1
|
Chen R, Ren S, Li S, Zhou H, Jia X, Han D, Gao Z. Synthetic biology for the food industry: advances and challenges. Crit Rev Biotechnol 2025; 45:23-47. [PMID: 38797660 DOI: 10.1080/07388551.2024.2340530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 05/29/2024]
Abstract
As global environmental pollution increases, climate change worsens, and population growth continues, the challenges of securing a safe, nutritious, and sustainable food supply have become enormous. This has led to new requirements for future food supply methods and functions. The use of synthetic biology technology to create cell factories suitable for food industry production and renewable raw material conversion into: important food components, functional food additives, and nutritional chemicals, represents an important method of solving the problems faced by the food industry. Here, we review the recent progress and applications of synthetic biology in the food industry, including alternatives to: traditional (artificial pigments, meat, starch, and milk), functional (sweeteners, sugar substitutes, nutrients, flavoring agents), and green (green fiber, degradable packing materials, green packaging materials and food traceability) foods. Furthermore, we discuss the future prospects of synthetic biology-based applications in the food industry. Thus, this review may serve as a reference for research on synthetic biology in the: food safety, food nutrition, public health, and health-related fields.
Collapse
Affiliation(s)
- Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuexia Jia
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
2
|
Nishizawa-Yokoi A, Toki S. Gene Targeting via CRISPR/Cas9-Mediated DNA Double-Strand Break Induction in Rice. Methods Mol Biol 2025; 2869:91-100. [PMID: 39499470 DOI: 10.1007/978-1-0716-4204-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Gene targeting (GT) is a precise genome editing tool to achieve desired modification of a target gene, e.g., introduction of point mutations, knock-in of a reporter gene, or swapping of a functional domain, through homologous recombination. However, due to its low frequency, it has proved difficult to establish a universal GT system. The availability of the CRISPR/Cas9 system for genome editing in plants has opened up possibilities to apply GT successfully to some plant species. Here, we provide protocols for CRISPR/Cas9-mediated DNA double-strand break (DSB)-induced GT in rice.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Graduate School of Nanobioscience, Yokohama City University, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa, Japan
- Department of Life Science, Faculty of Agriculture, Ryukoku University, Kyoto, Japan
| |
Collapse
|
3
|
Thangaraj A, Kaul R, Sharda S, Kaul T. Revolutionizing cotton cultivation: A comprehensive review of genome editing technologies and their impact on breeding and production. Biochem Biophys Res Commun 2025; 742:151084. [PMID: 39637703 DOI: 10.1016/j.bbrc.2024.151084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Cotton (Gossypium hirsutum L.), a vital global cash crop, significantly impacts both the agricultural and industrial sectors, providing essential fiber for textiles and valuable byproducts such as cottonseed oil and animal feed. The cultivation of cotton supports millions of livelihoods worldwide, particularly in developing regions, making it a cornerstone of rural economies. Despite its importance, cotton production faces numerous challenges, including biotic stresses from pests and diseases, and abiotic stresses like drought, salinity, and extreme temperatures. These challenges necessitate innovative solutions to ensure sustainable production. Genome editing technologies, particularly CRISPR/Cas9, have revolutionized cotton breeding by enabling precise genetic modifications. These advancements hold promise for developing cotton varieties with enhanced resistance to pests, diseases, and environmental stresses. Early genome editing tools like ZFNs and TALENs paved the way for more precise modifications but were limited by complexity and cost. The introduction of CRISPR/Cas-based technology with its simplicity and efficiency, has dramatically transformed the field, making it the preferred tool for genome editing in crops. Improved version of the technology like CRISPR/Cas12a, CRISPR/Cas13, base and prime editing, developed from CRISPR/Cas systems, provide additional tools with distinct mechanisms, further expanding their potential applications in crop improvement. This comprehensive review explores the impact of genome editing on cotton breeding and production. It discusses the technical challenges, including off-target effects and delivery methods for genome editing components, and highlights ongoing research efforts to overcome these hurdles. The review underscores the potential of genome editing technologies to revolutionize cotton cultivation, enhancing yield, quality, and resilience, ultimately contributing to a sustainable future for the cotton industry.
Collapse
Affiliation(s)
- Arulprakash Thangaraj
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India; Centre for Cellular & Molecular Biology, Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Rashmi Kaul
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India; Centre for Cellular & Molecular Biology, Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Shivani Sharda
- Centre for Cellular & Molecular Biology, Amity Institute of Biotechnology, Amity University, Noida, UP, India
| | - Tanushri Kaul
- Nutritional Improvement of Crops Group, Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| |
Collapse
|
4
|
Ye X, Qin K, Fernie AR, Zhang Y. Prospects for synthetic biology in 21 st Century agriculture. J Genet Genomics 2024:S1673-8527(24)00369-2. [PMID: 39742963 DOI: 10.1016/j.jgg.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Plant synthetic biology has emerged as a transformative field in agriculture, offering innovative solutions to enhance food security, provide resilience to climate change, and transition to sustainable farming practices. By integrating advanced genetic tools, computational modeling, and systems biology, researchers can precisely modify plant genomes to enhance traits such as yield, stress tolerance, and nutrient use efficiency. The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges. Here we highlight recent advancements and applications of plant synthetic biology in agriculture, focusing on key areas such as photosynthetic efficiency, nitrogen fixation, drought tolerance, pathogen resistance, nutrient use efficiency, biofortification, climate resilience, microbiology engineering, synthetic plant genomes, and the integration of artificial intelligence (AI) with synthetic biology. These innovations aim to maximize resource use efficiency, reduce reliance on external inputs, and mitigate environmental impacts associated with conventional agricultural practices. Despite challenges related to regulatory approval and public acceptance, the integration of synthetic biology in agriculture holds immense promise for creating more resilient and sustainable agricultural systems, contributing to global food security and environmental sustainability. Rigorous multi-field testing of these approaches will undoubtedly be required to ensure reproducibility.
Collapse
Affiliation(s)
- Xingyan Ye
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kezhen Qin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Youjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Mascarenhas MS, Nascimento FDS, Schittino LMP, Galinari LB, Lino LSM, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, Santos-Serejo JAD, Amorim EP. Construction and Validation of CRISPR/Cas Vectors for Editing the PDS Gene in Banana ( Musa spp.). Curr Issues Mol Biol 2024; 46:14422-14437. [PMID: 39727993 DOI: 10.3390/cimb46120865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/28/2024] Open
Abstract
Bananas and plantains are important staple food crops affected by biotic and abiotic stresses. The gene editing technique via Clustered Regularly Interspaced Short Palindromic Repeats associated with the Cas protein (CRISPR/Cas) has been used as an important tool for development of cultivars with high tolerance to stresses. This study sought to develop a protocol for the construction of vectors for gene knockout. Here we use the phytoene desaturase (PDS) gene as a case study in Prata-Anã banana by the nonhomologous end junction (NHEJ) method. PDS is a key gene in the carotenoid production pathway in plants and its knockout leads to easily visualized phenotypes such as dwarfism and albinism in plants. Agrobacterium-mediated transformation delivered CRISPR/Cas9 constructs containing gRNAs were inserted into embryogenic cell suspension cultures. This is the first study to provide an effective method/protocol for constructing gene knockout vectors, demonstrating gene editing potential in a Brazilian banana variety. The constitutive (CaMV 35S) and root-specific vectors were successfully assembled and confirmed in transformed Agrobacterium by DNA extraction and PCR. The specificity of transformation protocols makes it possible to use the CRISPR-Cas9 technique to develop Prata-Anã banana plants with enhanced tolerance/resistance to major biotic and abiotic factors.
Collapse
Affiliation(s)
| | | | | | - Livia Batista Galinari
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa 36507-900, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lee E, Kim Y, Kim M, Lee D, Kang BC. DNA-free base editing in lettuce via in vitro transcribed base editors. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39692399 DOI: 10.1111/jipb.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
A newly developed RNA-based adenine and cytosine base editing system achieves targeted and efficient A-to-G and C-to-T conversions in lettuce. This DNA-free base editing method has potential uses in crop breeding and biotechnology.
Collapse
Affiliation(s)
- Eunbin Lee
- Department of Horticulture, College of Agricultural Life Science, Jeonbuk National University, Jeonju, 54896, Korea
| | - Yunsun Kim
- Department of Horticulture, College of Agricultural Life Science, Jeonbuk National University, Jeonju, 54896, Korea
| | - Minju Kim
- Department of Horticulture, College of Agricultural Life Science, Jeonbuk National University, Jeonju, 54896, Korea
| | - Donghui Lee
- Department of Horticulture, College of Agricultural Life Science, Jeonbuk National University, Jeonju, 54896, Korea
| | - Beum-Chang Kang
- Department of Horticulture, College of Agricultural Life Science, Jeonbuk National University, Jeonju, 54896, Korea
| |
Collapse
|
7
|
Sang S, Sun X, Ma T, Zhang Y, Yao G, Wang X, Tan X, Feng L, Li J, Ji S, Cheng H. Efficient promoter editing of the SBEIIb gene enables fine-tuning of the resistant starch content in rice. Int J Biol Macromol 2024; 290:138904. [PMID: 39706434 DOI: 10.1016/j.ijbiomac.2024.138904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Rice, a staple in diets, undergoes digestion post-consumption, often triggering a swift surge in blood sugar among diabetics, intensifying their health burden. Notably, resistant starch (RS) emerges as a potent ally in fostering satiety and mitigating metabolic syndrome in diabetes. The SBEIIb gene, a key orchestrator of starch branching enzymes, plays a pivotal role in starch synthesis, and its genetic alteration can dramatically boost RS content in rice. Cultivating RS-rich functional germplasms is of great significance for improving human nutrition and health. In this study, the application of CRISPR/Cas9 technology was investigated for precise multi-target editing within the SBEIIb promoter, aiming to generate valuable germplasm resources enriched with RS. The results revealed extensive mutations in the SBEIIb promoter region, resulting in a varied reduction in SBEIIb expression levels. Remarkably, the grains from the homozygous T1 mutant lines displayed a substantial elevation in RS content, ranging from 3 to 12 times greater than that of the wild-type, accompanied by notable alterations in the starch granule morphology of these grains. This study presents an effective breeding strategy for the precise enhancement of RS content and establishes a foundation for further insights into the molecular mechanisms governing cis-element regulation of RS synthesis.
