1
|
Liu P, Sun L, Zhang Y, Tan Y, Zhu Y, Peng C, Wang J, Yan H, Mao D, Liang G, Liang G, Li X, Liang Y, Wang F, He Z, Tang W, Huang D, Chen C. The metal tolerance protein OsMTP11 facilitates cadmium sequestration in the vacuoles of leaf vascular cells for restricting its translocation into rice grains. MOLECULAR PLANT 2024; 17:1733-1752. [PMID: 39354718 DOI: 10.1016/j.molp.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024]
Abstract
Rice (Oryza sativa) provides >20% of the consumed calories in the human diet. However, rice is also a leading source of dietary cadmium (Cd) that seriously threatens human health. Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice and mitigate the effects of Cd accumulation in the rice grain. In this study, we identified a QTL gene, OsCS1, which is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice. OsCS1 is predominantly expressed in leaf vascular parenchyma cells, where it binds to a vacuole-sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network to pre-vacuolar compartments and then to the vacuole. In this trafficking process, OsCS1 actively transports Cd into the endomembrane system and sequesters it in the vacuoles. There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies. Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter, thereby promoting OsCS1 expression. Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice. Collectively, our findings offer new insights into the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Sun
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yongjun Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuxing Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Can Peng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jiurong Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Donghai Mao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaoxiang Li
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yuntao Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy ofAgricultural Sciences, Nanning 530007, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Daoyou Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
2
|
Boskovic D, Terrett R, Longhurst M, Basheer S, Ariafard A, Wagner P, Pace RJ, Stranger R, Swiegers GF. A bioinspired water oxidation catalyst that is ∼1/10 th as active as the photosystem II oxygen evolving center at pH 7: a study of activity and stability factors. Dalton Trans 2024. [PMID: 39495212 DOI: 10.1039/d4dt02336f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The activity and stability of a heterogeneous water oxidation catalyst inspired by the Photosystem II - Oxygen Evolving Center (PSII-OEC) is reported. Ca-doped birnessite MnOx supported on a liquid crystalline reduced graphene oxide (LCrGO) substrate exhibited unprecedented performance for an abiological catalyst at pH 7, including an exceedingly low onset overpotential of 0.52 V (vs. 0.48 V reported for the PSII-OEC, 0.75 V for Pt, and 0.72 V for birnesite MnOx) and remarkably high activity per unit area at 0.56 V overpotential (∼10% that of a hypothetical, closely-packed monolayer of OEC sites at their optimum density of 1014 sites per cm2).
Collapse
Affiliation(s)
- Danijel Boskovic
- Intelligent Polymer Research Institute and ARC Centre of Excellence in Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Richard Terrett
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | - Matthew Longhurst
- Intelligent Polymer Research Institute and ARC Centre of Excellence in Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Sabeel Basheer
- Intelligent Polymer Research Institute and ARC Centre of Excellence in Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia.
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
- National Institute of Technology, Trichy, 620015 India
| | - Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | - Pawel Wagner
- Intelligent Polymer Research Institute and ARC Centre of Excellence in Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Ronald J Pace
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | - Rob Stranger
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | - Gerhard F Swiegers
- Intelligent Polymer Research Institute and ARC Centre of Excellence in Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
3
|
Mrnjavac N, Degli Esposti M, Mizrahi I, Martin WF, Allen JF. Three enzymes governed the rise of O 2 on Earth. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149495. [PMID: 39004113 PMCID: PMC7616410 DOI: 10.1016/j.bbabio.2024.149495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Current views of O2 accumulation in Earth history depict three phases: The onset of O2 production by ∼2.4 billion years ago; 2 billion years of stasis at ∼1 % of modern atmospheric levels; and a rising phase, starting about 500 million years ago, in which oxygen eventually reached modern values. Purely geochemical mechanisms have been proposed to account for this tripartite time course of Earth oxygenation. In particular the second phase, the long period of stasis between the advent of O2 and the late rise to modern levels, has posed a puzzle. Proposed solutions involve Earth processes (geochemical, ecosystem, day length). Here we suggest that Earth oxygenation was not determined by geochemical processes. Rather it resulted from emergent biological innovations associated with photosynthesis and the activity of only three enzymes: 1) The oxygen evolving complex of cyanobacteria that makes O2; 2) Nitrogenase, with its inhibition by O2 causing two billion years of oxygen level stasis; 3) Cellulose synthase of land plants, which caused mass deposition and burial of carbon, thus removing an oxygen sink and therefore increasing atmospheric O2. These three enzymes are endogenously produced by, and contained within, cells that have the capacity for exponential growth. The catalytic properties of these three enzymes paved the path of Earth's atmospheric oxygenation, requiring no help from Earth other than the provision of water, CO2, salts, colonizable habitats, and sunlight.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
| | | | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Marcus Family Campus, Be'er-Sheva, Israel
| | - William F Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University of Duesseldorf, Duesseldorf, Germany
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK.
| |
Collapse
|
4
|
Kato K, Nakajima Y, Xing J, Kumazawa M, Ogawa H, Shen JR, Ifuku K, Nagao R. Structural basis for molecular assembly of fucoxanthin chlorophyll a/ c-binding proteins in a diatom photosystem I supercomplex. eLife 2024; 13:RP99858. [PMID: 39480899 PMCID: PMC11527431 DOI: 10.7554/elife.99858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein-protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama UniversityOkayamaJapan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama UniversityOkayamaJapan
| | - Jian Xing
- Graduate School of Agriculture, Kyoto UniversityKyotoJapan
| | | | - Haruya Ogawa
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama UniversityOkayamaJapan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama UniversityOkayamaJapan
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto UniversityKyotoJapan
| | - Ryo Nagao
- Faculty of Agriculture, Shizuoka UniversityShizuokaJapan
| |
Collapse
|
5
|
Komenda J, Sobotka R, Nixon PJ. The biogenesis and maintenance of PSII: Recent advances and current challenges. THE PLANT CELL 2024; 36:3997-4013. [PMID: 38484127 PMCID: PMC11449106 DOI: 10.1093/plcell/koae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 10/05/2024]
Abstract
The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.
Collapse
Affiliation(s)
- Josef Komenda
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Roman Sobotka
- Center Algatech, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
6
|
Didaran F, Kordrostami M, Ghasemi-Soloklui AA, Pashkovskiy P, Kreslavski V, Kuznetsov V, Allakhverdiev SI. The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113004. [PMID: 39137703 DOI: 10.1016/j.jphotobiol.2024.113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
This review comprehensively examines the phenomenon of photoinhibition in plants, focusing mainly on the intricate relationship between photodamage and photosystem II (PSII) repair and the role of PSII extrinsic proteins and protein phosphorylation in these processes. In natural environments, photoinhibition occurs together with a suite of concurrent stress factors, including extreme temperatures, drought and salinization. Photoinhibition, primarily caused by high irradiance, results in a critical imbalance between the rate of PSII photodamage and its repair. Central to this process is the generation of reactive oxygen species (ROS), which not only impair the photosynthetic apparatus first PSII but also play a signalling role in chloroplasts and other cellulular structures. ROS generated under stress conditions inhibit the repair of photodamaged PSII by suppressing D1 protein synthesis and affecting PSII protein phosphorylation. Furthermore, this review considers how environmental stressors exacerbate PSII damage by interfering with PSII repair primarily by reducing de novo protein synthesis. In addition to causing direct damage, these stressors also contribute to ROS production by restricting CO2 fixation, which also reduces the intensity of protein synthesis. This knowledge has significant implications for agricultural practices and crop improvement under stressful conditions.
Collapse
Affiliation(s)
- Fardad Didaran
- Department of Horticulture, Aburaihan Campus, University of Tehran, Iran
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Pavel Pashkovskiy
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir Kuznetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Suleyman I Allakhverdiev
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia
| |
Collapse
|
7
|
Hani U, Krieger-Liszkay A. Manganese deficiency alters photosynthetic electron transport in Marchantia polymorpha. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109042. [PMID: 39173366 DOI: 10.1016/j.plaphy.2024.109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Manganese (Mn) is considered as an essential element for plant growth. Mn starvation has been shown to affect photosystem II, the site of the Mn4CaO5 cluster responsible for water oxidation. Less is known on the effect of Mn starvation on photosystem I. Here we studied the effects of Mn deficiency in vivo on redox changes of P700 and plastocyanin (Pc) in the liverwort Marchantia polymorpha using the KLAS-NIR spectrophotometer. Far-red illumination is used to excite preferentially photosystem I, thus facilitating cyclic electron transport. Under Mn starvation, we observed slower oxidation of P700 and a decrease in the Pc signal relative to P700. The lower Pc content under Mn deficiency was confirmed by western blots. Re-reduction kinetics of P700+ and Pc+ were faster in Mn deficient thalli than in the control. The above findings show that the kinetics studied under Mn deficiency not only depend on the number of available reductants but also on how quickly electrons are transferred from stromal donors via the intersystem chain to Pc+ and P700+. We suggest that under Mn deficiency a structural reorganization of the thylakoid membrane takes place favoring the formation of supercomplexes between ferredoxin, cytochrome b6f complex, Pc and photosystem I, and thus an enhanced cyclic electron transport.
Collapse
Affiliation(s)
- Umama Hani
- Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, 91198, Gif-sur-Yvette cedex, France
| | - Anja Krieger-Liszkay
- Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, 91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
8
|
Perez-Boerema A, Engel BD, Wietrzynski W. Evolution of Thylakoid Structural Diversity. Annu Rev Cell Dev Biol 2024; 40:169-193. [PMID: 38950450 DOI: 10.1146/annurev-cellbio-120823-022747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Oxygenic photosynthesis evolved billions of years ago, becoming Earth's main source of biologically available carbon and atmospheric oxygen. Since then, phototrophic organisms have diversified from prokaryotic cyanobacteria into several distinct clades of eukaryotic algae and plants through endosymbiosis events. This diversity can be seen in the thylakoid membranes, complex networks of lipids, proteins, and pigments that perform the light-dependent reactions of photosynthesis. In this review, we highlight the structural diversity of thylakoids, following the evolutionary history of phototrophic species. We begin with a molecular inventory of different thylakoid components and then illustrate how these building blocks are integrated to form membrane networks with diverse architectures. We conclude with an outlook on understanding how thylakoids remodel their architecture and molecular organization during dynamic processes such as biogenesis, repair, and environmental adaptation.
