances to be partly or fully effective in counteracting toxic effects of mycotoxins in farm animals fed contaminated diets and thus are extensively used in livestock production to reduce the risk of mycotoxin exposure. Nevertheless, a considerable number of studies have indicated that these agents may also cause undesirable effects in farm animals. The current work aims to review published reports regarding adverse effects that may arise in farm animals (with a focus on pig and poultry) and potential interaction with veterinary substances and nutrients in feeds, when mineral adsorbents are utilized as a technological feed additive. Furthermore, results of in vitro toxicity studies of both natural and modified mineral adsorbents on different cell lines are reported. Supplementation of mycotoxin-contaminated feed with mineral adsorbents must be carefully considered by farmers and feed industry.
Collapse
Affiliation(s)
- Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK.
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK
| | - Oluwatobi Kolawole
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK
| |
Collapse
|
24
|
Chen C, Perry TL, Chitko-McKown CG, Smith AD, Cheung L, Beshah E, Urban JF, Dawson HD. The regulatory actions of retinoic acid on M2 polarization of porcine macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:20-33. [PMID: 30974109 DOI: 10.1016/j.dci.2019.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/25/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
We previously demonstrated that the most bioactive vitamin A metabolite, all-trans retinoic acid (ATRA), increased T helper 2-associated responses induced in pigs by infection with the parasitic nematode Ascaris suum We also showed that ATRA potentiated the mRNA expression of several IL-4 induced chemokines (chemokine (CC motif) ligand 11 [(CCL11), CCL17, CCL22 and CCL26] associated with alternative activation (M2a) in porcine macrophages in vitro. Herein, several mechanisms whereby ATRA affects IL-4 signaling are profiled using large-scale real time PCR and RNA-Seq analysis. Twenty-three genes associated with M2a markers in other species were independently upregulated by both IL-4 and ATRA, including the adenosine receptor A2B (ADORA2B), cysteinyl leukotriene receptor 2 (CYSLTR2) and the vitamin D receptor (VDR). ATRA synergistically enhanced IL-4 up-regulation of Hepatitis A virus cellular receptor 2 (HAVCR2) and transglutaminase 2 (TGM2) and further repressed IL-4 down-regulated CD163 and Cytochrome b-245, beta polypeptide (CYBB) mRNA. Macrophages treated with ATRA exhibited a dose-dependent reduction in phagocytosis of opsonized Staphylococcus aureus. In addition, the combination of IL-4 and ATRA up-regulated the anti-inflammatory protein, IL-1R antagonist (IL1RN) and TGM2. These data indicate that ATRA induces a state of partial alternative activation in porcine macrophages, and amplifies certain aspects of M2a activation induced by IL-4. Given the prevalence of allergic and parasitic diseases worldwide and the close similarities in the porcine and human immune responses, these findings have important implications for the nutritional regulation of allergic inflammation at mucosal surfaces.
Collapse
Affiliation(s)
- Celine Chen
- U.S. Department of Agriculture - Agriculture Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, 20705, USA
| | | | - Carol G Chitko-McKown
- Genetics, Breeding, and Animal Health Research Unit, USMARC, Clay Center, NE, 68933, USA
| | - Allen D Smith
- U.S. Department of Agriculture - Agriculture Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, 20705, USA
| | - Lumei Cheung
- U.S. Department of Agriculture - Agriculture Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, 20705, USA
| | - Ethiopia Beshah
- U.S. Department of Agriculture - Agriculture Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, 20705, USA
| | - Joseph F Urban
- U.S. Department of Agriculture - Agriculture Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, 20705, USA
| | - Harry D Dawson
- U.S. Department of Agriculture - Agriculture Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, 20705, USA.
| |
Collapse
|