Collapse
Affiliation(s)
- Shifei Sang
- College of Life Sciences, Henan Normal University/Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaohan Sun
- College of Life Sciences, Henan Normal University/Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tengyun Ma
- College of Life Sciences, Henan Normal University/Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yijing Zhang
- College of Life Sciences, Henan Normal University/Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guoqin Yao
- College of Life Sciences, Henan Normal University/Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinyu Wang
- College of Life Sciences, Henan Normal University/Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Tan
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, No. 19, Wenchang East Road, Jurong City, Jiangsu Province 212400, China
| | - Liuchun Feng
- College of Life Sciences, Henan Normal University/Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junhua Li
- College of Life Sciences, Henan Normal University/Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shengdong Ji
- College of Life Sciences, Henan Normal University/Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| |
Collapse
|
8
|
Song X, Chen Z, Sun W, Yang H, Guo L, Zhao Y, Li Y, Ren Z, Shi J, Liu C, Ma P, Huang X, Ji Q, Sun B. CRISPR-AsCas12f1 couples out-of-protospacer DNA unwinding with exonuclease activity in the sequential target cleavage. Nucleic Acids Res 2024; 52:14030-14042. [PMID: 39530229 DOI: 10.1093/nar/gkae989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Type V-F CRISPR-Cas12f is a group of hypercompact RNA-guided nucleases that present a versatile in vivo delivery platform for gene therapy. Upon target recognition, Acidibacillus sulfuroxidans Cas12f (AsCas12f1) distinctively engenders three DNA break sites, two of which are located outside the protospacer. Combining ensemble and single-molecule approaches, we elucidate the molecular details underlying AsCas12f1-mediated DNA cleavages. We find that following the protospacer DNA unwinding and non-target strand (NTS) DNA nicking, AsCas12f1 surprisingly carries out bidirectional exonucleolytic cleavage from the nick. Subsequently, DNA unwinding is extended to the out-of-protospacer region, and AsCas12f1 gradually digests the unwound DNA beyond the protospacer. Eventually, the single endonucleolytic target-strand DNA cleavage at 3 nt downstream of the protospacer readily dissociates the ternary AsCas12f1-sgRNA-DNA complex from the protospacer adjacent motif-distal end, leaving a staggered double-strand DNA break. The coupling between the unwinding and cleavage of both protospacer and out-of-protospacer DNA is promoted by Mg2+. Kinetic analysis on the engineered AsCas12f1-v5.1 variant identifies the only accelerated step of the protospacer NTS DNA trimming within the sequential DNA cleavage. Our findings provide a dynamic view of AsCas12f1 catalyzing DNA unwinding-coupled nucleolytic cleavage and help with practical improvements of Cas12f-based genome editing tools.
Collapse
Affiliation(s)
- Xiaoxuan Song
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziting Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China
| | - Wenjun Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijuan Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yilin Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhiyun Ren
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | | | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Tiwari T, Robertson C, El-Mohtar C, Grosser J, Vashisth T, Mou Z, Dutt M. Genetic and physiological characteristics of CsNPR3 edited citrus and their impact on HLB tolerance. Front Genome Ed 2024; 6:1485529. [PMID: 39698041 PMCID: PMC11652141 DOI: 10.3389/fgeed.2024.1485529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Huanglongbing (HLB) disease, caused by Candidatus Liberibacter asiaticus (CaLas), severely impacts citrus production, and currently, there is no cure. Developing HLB-resistant or tolerant cultivars is crucial, with modifying defense-related genes being a promising approach to managing HLB. NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) is a positive regulator of systemic acquired resistance (SAR), which enhances resistance to pathogens, whereas NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 3 (NPR3) is a negative regulator of SAR. To unambiguously address the role of CsNPR3 in HLB, we introduced mutations into the CsNPR3 gene in sweet orange (Citrus sinensis L. Osbeck) through genome editing and assessed their effects on morphology, physiology, and resistance/tolerance to HLB. Several genome-edited 'Hamlin' sweet orange trees harboring frameshift-inducing insertions or deletions were identified. After confirming the genome editing using Sanger sequencing, selected lines were grafted onto C-146 trifoliate hybrid rootstocks for clonal propagation. The progenies were then infected with CaLas using a no-choice Asian Citrus Psyllid (ACP) feeding assay. Evaluation of the genetic and physiological characteristics of CsNPR3-edited citrus trees under greenhouse conditions revealed that the edited trees exhibited greater vigor than the wild-type trees, despite the lack of significant differences in CaLas titers. Although further field evaluation is needed, our findings indicate that CsNPR3 contributes to HLB-caused tree deterioration and demonstrate that editing CsNPR3 can enhance tolerance to HLB.
Collapse
Affiliation(s)
- Trishna Tiwari
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, United States
| | - Cecile Robertson
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Choaa El-Mohtar
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Jude Grosser
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, United States
| | - Tripti Vashisth
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Manjul Dutt
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Zhou L, Zeng X, Yang Y, Li R, Zhao Z. Applications and Prospects of CRISPR/Cas9 Technology in the Breeding of Major Tropical Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:3388. [PMID: 39683180 DOI: 10.3390/plants13233388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
China is a major producer of tropical crops globally, boasting rich varieties and diverse functions. Tropical crops account for two-thirds of the plant species in this country. Many crops and their products, such as oil palm, rubber, banana, sugarcane, cassava, and papaya are well known to people. Most of these products are irreplaceable and possess special functions. They not only supply important raw materials for people's daily life and for industrial and agricultural production but also contribute to the economic growth in the tropical and subtropical regions of China. However, the modern molecular breeding of these crops is severely hampered by their biological characteristics and genetic complexity. Issues such as polyploidy, heterozygosity, vegetative propagation, long juvenile periods, and large plant sizes result in time consuming, low efficiency, and slow progress in conventional breeding of the major tropical crops. The development of genome-editing technologies has brought a new way in tropical crops breeding. As an emerging gene-editing technology, the CRISPR-Cas9 system has been widely used in plants, adopted for its higher targeting efficiency, versatility, and ease of usage. This approach has been applied in oil palm, rubber, banana, sugarcane, cassava, and papaya. This review summarized the delivery patterns, mutation detection, and application of the CRISPR-Cas9 system in tropical crop breeding, discussed the existing problems, and addressed prospects for future applications in this field, providing references to relevant studies.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xianhai Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Zhihao Zhao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
11
|
Kuwabara C, Miki R, Maruyama N, Yasui M, Hamada H, Nagira Y, Hirayama Y, Ackley W, Li F, Imai R, Taoka N, Yamada T. A DNA-free and genotype-independent CRISPR/Cas9 system in soybean. PLANT PHYSIOLOGY 2024; 196:2320-2329. [PMID: 39307540 DOI: 10.1093/plphys/kiae491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/30/2024] [Indexed: 12/14/2024]
Abstract
Here, we report a smart genome editing system for soybean (Glycine max) using the in planta bombardment-ribonucleoprotein (iPB-RNP) method without introducing foreign DNA or requiring traditional tissue culture processes such as embryogenesis and organogenesis. Shoot apical meristem (SAM) of embryonic axes was used as the target tissue for genome editing because the SAM in soybean mature seeds has stem cells and specific cell layers that develop germ cells during the reproductive growth stage. In the iPB-RNP method, the RNP complex of the CRISPR/Cas9 system was directly delivered into SAM stem cells via particle bombardment, and genome-edited plants were generated from these SAMs. Soybean allergenic gene Gly m Bd 30K was targeted in this study. Many E0 (the first generation of genome-edited) plants in this experiment harbored mutant alleles at the targeted locus. Editing frequency of inducing mutations transmissible to the E1 generation was approximately 0.4% to 4.6% of all E0 plants utilized in various soybean varieties. Furthermore, simultaneous mutagenesis by iPB-RNP method was also successfully performed at other loci. Our results offer a practical approach for both plant regeneration and DNA-free genome editing achieved by delivering RNP into the SAM of dicotyledonous plants.
Collapse
Affiliation(s)
- Chikako Kuwabara
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Ryuji Miki
- Agri-Bio Research Center, Kaneka Corporation, 700 Higashibara, Iwata, Shizuoka 438-0802, Japan
| | - Nobuyuki Maruyama
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masanori Yasui
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Haruyasu Hamada
- Agri-Bio Research Center, Kaneka Corporation, 700 Higashibara, Iwata, Shizuoka 438-0802, Japan
| | - Yozo Nagira
- Agri-Bio Research Center, Kaneka Corporation, 700 Higashibara, Iwata, Shizuoka 438-0802, Japan
| | - Yumiko Hirayama
- Genome-Edited Crop Development Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki 305-8604, Japan
| | - Wataru Ackley
- Genome-Edited Crop Development Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki 305-8604, Japan
| | - Feng Li
- Division of Crop Design Research, Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Ryozo Imai
- Genome-Edited Crop Development Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki 305-8604, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Naoaki Taoka
- Agri-Bio Research Center, Kaneka Corporation, 700 Higashibara, Iwata, Shizuoka 438-0802, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
12
|
Rafiei F, Wiersma J, Scofield S, Zhang C, Alizadeh H, Mohammadi M. Facts, uncertainties, and opportunities in wheat molecular improvement. Heredity (Edinb) 2024; 133:371-380. [PMID: 39237600 PMCID: PMC11589648 DOI: 10.1038/s41437-024-00721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
The year 2020 was a landmark year for wheat. The wheat HB4 event harboring a drought-resistant gene from sunflowers, received regulatory approval and was grown commercially in Argentina, with approval for food and feed in other countries. This, indeed, is many years after the adoption of genetic modifications in other crops. The lack of consumer acceptance and resulting trade barriers halted the commercialization of the earliest events and had a chilling effect on, especially, private Research & Development (R&D) investments. As regulations for modern breeding technologies such as genome-edited cultivars are being discussed and/or adopted across the globe, we would like to propose a framework to ensure that wheat is not left behind a second time as the potential benefits far outweigh the perceived risks. In this paper, after a review of the technical challenges wheat faces with the generation of trans- and cis-genic wheat varieties, we discuss some of the factors that could help demystify the risk/reward equation and thereby the consumer's reluctance or acceptance of these techniques for future wheat improvement. The advent of next-generation sequencing is shedding light on natural gene transfer between species and the number of perturbations other accepted techniques like mutagenesis create. The transition from classic breeding techniques and embracing transgenic, cisgenic, and genome editing approaches feels inevitable for wheat improvement if we are to develop climate-resilient wheat varieties to feed a growing world population.