Collapse
|
9
|
Fujimoto KJ, Tsuji R, Wang-Otomo ZY, Yanai T. Prominent Role of Charge Transfer in the Spectral Tuning of Photosynthetic Light-Harvesting I Complex. ACS PHYSICAL CHEMISTRY AU 2024; 4:499-509. [PMID: 39346607 PMCID: PMC11428290 DOI: 10.1021/acsphyschemau.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024]
Abstract
Purple bacteria possess two ring-shaped protein complexes, light-harvesting 1 (LH1) and 2 (LH2), both of which function as antennas for solar energy utilization for photosynthesis but exhibit distinct absorption properties. The two antennas have differing amounts of bacteriochlorophyll (BChl) a; however, their significance in spectral tuning remains elusive. Here, we report a high-precision evaluation of the physicochemical factors contributing to the variation in absorption maxima between LH1 and LH2, namely, BChl a structural distortion, protein electrostatic interaction, excitonic coupling, and charge transfer (CT) effects, as derived from detailed spectral calculations using an extended version of the exciton model, in the model purple bacterium Rhodospirillum rubrum. Spectral analysis confirmed that the electronic structure of the excited state in LH1 extended to the BChl a 16-mer. Further analysis revealed that the LH1-specific redshift (∼61% in energy) is predominantly accounted for by the CT effect resulting from the closer inter-BChl distance in LH1 than in LH2. Our analysis explains how LH1 and LH2, both with chemically identical BChl a chromophores, use distinct physicochemical effects to achieve a progressive redshift from LH2 to LH1, ensuring efficient energy transfer to the reaction center special pair.
Collapse
Affiliation(s)
- Kazuhiro J. Fujimoto
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Rio Tsuji
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | | | - Takeshi Yanai
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
10
|
Chen Y, Su Y, Han J, Chen C, Fan H, Zhang C. Synthetic Mn 3Ce 2O 5-Cluster Mimicking the Oxygen-Evolving Center in Photosynthesis. CHEMSUSCHEM 2024; 17:e202401031. [PMID: 38829180 DOI: 10.1002/cssc.202401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
The photosynthetic oxygen-evolving center (OEC) is a unique Mn4CaO5-cluster that catalyses water splitting into electrons, protons, and dioxygen. Precisely structural and functional mimicking of the OEC is a long-standing challenge and pressingly needed for understanding the structure-function relationship and catalytic mechanism of O-O bond formation. Herein we report two simple and robust artificial Mn3Ce2O5-complexes that display a remarkable structural similarity to the OEC in regarding of the ten-atom core (five metal ions and five oxygen bridges) and the alkyl carboxylate peripheral ligands. This Mn3Ce2O5-cluster can catalyse the water-splitting reaction on the surface of ITO electrode. These results clearly show that cerium can structurally and functionally replace both calcium and manganese in the cluster. Mass spectroscopic measurements demonstrate that the oxide bridges in the cluster are exchangeable and can be rapidly replaced by the isotopic oxygen of H2 18O in acetonitrile solution, which supports that the oxide bridge(s) may serve as the active site for the formation of O-O bond during the water-splitting reaction. These results would contribute to our understanding of the structure-reactivity relationship of both natural and artificial clusters and shed new light on the development of efficient water-splitting catalysts in artificial photosynthesis.
Collapse
Affiliation(s)
- Yang Chen
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Su
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juanjuan Han
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changhui Chen
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunxi Zhang
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
11
|
Nihara R, Saito K, Kuroda H, Komatsu Y, Chen Y, Ishikita H, Takahashi Y. D1-Tyr246 and D2-Tyr244 in photosystem II: Insights into bicarbonate binding and electron transfer from Q A•- to Q B. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149507. [PMID: 39218331 DOI: 10.1016/j.bbabio.2024.149507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
In photosystem II (PSII), D1-Tyr246 and D2-Tyr244 are symmetrically located at the binding site of the bicarbonate ligand of the non-heme Fe complex. Here, we investigated the role of the symmetrically arranged tyrosine pair, D1-Tyr246 and D2-Tyr244, in the function of PSII, by generating four chloroplast mutants of PSII from Chlamydomonas reinhardtii: D1-Y246F, D1-Y246T, D2-Y244F, and D2-Y244T. The mutants exhibited altered photoautotrophic growth, reduced PSII protein accumulation, and impaired O2-evolving activity. Flash-induced fluorescence yield decay kinetics indicated a significant slowdown in electron transfer from QA•- to QB in all mutants. Bicarbonate reconstitution resulted in enhanced O2-evolving activity, suggesting destabilization of bicarbonate binding in the mutants. Structural analyses based on a quantum mechanical/molecular mechanical approach identified the existence of a water channel that leads to incorporation of bulk water molecules and destabilization of the bicarbonate binding site. The water intake channels, crucial for bicarbonate stability, exhibited distinct paths in the mutants. These findings shed light on the essential role of the tyrosine pair in maintaining bicarbonate stability and facilitating efficient electron transfer in native PSII.
Collapse
Affiliation(s)
- Ruri Nihara
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yasuto Komatsu
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yang Chen
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
12
|
Noji T, Saito K, Ishikita H. Absence of a link between stabilized charge-separated state and structural changes proposed from crystal structures of a photosynthetic reaction center. Commun Chem 2024; 7:192. [PMID: 39215069 PMCID: PMC11364808 DOI: 10.1038/s42004-024-01281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Structural differences between illuminated and unilluminated crystal structures led to the proposal that the charge-separated state was stabilized by structural changes in its membrane extrinsic protein subunit H in a bacterial photosynthetic reaction center [Katona, G. et al. Nat. Struct. Mol. Biol. 2005, 12, 630-631]. Here, we explored the proposal by titrating all titratable sites and calculating the redox potential (Em) values in these crystal structures. Contrary to the expected charge-separated states, Em for quinone, Em(QA/QA•-), is even lower in the proposed charge-separated structure than in the ground-state structure. The subunit-H residues, which were proposed to exhibit electron-density changes in the two crystal structures, contribute to an Em(QA/QA•-) difference of only <0.5 mV. Furthermore, the protonation states of the titratable residues in the entire reaction center are practically identical in the two structures. These findings indicate that the proposed structural differences are irrelevant to explaining the significant prolongation of the charge-separated-state lifetime.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
13
|
Watanabe S, Noguchi T. Intermediate Formation via Proton Release during the Photoassembly of the Water-Oxidizing Mn 4CaO 5 Cluster in Photosystem II. J Phys Chem B 2024; 128:8145-8161. [PMID: 39148348 DOI: 10.1021/acs.jpcb.4c03768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The early stages of the photoassembly of the water-oxidizing Mn4CaO5 cluster in spinach photosystem II (PSII) were monitored using rapid-scan time-resolved Fourier transform infrared (FTIR) spectroscopy. Carboxylate stretching and the amide I bands, which appeared upon the flash-induced oxidation of a Mn2+ ion, changed their features during the subsequent dark rearrangement process, indicating the relocation of the Mn3+ ion concomitant with protein conformational changes. Monitoring the isotope-edited FTIR signals of a Mes buffer estimated that nearly two protons are released upon the Mn2+ oxidation. Quantum chemical calculations for models of the Mn binding site suggested that the proton of a water ligand is transferred to D1-H332 through a hydrogen bond upon the Mn3+ formation and then released to the bulk as the Mn3+ shifts to bind to this histidine. Another Mn2+ ion may be inserted to form a binuclear Mn3+Mn2+ complex, whose structure was calculated to be stabilized by a μ-hydroxo bridge hydrogen-bonded with deprotonated D1-H337. Nearly one additional proton can thus be released from this histidine, assuming that it is mostly protonated before illumination. Alternatively, a proton could be released by further insertion of Ca2+, forming a Mn3+Mn2+Ca2+ complex with another hydroxo ligand connecting Ca2+ to the Mn3+Mn2+ complex.
Collapse
Affiliation(s)
- Shunya Watanabe
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
14
|
Si L, Zhang S, Su X, Li M. Structural basis for the distinct core-antenna assembly of cryptophyte photosystem II. Nat Commun 2024; 15:6812. [PMID: 39122741 PMCID: PMC11316039 DOI: 10.1038/s41467-024-51206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Photosystem II (PSII) catalyzes the light-driven charge separation and water oxidation reactions of photosynthesis. Eukaryotic PSII core is usually associated with membrane-embedded light-harvesting antennae, which greatly increase the absorbance cross-section of the core. The peripheral antennae in different phototrophs vary considerably in protein composition and arrangement. Photosynthetic cryptophytes possess chlorophyll a/c binding proteins (CACs) that serve as their antennae. How these CACs assemble with the PSII core remains unclear. Here, we report the 2.57-Å resolution structure of cryptophyte PSII-CAC purified from cells at nitrogen-limited stationary growth phase. We show that each monomer of the PSII homodimer contains a core complex, six chlorophyll a/c binding proteins (CACs) and a previously unseen chlorophyll-binding protein (termed CAL-II). Six CACs are arranged as a double-layered arc-shaped non-parallel belt, and two such belts attach to the dimeric core from opposite sides. The CAL-II simultaneously interacts with a number of core subunits and five CACs. The distinct organization of CACs and the presence of CAL-II may play a critical role in stabilizing the dimeric PSII-CAC complex under stress conditions. Our study provides mechanistic insights into the assembly and function of the PSII-CAC complex as well as the possible adaptation of cryptophytes in response to environmental stresses.
Collapse
Affiliation(s)
- Long Si
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shumeng Zhang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Su
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Bagiyan M, Zahedifar M, Sadeghi E, Dehghani Bidgoli R. Fabrication of smart sunlight window using silver vanadate nanorods (β-AgVO 3) and its effect on phytochemical properties of several agricultural species. LUMINESCENCE 2024; 39:e4850. [PMID: 39129387 DOI: 10.1002/bio.4850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
Silver vanadate nanorods were synthesized for the first time via co-precipitation, followed by ambient drying. X-ray diffraction (XRD), energy dispersive X-ray (EDX), and scanning electron microscope (SEM) analyses were utilized to investigate the structure and morphology of the nanorods. The results of these analyses confirmed the fabrication of silver vanadate nanorods. Then, to check the ability of these nanostructures to be used in the smart window, their optical properties, including the visible-ultraviolet absorption spectrum and photoluminescence (PL), were studied. The results showed that this nanostructure has maximum absorption and emission at wavelengths of 530 and 670 nm, respectively. Next, the new smart window was made with a layer of silver vanadate nanorods, and wheat, barley, millet, and beet were placed under this smart window to perform phytochemical tests. It was observed that silver vanadate nanorods could shift the green wavelength to higher wavelengths and efficiently improve the phytochemical properties of the mentioned plants.
