1
|
Jang YJ, Kim T, Lin M, Kim J, Begcy K, Liu Z, Lee S. Genome-wide gene network uncover temporal and spatial changes of genes in auxin homeostasis during fruit development in strawberry (F. × ananassa). BMC PLANT BIOLOGY 2024; 24:876. [PMID: 39304822 DOI: 10.1186/s12870-024-05577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The plant hormone auxin plays a crucial role in regulating important functions in strawberry fruit development. Although a few studies have described the complex auxin biosynthetic and signaling pathway in wild diploid strawberry (Fragaria vesca), the molecular mechanisms underlying auxin biosynthesis and crosstalk in octoploid strawberry fruit development are not fully characterized. To address this knowledge gap, comprehensive transcriptomic analyses were conducted at different stages of fruit development and compared between the achene and receptacle to identify developmentally regulated auxin biosynthetic genes and transcription factors during the fruit ripening process. Similar to wild diploid strawberry, octoploid strawberry accumulates high levels of auxin in achene compared to receptacle. RESULTS Genes involved in auxin biosynthesis and conjugation, such as Tryptophan Aminotransferase of Arabidopsis (TAAs), YUCCA (YUCs), and Gretchen Hagen 3 (GH3s), were found to be primarily expressed in the achene, with low expression in the receptacle. Interestingly, several genes involved in auxin transport and signaling like Pin-Formed (PINs), Auxin/Indole-3-Acetic Acid Proteins (Aux/IAAs), Transport Inhibitor Response 1 / Auxin-Signaling F-Box (TIR/AFBs) and Auxin Response Factor (ARFs) were more abundantly expressed in the receptacle. Moreover, by examining DEGs and their transcriptional profiles across all six developmental stages, we identified key auxin-related genes co-clustered with transcription factors from the NAM-ATAF1,2-CUC2/ WRKYGQK motif (NAC/WYKY), Heat Shock Transcription Factor and Heat Shock Proteins (HSF/HSP), APETALA2/Ethylene Responsive Factor (AP2/ERF) and MYB transcription factor groups. CONCLUSIONS These results elucidate the complex regulatory network of auxin biosynthesis and its intricate crosstalk within the achene and receptacle, enriching our understanding of fruit development in octoploid strawberries.
Collapse
Affiliation(s)
- Yoon Jeong Jang
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA
| | - Taehoon Kim
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
| | - Makou Lin
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA
| | - Kevin Begcy
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, 32611, USA
- Environmental Horticulture Department, University of Florida, Gainesville, FL, 32611, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, 33598, USA.
| |
Collapse
|
2
|
Wang B, Xiao Y, Yan M, Fan W, Zhu Y, Li W, Li T. Gene Duplication and Functional Diversification of MADS-Box Genes in Malus × domestica following WGD: Implications for Fruit Type and Floral Organ Evolution. Int J Mol Sci 2024; 25:8962. [PMID: 39201650 PMCID: PMC11354807 DOI: 10.3390/ijms25168962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The evolution of the MADS-box gene family is essential for the rapid differentiation of floral organs and fruit types in angiosperms. Two key processes drive the evolution of gene families: gene duplication and functional differentiation. Duplicated copies provide the material for variation, while advantageous mutations can confer new functions on gene copies. In this study, we selected the Rosaceae family, which includes a variety of fruit types and flower organs, as well as species that existed before and after whole-genome duplication (WGD). The results indicate that different fruit types are associated with different copies of MADS-box gene family duplications and WGD events. While most gene copies derived from WGD have been lost, MADS-box genes not only retain copies derived from WGD but also undergo further gene duplication. The sequences, protein structures, and expression patterns of these gene copies have undergone significant differentiation. This work provides a clear example of MADS-box genes in the context of gene duplication and functional differentiation, offering new insights into the evolution of fruit types and floral organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tianzhong Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (B.W.); (Y.X.); (M.Y.); (W.F.); (Y.Z.); (W.L.)
| |
Collapse
|
3
|
Wang T, Zheng Y, Xu C, Deng Y, Hao X, Chu Z, Tian J, Wang Y, Zhang X, Han Z, Wu T. Movement of ACC oxidase 3 mRNA from seeds to flesh promotes fruit ripening in apple. MOLECULAR PLANT 2024; 17:1221-1235. [PMID: 38902921 DOI: 10.1016/j.molp.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Xenia, the phenomenon in which the pollen genotype directly affects the phenotypic characteristics of maternal tissues (i.e., fruit ripening), has applications in crop production and breeding. However, the underlying molecular mechanism has yet to be elucidated. Here, we investigated whether mobile mRNAs from the pollen affect the ripening and quality-related characteristics of the fruit using cross-pollination between distinct Malus domestica (apple) cultivars. We demonstrated that hundreds of mobile mRNAs originating from the seeds are delivered to the fruit. We found that the movement of one of these mRNAs, ACC oxidase 3 (MdACO3), is coordinated with fruit ripening. Salicylic acid treatment, which can cause plasmodesmal closure, blocks MdACO3 movement, indicating that MdACO3 transcripts may move through the plasmodesmata. To assess the role of mobile MdACO3 transcripts in apple fruit, we created MdACO3-GFP-expressing apple seeds using MdACO3-GFP-overexpressing pollen for pollination and showed that MdACO3 transcripts in the transgenic seeds move to the flesh, where they promote fruit ripening. Furthermore, we demonstrated that MdACO3 can be transported from the seeds to fruit in the fleshy-fruited species tomato and strawberry. These results underscore the potential of mobile mRNAs from seeds to influence fruit characteristics, providing an explanation for the xenia phenomenon. Notably, our findings highlight the feasibility of leveraging diverse pollen genomic resources, without resorting to genome editing, to improve fruit quality.