Collapse
Affiliation(s)
- Fariba Rafiei
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Jochum Wiersma
- Department of Agronomy and Plant Genetics, University of Minnesota, Northwest Research and Outreach Center, Crookston, MN, USA
| | - Steve Scofield
- USDA-ARS, Crop Production and Pest Control Research Unit, West Lafayette, IN, USA
| | - Cankui Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Houshang Alizadeh
- Department of Agronomy & Plant Breeding, College of Agricultural and Natural Resource, University of Tehran, Karaj, Iran
| | - Mohsen Mohammadi
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
13
|
Cheng J, Jia Y, Hill C, He T, Wang K, Guo G, Shabala S, Zhou M, Han Y, Li C. Diversity of Gibberellin 2-oxidase genes in the barley genome offers opportunities for genetic improvement. J Adv Res 2024; 66:105-118. [PMID: 38199453 PMCID: PMC11674783 DOI: 10.1016/j.jare.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Gibberellin (GA) is a vital phytohormone in regulating plant growth and development. During the "Green Revolution", modification of GA-related genes created semi-dwarfing phenotype in cereal crops but adversely affected grain weight. Gibberellin 2-oxidases (GA2oxs) in barley act as key catabolic enzymes in deactivating GA, but their functions are still less known. OBJECTIVES This study investigates the physiological function of two HvGA2ox genes in barley and identifies novel semi-dwarf alleles with minimum impacts on other agronomic traits. METHODS Virus-induced gene silencing and CRISPR/Cas9 technology were used to manipulate gene expression of HvGA2ox9 and HvGA2ox8a in barley and RNA-seq was conducted to compare the transcriptome between wild type and mutants. Also, field trials in multiple environments were performed to detect the functional haplotypes. RESULTS There were ten GA2oxs that distinctly expressed in shoot, tiller, inflorescence, grain, embryo and root. Knockdown of HvGA2ox9 did not affect plant height, while ga2ox8a mutants generated by CRISPR/Cas9 increased plant height and significantly altered seed width and weight due to the increased bioactive GA4 level. RNA-seq analysis revealed that genes involved in starch and sucrose metabolism were significantly decreased in the inflorescence of ga2ox8a mutants. Furthermore, haplotype analysis revealed one naturally occurring HvGA2ox8a haplotype was associated with decreased plant height, early flowering and wider and heavier seed. CONCLUSION Our results demonstrate the potential of manipulating GA2ox genes to fine tune GA signalling and biofunctions in desired plant tissues and open a promising avenue for minimising the trade-off effects of Green Revolution semi-dwarfing genes on grain size and weight. The knowledge will promote the development of next generation barley cultivars with better adaptation to a changing climate.
Collapse
Affiliation(s)
- Jingye Cheng
- Tasmanian Institute of Agriculture, University of Tasmania, TAS, Australia; Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Jia
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia; Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Camilla Hill
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia
| | - Tianhua He
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ganggang Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, TAS, Australia.
| | - Yong Han
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia; Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| | - Chengdao Li
- Western Crop Genetics Alliance, Food Futures Institute, School of Agriculture, Murdoch University, WA, Australia; Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| |
Collapse
|
14
|
Yuan P, Usman M, Liu W, Adhikari A, Zhang C, Njiti V, Xia Y. Advancements in Plant Gene Editing Technology: From Construct Design to Enhanced Transformation Efficiency. Biotechnol J 2024; 19:e202400457. [PMID: 39692063 DOI: 10.1002/biot.202400457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024]
Abstract
Plant gene editing technology has significantly advanced in recent years, thereby transforming both biotechnological research and agricultural practices. This review provides a comprehensive summary of recent advancements in this rapidly evolving field, showcasing significant discoveries from improved transformation efficiency to advanced construct design. The primary focus is on the maturation of the Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)9 system, which has emerged as a powerful tool for precise gene editing in plants. Through a detailed exploration, we elucidate the intricacies of integrating genetic modifications into plant genomes, shedding light on transport mechanisms, transformation techniques, and optimization strategies specific to CRISPR constructs. Furthermore, we explore the initiatives aimed at extending the frontiers of gene editing to nonmodel plant species, showcasing the growing scope of this technology. Overall, this comprehensive review highlights the significant impact of recent advancements in plant gene editing, illuminating its transformative potential in driving agricultural innovation and biotechnological progress.
Collapse
Affiliation(s)
- Pu Yuan
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Muhammad Usman
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Wenshan Liu
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Ashna Adhikari
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Chunquan Zhang
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Victor Njiti
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Liu S, Qiao J, Zhang S, Lu M, Yang Y, Lai J, Guo Y, Shi Y. Application of uniconazole in improving the high-throughput genetic transformation efficiency in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112270. [PMID: 39349145 DOI: 10.1016/j.plantsci.2024.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024]
Abstract
Agrobacterium-mediated genetic transformation is the most effective and widely used delivery system for candidate genes and genome editors in maize, which is an important crop with the largest planting area and the highest yield. Here, we used gibberellin synthesis inhibitor, uniconazole, to enhance the stem strength of regenerated plantlets resulting in a significantly increase from 11.6 % to 18.2 % in the percentage of regenerated plantlets, and the transformation frequency was also improved from 9.4 % to 15.6 % in the test experiments. The physiological condition of immature embryo is greatly affected by ear source, season and insect pests, while it can cause significant fluctuations in the transformation frequency. Our optimization works at the differentiation subculture stage, avoiding the impact on the physiological condition of immature embryo. So, it can be applicated to high-throughput genetic transformation in different seasons and different ear sources throughout the year. The productive experiment results indicated that the annual average transformation frequency significantly improved from 2.76 % to 7.14 % (approximately 2.6 folds improvement), and the tissue culture cycle was shortened from 115 days to 106 days by using optimized system. Our optimized genetic transformation system opens avenues for maize improvement based on transgenic and genome editing technology.
Collapse
Affiliation(s)
- Shengnan Liu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, National Maize Improvement Center, Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jihui Qiao
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuaisong Zhang
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Environmental Resilience, Beijing 100193, China
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Environmental Resilience, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Genome Editing Research and Application, Ministry of Agriculture and Rural Affairs, National Maize Improvement Center, Department of Plant Genetics and Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Environmental Resilience, Beijing 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Environmental Resilience, Beijing 100193, China.
| |
Collapse
|
16
|
Gawande ND, Bhalla H, Watts A, Shelake RM, Sankaranarayanan S. Application of genome editing in plant reproductive biology: recent advances and challenges. PLANT REPRODUCTION 2024; 37:441-462. [PMID: 38954018 DOI: 10.1007/s00497-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
KEY MESSAGE This comprehensive review underscores the application of genome editing in plant reproductive biology, including recent advances and challenges associated with it. Genome editing (GE) is a powerful technology that has the potential to accelerate crop improvement by enabling efficient, precise, and rapid engineering of plant genomes. Over the last decade, this technology has rapidly evolved from the use of meganucleases (homing endonucleases), zinc-finger nucleases, transcription activator-like effector nucleases to the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas), which has emerged as a popular GE tool in recent times and has been extensively used in several organisms, including plants. GE has been successfully employed in several crops to improve plant reproductive traits. Improving crop reproductive traits is essential for crop yields and securing the world's food supplies. In this review, we discuss the application of GE in various aspects of plant reproductive biology, including its potential application in haploid induction, apomixis, parthenocarpy, development of male sterile lines, and the regulation of self-incompatibility. We also discuss current challenges and future prospects of this technology for crop improvement, focusing on plant reproduction.
Collapse
Affiliation(s)
- Nilesh D Gawande
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Hemal Bhalla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Anshul Watts
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
17
|
Zhao Y, Thenarianto C, Sevencan C, Rajappa S, Shen D, Puangpathumanond S, Yao X, Lew TTS. Rational nanoparticle design for efficient biomolecule delivery in plant genetic engineering. NANOSCALE 2024; 16:21264-21278. [PMID: 39474836 DOI: 10.1039/d4nr03760j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The pressing issue of food security amid climate change necessitates innovative agricultural practices, including advanced plant genetic engineering techniques. Efficient delivery of biomolecules such as DNA, RNA, and proteins into plant cells is essential for targeted crop improvements, yet traditional methods face significant barriers. This review discusses the multifaceted challenges of biomolecule delivery into plant cells, emphasizing the limitations of conventional methods. We explore the promise of nanoparticle-mediated delivery systems as a versatile alternative. By highlighting the diverse design parameters used to tune the physical and chemical properties of nanoparticles, we analyze how these factors influence delivery efficacy. Furthermore, we summarize recent advancements in nanoparticle-mediated delivery, showcasing successful examples of DNA, RNA, and protein transport into plant cells. By understanding and optimizing these design parameters, we can enhance the potential of nanoparticle technologies in plant genetic engineering, paving the way for more resilient and productive agriculture.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Calvin Thenarianto
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Cansu Sevencan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Sivamathini Rajappa
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Di Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Suppanat Puangpathumanond
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Xiaomin Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Tedrick Thomas Salim Lew
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
18
|
Mirzwa-Mróz E, Zieniuk B, Yin Z, Pawełkowicz M. Genetic Insights and Molecular Breeding Approaches for Downy Mildew Resistance in Cucumber ( Cucumis sativus L.): Current Progress and Future Prospects. Int J Mol Sci 2024; 25:12726. [PMID: 39684436 DOI: 10.3390/ijms252312726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Cucurbit downy mildew, caused by Pseudoperonospora cubensis, is a devastating disease in cucumbers that leads to significant yield losses in many cucurbit-growing regions worldwide. Developing resistant cucumber varieties is a sustainable approach to managing this disease, especially given the limitations of chemical control and the evolving nature of pathogens. This article reviews the genetic basis of downy mildew resistance in cucumbers, emphasizing key resistance (R) genes and quantitative trait loci (QTLs) that have been mapped. Recent advances in molecular breeding tools, including marker-assisted selection (MAS), genomic selection (GS), and CRISPR/Cas9 genome editing, have accelerated the development of resistant cultivars. This review also explores the role of transcriptomics, genomics, and other 'omics' technologies in unraveling the molecular mechanisms behind resistance and offers insights into the future of breeding strategies aimed at long-term disease management. Management strategies for cucurbit downy mildew are discussed, along with the potential impacts of climate change on the occurrence and severity of downy mildew, highlighting how changing environmental conditions may influence disease dynamics. Integrating these advanced genetic approaches with traditional breeding promises to accelerate the development of downy mildew-resistant cucumber varieties, contributing to the sustainability and resilience of cucumber production.