Collapse
Affiliation(s)
- Majid Bagiyan
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Mostafa Zahedifar
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
- Department of Physics, University of Kashan, Kashan, Iran
| | - Ehsan Sadeghi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
- Department of Physics, University of Kashan, Kashan, Iran
| | - Reza Dehghani Bidgoli
- Department of Nature Engineering, College of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran
| |
Collapse
|
16
|
Chiariello MG, Zarmiento-Garcia R, Marrink SJ. Martini 3 Coarse-Grained Model for the Cofactors Involved in Photosynthesis. Int J Mol Sci 2024; 25:7947. [PMID: 39063190 PMCID: PMC11277265 DOI: 10.3390/ijms25147947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
As a critical step in advancing the simulation of photosynthetic complexes, we present the Martini 3 coarse-grained (CG) models of key cofactors associated with light harvesting (LHCII) proteins and the photosystem II (PSII) core complex. Our work focuses on the parametrization of beta-carotene, plastoquinone/quinol, violaxanthin, lutein, neoxanthin, chlorophyll A, chlorophyll B, and heme. We derived the CG parameters to match the all-atom reference simulations, while structural and thermodynamic properties of the cofactors were compared to experimental values when available. To further assess the reliability of the parameterization, we tested the behavior of these cofactors within their physiological environments, specifically in a lipid bilayer and bound to photosynthetic complexes. The results demonstrate that our CG models maintain the essential features required for realistic simulations. This work lays the groundwork for detailed simulations of the PSII-LHCII super-complex, providing a robust parameter set for future studies.
Collapse
Affiliation(s)
| | | | - Siewert-Jan Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; (M.G.C.); (R.Z.-G.)
| |
Collapse
|
17
|
Ariga K. Liquid-Liquid and Liquid-Solid Interfacial Nanoarchitectonics. Molecules 2024; 29:3168. [PMID: 38999120 PMCID: PMC11243083 DOI: 10.3390/molecules29133168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Nanoscale science is becoming increasingly important and prominent, and further development will necessitate integration with other material chemistries. In other words, it involves the construction of a methodology to build up materials based on nanoscale knowledge. This is also the beginning of the concept of post-nanotechnology. This role belongs to nanoarchitectonics, which has been rapidly developing in recent years. However, the scope of application of nanoarchitectonics is wide, and it is somewhat difficult to compile everything. Therefore, this review article will introduce the concepts of liquid and interface, which are the keywords for the organization of functional material systems in biological systems. The target interfaces are liquid-liquid interface, liquid-solid interface, and so on. Recent examples are summarized under the categories of molecular assembly, metal-organic framework and covalent organic framework, and living cell. In addition, the latest research on the liquid interfacial nanoarchitectonics of organic semiconductor film is also discussed. The final conclusive section summarizes these features and discusses the necessary components for the development of liquid interfacial nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
18
|
Wang F, Liu P, Li J, Xu S, Chen H, Xie L. Effects of four antibiotics on the photosynthetic light reactions in the green alga Chlorella pyrenoidosa. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109927. [PMID: 38643813 DOI: 10.1016/j.cbpc.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Antibiotics are ubiquitously present in aquatic environments, posing a serious ecological risk to aquatic ecosystems. However, the effects of antibiotics on the photosynthetic light reactions of freshwater algae and the underlying mechanisms are relatively less understood. In this study, the effects of 4 representative antibiotics (clarithromycin, enrofloxacin, tetracycline, and sulfamethazine) on a freshwater alga (Chlorella pyrenoidosa) and the associated mechanisms, primarily focusing on key regulators of the photosynthetic light reactions, were evaluated. Algae were exposed to different concentrations of clarithromycin (0.0-0.3 mg/L), enrofloxacin (0.0-30.0 mg/L), tetracycline (0.0-10.0 mg/L), and sulfamethazine (0.0-50.0 mg/L) for 7 days. The results showed that the 4 antibiotics inhibited the growth, the photosynthetic pigment contents, and the activity of antioxidant enzymes. In addition, exposure to clarithromycin caused a 118.4 % increase in malondialdehyde (MDA) levels at 0.3 mg/L. Furthermore, the transcripts of genes for the adenosine triphosphate (ATP) - dependent chloroplast proteases (ftsH and clpP), genes in photosystem II (psbA, psbB, and psbC), genes related to ATP synthase (atpA, atpB, and atpH), and petA (related to cytochrome b6/f complex) were altered by clarithromycin. This study contributes to a better understanding of the risk of antibiotics on primary producers in aquatic environment.
Collapse
Affiliation(s)
- Feifan Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ping Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jiajun Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Siting Xu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
19
|
Wang H, Zhang J, Ji Y, Guo Y, Liu Q, Chang Y, Qiang S, Chen S. Structure-Based Design, Virtual Screening, and Discovery of Novel Patulin Derivatives as Biogenic Photosystem II Inhibiting Herbicides. PLANTS (BASEL, SWITZERLAND) 2024; 13:1710. [PMID: 38931142 PMCID: PMC11207439 DOI: 10.3390/plants13121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Computer-aided design usually gives inspirations and has become a vital strategy to develop novel pesticides through reconstructing natural lead compounds. Patulin, an unsaturated heterocyclic lactone mycotoxin, is a new natural PSII inhibitor and shows significant herbicidal activity to various weeds. However, some evidence, especially the health concern, prevents it from developing as a bioherbicide. In this work, molecular docking and toxicity risk prediction are combined to construct interaction models between the ligand and acceptor, and design and screen novel derivatives. Based on the analysis of a constructed patulin-Arabidopsis D1 protein docking model, in total, 81 derivatives are designed and ranked according to quantitative estimates of drug-likeness (QED) values and free energies. Among the newly designed derivatives, forty-five derivatives with better affinities than patulin are screened to further evaluate their toxicology. Finally, it is indicated that four patulin derivatives, D3, D6, D34, and D67, with higher binding affinity but lower toxicity than patulin have a great potential to develop as new herbicides with improved potency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (J.Z.); (Y.J.); (Y.G.); (Q.L.); (Y.C.); (S.Q.)
| |
Collapse
|
20
|
Liu J, Yang KR, Long Z, Armstrong WH, Brudvig GW, Batista VS. Water Ligands Regulate the Redox Leveling Mechanism of the Oxygen-Evolving Complex of the Photosystem II. J Am Chem Soc 2024; 146:15986-15999. [PMID: 38833517 DOI: 10.1021/jacs.4c02926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Understanding how water ligands regulate the conformational changes and functionality of the oxygen-evolving complex (OEC) in photosystem II (PSII) throughout the catalytic cycle of oxygen evolution remains a highly intriguing and unresolved challenge. In this study, we investigate the effect of water insertion (WI) on the redox state of the OEC by using the molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) hybrid methods. We find that water binding significantly reduces the free energy change for proton-coupled electron transfer (PCET) from Mn to YZ•, underscoring the important regulatory role of water binding, which is essential for enabling the OEC redox-leveling mechanism along the catalytic cycle. We propose a water binding mechanism in which WI is thermodynamically favored by the closed-cubane form of the OEC, with water delivery mediated by Ca2+ ligand exchange. Isomerization from the closed- to open-cubane conformation at three post-WI states highlights the importance of the location of the MnIII center in the OEC and the orientation of its Jahn-Teller axis to conformational changes of the OEC, which might be critical for the formation of the O-O bond. These findings reveal a complex interplay between conformational changes in the OEC and the ligand environment during the activation of the OEC by YZ•. Analogous regulatory effects due to water ligand binding are expected to be important for a wide range of catalysts activated by redox state transitions in aqueous environments.
Collapse
Affiliation(s)
- Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ke R Yang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuoran Long
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - William H Armstrong
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
21
|
Yang S, Liu X, Li S, Yuan W, Yang L, Wang T, Zheng H, Cao R, Zhang W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem Soc Rev 2024; 53:5593-5625. [PMID: 38646825 DOI: 10.1039/d3cs01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
22
|
Arshad F, Eaton-Rye JJ. Indirect interactions involving the PsbM or PsbT subunits and the PsbO, PsbU and PsbV proteins stabilize assembly and activity of Photosystem II in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2024; 160:61-75. [PMID: 38488942 PMCID: PMC11108944 DOI: 10.1007/s11120-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The low-molecular-weight PsbM and PsbT proteins of Photosystem II (PS II) are both located at the monomer-monomer interface of the mature PS II dimer. Since the extrinsic proteins are associated with the final step of assembly of an active PS II monomer and, in the case of PsbO, are known to impact the stability of the PS II dimer, we have investigated the potential cooperativity between the PsbM and PsbT subunits and the PsbO, PsbU and PsbV extrinsic proteins. Blue-native polyacrylamide electrophoresis and western blotting detected stable PS II monomers in the ∆PsbM:∆PsbO and ∆PsbT:∆PsbO mutants that retained sufficient oxygen-evolving activity to support reduced photoautotrophic growth. In contrast, the ∆PsbM:∆PsbU and ∆PsbT:∆PsbU mutants assembled dimeric PS II at levels comparable to wild type and supported photoautotrophic growth at rates similar to those obtained with the corresponding ∆PsbM and ∆PsbT cells. Removal of PsbV was more detrimental than removal of PsbO. Only limited levels of dimeric PS II were observed in the ∆PsbM:∆PsbV mutant and the overall reduced level of assembled PS II in this mutant resulted in diminished rates of photoautotrophic growth and PS II activity below those obtained in the ∆PsbM:∆PsbO and ∆PsbT:∆PsbO strains. In addition, the ∆PsbT:∆PsbV mutant did not assemble active PS II centers although inactive monomers could be detected. The inability of the ∆PsbT:∆PsbV mutant to grow photoautotrophically, or to evolve oxygen, suggested a stable oxygen-evolving complex could not assemble in this mutant.
Collapse
Affiliation(s)
- Faiza Arshad
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
23
|
Yang D, Gates BC. Analyzing Stabilities of Metal-Organic Frameworks: Correlation of Stability with Node Coordination to Linkers and Degree of Node Metal Hydrolysis. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:8551-8559. [PMID: 38835934 PMCID: PMC11145649 DOI: 10.1021/acs.jpcc.4c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
Among the important properties of metal-organic frameworks (MOFs) is stability, which may limit applications, for example, in separations and catalysis. Many MOFs consist of metal oxo cluster nodes connected by carboxylate linkers. Addressing MOF stability, we highlight connections between metal oxo cluster chemistry and MOF node chemistry, including results characterizing Keggin ions and biological clusters. MOF syntheses yield diverse metal oxo cluster node structures, with varying numbers of metal atoms (3-13) and the tendency to form chains. MOF stabilities reflect a balance between the number of node-linker connections and the degree of node hydrolysis. We summarize literature results showing how MOF stability (the temperature of decomposition in air) depends on the degree of hydrolysis/condensation of the node metals, which is correlated to their degree of substitution with linkers. We suggest that this correlation may help guide the discovery of stable new MOFs, and we foresee opportunities for progress in MOF chemistry emerging from progress in metal oxo cluster chemistry.
Collapse
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
24
|
Mao Z, Li X, Li Z, Shen L, Li X, Yang Y, Wang W, Kuang T, Shen JR, Han G. Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga Chroomonas placoidea. Nat Commun 2024; 15:4535. [PMID: 38806516 PMCID: PMC11133340 DOI: 10.1038/s41467-024-48878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Cryptophyte algae are an evolutionarily distinct and ecologically important group of photosynthetic unicellular eukaryotes. Photosystem II (PSII) of cryptophyte algae associates with alloxanthin chlorophyll a/c-binding proteins (ACPs) to act as the peripheral light-harvesting system, whose supramolecular organization is unknown. Here, we purify the PSII-ACPII supercomplex from a cryptophyte alga Chroomonas placoidea (C. placoidea), and analyze its structure at a resolution of 2.47 Å using cryo-electron microscopy. This structure reveals a dimeric organization of PSII-ACPII containing two PSII core monomers flanked by six symmetrically arranged ACPII subunits. The PSII core is conserved whereas the organization of ACPII subunits exhibits a distinct pattern, different from those observed so far in PSII of other algae and higher plants. Furthermore, we find a Chl a-binding antenna subunit, CCPII-S, which mediates interaction of ACPII with the PSII core. These results provide a structural basis for the assembly of antennas within the supercomplex and possible excitation energy transfer pathways in cryptophyte algal PSII, shedding light on the diversity of supramolecular organization of photosynthetic machinery.
Collapse
Affiliation(s)
- Zhiyuan Mao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xingyue Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhenhua Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Liangliang Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- Cryo-EM Centre, Southern University of Science and Technology, 518055, Guangdong, China
- China National Botanical Garden, 100093, Beijing, China
| | - Xiaoyi Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257300, Dongying, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257300, Dongying, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
- Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, 257300, Dongying, China.
| |
Collapse
|
25
|
Noll N, Würthner F. Bioinspired Water Preorganization in Confined Space for Efficient Water Oxidation Catalysis in Metallosupramolecular Ruthenium Architectures. Acc Chem Res 2024; 57:1538-1549. [PMID: 38710509 PMCID: PMC11112732 DOI: 10.1021/acs.accounts.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
ConspectusNature has established a sustainable way to maintain aerobic life on earth by inventing one of the most sophisticated biological processes, namely, natural photosynthesis, which delivers us with organic matter and molecular oxygen derived from the two abundant resources sunlight and water. The thermodynamically demanding photosynthetic water splitting is catalyzed by the oxygen-evolving complex in photosystem II (OEC-PSII), which comprises a distorted tetramanganese-calcium cluster (CaMn4O5) as catalytic core. As an ubiquitous concept for fine-tuning and regulating the reactivity of the active site of metalloenzymes, the surrounding protein domain creates a sophisticated environment that promotes substrate preorganization through secondary, noncovalent interactions such as hydrogen bonding or electrostatic interactions. Based on the high-resolution X-ray structure of PSII, several water channels were identified near the active site, which are filled with extensive hydrogen-bonding networks of preorganized water molecules, connecting the OEC with the protein surface. As an integral part of the outer coordination sphere of natural metalloenzymes, these channels control the substrate and product delivery, carefully regulate the proton flow by promoting pivotal proton-coupled electron transfer processes, and simultaneously stabilize short-lived oxidized intermediates, thus highlighting the importance of an ordered water network for the remarkable efficiency of the natural OEC.Transferring this concept from nature to the engineering of artificial metal catalysts for fuel production has fostered the fascinating field of metallosupramolecular chemistry by generating defined cavities that conceptually mimic enzymatic pockets. However, the application of supramolecular approaches to generate artificial water oxidation catalysts remained scarce prior to our initial reports, since such molecular design strategies for efficient activation of substrate water molecules in confined nanoenvironments were lacking. In this Account, we describe our research efforts on combining the state-of-the art Ru(bda) catalytic framework with structurally programmed ditopic ligands to guide the water oxidation process in defined metallosupramolecular assemblies in spatial proximity. We will elucidate the governing factors that control the quality of hydrogen-bonding water networks in multinuclear cavities of varying sizes and geometries to obtain high-performance, state-of-the-art water oxidation catalysts. Pushing the boundaries of artificial catalyst design, embedding a single catalytic Ru center into a well-defined molecular pocket enabled sophisticated water preorganization in front of the active site through an encoded basic recognition site, resulting in high catalytic rates comparable to those of the natural counterpart OEC-PSII.To fully explore their potential for solar fuel devices, the suitability of our metallosupramolecular assemblies was demonstrated under (electro)chemical and photocatalytic water oxidation conditions. In addition, testing the limits of structural diversity allowed the fabrication of self-assembled linear coordination oligomers as novel photocatalytic materials and long-range ordered covalent organic framework (COF) materials as recyclable and long-term stable solid-state materials for future applications.
Collapse
Affiliation(s)
- Niklas Noll
- Institut für Organische Chemie
& Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie
& Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg Germany
| |
Collapse
|
26
|
Saito K, Chen Y, Ishikita H. Exploring the Deprotonation Process during Incorporation of a Ligand Water Molecule at the Dangling Mn Site in Photosystem II. J Phys Chem B 2024; 128:4728-4734. [PMID: 38693711 PMCID: PMC11104351 DOI: 10.1021/acs.jpcb.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
The Mn4CaO5 cluster, featuring four ligand water molecules (W1 to W4), serves as the water-splitting site in photosystem II (PSII). X-ray free electron laser (XFEL) structures exhibit an additional oxygen site (O6) adjacent to the O5 site in the fourth lowest oxidation state, S3, forming Mn4CaO6. Here, we investigate the mechanism of the second water ligand molecule at the dangling Mn (W2) as a potential incorporating species, using a quantum mechanical/molecular mechanical (QM/MM) approach. Previous QM/MM calculations demonstrated that W1 releases two protons through a low-barrier H-bond toward D1-Asp61 and subsequently releases an electron during the S2 to S3 transition, resulting in O•- at W1 and protonated D1-Asp61. During the process of Mn4CaO6 formation, O•-, rather than H2O or OH-, best reproduced the O5···O6 distance. Although the catalytic cluster with O•- at O6 is more stable than that with O•- at W1 in S3, it does not occur spontaneously due to the significantly uphill deprotonation process. Assuming O•- at W2 incorporates into the O6 site, an exergonic conversion from Mn1(III)Mn2(IV)Mn3(IV)Mn4(IV) (equivalent to the open-cubane S2 valence state) to Mn1(IV)Mn2(IV)Mn3(IV)Mn4(III) (equivalent to the closed-cubane S2 valence state) occurs. These findings provide energetic insights into the deprotonation and structural conversion events required for the Mn4CaO6 formation.
Collapse
Affiliation(s)
- Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yang Chen
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
27
|
Bhattacharjee S, Arra S, Daidone I, Pantazis DA. Excitation landscape of the CP43 photosynthetic antenna complex from multiscale simulations. Chem Sci 2024; 15:7269-7284. [PMID: 38756808 PMCID: PMC11095388 DOI: 10.1039/d3sc06714a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
Photosystem II (PSII), the principal enzyme of oxygenic photosynthesis, contains two integral light harvesting proteins (CP43 and CP47) that bind chlorophylls and carotenoids. The two intrinsic antennae play crucial roles in excitation energy transfer and photoprotection. CP43 interacts most closely with the reaction center of PSII, specifically with the branch of the reaction center (D1) that is responsible for primary charge separation and electron transfer. Deciphering the function of CP43 requires detailed atomic-level insights into the properties of the embedded pigments. To advance this goal, we employ a range of multiscale computational approaches to determine the site energies and excitonic profile of CP43 chlorophylls, using large all-atom models of a membrane-bound PSII monomer. In addition to time-dependent density functional theory (TD-DFT) used in the context of a quantum-mechanics/molecular-mechanics setup (QM/MM), we present a thorough analysis using the perturbed matrix method (PMM), which enables us to utilize information from long-timescale molecular dynamics simulations of native PSII-complexed CP43. The excited state energetics and excitonic couplings have both similarities and differences compared with previous experimental fits and theoretical calculations. Both static TD-DFT and dynamic PMM results indicate a layered distribution of site energies and reveal specific groups of chlorophylls that have shared contributions to low-energy excitations. Importantly, the contribution to the lowest energy exciton does not arise from the same chlorophylls at each system configuration, but rather changes as a function of conformational dynamics. An unexpected finding is the identification of a low-energy charge-transfer excited state within CP43 that involves a lumenal (C2) and the central (C10) chlorophyll of the complex. The results provide a refined basis for structure-based interpretation of spectroscopic observations and for further deciphering excitation energy transfer in oxygenic photosynthesis.
Collapse
Affiliation(s)
- Sinjini Bhattacharjee
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Srilatha Arra
- Department of Physical and Chemical Sciences, University of L'Aquila Via Vetoio (Coppito 1) 67010 L'Aquila Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila Via Vetoio (Coppito 1) 67010 L'Aquila Italy
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
28
|
Zhang X, Zhang X, Liu S, Zhang W, Dai L, Lan X, Wang D, Tu W, He Y, Gao D. Achieving deep intratumoral penetration and multimodal combined therapy for tumor through algal photosynthesis. J Nanobiotechnology 2024; 22:227. [PMID: 38711078 DOI: 10.1186/s12951-024-02476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/13/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Elevated interstitial fluid pressure within tumors, resulting from impaired lymphatic drainage, constitutes a critical barrier to effective drug penetration and therapeutic outcomes. RESULTS In this study, based on the photosynthetic characteristics of algae, an active drug carrier (CP@ICG) derived from Chlorella pyrenoidosa (CP) was designed and constructed. Leveraging the hypoxia tropism and phototropism exhibited by CP, we achieved targeted transport of the carrier to tumor sites. Additionally, dual near-infrared (NIR) irradiation at the tumor site facilitated photosynthesis in CP, enabling the breakdown of excessive intratumoral interstitial fluid by generating oxygen from water decomposition. This process effectively reduced the interstitial pressure, thereby promoting enhanced perfusion of blood into the tumor, significantly improving deep-seated penetration of chemotherapeutic agents, and alleviating tumor hypoxia. CONCLUSIONS CP@ICG demonstrated a combined effect of photothermal/photodynamic/starvation therapy, exhibiting excellent in vitro/in vivo anti-tumor efficacy and favorable biocompatibility. This work provides a scientific foundation for the application of microbial-enhanced intratumoral drug delivery and tumor therapy.