Collapse
Affiliation(s)
- Ewa Mirzwa-Mróz
- Division of Plant Pathology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska Str., 02-776 Warsaw, Poland
| | - Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences SGGW, 159C Nowoursynowska Str., 02-776 Warsaw, Poland
| | - Zhimin Yin
- Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, Młochów Division, Department of Potato Genetics and Parental Lines, 19 Platanowa Str., 05-831 Młochów, Poland
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska Str., 02-776 Warsaw, Poland
| |
Collapse
|
19
|
Ali N, Singh S, Garg R. Unlocking crops' genetic potential: Advances in genome and epigenome editing of regulatory regions. CURRENT OPINION IN PLANT BIOLOGY 2024; 83:102669. [PMID: 39603170 DOI: 10.1016/j.pbi.2024.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Genome editing tools could precisely and efficiently target plant genomes leading to the development of improved crops. Besides editing the coding regions, researchers can employ editing technologies to target specific gene regulatory elements or modify epigenetic marks associated with distal regulatory regions, thereby regulating gene expression in crops. This review outlines several prominent genome editing technologies, including CRISPR-Cas9, TALENs, and ZFNs and recent advancements. The applications for genome and epigenome editing especially of regulatory regions in crop plants is also discussed, including efforts to enhance abiotic stress tolerance, yield, disease resistance and plant phenotype. Additionally, the review addresses the potential of epigenetic modifications, such as DNA methylation and histone modifications, to alter gene expression for crop improvement. Finally, the limitations and future scope of utilizing various genome editing tools to manipulate regulatory elements for gene regulation to unlock the full potential of these tools in plant breeding has been discussed.
Collapse
Affiliation(s)
- Namra Ali
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Shubhangi Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
20
|
Zhan X, Zhang F, Li N, Xu K, Wang X, Gao S, Yin Y, Yuan W, Chen W, Ren Z, Yao M, Wang F. CRISPR/Cas: An Emerging Toolbox for Engineering Virus Resistance in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3313. [PMID: 39683106 DOI: 10.3390/plants13233313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas have been recognized as powerful genome-editing tools in diverse eukaryotic species, including plants, and thus hold great promise for engineering virus resistance in plants. Nevertheless, further attention is required regarding various issues associated with applying new powerful technologies in the field. This mini-review focuses on the recent advances in using CRISPR/Cas9 and CRISPR/Cas13 systems to combat DNA and RNA viruses in plants. We explored the utility of CRISPR/Cas for targeting the viral genome and editing host susceptibility genes in plants. We also provide insights into the limitations and challenges of using CRISPR/Cas for plant virus interference and propose individual combinatorial solutions. In conclusion, CRISPR/Cas technology has the potential to offer innovative and highly efficient approaches for controlling viruses in important crops in the near future.
Collapse
Affiliation(s)
- Xiaohui Zhan
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fengjuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ning Li
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Kai Xu
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaodi Wang
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shenghua Gao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yanxu Yin
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Weiling Yuan
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Weifang Chen
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhiyong Ren
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
| | - Minghua Yao
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fei Wang
- Hubei Key Laboratory of Vegetable Germplasm Innovation and Genetic Improvement, Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
21
|
Wang L, Chang C. Interplays of Cuticle Biosynthesis and Stomatal Development: From Epidermal Adaptation to Crop Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25449-25461. [PMID: 39513411 DOI: 10.1021/acs.jafc.4c06750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Crop production is limited by environmental stresses such as a water deficit, salinity, and extreme temperature. Lipophilic cuticle and stomatal pore govern plant transpirational water loss and photosynthetic gas exchange and contribute to plant adaptation to stressful environments. Intricate interplays between cuticle biosynthesis and stomatal development are supported by increasing evidence from phenotypic observations. Several mutants, initially identified as being deficient in cuticle development, have exhibited altered phenotypes in terms of stomatal ridges, numbers, patterns, and shapes. Similarly, mutants with abnormal stomatal patterning have shown defective cuticle formation. Recently, signaling components and transcription factors orchestrating cuticle biosynthesis and stomatal formation have been characterized in both model and crop plants. In this review, we summarize the genetic interplay between cuticle biosynthesis and stomata formation. Current strategies and future perspectives on exploiting the intertwined cuticle biosynthesis and stomatal development for crop stress resistance improvement are discussed.
Collapse
Affiliation(s)
- Lu Wang
- College of Life Sciences, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
22
|
Tian Y, Wang X, Huang H, Deng X, Zhang B, Meng Y, Wu L, Chen H, Zhong Y, Chen W. Genome-Wide Identification of the DnaJ Gene Family in Citrus and Functional Characterization of ClDJC24 in Response to Citrus Huanglongbing. Int J Mol Sci 2024; 25:11967. [PMID: 39596037 PMCID: PMC11593701 DOI: 10.3390/ijms252211967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide. The etiological agent responsible for this disease is "Candidatus Liberibacter asiaticus" (CLas), a phloem-restricted bacterium transmitted by psyllid vectors. To date, effective practical strategies for curing Citrus HLB remain elusive. Additionally, no susceptibility genes associated with HLB have been identified in Citrus species, thereby complicating the application of gene-editing techniques such as CRISPR-Cas9 to enhance resistance to HLB. The co-chaperone DnaJ plays a crucial role in protein folding and the regulation of various physiological activities, and it is also associated with multiple pathological processes. DnaJ has been extensively studied in many species, including Arabidopsis, rice, and wheat. However, there is limited information available regarding the DnaJ gene family in citrus. In this study, we conducted a comprehensive genome-wide analysis of the DnaJ family genes in various Citrus species. The Citrus genome was identified to contain 86 DnaJ genes, which were unevenly distributed across nine chromosomes. Phylogenetic analysis indicated that these genes could be classified into six distinct groups. Furthermore, transcriptomic analysis revealed that nine DnaJ genes exhibited significantly higher induction in HLB-infected samples relative to non-HLB-infected Citrus. Cis-acting elements within the promoters of DnaJ genes were also examined, revealing the presence of hormone and defense/stress responsiveness elements (TC-rich) distributed on the ClDJC24 gene. The results were validated using quantitative real-time PCR (qRT-PCR). Additionally, the silencing of ClDJC24 suggested that this gene negatively regulates disease resistance in Citrus. Our study provided useful clues for further functional characterization and constructed a theoretical foundation for disease-resistant breeding in Citrus.
Collapse
Affiliation(s)
- Yuzhen Tian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China; (Y.T.); (X.W.); (Y.M.); (L.W.); (H.C.)
| | - Xizi Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China; (Y.T.); (X.W.); (Y.M.); (L.W.); (H.C.)
| | - Huoqing Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Sub-Tropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China;
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China;
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Baihong Zhang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou 510640, China;
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China; (Y.T.); (X.W.); (Y.M.); (L.W.); (H.C.)
| | - Libo Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China; (Y.T.); (X.W.); (Y.M.); (L.W.); (H.C.)
| | - Hang Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China; (Y.T.); (X.W.); (Y.M.); (L.W.); (H.C.)
| | - Yun Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Sub-Tropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China;
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China; (Y.T.); (X.W.); (Y.M.); (L.W.); (H.C.)
| |
Collapse
|
23
|
Lin YJ, Ding XY, Huang YW, Lu L. First De Novo genome assembly and characterization of Gaultheria prostrata. FRONTIERS IN PLANT SCIENCE 2024; 15:1456102. [PMID: 39534108 PMCID: PMC11554542 DOI: 10.3389/fpls.2024.1456102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Gaultheria Kalm ex L. (Ericaceae), a type of evergreen shrub, known as a natural source of methyl salicylate, possesses rich germplasm resources, strong habitat adaptability, significant ornamental value, and noteworthy pharmacological activities. However, due to the paucity of whole genomic information, genetically deep research in these areas remains limited. Consequently, we intend to obtain genome data through high-throughput sequencing, gene annotation, flow cytometry, transcription factors prediction and genetic marker analysis for a representative species of this genus, with Gaultheria prostrata selected for our study. In this study, we preliminarily obtained the genome of G. prostrata through next-generation sequencing methods. Utilizing 47.94 Gb of high-quality sequence data (108.95× coverage), assembled into 114,436 scaffolds, with an N50 length of 33,667 bp. The genome size assembled by SOAPdenovo, approximately 417 Mb, corresponded closely to predictions by flow cytometry (440 Mb) and k-mer analysis (447 Mb). The genome integrity was evaluated using BUSCO with 91%. The heterozygosity ratio was 0.159%, the GC content was 38.85%, and the repetitive regions encompassed over 34.6% of the genome. A total of 26,497 protein-coding genes have been predicted and annotated across Nr, Swissprot, GO, KEGG, and Pfam databases. Among these, 14,377 and 2,387 genes received functional annotation in Nr and Swissprot, respectively; 21,895, 24,424, and 22,330 genes were similarly annotated in GO, KEGG, and Pfam. Moreover, A total of 279,785 SSRs were identified and 345,270 primers for these SSRs were designed. Within the various nucleotide types of SSRs, AG/CT and AAG/CTT constituted the predominant dinucleotide and trinucleotide repeat types in G. prostrata. In addition, 1,395 transcription factors (TFs) from 75 TF families, 462 transcription regulators (TRs) from 33 TR families and 840 protein kinase (PKs) from 118 PK families were identified in this genome. We also performed phylogenetic analyses of G. prostrata and related species, including estimation of divergence times and expansion and contraction analyses, followed by positive selection analyses of orthologous gene pairs of G. prostrata and its close relative Vaccinium corymbosum. These results provide a reference for in-depth study of genus Gaultheria, contributing to future functional and comparative genomics analyses and providing supporting data for the development of molecular markers.