Collapse
Affiliation(s)
- Xuwu Zhang
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Xinyue Zhang
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Shiqi Liu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Weidong Zhang
- Department of Pharmacy, The First Hospital of Qinhuangdao, Qinhuangdao, 066004, People's Republic of China
| | - Liang Dai
- Department of Pharmacy, The First Hospital of Qinhuangdao, Qinhuangdao, 066004, People's Republic of China
| | - Xifa Lan
- Department of Pharmacy, The First Hospital of Qinhuangdao, Qinhuangdao, 066004, People's Republic of China
| | - Desong Wang
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Wenkang Tu
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China.
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China.
| | - Yuchu He
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China.
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China.
| | - Dawei Gao
- Nano-Biotechnology Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao, 066004, People's Republic of China.
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China.
| |
Collapse
|
29
|
Dai GZ, Song WY, Xu HF, Tu M, Yu C, Li ZK, Shang JL, Jin CL, Ding CS, Zuo LZ, Liu YR, Yan WW, Zang SS, Liu K, Zhang Z, Bock R, Qiu BS. Hypothetical chloroplast reading frame 51 encodes a photosystem I assembly factor in cyanobacteria. THE PLANT CELL 2024; 36:1844-1867. [PMID: 38146915 PMCID: PMC11062458 DOI: 10.1093/plcell/koad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/29/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Hypothetical chloroplast open reading frames (ycfs) are putative genes in the plastid genomes of photosynthetic eukaryotes. Many ycfs are also conserved in the genomes of cyanobacteria, the presumptive ancestors of present-day chloroplasts. The functions of many ycfs are still unknown. Here, we generated knock-out mutants for ycf51 (sll1702) in the cyanobacterium Synechocystis sp. PCC 6803. The mutants showed reduced photoautotrophic growth due to impaired electron transport between photosystem II (PSII) and PSI. This phenotype results from greatly reduced PSI content in the ycf51 mutant. The ycf51 disruption had little effect on the transcription of genes encoding photosynthetic complex components and the stabilization of the PSI complex. In vitro and in vivo analyses demonstrated that Ycf51 cooperates with PSI assembly factor Ycf3 to mediate PSI assembly. Furthermore, Ycf51 interacts with the PSI subunit PsaC. Together with its specific localization in the thylakoid membrane and the stromal exposure of its hydrophilic region, our data suggest that Ycf51 is involved in PSI complex assembly. Ycf51 is conserved in all sequenced cyanobacteria, including the earliest branching cyanobacteria of the Gloeobacter genus, and is also present in the plastid genomes of glaucophytes. However, Ycf51 has been lost from other photosynthetic eukaryotic lineages. Thus, Ycf51 is a PSI assembly factor that has been functionally replaced during the evolution of oxygenic photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Wei-Yu Song
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Miao Tu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chen Yu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Zheng-Ke Li
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Jin-Long Shang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chun-Lei Jin
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Chao-Shun Ding
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ling-Zi Zuo
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Yan-Ru Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Wei-Wei Yan
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Sha-Sha Zang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ke Liu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Zheng Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| | - Ralph Bock
- Department III, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, PR China
| |
Collapse
|
30
|
Zhang L, Ruan J, Gao F, Xin Q, Che LP, Cai L, Liu Z, Kong M, Rochaix JD, Mi H, Peng L. Thylakoid protein FPB1 synergistically cooperates with PAM68 to promote CP47 biogenesis and Photosystem II assembly. Nat Commun 2024; 15:3122. [PMID: 38600073 PMCID: PMC11006888 DOI: 10.1038/s41467-024-46863-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
In chloroplasts, insertion of proteins with multiple transmembrane domains (TMDs) into thylakoid membranes usually occurs in a co-translational manner. Here, we have characterized a thylakoid protein designated FPB1 (Facilitator of PsbB biogenesis1) which together with a previously reported factor PAM68 (Photosynthesis Affected Mutant68) is involved in assisting the biogenesis of CP47, a subunit of the Photosystem II (PSII) core. Analysis by ribosome profiling reveals increased ribosome stalling when the last TMD segment of CP47 emerges from the ribosomal tunnel in fpb1 and pam68. FPB1 interacts with PAM68 and both proteins coimmunoprecipitate with SecY/E and Alb3 as well as with some ribosomal components. Thus, our data indicate that, in coordination with the SecY/E translocon and the Alb3 integrase, FPB1 synergistically cooperates with PAM68 to facilitate the co-translational integration of the last two CP47 TMDs and the large loop between them into thylakoids and the PSII core complex.
Collapse
Affiliation(s)
- Lin Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Junxiang Ruan
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fudan Gao
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiang Xin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Li-Ping Che
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Lujuan Cai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zekun Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mengmeng Kong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences / Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, China
| | - Lianwei Peng
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
31
|
Semin B, Loktyushkin A, Lovyagina E. Current analysis of cations substitution in the oxygen-evolving complex of photosystem II. Biophys Rev 2024; 16:237-247. [PMID: 38737202 PMCID: PMC11078907 DOI: 10.1007/s12551-024-01186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
Water oxidation in photosystem II (PSII) is performed by the oxygen-evolving complex Mn4CaO5 which can be extracted from PSII and then reconstructed using exogenous cations Mn(II) and Ca2+. The binding efficiency of other cations to the Mn-binding sites in Mn-depleted PSII was investigated without any positive results. At the same time, a study of the Fe cations interaction with Mn-binding sites showed that it binds at a level comparable with the binding of Mn cations. Binding of Fe(II) cations first requires its light-dependent oxidation. In general, the interaction of Fe(II) with Mn-depleted PSII has a number of features similar to the two-quantum model of photoactivation of the complex with the release of oxygen. Interestingly, incubation of Ca-depleted PSII with Fe(II) cations under certain conditions is accompanied by the formation of a chimeric cluster Mn/Fe in the oxygen-evolving complex. PSII with the cluster 2Mn2Fe was found to be capable of water oxidation, but only to the H2O2 intermediate. However, the cluster 3Mn1Fe can oxidize water to O2 with an efficiency about 25% of the original in the absence of extrinsic proteins PsbQ and PsbP. In the presence of these proteins, the efficiency of O2 evolution can reach 80% of the original when adding exogenous Ca2+. In this review, we summarized information on the formation of chimeric Mn-Fe clusters in the oxygen-evolving complex. The data cited may be useful for detailing the mechanism of water oxidation.
Collapse
Affiliation(s)
- Boris Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 119234
| | - Aleksey Loktyushkin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 119234
| | - Elena Lovyagina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 119234
| |
Collapse
|
32
|
Kaur D, Reiss K, Wang J, Batista VS, Brudvig GW, Gunner MR. Occupancy Analysis of Water Molecules inside Channels within 25 Å Radius of the Oxygen-Evolving Center of Photosystem II in Molecular Dynamics Simulations. J Phys Chem B 2024; 128:2236-2248. [PMID: 38377592 DOI: 10.1021/acs.jpcb.3c05367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
At room temperature and neutral pH, the oxygen-evolving center (OEC) of photosystem II (PSII) catalyzes water oxidation. During this process, oxygen is released from the OEC, while substrate waters are delivered to the OEC and protons are passed from the OEC to the lumen through water channels known as the narrow or the O4 channel, broad or the Cl1 channel, and large or the O1 channel. Protein residues lining the surfaces of these channels play a critical role in stabilizing the hydrogen-bonding networks that assist in the process. We carried out an occupancy analysis to better understand the structural and possible substrate water dynamics in full PSII monomer molecular dynamics (MD) trajectories in both the S1 and S2 states. We find that the equilibrated positions of water molecules derived from MD-derived electron density maps largely match the experimentally observed positions in crystallography. Furthermore, the occupancy reduction in MD simulations of some water molecules inside the single-filed narrow channel also correlates well with the crystallographic data during a structural transition when the S1 state of the OEC advances to the S2 state. The overall reduced occupancies of water molecules are the source of their "vacancy-hopping" dynamic nature inside these channels, unlike water molecules inside an ice lattice where all water molecules have a fixed unit occupancy. We propose on the basis of findings in our structural and molecular dynamics analysis that the water molecule occupying a pocket formed by D1-D61, D1-S169, and O4 of the OEC could be the last steppingstone to enter into the OEC and that the broad channel may be favored for proton transfer.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines L2S 3A1, Ontario, Canada
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - M R Gunner
- Department of Physics, City College of New York New York, New York 10031, United States
| |
Collapse
|
33
|
Mehra HS, Wang X, Russell BP, Kulkarni N, Ferrari N, Larson B, Vinyard DJ. Assembly and Repair of Photosystem II in Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:811. [PMID: 38592843 PMCID: PMC10975043 DOI: 10.3390/plants13060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Oxygenic photosynthetic organisms use Photosystem II (PSII) to oxidize water and reduce plastoquinone. Here, we review the mechanisms by which PSII is assembled and turned over in the model green alga Chlamydomonas reinhardtii. This species has been used to make key discoveries in PSII research due to its metabolic flexibility and amenability to genetic approaches. PSII subunits originate from both nuclear and chloroplastic gene products in Chlamydomonas. Nuclear-encoded PSII subunits are transported into the chloroplast and chloroplast-encoded PSII subunits are translated by a coordinated mechanism. Active PSII dimers are built from discrete reaction center complexes in a process facilitated by assembly factors. The phosphorylation of core subunits affects supercomplex formation and localization within the thylakoid network. Proteolysis primarily targets the D1 subunit, which when replaced, allows PSII to be reactivated and completes a repair cycle. While PSII has been extensively studied using Chlamydomonas as a model species, important questions remain about its assembly and repair which are presented here.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David J. Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (H.S.M.); (X.W.); (B.P.R.); (N.K.); (N.F.); (B.L.)
| |
Collapse
|
34
|
de Lichtenberg C, Rapatskiy L, Reus M, Heyno E, Schnegg A, Nowaczyk MM, Lubitz W, Messinger J, Cox N. Assignment of the slowly exchanging substrate water of nature's water-splitting cofactor. Proc Natl Acad Sci U S A 2024; 121:e2319374121. [PMID: 38437550 PMCID: PMC10945779 DOI: 10.1073/pnas.2319374121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Identifying the two substrate water sites of nature's water-splitting cofactor (Mn4CaO5 cluster) provides important information toward resolving the mechanism of O-O bond formation in Photosystem II (PSII). To this end, we have performed parallel substrate water exchange experiments in the S1 state of native Ca-PSII and biosynthetically substituted Sr-PSII employing Time-Resolved Membrane Inlet Mass Spectrometry (TR-MIMS) and a Time-Resolved 17O-Electron-electron Double resonance detected NMR (TR-17O-EDNMR) approach. TR-MIMS resolves the kinetics for incorporation of the oxygen-isotope label into the substrate sites after addition of H218O to the medium, while the magnetic resonance technique allows, in principle, the characterization of all exchangeable oxygen ligands of the Mn4CaO5 cofactor after mixing with H217O. This unique combination shows i) that the central oxygen bridge (O5) of Ca-PSII core complexes isolated from Thermosynechococcus vestitus has, within experimental conditions, the same rate of exchange as the slowly exchanging substrate water (WS) in the TR-MIMS experiments and ii) that the exchange rates of O5 and WS are both enhanced by Ca2+→Sr2+ substitution in a similar manner. In the context of previous TR-MIMS results, this shows that only O5 fulfills all criteria for being WS. This strongly restricts options for the mechanism of water oxidation.
Collapse
Affiliation(s)
- Casper de Lichtenberg
- Department of Chemistry- Ångström Laboratorium, Uppsala University, UppsalaS-75120, Sweden
- Department of Chemistry, Chemical Biological Centre, Umeå University, UmeåS-90187, Sweden
| | - Leonid Rapatskiy
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Michael Reus
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Eiri Heyno
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Marc M. Nowaczyk
- Department of Plant Biochemistry, Ruhr-Universität Bochum, BochumD-44780, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
| | - Johannes Messinger
- Department of Chemistry- Ångström Laboratorium, Uppsala University, UppsalaS-75120, Sweden
- Department of Chemistry, Chemical Biological Centre, Umeå University, UmeåS-90187, Sweden
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der RuhrD-45470, Germany
- Research School of Chemistry, Australian National University, Acton ACT2601, Australia
| |
Collapse
|
35
|
Singh A, Roy L. Evolution in the Design of Water Oxidation Catalysts with Transition-Metals: A Perspective on Biological, Molecular, Supramolecular, and Hybrid Approaches. ACS OMEGA 2024; 9:9886-9920. [PMID: 38463281 PMCID: PMC10918817 DOI: 10.1021/acsomega.3c07847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Increased demand for a carbon-neutral sustainable energy scheme augmented by climatic threats motivates the design and exploration of novel approaches that reserve intermittent solar energy in the form of chemical bonds in molecules and materials. In this context, inspired by biological processes, artificial photosynthesis has garnered significant attention as a promising solution to convert solar power into chemical fuels from abundantly found H2O. Among the two redox half-reactions in artificial photosynthesis, the four-electron oxidation of water according to 2H2O → O2 + 4H+ + 4e- comprises the major bottleneck and is a severe impediment toward sustainable energy production. As such, devising new catalytic platforms, with traditional concepts of molecular, materials and biological catalysis and capable of integrating the functional architectures of the natural oxygen-evolving complex in photosystem II would certainly be a value-addition toward this objective. In this review, we discuss the progress in construction of ideal water oxidation catalysts (WOCs), starting with the ingenuity of the biological design with earth-abundant transition metal ions, which then diverges into molecular, supramolecular and hybrid approaches, blurring any existing chemical or conceptual boundaries. We focus on the geometric, electronic, and mechanistic understanding of state-of-the-art homogeneous transition-metal containing molecular WOCs and summarize the limiting factors such as choice of ligands and predominance of environmentally unrewarding and expensive noble-metals, necessity of high-valency on metal, thermodynamic instability of intermediates, and reversibility of reactions that create challenges in construction of robust and efficient water oxidation catalyst. We highlight how judicious heterogenization of atom-efficient molecular WOCs in supramolecular and hybrid approaches put forth promising avenues to alleviate the existing problems in molecular catalysis, albeit retaining their fascinating intrinsic reactivities. Taken together, our overview is expected to provide guiding principles on opportunities, challenges, and crucial factors for designing novel water oxidation catalysts based on a synergy between conventional and contemporary methodologies that will incite the expansion of the domain of artificial photosynthesis.
Collapse
Affiliation(s)
- Ajeet
Kumar Singh
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| | - Lisa Roy
- Institute of Chemical Technology
Mumbai−IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension
Centre, Bhubaneswar − 751013 India
| |
Collapse
|
36
|
Jing X, Liu Y, Liu X, Zhang Y, Wang G, Yang F, Zhang Y, Chang D, Zhang ZL, You CX, Zhang S, Wang XF. Enhanced photosynthetic efficiency by nitrogen-doped carbon dots via plastoquinone-involved electron transfer in apple. HORTICULTURE RESEARCH 2024; 11:uhae016. [PMID: 38495032 PMCID: PMC10940122 DOI: 10.1093/hr/uhae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/10/2024] [Indexed: 03/19/2024]
Abstract
Artificially enhancing photosynthesis is critical for improving crop yields and fruit qualities. Nanomaterials have demonstrated great potential to enhance photosynthetic efficiency; however, the mechanisms underlying their effects are poorly understood. This study revealed that the electron transfer pathway participated in nitrogen-doped carbon dots (N-CDs)-induced photosynthetic efficiency enhancement (24.29%), resulting in the improvements of apple fruit qualities (soluble sugar content: 11.43%) in the orchard. We also found that N-CDs alleviated mterf5 mutant-modulated photosystem II (PSII) defects, but not psa3 mutant-modulated photosystem I (PSI) defects, suggesting that the N-CDs-targeting sites were located between PSII and PSI. Measurements of chlorophyll fluorescence parameters suggested that plastoquinone (PQ), the mobile electron carrier in the photosynthesis electron transfer chain (PETC), was the photosynthesis component that N-CDs targeted. In vitro experiments demonstrated that plastoquinone-9 (PQ-9) could accept electrons from light-excited N-CDs to produce the reduced plastoquinone 9 (PQH2-9). These findings suggested that N-CDs, as electron donors, offer a PQ-9-involved complement of PETC to improve photosynthesis and thereby fruit quality. Our study uncovered a mechanism by which nanomaterials enhanced plant photosynthesis and provided some insights that will be useful in the design of efficient nanomaterials for agricultural/horticultural applications.
Collapse
Affiliation(s)
- Xiuli Jing
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yankai Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xuzhe Liu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yi Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Guanzhu Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Fei Yang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yani Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Dayong Chang
- Yantai Goodly Biotechnology Co., Ltd, Yantai 264000, Shandong, China
| | - Zhen-Lu Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shuai Zhang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiao-Fei Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
| |
Collapse
|
37
|
Noguchi T. Mechanism of Proton Transfer through the D1-E65/D2-E312 Gate during Photosynthetic Water Oxidation. J Phys Chem B 2024; 128:1866-1875. [PMID: 38364371 DOI: 10.1021/acs.jpcb.3c07787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
In photosystem II, the D1-E65/D2-E312 dyad in the Cl-1 channel has been proposed to play a pivotal role in proton transfer during water oxidation. However, the precise mechanism remains elusive. Here, the proton transfer mechanism within the Cl-1 channel was investigated using quantum mechanics/molecular mechanics calculations. The molecular vibration of the E65/E312 dyad and its deuteration effect revealed that the recently suggested stepwise proton transfer, i.e., initial proton release from the dyad followed by slow reprotonation, does not occur in the Cl-1 channel. Instead, proton transfer is proposed to take place via a conformational change at the E65/E312 dyad, acting as a gate. In its closed form, a proton is trapped within the dyad, preventing forward proton transfer. This closed form converts into the open form, where protonated D1-E65 provides a hydrogen bond to the water network, thereby facilitating fast Grotthuss-type proton transfer.
Collapse
Affiliation(s)
- Takumi Noguchi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
38
|
Ozawa SI, Zhang G, Sakamoto W. Dysfunction of Chloroplast Protease Activity Mitigates pgr5 Phenotype in the Green Algae Chlamydomonas reinhardtii. PLANTS (BASEL, SWITZERLAND) 2024; 13:606. [PMID: 38475453 DOI: 10.3390/plants13050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Researchers have described protection mechanisms against the photoinhibition of photosystems under strong-light stress. Cyclic Electron Flow (CEF) mitigates electron acceptor-side limitation, and thus contributes to Photosystem I (PSI) protection. Chloroplast protease removes damaged protein to assist with protein turn over, which contributes to the quality control of Photosystem II (PSII). The PGR5 protein is involved in PGR5-dependent CEF. The FTSH protein is a chloroplast protease which effectively degrades the damaged PSII reaction center subunit, D1 protein. To investigate how the PSI photoinhibition phenotype in pgr5 would be affected by adding the ftsh mutation, we generated double-mutant pgr5ftsh via crossing, and its phenotype was characterized in the green algae Chlamydomonas reinhardtii. The cells underwent high-light incubation as well as low-light incubation after high-light incubation. The time course of Fv/Fm values in pgr5ftsh showed the same phenotype with ftsh1-1. The amplitude of light-induced P700 photo-oxidation absorbance change was measured. The amplitude was maintained at a low value in the control and pgr5ftsh during high-light incubation, but was continuously decreased in pgr5. During the low-light incubation after high-light incubation, amplitude was more rapidly recovered in pgr5ftsh than pgr5. We concluded that the PSI photoinhibition by the pgr5 mutation is mitigated by an additional ftsh1-1 mutation, in which plastoquinone pool would be less reduced due to damaged PSII accumulation.
Collapse
Affiliation(s)
- Shin-Ichiro Ozawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Guoxian Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
39
|
Shen L, Gao Y, Tang K, Qi R, Fu L, Chen JH, Wang W, Ma X, Li P, Chen M, Kuang T, Zhang X, Shen JR, Wang P, Han G. Structure of a unique PSII-Pcb tetrameric megacomplex in a chlorophyll d-containing cyanobacterium. SCIENCE ADVANCES 2024; 10:eadk7140. [PMID: 38394197 PMCID: PMC10889353 DOI: 10.1126/sciadv.adk7140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Acaryochloris marina is a unique cyanobacterium using chlorophyll d (Chl d) as its major pigment and thus can use far-red light for photosynthesis. Photosystem II (PSII) of A. marina associates with a number of prochlorophyte Chl-binding (Pcb) proteins to act as the light-harvesting system. We report here the cryo-electron microscopic structure of a PSII-Pcb megacomplex from A. marina at a 3.6-angstrom overall resolution and a 3.3-angstrom local resolution. The megacomplex is organized as a tetramer consisting of two PSII core dimers flanked by sixteen symmetrically related Pcb proteins, with a total molecular weight of 1.9 megadaltons. The structure reveals the detailed organization of PSII core consisting of 15 known protein subunits and an unknown subunit, the assembly of 4 Pcb antennas within each PSII monomer, and possible pathways of energy transfer within the megacomplex, providing deep insights into energy transfer and dissipation mechanisms within the PSII-Pcb megacomplex involved in far-red light utilization.