Collapse
Affiliation(s)
- Yan-Jun Lin
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, China
| | - Xiao-Ya Ding
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, China
| | - Yi-Wei Huang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Lu
- School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products, and Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
24
|
Wang H, Xie Z. Cullin-Conciliated Regulation of Plant Immune Responses: Implications for Sustainable Crop Protection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2997. [PMID: 39519916 PMCID: PMC11548191 DOI: 10.3390/plants13212997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Cullins are crucial components of the ubiquitin-proteasome system, playing pivotal roles in the regulation of protein metabolism. This review provides insight into the wide-ranging functions of cullins, particularly focusing on their impact on plant growth, development, and environmental stress responses. By modulating cullin-mediated protein mechanisms, researchers can fine-tune hormone-signaling networks to improve various agronomic traits, including plant architecture, flowering time, fruit development, and nutrient uptake. Furthermore, the targeted manipulation of cullins that are involved in hormone-signaling pathways, e.g., cytokinin, auxin, gibberellin, abscisic acids, and ethylene, can boost crop growth and development while increasing yield and enhancing stress tolerance. Furthermore, cullins also play important roles in plant defense mechanisms through regulating the defense-associated protein metabolism, thus boosting resistance to pathogens and pests. Additionally, this review highlights the potential of integrating cullin-based strategies with advanced biological tools, such as CRISPR/Cas9-mediated genome editing, genetic engineering, marker-associated selections, gene overexpression, and gene knockout, to achieve precise modifications for crop improvement and sustainable agriculture, with the promise of creating resilient, high-yielding, and environmentally friendly crop varieties.
Collapse
Affiliation(s)
- Hongtao Wang
- Laboratory of Biological Germplasm Resources Evaluation and Application in Changbai Mountain, School of Life Science, Tonghua Normal University, Yucai Road Tonghua 950, Tonghua 137000, China;
| | - Zhiming Xie
- College of Life Sciences, Baicheng Normal University, Baicheng 137000, China
| |
Collapse
|
25
|
Farinati S, Devillars A, Gabelli G, Vannozzi A, Scariolo F, Palumbo F, Barcaccia G. How Helpful May Be a CRISPR/Cas-Based System for Food Traceability? Foods 2024; 13:3397. [PMID: 39517184 PMCID: PMC11544785 DOI: 10.3390/foods13213397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Genome editing (GE) technologies have the potential to completely transform breeding and biotechnology applied to crop species, contributing to the advancement of modern agriculture and influencing the market structure. To date, the GE-toolboxes include several distinct platforms able to induce site-specific and predetermined genomic modifications, introducing changes within the existing genetic blueprint of an organism. For these reasons, the GE-derived approaches are considered like new plant breeding methods, known also as New Breeding Techniques (NBTs). Particularly, the GE-based on CRISPR/Cas technology represents a considerable improvement forward biotech-related techniques, being highly sensitive, precise/accurate, and straightforward for targeted gene editing in a reliable and reproducible way, with numerous applications in food-related plants. Furthermore, numerous examples of CRISPR/Cas system exploitation for non-editing purposes, ranging from cell imaging to gene expression regulation and DNA assembly, are also increasing, together with recent engagements in target and multiple chemical detection. This manuscript aims, after providing a general overview, to focus attention on the main advances of CRISPR/Cas-based systems into new frontiers of non-editing, presenting and discussing the associated implications and their relative impacts on molecular traceability, an aspect closely related to food safety, which increasingly arouses general interest within public opinion and the scientific community.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.F.); (A.D.); (G.G.); (A.V.); (F.S.); (F.P.)
| |
Collapse
|
26
|
Charagh S, Wang H, Wang J, Raza A, Hui S, Cao R, Zhou L, Tang S, Hu P, Hu S. Leveraging multi-omics tools to comprehend responses and tolerance mechanisms of heavy metals in crop plants. Funct Integr Genomics 2024; 24:194. [PMID: 39441418 DOI: 10.1007/s10142-024-01481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Extreme anthropogenic activities and current farming techniques exacerbate the effects of water and soil impurity by hazardous heavy metals (HMs), severely reducing agricultural output and threatening food safety. In the upcoming years, plants that undergo exposure to HM might cause a considerable decline in the development as well as production. Hence, plants have developed sophisticated defensive systems to evade or withstand the harmful consequences of HM. These mechanisms comprise the uptake as well as storage of HMs in organelles, their immobilization via chemical formation by organic chelates, and their removal using many ion channels, transporters, signaling networks, and TFs, amid other approaches. Among various cutting-edge methodologies, omics, most notably genomics, transcriptomics, proteomics, metabolomics, miRNAomics, phenomics, and epigenomics have become game-changing approaches, revealing information about the genes, proteins, critical metabolites as well as microRNAs that govern HM responses and resistance systems. With the help of integrated omics approaches, we will be able to fully understand the molecular processes behind plant defense, enabling the development of more effective crop protection techniques in the face of climate change. Therefore, this review comprehensively presented omics advancements that will allow resilient and sustainable crop plants to flourish in areas contaminated with HMs.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
27
|
Liu C, Du S, Wei A, Cheng Z, Meng H, Han Y. Hybrid Prediction in Horticulture Crop Breeding: Progress and Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:2790. [PMID: 39409660 PMCID: PMC11479247 DOI: 10.3390/plants13192790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
In the context of rapidly increasing population and diversified market demands, the steady improvement of yield and quality in horticultural crops has become an urgent challenge that modern breeding efforts must tackle. Heterosis, a pivotal theoretical foundation for plant breeding, facilitates the creation of superior hybrids through crossbreeding and selection among a variety of parents. However, the vast number of potential hybrids presents a significant challenge for breeders in efficiently predicting and selecting the most promising candidates. The development and refinement of effective hybrid prediction methods have long been central to research in this field. This article systematically reviews the advancements in hybrid prediction for horticultural crops, including the roles of marker-assisted breeding and genomic prediction in phenotypic forecasting. It also underscores the limitations of some predictors, like genetic distance, which do not consistently offer reliable hybrid predictions. Looking ahead, it explores the integration of phenomics with genomic prediction technologies as a means to elevate prediction accuracy within actual breeding programs.
Collapse
Affiliation(s)
- Ce Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Shengli Du
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Aimin Wei
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Huanwen Meng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yike Han
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| |
Collapse
|
28
|
Zheng Y, Guo T, Xia T, Guo S, Chen M, Ye S, Pan T, Xu X, Gan Y, Zhan Y, Zheng T, Zheng Z. Utility of Arabidopsis KASII Promoter in Development of an Effective CRISPR/Cas9 System for Soybean Genome Editing and Its Application in Engineering of Soybean Seeds Producing Super-High Oleic and Low Saturated Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21720-21730. [PMID: 39288439 DOI: 10.1021/acs.jafc.4c05840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
This study reports the use of the Arabidopsis KASII promoter (AtKASII) to develop an efficient CRISPR/Cas9 system for soybean genome editing. When this promoter was paired with Arabidopsis U6 promoters to drive Cas9 and single guide RNA expression, respectively, simultaneous editing of the three fatty acid desaturase genes GmFAD2-1A, GmFAD2-1B, and GmFAD3A occurred in more than 60% of transgenic soybean lines at T2 generation, and all the triple mutants possessed desirable high-oleic traits. In sharp contrast, not a single line underwent simultaneous editing of the three target genes when AtKASII was replaced by the widely used AtEC1.2 promoter. Furthermore, our study showed that the stable and inheritable mutations in the high-oleic lines did not alter the overall contents of oil and protein or amino acid composition while increasing the oleic acid content up to 87.6% from approximately 23.8% for wild-type seeds, concomitant with 34.4- and 3.7-fold reductions in linoleic and linolenic acid, respectively. Collectively, this study demonstrates that the AtKASII promoter is highly promising for optimization of the CRISPR/Cas9 system for genome editing in soybean and possibly beyond.
Collapse
Affiliation(s)
- Yueping Zheng
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tian Guo
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ting Xia
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Shixian Guo
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Mengyao Chen
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenhua Ye
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tian Pan
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuezhen Xu
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yi Gan
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yihua Zhan
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ting Zheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Zhifu Zheng
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
29
|
Mascarenhas MS, Nascimento FDS, Rocha ADJ, Ferreira MDS, Oliveira WDDS, Morais Lino LS, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Use of CRISPR Technology in Gene Editing for Tolerance to Biotic Factors in Plants: A Systematic Review. Curr Issues Mol Biol 2024; 46:11086-11123. [PMID: 39451539 PMCID: PMC11505962 DOI: 10.3390/cimb46100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The objective of this systematic review (SR) was to select studies on the use of gene editing by CRISPR technology related to plant resistance to biotic stresses. We sought to evaluate articles deposited in six electronic databases, using pre-defined inclusion and exclusion criteria. This SR demonstrates that countries such as China and the United States of America stand out in studies with CRISPR/Cas. Among the most studied crops are rice, tomatoes and the model plant Arabidopsis thaliana. The most cited biotic agents include the genera, Xanthomonas, Manaporthe, Pseudomonas and Phytophthora. This SR also identifies several CRISPR/Cas-edited genes and demonstrates that plant responses to stressors are mediated by many complex signaling pathways. The Cas9 enzyme is used in most articles and Cas12 and 13 are used as additional editing tools. Furthermore, the quality of the articles included in this SR was validated by a risk of bias analysis. The information collected in this SR helps to understand the state of the art of CRISPR/Cas aimed at improving resistance to diseases and pests to understand the mechanisms involved in most host-pathogen relationships. This SR shows that the CRISPR/Cas system provides a straightforward method for rapid gene targeting, providing useful information for plant breeding programs.