Collapse
Affiliation(s)
- Liangliang Shen
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yuanzhu Gao
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kailu Tang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruxi Qi
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lutang Fu
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Hua Chen
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaomin Ma
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyao Li
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Chen
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney NSW 2006, Australia
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Peiyi Wang
- Cryo-EM Centre, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
40
|
Ariga K. Confined Space Nanoarchitectonics for Dynamic Functions and Molecular Machines. MICROMACHINES 2024; 15:282. [PMID: 38399010 PMCID: PMC10892885 DOI: 10.3390/mi15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanotechnology has advanced the techniques for elucidating phenomena at the atomic, molecular, and nano-level. As a post nanotechnology concept, nanoarchitectonics has emerged to create functional materials from unit structures. Consider the material function when nanoarchitectonics enables the design of materials whose internal structure is controlled at the nanometer level. Material function is determined by two elements. These are the functional unit that forms the core of the function and the environment (matrix) that surrounds it. This review paper discusses the nanoarchitectonics of confined space, which is a field for controlling functional materials and molecular machines. The first few sections introduce some of the various dynamic functions in confined spaces, considering molecular space, materials space, and biospace. In the latter two sections, examples of research on the behavior of molecular machines, such as molecular motors, in confined spaces are discussed. In particular, surface space and internal nanospace are taken up as typical examples of confined space. What these examples show is that not only the central functional unit, but also the surrounding spatial configuration is necessary for higher functional expression. Nanoarchitectonics will play important roles in the architecture of such a total system.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| |
Collapse
|
41
|
Drosou M, Pantazis DA. Comprehensive Evaluation of Models for Ammonia Binding to the Oxygen Evolving Complex of Photosystem II. J Phys Chem B 2024; 128:1333-1349. [PMID: 38299511 PMCID: PMC10875651 DOI: 10.1021/acs.jpcb.3c06304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
The identity and insertion pathway of the substrate oxygen atoms that are coupled to dioxygen by the oxygen-evolving complex (OEC) remains a central question toward understanding Nature's water oxidation mechanism. In several studies, ammonia has been used as a small "water analogue" to elucidate the pathway of substrate access to the OEC and to aid in determining which of the oxygen ligands of the tetramanganese cluster are substrates for O-O bond formation. On the basis of structural and spectroscopic investigations, five first-sphere binding modes of ammonia have been suggested, involving either substitution of an existing H2O/OH-/O2- group or addition as an extra ligand to a metal ion of the Mn4CaO5 cluster. Some of these modes, specifically the ones involving substitution, have already been subject to spectroscopy-oriented quantum chemical investigations, whereas more recent suggestions that postulate the addition of ammonia have not been examined so far with quantum chemistry for their agreement with spectroscopic data. Herein, we use a common structural framework and theoretical methodology to evaluate structural models of the OEC that represent all proposed modes of first-sphere ammonia interaction with the OEC in its S2 state. Criteria include energetic, magnetic, kinetic, and spectroscopic properties compared against available experimental EPR, ENDOR, ESEEM, and EDNMR data. Our results show that models featuring ammonia replacing one of the two terminal water ligands on Mn4 align best with experimental data, while they definitively exclude substitution of a bridging μ-oxo ligand as well as incorporation of ammonia as a sixth ligand on Mn1 or Mn4.
Collapse
Affiliation(s)
- Maria Drosou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Inorganic
Chemistry Laboratory, National and Kapodistrian
University of Athens, Panepistimiopolis, Zografou 15771, Greece
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
42
|
Fujimoto KJ, Seki T, Minoda T, Yanai T. Spectral Tuning and Excitation-Energy Transfer by Unique Carotenoids in Diatom Light-Harvesting Antenna. J Am Chem Soc 2024; 146:3984-3991. [PMID: 38236721 PMCID: PMC10870758 DOI: 10.1021/jacs.3c12045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/15/2024]
Abstract
The light-harvesting antennae of diatoms and spinach are composed of similar chromophores; however, they exhibit different absorption wavelengths. Recent advances in cryoelectron microscopy have revealed that the diatom light-harvesting antenna fucoxanthin chlorophyll a/c-binding protein (FCPII) forms a tetramer and differs from the spinach antenna in terms of the number of protomers; however, the detailed molecular mechanism remains elusive. Herein, we report the physicochemical factors contributing to the characteristic light absorption of the diatom light-harvesting antenna based on spectral calculations using an exciton model. Spectral analysis reveals the significant contribution of unique fucoxanthin molecules (fucoxanthin-S) in FCPII to the diatom-specific spectrum, and further analysis determines their essential role in excitation-energy transfer to chlorophyll. It was revealed that the specificity of these fucoxanthin-S molecules is caused by the proximity between protomers associated with the tetramerization of FCPII. The findings of this study demonstrate that diatoms employ fucoxanthin-S to harvest energy under the ocean in the absence of long-wavelength sunlight and can provide significant information about the survival strategies of photosynthetic organisms to adjust to their living environment.
Collapse
Affiliation(s)
- Kazuhiro J. Fujimoto
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Takuya Seki
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Takumi Minoda
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| | - Takeshi Yanai
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
43
|
Li H, Nakajima Y, Nango E, Owada S, Yamada D, Hashimoto K, Luo F, Tanaka R, Akita F, Kato K, Kang J, Saitoh Y, Kishi S, Yu H, Matsubara N, Fujii H, Sugahara M, Suzuki M, Masuda T, Kimura T, Thao TN, Yonekura S, Yu LJ, Tosha T, Tono K, Joti Y, Hatsui T, Yabashi M, Kubo M, Iwata S, Isobe H, Yamaguchi K, Suga M, Shen JR. Oxygen-evolving photosystem II structures during S 1-S 2-S 3 transitions. Nature 2024; 626:670-677. [PMID: 38297122 PMCID: PMC10866707 DOI: 10.1038/s41586-023-06987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024]
Abstract
Photosystem II (PSII) catalyses the oxidation of water through a four-step cycle of Si states (i = 0-4) at the Mn4CaO5 cluster1-3, during which an extra oxygen (O6) is incorporated at the S3 state to form a possible dioxygen4-7. Structural changes of the metal cluster and its environment during the S-state transitions have been studied on the microsecond timescale. Here we use pump-probe serial femtosecond crystallography to reveal the structural dynamics of PSII from nanoseconds to milliseconds after illumination with one flash (1F) or two flashes (2F). YZ, a tyrosine residue that connects the reaction centre P680 and the Mn4CaO5 cluster, showed structural changes on a nanosecond timescale, as did its surrounding amino acid residues and water molecules, reflecting the fast transfer of electrons and protons after flash illumination. Notably, one water molecule emerged in the vicinity of Glu189 of the D1 subunit of PSII (D1-E189), and was bound to the Ca2+ ion on a sub-microsecond timescale after 2F illumination. This water molecule disappeared later with the concomitant increase of O6, suggesting that it is the origin of O6. We also observed concerted movements of water molecules in the O1, O4 and Cl-1 channels and their surrounding amino acid residues to complete the sequence of electron transfer, proton release and substrate water delivery. These results provide crucial insights into the structural dynamics of PSII during S-state transitions as well as O-O bond formation.
Collapse
Affiliation(s)
- Hongjie Li
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Eriko Nango
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- RIKEN SPring-8 Center, Sayo, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Daichi Yamada
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, Kobe, Japan
| | - Kana Hashimoto
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Fangjia Luo
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, Sayo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Yasunori Saitoh
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shunpei Kishi
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Huaxin Yu
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Naoki Matsubara
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hajime Fujii
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tetsuya Masuda
- Division of Food and Nutrition, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Tetsunari Kimura
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Tran Nguyen Thao
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shinichiro Yonekura
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Long-Jiang Yu
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Takaki Hatsui
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Minoru Kubo
- Department of Picobiology, Graduate School of Life Science, University of Hyogo, Kobe, Japan
| | - So Iwata
- RIKEN SPring-8 Center, Sayo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Kizashi Yamaguchi
- Center for Quantum Information and Quantum Biology, Osaka University, Osaka, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
44
|
Yang D, Gates BC. Characterization, Structure, and Reactivity of Hydroxyl Groups on Metal-Oxide Cluster Nodes of Metal-Organic Frameworks: Structural Diversity and Keys to Reactivity and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305611. [PMID: 37660323 DOI: 10.1002/adma.202305611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Among the most stable metal-organic frameworks (MOFs) are those incorporating nodes that are metal oxide clusters with frames such as Zr6 O8 . This review is a summary of the structure, bonding, and reactivity of MOF node hydroxyl groups, emphasizing those bonded to nodes containing aluminum and zirconium ions. Hydroxyl groups are often present on these nodes, sometimes balancing the charges of the metal ions. They arise during MOF syntheses in aqueous media or in post-synthesis treatments. They are identified with infrared and 1 H nuclear magnetic resonance spectroscopies and characterized by their reactivities with polar compounds such as alcohols. Terminal OH, paired µ2 -OH, and aqua groups on nodes are catalytic sites in numerous reactions. Relatively unreactive hydroxyl groups (such as isolated µ2 -OH groups) may replace reactive groups and inhibit catalysis; some node hydroxyl groups (e.g., µ3 -OH) are mere spectators in catalysis. There are similarities between MOF node hydroxyl groups and those on the surfaces of bulk metal oxides, zeolites, and enzymes, but the comparisons are mostly inexact, and much remains to be understood about MOF node hydroxyl group chemistry. It is posited that understanding and controlling this chemistry will lead to tailored MOFs and improved adsorbents and catalysts.
Collapse
Affiliation(s)
- Dong Yang
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA
| |
Collapse
|
45
|
Gong H, Zhou Z, Bu C, Zhang D, Fang Q, Zhang XY, Song Y. Computational dissection of genetic variation modulating the response of multiple photosynthetic phenotypes to the light environment. BMC Genomics 2024; 25:81. [PMID: 38243219 PMCID: PMC10799405 DOI: 10.1186/s12864-024-09968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The expression of biological traits is modulated by genetics as well as the environment, and the level of influence exerted by the latter may vary across characteristics. Photosynthetic traits in plants are complex quantitative traits that are regulated by both endogenous genetic factors and external environmental factors such as light intensity and CO2 concentration. The specific processes impacted occur dynamically and continuously as the growth of plants changes. Although studies have been conducted to explore the genetic regulatory mechanisms of individual photosynthetic traits or to evaluate the effects of certain environmental variables on photosynthetic traits, the systematic impact of environmental variables on the dynamic process of integrated plant growth and development has not been fully elucidated. RESULTS In this paper, we proposed a research framework to investigate the genetic mechanism of high-dimensional complex photosynthetic traits in response to the light environment at the genome level. We established a set of high-dimensional equations incorporating environmental regulators to integrate functional mapping and dynamic screening of gene‒environment complex systems to elucidate the process and pattern of intrinsic genetic regulatory mechanisms of three types of photosynthetic phenotypes of Populus simonii that varied with light intensity. Furthermore, a network structure was established to elucidate the crosstalk among significant QTLs that regulate photosynthetic phenotypic systems. Additionally, the detection of key QTLs governing the response of multiple phenotypes to the light environment, coupled with the intrinsic differences in genotype expression, provides valuable insights into the regulatory mechanisms that drive the transition of photosynthetic activity and photoprotection in the face of varying light intensity gradients. CONCLUSIONS This paper offers a comprehensive approach to unraveling the genetic architecture of multidimensional variations in photosynthetic phenotypes, considering the combined impact of integrated environmental factors from multiple perspectives.
Collapse
Affiliation(s)
- Huiying Gong
- College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Ziyang Zhou
- College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Chenhao Bu
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Deqiang Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China
| | - Qing Fang
- Faculty of Science, Yamagata University, Yamagata, 990, Japan
| | - Xiao-Yu Zhang
- College of Science, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| | - Yuepeng Song
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| |
Collapse
|
46
|
Yan Z, Liu Z, Zhang H, Guan X, Xu H, Zhang J, Zhao Q, Wang S. Current trends in gas-synergized phototherapy for improved antitumor theranostics. Acta Biomater 2024; 174:1-25. [PMID: 38092250 DOI: 10.1016/j.actbio.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has been considered an elegant solution to eradicate tumors due to its minimal invasiveness and low systemic toxicity. Nevertheless, it is still challenging for phototherapy to achieve ideal outcomes and clinical translation due to its inherent drawbacks. Owing to the unique biological functions, diverse gases have attracted growing attention in combining with phototherapy to achieve super-additive therapeutic effects. Specifically, gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have been proven to kill tumor cells by inducing mitochondrial damage in synergy with phototherapy. Additionally, several gases not only enhance the thermal damage in PTT and the reactive oxygen species (ROS) production in PDT but also improve the tumor accumulation of photoactive agents. The inflammatory responses triggered by hyperthermia in PTT are also suppressed by the combination of gases. Herein, we comprehensively review the latest studies on gas-synergized phototherapy for cancer therapy, including (1) synergistic mechanisms of combining gases with phototherapy; (2) design of nanoplatforms for gas-synergized phototherapy; (3) multimodal therapy based on gas-synergized phototherapy; (4) imaging-guided gas-synergized phototherapy. Finally, the current challenges and future opportunities of gas-synergized phototherapy for tumor treatment are discussed. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literature. (1) Strategies to design nanoplatforms for gas-synergized anti-tumor phototherapy have been summarized for the first time. Meanwhile, the integration of various imaging technologies and therapy modalities which endow these nanoplatforms with advanced theranostic capabilities has been summarized. (2) The mechanisms by which gases synergize with phototherapy to eradicate tumors are innovatively and comprehensively summarized. 2. The scientific impact and interest. This review elaborates current trends in gas-synergized anti-tumor phototherapy, with special emphases on synergistic anti-tumor mechanisms and rational design of therapeutic nanoplatforms to achieve this synergistic therapy. It aims to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ziwei Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
47
|
Lucinski R, Dobrogojski J, Ishikawa T, Adamiec M. The role of EGY2 protease in response to high light stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23243. [PMID: 38190657 DOI: 10.1071/fp23243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
In this study, we investigated the importance of one of the intramembrane proteases, EGY2, for the proper functioning of PSII under short-term high light stress conditions. EGY2 is a chloroplast intramembrane protease of the S2P family, whose absence in Arabidopsis thaliana affects PSII protein composition. The egy2 mutants exhibited a slower degradation of PsbA and decreased content of PsbC and PsbD. During exposure to high light stress, these stoichiometric changes affect the functional state of PSII, leading to its higher sensitivity to photoinhibition of the PSII reaction centre and increased heat dissipation. Furthermore, we explored the relationship between EGY2 and the pTAC16 transcription factor, which is a potential EGY2 substrate. Under light stress, WT plants showed decreased levels of pTAC16, while it remained unchanged in the egy2 mutants. This finding suggests that EGY2 may release pTAC16 from thylakoid membranes through proteolytic cleavage. We also confirmed the physical interaction between EGY2 and pTAC16 using the yeast two-hybrid system, providing evidence of EGY2's involvement in the regulation of PsbA and PsbC/PsbD operons by releasing pTAC16 from the thylakoid membrane.
Collapse
Affiliation(s)
- Robert Lucinski
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Plant Physiology, Poznan, Poland
| | - Jedrzej Dobrogojski
- University of Life Sciences, Faculty of Agronomy, Horticulture and Bioengineering, Department of Biochemistry and Biotechnology, Poznan, Poland
| | - Takao Ishikawa
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, ul. Miecznikowa 1, 02-096 Warszawa, Poland
| | - Malgorzata Adamiec
- Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Plant Physiology, Poznan, Poland
| |
Collapse
|
48
|
Li C, Zhang J, Li Q, Chen Z, Hou X, Zhao C, Guo Q. IlNRAMP5 is required for cadmium accumulation and the growth in Iris lactea under cadmium exposures. Int J Biol Macromol 2023; 253:127103. [PMID: 37769763 DOI: 10.1016/j.ijbiomac.2023.127103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Iris lactea is potentially applied for remediating Cd-contaminated soils due to the strong ability of Cd uptake and accumulation. However, its molecular mechanism underlying Cd uptake pathway remains unknown. Here, we report a member of NRAMP (Natural Resistance-Associated Macrophage Protein) family, IlNRAMP5, is involved in Cd/Mn uptake and the growth in I. lactea response to Cd. IlNRAMP5 was localized onto the plasma membrane, and was induced by Cd. It was expressed in the root cortex rather than the central vasculature, and in leaf vascular bundle and mesophyll cells. Heterologous expression in yeast showed that IlNRAMP5 could transport Cd and Mn, but not Fe. Knockdown of IlNRAMP5 triggered a significant reduction in Cd uptake, further diminishing the accumulation of Cd. In addition, silencing IlNRAMP5 disrupted Mn homeostasis by lowering Mn uptake and Mn allocation, accompanied by remarkably inhibiting photosynthesis under Cd conditions. Overall, the findings suggest that IlNRAMP5 plays versatile roles in Cd accumulation by mediating Cd uptake, and contributes to maintain the growth via modulating Mn homeostasis in I. lactea under Cd exposures. This would provide a mechanistic understanding Cd phytoremediation efficiency in planta.
Collapse
Affiliation(s)
- Cui Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jia Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qidong Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhimin Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xincun Hou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunqiao Zhao
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiang Guo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
49
|
Saito K, Nishio S, Ishikita H. Interplay of two low-barrier hydrogen bonds in long-distance proton-coupled electron transfer for water oxidation. PNAS NEXUS 2023; 2:pgad423. [PMID: 38130665 PMCID: PMC10733176 DOI: 10.1093/pnasnexus/pgad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
D1-Tyr161 (TyrZ) forms a low-barrier H-bond with D1-His190 and functions as a redox-active group in photosystem II. When oxidized to the radical form (TyrZ-O•), it accepts an electron from the oxygen-evolving Mn4CaO5 cluster, facilitating an increase in the oxidation state (Sn; n = 0-3). In this study, we investigated the mechanism of how TyrZ-O• drives proton-coupled electron transfer during the S2 to S3 transition using a quantum mechanical/molecular mechanical approach. In response to TyrZ-O• formation and subsequent loss of the low-barrier H-bond, the ligand water molecule at the Ca2+ site (W4) reorients away from TyrZ and donates an H-bond to D1-Glu189 at Mn4 of Mn4CaO5 together with an adjacent water molecule. The H-bond donation to the Mn4CaO5 cluster triggers the release of the proton from the lowest pKa site (W1 at Mn4) along the W1…D1-Asp61 low-barrier H-bond, leading to protonation of D1-Asp61. The interplay of the two low-barrier H-bonds, involving the Ca2+ interface and forming the extended Grotthuss-like network [TyrZ…D1-His190]-[Mn4CaO5]-[W1…D1-Asp61], rather than the direct electrostatic interaction, is likely a basis of the apparent long-distance interaction (11.4 Å) between TyrZ-O• formation and D1-Asp61 protonation.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Shunya Nishio
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
50
|
Chrysina M, Drosou M, Castillo RG, Reus M, Neese F, Krewald V, Pantazis DA, DeBeer S. Nature of S-States in the Oxygen-Evolving Complex Resolved by High-Energy Resolution Fluorescence Detected X-ray Absorption Spectroscopy. J Am Chem Soc 2023; 145:25579-25594. [PMID: 37970825 PMCID: PMC10690802 DOI: 10.1021/jacs.3c06046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023]
Abstract
Photosystem II, the water splitting enzyme of photosynthesis, utilizes the energy of sunlight to drive the four-electron oxidation of water to dioxygen at the oxygen-evolving complex (OEC). The OEC harbors a Mn4CaO5 cluster that cycles through five oxidation states Si (i = 0-4). The S3 state is the last metastable state before the O2 evolution. Its electronic structure and nature of the S2 → S3 transition are key topics of persisting controversy. Most spectroscopic studies suggest that the S3 state consists of four Mn(IV) ions, compared to the Mn(III)Mn(IV)3 of the S2 state. However, recent crystallographic data have received conflicting interpretations, suggesting either metal- or ligand-based oxidation, the latter leading to an oxyl radical or a peroxo moiety in the S3 state. Herein, we utilize high-energy resolution fluorescence detected (HERFD) X-ray absorption spectroscopy to obtain a highly resolved description of the Mn K pre-edge region for all S-states, paying special attention to use chemically unperturbed S3 state samples. In combination with quantum chemical calculations, we achieve assignment of specific spectroscopic features to geometric and electronic structures for all S-states. These data are used to confidently discriminate between the various suggestions concerning the electronic structure and the nature of oxidation events in all observable catalytic intermediates of the OEC. Our results do not support the presence of either peroxo or oxyl in the active configuration of the S3 state. This establishes Mn-centered storage of oxidative equivalents in all observable catalytic transitions and constrains the onset of the O-O bond formation until after the final light-driven oxidation event.
Collapse
Affiliation(s)
- Maria Chrysina
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
- Institute
of Nanoscience & Nanotechnology, NCSR “Demokritos”, Athens 15310, Greece
| | - Maria Drosou
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Rebeca G. Castillo
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
- Laboratory
of Ultrafast Spectroscopy (LSU) and Lausanne Centre for Ultrafast
Science, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Michael Reus
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Vera Krewald
- Department
of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, Darmstadt 64287, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Serena DeBeer
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim
an der Ruhr 45470, Germany
| |
Collapse
|