Collapse
Affiliation(s)
- Marcelly Santana Mascarenhas
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil; (M.S.M.); (W.D.d.S.O.)
| | - Fernanda dos Santos Nascimento
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Anelita de Jesus Rocha
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Mileide dos Santos Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Lucymeire Souza Morais Lino
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Janay Almeida dos Santos-Serejo
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| |
Collapse
|
30
|
Pandey S, Divakar S, Singh A. Genome editing prospects for heat stress tolerance in cereal crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108989. [PMID: 39094478 DOI: 10.1016/j.plaphy.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The world population is steadily growing, exerting increasing pressure to feed in the future, which would need additional production of major crops. Challenges associated with changing and unpredicted climate (such as heat waves) are causing global food security threats. Cereal crops are a staple food for a large portion of the world's population. They are mostly affected by these environmentally generated abiotic stresses. Therefore, it is imperative to develop climate-resilient cultivars to support the sustainable production of main cereal crops (Rice, wheat, and maize). Among these stresses, heat stress causes significant losses to major cereals. These issues can be solved by comprehending the molecular mechanisms of heat stress and creating heat-tolerant varieties. Different breeding and biotechnology techniques in the last decade have been employed to develop heat-stress-tolerant varieties. However, these time-consuming techniques often lack the pace required for varietal improvement in climate change scenarios. Genome editing technologies offer precise alteration in the crop genome for developing stress-resistant cultivars. CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/Cas9), one such genome editing platform, recently got scientists' attention due to its easy procedures. It is a powerful tool for functional genomics as well as crop breeding. This review will focus on the molecular mechanism of heat stress and different targets that can be altered using CRISPR/Cas genome editing tools to generate climate-smart cereal crops. Further, heat stress signaling and essential players have been highlighted to provide a comprehensive overview of the topic.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - S Divakar
- Department of Agricultural Biotechnology Biotechnology and Molecular Biotechnology, CBSH, RPCAU, Pusa, Samastipur, Bihar, 8481253, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Bihar, 848125, India.
| |
Collapse
|
31
|
Vu TV, Nguyen NT, Kim J, Song YJ, Nguyen TH, Kim JY. Optimized dicot prime editing enables heritable desired edits in tomato and Arabidopsis. NATURE PLANTS 2024; 10:1502-1513. [PMID: 39242983 DOI: 10.1038/s41477-024-01786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
Prime editing (PE) enables almost all types of precise genome editing in animals and plants. It has been successfully adapted to edit several plants with variable efficiency and versatility. However, this technique is inefficient for dicots for unknown reasons. Here, using new combinations of PE components, including an RNA chaperone and altered engineered prime editing guide RNAs driven by a PolII-PolIII composite promoter and a viral replicon system, we obtained up to 9.7% of the desired PE efficiency at the callus stage as assessed by targeted deep sequencing. Subsequently, we identified that up to 38.2% of transformants contained desired PE alleles in tomatoes and Arabidopsis, marking successful heritable PE transmission. Our PE tools also showed high accuracy, specificity and multiplexing capability, which unlocked the potential for practical PE applications in dicots, paving the way for transformative advancements in plant sciences.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.
| | - Ngan Thi Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Thu Hoai Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea.
- Nulla Bio R&D Center, Nulla Bio Inc, Jinju, Republic of Korea.
| |
Collapse
|
32
|
Miao S, Wei X, Zhu L, Ma B, Li M. The art of tartness: the genetics of organic acid content in fresh fruits. HORTICULTURE RESEARCH 2024; 11:uhae225. [PMID: 39415975 PMCID: PMC11480666 DOI: 10.1093/hr/uhae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 10/19/2024]
Abstract
Organic acids are major determinants of fruit flavor and a primary focus of fruit crop breeding. The accumulation of organic acids is determined by their synthesis, degradation, and transport, all of which are manipulated by sophisticated genetic mechanisms. Constant exploration of the genetic basis of organic acid accumulation, especially through linkage analysis, association analysis, and evolutionary analysis, have identified numerous loci in recent decades. In this review, the genetic loci and genes responsible for malate and citrate contents in fruits are discussed from the genetic perspective. Technologies such as gene transformation and genome editing as well as efficient breeding using marker-assisted selection (MAS) and genomic selection (GS) are expected to break the bottleneck of traditional fruit crop breeding and promote fruit quality improvement.
Collapse
Affiliation(s)
- Shixue Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
33
|
Vats S, Kumar J, Sonah H, Zhang F, Deshmukh R. Prime editing in plants: prospects and challenges. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5344-5356. [PMID: 38366636 DOI: 10.1093/jxb/erae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Prime editors are reverse transcriptase (RT)-based genome-editing tools that utilize double-strand break (DSB)-free mechanisms to decrease off-target editing in genomes and enhance the efficiency of targeted insertions. The multiple prime editors that have been developed within a short span of time are a testament to the potential of this technique for targeted insertions. This is mainly because of the possibility of generation of all types of mutations including deletions, insertions, transitions, and transversions. Prime editing reverses several bottlenecks of gene editing technologies that limit the biotechnological applicability to produce designer crops. This review evaluates the status and evolution of the prime editing technique in terms of the types of editors available up to prime editor 5 and twin prime editors, and considers the developments in plants in a systematic manner. The various factors affecting prime editing efficiency in plants are discussed in detail, including the effects of temperature, the prime editing guide (peg)RNA, and RT template amongst others. We discuss the current obstructions, key challenges, and available resolutions associated with the technique, and consider future directions and further improvements that are feasible to elevate the efficiency in plants.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Regional Centre for Biotechnology, Faridabad, Haryana (NCR Delhi), India
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, 123031, India
| |
Collapse
|
34
|
Wang J, Liao Z, Jin X, Liao L, Zhang Y, Zhang R, Zhao X, Qin H, Chen J, He Y, Zhuang C, Tang J, Huang S. Xanthomonas oryzae pv. oryzicola effector Tal10a directly activates rice OsHXK5 expression to facilitate pathogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2423-2436. [PMID: 38995679 DOI: 10.1111/tpj.16929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc), is a major bacterial disease in rice. Transcription activator-like effectors (TALEs) from Xanthomonas can induce host susceptibility (S) genes and facilitate infection. However, knowledge of the function of Xoc TALEs in promoting bacterial virulence is limited. In this study, we demonstrated the importance of Tal10a for the full virulence of Xoc. Through computational prediction and gene expression analysis, we identified the hexokinase gene OsHXK5 as a host target of Tal10a. Tal10a directly binds to the gene promoter region and activates the expression of OsHXK5. CRISPR/Cas9-mediated gene editing in the effector binding element (EBE) of OsHXK5 significantly increases rice resistance to Xoc, while OsHXK5 overexpression enhances the susceptibility of rice plants and impairs rice defense responses. Moreover, simultaneous editing of the promoters of OsSULTR3;6 and OsHXK5 confers robust resistance to Xoc in rice. Taken together, our findings highlight the role of Tal10a in targeting OsHXK5 to promote infection and suggest that OsHXK5 represents a potential target for engineering rice resistance to Xoc.
Collapse
Affiliation(s)
- Jiuxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Zhouxiang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xia Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Lindong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Yaqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Rongbo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xiyao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Huajun Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Jianghong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiliang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Sheng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| |
Collapse
|
35
|
Inam S, Muhammad A, Irum S, Rehman N, Riaz A, Uzair M, Khan MR. Genome editing for improvement of biotic and abiotic stress tolerance in cereals. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24092. [PMID: 39222468 DOI: 10.1071/fp24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Global agricultural production must quadruple by 2050 to fulfil the needs of a growing global population, but climate change exacerbates the difficulty. Cereals are a very important source of food for the world population. Improved cultivars are needed, with better resistance to abiotic stresses like drought, salt, and increasing temperatures, and resilience to biotic stressors like bacterial and fungal infections, and pest infestation. A popular, versatile, and helpful method for functional genomics and crop improvement is genome editing. Rapidly developing genome editing techniques including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) are very important. This review focuses on how CRISPR/Cas9 genome editing might enhance cereals' agronomic qualities in the face of climate change, providing important insights for future applications. Genome editing efforts should focus on improving characteristics that confer tolerance to conditions exacerbated by climate change (e.g. drought, salt, rising temperatures). Improved water usage efficiency, salt tolerance, and heat stress resilience are all desirable characteristics. Cultivars that are more resilient to insect infestations and a wide range of biotic stressors, such as bacterial and fungal diseases, should be created. Genome editing can precisely target genes linked to disease resistance pathways to strengthen cereals' natural defensive systems.
Collapse
Affiliation(s)
- Safeena Inam
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Amna Muhammad
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Samra Irum
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Nazia Rehman
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Aamir Riaz
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Muhammad Uzair
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| | - Muhammad Ramzan Khan
- Functional Genomics and Bioinformatics Labs, National Institute for Genomics and Advance Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan
| |
Collapse
|
36
|
Li B, Sun C, Li J, Gao C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet 2024; 25:603-622. [PMID: 38658741 DOI: 10.1038/s41576-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.
Collapse
Affiliation(s)
- Boshu Li
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
37
|
Aslam N, Li Q, Bashir S, Yuan L, Qiao L, Li W. Integrated Review of Transcriptomic and Proteomic Studies to Understand Molecular Mechanisms of Rice's Response to Environmental Stresses. BIOLOGY 2024; 13:659. [PMID: 39336087 PMCID: PMC11428526 DOI: 10.3390/biology13090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Rice (Oryza sativa L.) is grown nearly worldwide and is a staple food for more than half of the world's population. With the rise in extreme weather and climate events, there is an urgent need to decode the complex mechanisms of rice's response to environmental stress and to breed high-yield, high-quality and stress-resistant varieties. Over the past few decades, significant advancements in molecular biology have led to the widespread use of several omics methodologies to study all aspects of plant growth, development and environmental adaptation. Transcriptomics and proteomics have become the most popular techniques used to investigate plants' stress-responsive mechanisms despite the complexity of the underlying molecular landscapes. This review offers a comprehensive and current summary of how transcriptomics and proteomics together reveal the molecular details of rice's response to environmental stresses. It also provides a catalog of the current applications of omics in comprehending this imperative crop in relation to stress tolerance improvement and breeding. The evaluation of recent advances in CRISPR/Cas-based genome editing and the application of synthetic biology technologies highlights the possibility of expediting the development of rice cultivars that are resistant to stress and suited to various agroecological environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China; (N.A.); (Q.L.); (S.B.); (L.Y.); (L.Q.)
| |
Collapse
|
38
|
Qu L, Huang X, Su X, Zhu G, Zheng L, Lin J, Wang J, Xue H. Potato: from functional genomics to genetic improvement. MOLECULAR HORTICULTURE 2024; 4:34. [PMID: 39160633 PMCID: PMC11331666 DOI: 10.1186/s43897-024-00105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingli Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
39
|
Borg AN, Vuts J, Caulfield JC, Withall DM, Foulkes MJ, Birkett MA. Characterisation of aphid antixenosis in aphid-resistant ancestor wheat, Triticum monococcum. PEST MANAGEMENT SCIENCE 2024. [PMID: 39152728 DOI: 10.1002/ps.8380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Due to the increasing presence of insecticide resistance across cereal aphid populations, new aphid management strategies, including the engineering of host resistance to aphids into commercial wheat varieties, are required. Previous studies have identified ancestor wheat, Triticum monococcum accessions MDR045 and MDR049, with resistance against the grain aphid, Sitobion avenae. To test the hypothesis that resistance can be accounted for by antixenosis (reduced attractiveness of host plants) via the release of repellent volatile organic compounds (VOCs), we explored the response of S. avenae to MDR045 and MDR049 following S. avenae herbivory, using behaviour and electrophysiology experiments. RESULTS In four-arm olfactometry assays, alate S. avenae showed aphid density-dependent reduced preference to VOC extracts from T. monococcum MDR045 and MDR049. By contrast, alate S. avenae showed aphid density-dependent increased preference to extracts from aphid-susceptible hexaploid wheat, Triticum aestivum var. Solstice and T. monococcum MDR037. Coupled gas chromatography-electroantennography (GC-EAG), using the antennae of alate S. avenae, located 24 electrophysiologically active compounds across all tested accessions. Synthetic blends created from 21 identified EAG-active compounds confirmed bioactivity of corresponding VOC extracts in four-arm olfactometry assays against alate S. avenae. CONCLUSION Our data suggest that resistance of T. monococcum MDR045 and MDR049 to S. avenae can be at least partially accounted for by antixenosis through antennal perception of specific repellent VOC blends induced by S. avenae feeding behaviour. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexander N Borg
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Division of Plant and Crop Sciences, The University of Nottingham, Loughborough, UK
| | - József Vuts
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - John C Caulfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - David M Withall
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - M John Foulkes
- Division of Plant and Crop Sciences, The University of Nottingham, Loughborough, UK
| | - Michael A Birkett
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| |
Collapse
|
40
|
Wang X, Pan W, Sun C, Yang H, Cheng Z, Yan F, Ma G, Shang Y, Zhang R, Gao C, Liu L, Zhang H. Creating large-scale genetic diversity in Arabidopsis via base editing-mediated deep artificial evolution. Genome Biol 2024; 25:215. [PMID: 39123212 PMCID: PMC11312839 DOI: 10.1186/s13059-024-03358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Base editing is a powerful tool for artificial evolution to create allelic diversity and improve agronomic traits. However, the great evolutionary potential for every sgRNA target has been overlooked. And there is currently no high-throughput method for generating and characterizing as many changes in a single target as possible based on large mutant pools to permit rapid gene directed evolution in plants. RESULTS In this study, we establish an efficient germline-specific evolution system to screen beneficial alleles in Arabidopsis which could be applied for crop improvement. This system is based on a strong egg cell-specific cytosine base editor and the large seed production of Arabidopsis, which enables each T1 plant with unedited wild type alleles to produce thousands of independent T2 mutant lines. It has the ability of creating a wide range of mutant lines, including those containing atypical base substitutions, and as well providing a space- and labor-saving way to store and screen the resulting mutant libraries. Using this system, we efficiently generate herbicide-resistant EPSPS, ALS, and HPPD variants that could be used in crop breeding. CONCLUSIONS Here, we demonstrate the significant potential of base editing-mediated artificial evolution for each sgRNA target and devised an efficient system for conducting deep evolution to harness this potential.
Collapse
Affiliation(s)
- Xiang Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Wenbo Pan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Yang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Zhentao Cheng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Fei Yan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Guojing Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yun Shang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Rui Zhang
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Huawei Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China.
| |
Collapse
|
41
|
Ferreira Neres D, Wright RC. Pleiotropy, a feature or a bug? Toward co-ordinating plant growth, development, and environmental responses through engineering plant hormone signaling. Curr Opin Biotechnol 2024; 88:103151. [PMID: 38823314 PMCID: PMC11316663 DOI: 10.1016/j.copbio.2024.103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
The advent of gene editing technologies such as CRISPR has simplified co-ordinating trait development. However, identifying candidate genes remains a challenge due to complex gene networks and pathways. These networks exhibit pleiotropy, complicating the determination of specific gene and pathway functions. In this review, we explore how systems biology and single-cell sequencing technologies can aid in identifying candidate genes for co-ordinating specifics of plant growth and development within specific temporal and tissue contexts. Exploring sequence-function space of these candidate genes and pathway modules with synthetic biology allows us to test hypotheses and define genotype-phenotype relationships through reductionist approaches. Collectively, these techniques hold the potential to advance breeding and genetic engineering strategies while also addressing genetic diversity issues critical for adaptation and trait development.
Collapse
Affiliation(s)
- Deisiany Ferreira Neres
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blackburg, Virginia, United States; Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blackburg, Virginia, United States
| | - R Clay Wright
- Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blackburg, Virginia, United States; Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blackburg, Virginia, United States.
| |
Collapse
|
42
|
Polidoros A, Nianiou-Obeidat I, Tsakirpaloglou N, Petrou N, Deligiannidou E, Makri NM. Genome-Editing Products Line up for the Market: Will Europe Harvest the Benefits from Science and Innovation? Genes (Basel) 2024; 15:1014. [PMID: 39202374 PMCID: PMC11353485 DOI: 10.3390/genes15081014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have revolutionized genome editing, significantly advancing the improvement of cultivated crop species. This review provides an overview of genome-edited crops that have either reached the market or received the necessary approvals but are not yet available to consumers. We analyze various genome-editing studies to understand the distribution of different genome-editing systems, the types of site-directed nucleases employed, and the geographical spread of these studies, with a specific focus on global and European contexts. Additionally, we examine the target crops involved. The review also outlines the multiple steps required for the legal acceptance of genome-edited crops within European jurisdictions. We conclude with suggestions for the future prospects of genome-editing research in Europe, aiming to streamline the approval process and enhance the development and adoption of genome-edited crops.
Collapse
Affiliation(s)
- Alexios Polidoros
- Laboratory of Genetics and Plant Breeding, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.N.-O.); (N.T.); (N.P.); (E.D.); (N.-M.M.)
| | | | | | | | | | | |
Collapse
|
43
|
Choudry MW, Riaz R, Nawaz P, Ashraf M, Ijaz B, Bakhsh A. CRISPR-Cas9 mediated understanding of plants' abiotic stress-responsive genes to combat changing climatic patterns. Funct Integr Genomics 2024; 24:132. [PMID: 39078500 DOI: 10.1007/s10142-024-01405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
Multiple abiotic stresses like extreme temperatures, water shortage, flooding, salinity, and exposure to heavy metals are confronted by crop plants with changing climatic patterns. Prolonged exposure to these adverse environmental conditions leads to stunted plant growth and development with significant yield loss in crops. CRISPR-Cas9 genome editing tool is being frequently employed to understand abiotic stress-responsive genes. Noteworthy improvements in CRISPR-Cas technology have been made over the years, including upgradation of Cas proteins fidelity and efficiency, optimization of transformation protocols for different crop species, base and prime editing, multiplex gene-targeting, transgene-free editing, and graft-based heritable CRISPR-Cas9 approaches. These developments helped to improve the knowledge of abiotic stress tolerance in crops that could potentially be utilized to develop knock-out varieties and over-expressed lines to tackle the adverse effects of altered climatic patterns. This review summarizes the mechanistic understanding of heat, drought, salinity, and metal stress-responsive genes characterized so far using CRISPR-Cas9 and provides data on potential candidate genes that can be exploited by modern-day biotechnological tools to develop transgene-free genome-edited crops with better climate adaptability. Furthermore, the importance of early-maturing crop varieties to withstand abiotic stresses is also discussed in this review.
Collapse
Affiliation(s)
| | - Rabia Riaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Pashma Nawaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Ashraf
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
44
|
Weiss T, Kumar J, Chen C, Guo S, Schlegel O, Lutterman J, Ling K, Zhang F. Dual activities of an X-family DNA polymerase regulate CRISPR-induced insertional mutagenesis across species. Nat Commun 2024; 15:6293. [PMID: 39060288 PMCID: PMC11282277 DOI: 10.1038/s41467-024-50676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The canonical non-homologous end joining (c-NHEJ) repair pathway, generally viewed as stochastic, has recently been shown to produce predictable outcomes in CRISPR-Cas9 mutagenesis. This predictability, mainly in 1-bp insertions and small deletions, has led to the development of in-silico prediction programs for various animal species. However, the predictability of CRISPR-induced mutation profiles across species remained elusive. Comparing CRISPR-Cas9 repair outcomes between human and plant species reveals significant differences in 1-bp insertion profiles. The high predictability observed in human cells links to the template-dependent activity of human Polλ. Yet plant Polλ exhibits dual activities, generating 1-bp insertions through both templated and non-templated manners. Polλ knockout in plants leads to deletion-only mutations, while its overexpression enhances 1-bp insertion rates. Two conserved motifs are identified to modulate plant Polλ's dual activities. These findings unveil the mechanism behind species-specific CRISPR-Cas9-induced insertion profiles and offer strategies for predictable, precise genome editing through c-NHEJ.
Collapse
Affiliation(s)
- Trevor Weiss
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, 55108, USA
- Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN, 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55108, USA
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, 55108, USA
- Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN, 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55108, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shengsong Guo
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Oliver Schlegel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Lutterman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA.
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, 55108, USA.
- Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN, 55108, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55108, USA.
| |
Collapse
|
45
|
Wang Y, Wang Y, Tang N, Wang Z, Pan D, Ji Q. Characterization and Engineering of a Novel Miniature Eubacterium siraeum CRISPR-Cas12f System. ACS Synth Biol 2024; 13:2115-2127. [PMID: 38941613 DOI: 10.1021/acssynbio.4c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Cas12f nucleases are one of the most compact genome editors, exhibiting promising potential for in vivo therapeutic applications. However, the availability of active Cas12f genome editors remains relatively limited in the field. Here, we report the characterization and engineering of a novel miniature Cas12f endonuclease from Eubacterium siraeum (EsCas12f1, 433 amino acids). We elucidate the specific Protospacer Adjacent Motifs preference and the detailed biochemical properties for DNA targeting and cleavage. By employing rational design strategies, we systematically optimize the guide RNA of EsCas12f1, converting the initially ineffective CRISPR-EsCas12f1 system into an efficient bacterial genome editor. Furthermore, we demonstrate the capacity of EsCas12f1 for in vitro nucleic-acid diagnostics. In summary, our results enrich the miniature CRISPR-Cas toolbox and pave the way for the application of EsCas12f1 for both genome editing and in vitro diagnostics.
Collapse
Affiliation(s)
- Yannan Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yujue Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Na Tang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhipeng Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Deng Pan
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Quanjiang Ji
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
46
|
Chi J, Ding L, Wang X, Chen X, Peng C, Xu J. A platform for precise quantification of gene editing products based on microfluidic chip-based digital PCR. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4783-4793. [PMID: 38961688 DOI: 10.1039/d4ay00863d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The new generation of gene editing technologies, primarily based on CRISPR/Cas9 and its derivatives, allows for more precise editing of organisms. However, when the editing efficiency is low, only a small fraction of gene fragments is edited, leaving behind minimal traces and making it difficult to detect and evaluate the editing effects. Although a series of technologies and methods have been developed, they lack the ability for precise quantification and quantitative analysis of these products. Digital polymerase chain reaction (dPCR) offers advantages such as high precision and sensitivity, making it suitable for absolute quantification of nucleic acid samples. In the present study, we developed a novel platform for precise quantification of gene editing products based on microfluidic chip-based dPCR. The results indicated that our assay accurately identified different types of edited samples within a variety of different types, including more complex genomic crops such as tetraploid rapeseed and soybean (highly repetitive sequence). The sensitivity of this detection platform was as low as 8.14 copies per μL, with a detection limit of 0.1%. These results demonstrated the superior performance of the platform, including high sensitivity, low detection limit, and wide applicability, enabling precise quantification and assessment of gene editing efficiency. In conclusion, microfluidic chip-based dPCR was used as a powerful tool for precise quantification and assessment of gene editing products.
Collapse
Affiliation(s)
- Jingzheng Chi
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Lin Ding
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
47
|
Ruan B, Jiang Y, Ma Y, Zhou M, Chen F, Zhang Y, Yu Y, Wu L. Characterization of the ddt1 Mutant in Rice and Its Impact on Plant Height Reduction and Water Use Efficiency. Int J Mol Sci 2024; 25:7629. [PMID: 39062872 PMCID: PMC11277124 DOI: 10.3390/ijms25147629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Rice (Oryza sativa L.), a fundamental global staple, nourishes over half of the world's population. The identification of the ddt1 mutant in rice through EMS mutagenesis of the indica cultivar Shuhui527 revealed a dwarf phenotype, characterized by reduced plant height, smaller grain size, and decreased grain weight. Detailed phenotypic analysis and map-based cloning pinpointed the mutation to a single-base transversion in the LOC_Os03g04680 gene, encoding a cytochrome P450 enzyme, which results in a premature termination of the protein. Functional complementation tests confirmed LOC_Os03g04680 as the DDT1 gene responsible for the observed phenotype. We further demonstrated that the ddt1 mutation leads to significant alterations in gibberellic acid (GA) metabolism and signal transduction, evidenced by the differential expression of key GA-related genes such as OsGA20OX2, OsGA20OX3, and SLR1. The mutant also displayed enhanced drought tolerance, as indicated by higher survival rates, reduced water loss, and rapid stomatal closure under drought conditions. This increased drought resistance was linked to the mutant's improved antioxidant capacity, with elevated activities of antioxidant enzymes and higher expression levels of related genes. Our findings suggest that DDT1 plays a crucial role in regulating both plant height and drought stress responses. The potential for using gene editing of DDT1 to mitigate the dwarf phenotype while retaining improved drought resistance offers promising avenues for rice improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (B.R.); (Y.J.); (Y.M.); (M.Z.); (F.C.); (Y.Z.); (Y.Y.)
| |
Collapse
|
48
|
Mishra S, Nayak S, Tuteja N, Poosapati S, Swain DM, Sahoo RK. CRISPR/Cas-Mediated Genome Engineering in Plants: Application and Prospectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:1884. [PMID: 39065411 PMCID: PMC11279650 DOI: 10.3390/plants13141884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Genetic engineering has become an essential element in developing climate-resilient crops and environmentally sustainable solutions to respond to the increasing need for global food security. Genome editing using CRISPR/Cas [Clustered regulatory interspaced short palindromic repeat (CRISPR)-associated protein (Cas)] technology is being applied to a variety of organisms, including plants. This technique has become popular because of its high specificity, effectiveness, and low production cost. Therefore, this technology has the potential to revolutionize agriculture and contribute to global food security. Over the past few years, increasing efforts have been seen in its application in developing higher-yielding, nutrition-rich, disease-resistant, and stress-tolerant "crops", fruits, and vegetables. Cas proteins such as Cas9, Cas12, Cas13, and Cas14, among others, have distinct architectures and have been used to create new genetic tools that improve features that are important for agriculture. The versatility of Cas has accelerated genomic analysis and facilitated the use of CRISPR/Cas to manipulate and alter nucleic acid sequences in cells of different organisms. This review provides the evolution of CRISPR technology exploring its mechanisms and contrasting it with traditional breeding and transgenic approaches to improve different aspects of stress tolerance. We have also discussed the CRISPR/Cas system and explored three Cas proteins that are currently known to exist: Cas12, Cas13, and Cas14 and their potential to generate foreign-DNA-free or non-transgenic crops that could be easily regulated for commercialization in most countries.
Collapse
Affiliation(s)
- Swetaleena Mishra
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| | - Subhendu Nayak
- Vidya USA Corporation, Otis Stone Hunter Road, Bunnell, FL 32100, USA;
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India;
| | - Sowmya Poosapati
- Plant Biology Laboratory, Salk Institute for Biological Studies, San Diego, CA 92037, USA
| | - Durga Madhab Swain
- MU Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar 752050, India;
| |
Collapse
|
49
|
Song B, Luo T, Fan Y, Li M, Qiu Z, Tian Y, Shang Y, Ma C, Liu C, Cao Q, Peng Y, Xu P, Krishnan HB, Wang Z, Zhang S, Liu S. Generation of New β-Conglycinin-Deficient Soybean Lines by Editing the lincRNA lincCG1 Using the CRISPR/Cas9 System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15013-15026. [PMID: 38907729 DOI: 10.1021/acs.jafc.4c02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Soybean β-conglycinin is a major allergen that adversely affects the nutritional properties of soybean. Soybean deficient in β-conglycinin is associated with low allergenicity and high nutritional value. Long intergenic noncoding RNAs (lincRNAs) regulate gene expression and are considered important regulators of essential biological processes. Despite increasing knowledge of the functions of lincRNAs, relatively little is known about the effects of lincRNAs on the accumulation of soybean β-conglycinin. The current study presents the identification of a lincRNA lincCG1 that was mapped to the intergenic noncoding region of the β-conglycinin α-subunit locus. The full-length lincCG1 sequence was cloned and found to regulate the expression of soybean seed storage protein (SSP) genes via both cis- and trans-acting regulatory mechanisms. Loss-of-function lincCG1 mutations generated using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system led to the deficiency of the allergenic α'-, α-, and β-subunits of soybean β-conglycinin as well as higher content of proteins, sulfur-containing amino acids, and free arginine. The dominant null allele LincCG1, and consequently, the β-conglycinin-deficient phenotype associated with the lincCG1-gene-edited line was stably inherited by the progenies in a Mendelian fashion. The dominant null allele LincCG1 may therefore be exploited for engineering/developing novel hypoallergenic soybean varieties. Furthermore, Cas9-free and β-conglycinin-deficient homozygous mutant lines were obtained in the T1 generation. This study is the first to employ the CRISPR/Cas9 technology for editing a lincRNA gene associated with the soybean allergenic protein β-conglycinin. Moreover, this study reveals that lincCG1 plays a crucial role in regulating the expression of the β-conglycinin subunit gene cluster, besides highlighting the efficiency of employing the CRISPR/Cas9 system for modulating lincRNAs, and thereby regulating soybean seed components.
Collapse
Affiliation(s)
- Bo Song
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
- Key Laboratory of Molecular and Cytogenetics, College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Tingting Luo
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yuanhang Fan
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Ming Li
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Zhendong Qiu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yusu Tian
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yuzhuo Shang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Chongxuan Ma
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Chang Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Qingqian Cao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Yuhan Peng
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Hari B Krishnan
- Plant Genetics Research, USDA Agricultural Research Service, Columbia, Missouri 65211, United States
- Plant Science Division, University of Missouri, Columbia, Missouri 65201, United States
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of the Chinese Education Ministry, Harbin 150030, China
| |
Collapse
|
50
|
Qu Y, Fernie AR, Liu J, Yan J. Doubled haploid technology and synthetic apomixis: Recent advances and applications in future crop breeding. MOLECULAR PLANT 2024; 17:1005-1018. [PMID: 38877700 DOI: 10.1016/j.molp.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Doubled haploid (DH) technology and synthetic apomixis approaches can considerably shorten breeding cycles and enhance breeding efficiency. Compared with traditional breeding methods, DH technology offers the advantage of rapidly generating inbred lines, while synthetic apomixis can effectively fix hybrid vigor. In this review, we focus on (i) recent advances in identifying and characterizing genes responsible for haploid induction (HI), (ii) the molecular mechanisms of HI, (iii) spontaneous haploid genome doubling, and (iv) crop synthetic apomixis. We also discuss the challenges and potential solutions for future crop breeding programs utilizing DH technology and synthetic apomixis. Finally, we provide our perspectives about how to integrate DH and synthetic apomixis for precision breeding and de novo domestication.
Collapse
Affiliation(s)
- Yanzhi Qu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max- Planck- Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jie Liu
- Yazhouwan National Laboratory, Sanya 572024, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Yazhouwan National Laboratory, Sanya 572024, China.
| |
Collapse
|