Collapse
Affiliation(s)
- Ting Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yi Zheng
- Plant Science and Technology College, Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Chen Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yulin Deng
- Plant Science and Technology College, Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Xinyi Hao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zicheng Chu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ji Tian
- Plant Science and Technology College, Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Corpas FJ, González-Gordo S, Palma JM. Ascorbate peroxidase in fruits and modulation of its activity by reactive species. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2716-2732. [PMID: 38442039 PMCID: PMC11066807 DOI: 10.1093/jxb/erae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Ascorbate peroxidase (APX) is one of the enzymes of the ascorbate-glutathione cycle and is the key enzyme that breaks down H2O2 with the aid of ascorbate as an electron source. APX is present in all photosynthetic eukaryotes from algae to higher plants and, at the cellular level, it is localized in all subcellular compartments where H2O2 is generated, including the apoplast, cytosol, plastids, mitochondria, and peroxisomes, either in soluble form or attached to the organelle membranes. APX activity can be modulated by various post-translational modifications including tyrosine nitration, S-nitrosation, persulfidation, and S-sulfenylation. This allows the connection of H2O2 metabolism with other relevant signaling molecules such as NO and H2S, thus building a complex coordination system. In both climacteric and non-climacteric fruits, APX plays a key role during the ripening process and during post-harvest, since it participates in the regulation of both H2O2 and ascorbate levels affecting fruit quality. Currently, the exogenous application of molecules such as NO, H2S, H2O2, and, more recently, melatonin is seen as a new alternative to maintain and extend the shelf life and quality of fruits because they can modulate APX activity as well as other antioxidant systems. Therefore, these molecules are being considered as new biotechnological tools to improve crop quality in the horticultural industry.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
5
|
Bowman JL, Moyroud E. Reflections on the ABC model of flower development. THE PLANT CELL 2024; 36:1334-1357. [PMID: 38345422 PMCID: PMC11062442 DOI: 10.1093/plcell/koae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/07/2024] [Indexed: 05/02/2024]
Abstract
The formulation of the ABC model by a handful of pioneer plant developmental geneticists was a seminal event in the quest to answer a seemingly simple question: how are flowers formed? Fast forward 30 years and this elegant model has generated a vibrant and diverse community, capturing the imagination of developmental and evolutionary biologists, structuralists, biochemists and molecular biologists alike. Together they have managed to solve many floral mysteries, uncovering the regulatory processes that generate the characteristic spatio-temporal expression patterns of floral homeotic genes, elucidating some of the mechanisms allowing ABC genes to specify distinct organ identities, revealing how evolution tinkers with the ABC to generate morphological diversity, and even shining a light on the origins of the floral gene regulatory network itself. Here we retrace the history of the ABC model, from its genesis to its current form, highlighting specific milestones along the way before drawing attention to some of the unsolved riddles still hidden in the floral alphabet.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, VIC 3800, Australia
| | - Edwige Moyroud
- The Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
6
|
Cao X, Li X, Su Y, Zhang C, Wei C, Chen K, Grierson D, Zhang B. Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. PLANT PHYSIOLOGY 2024; 194:2049-2068. [PMID: 37992120 DOI: 10.1093/plphys/kiad627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Fruit ripening is accompanied by dramatic changes in color, texture, and flavor and is regulated by transcription factors (TFs) and epigenetic factors. However, the detailed regulatory mechanism remains unclear. Gene expression patterns suggest that PpNAC1 (NAM/ATAF1/2/CUC) TF plays a major role in peach (Prunus persica) fruit ripening. DNA affinity purification (DAP)-seq combined with transactivation tests demonstrated that PpNAC1 can directly activate the expression of multiple ripening-related genes, including ACC synthase1 (PpACS1) and ACC oxidase1 (PpACO1) involved in ethylene biosynthesis, pectinesterase1 (PpPME1), pectate lyase1 (PpPL1), and polygalacturonase1 (PpPG1) related to cell wall modification, and lipase1 (PpLIP1), fatty acid desaturase (PpFAD3-1), and alcohol acyltransferase1 (PpAAT1) involved in volatiles synthesis. Overexpression of PpNAC1 in the tomato (Solanum lycopersicum) nor (nonripening) mutant restored fruit ripening, and its transient overexpression in peach fruit induced target gene expression, supporting a positive role of PpNAC1 in fruit ripening. The enhanced transcript levels of PpNAC1 and its target genes were associated with decreases in their promoter mCG methylation during ripening. Declining DNA methylation was negatively associated with increased transcripts of DNA demethylase1 (PpDML1), whose promoter is recognized and activated by PpNAC1. We propose that decreased methylation of the promoter region of PpNAC1 leads to a subsequent decrease in DNA methylation levels and enhanced transcription of ripening-related genes. These results indicate that positive feedback between PpNAC1 and PpDML1 plays an important role in directly regulating expression of multiple genes required for peach ripening and quality formation.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinzhao Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yike Su
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chi Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Hangzhou, Zhejiang Province 310021, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
7
|
Yang C, Sun N, Qin X, Liu Y, Sui M, Zhang Y, Hu Y, Mao Y, Shen X. Analysis of flavonoid metabolism of compounds in succulent fruits and leaves of three different colors of Rosaceae. Sci Rep 2024; 14:4933. [PMID: 38418625 PMCID: PMC10901891 DOI: 10.1038/s41598-024-55541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024] Open
Abstract
Red flesh apple (Malus pumila var. medzwetzkyana Dieck), purple leaf plum (Prunus cerasifera Ehrhar f), and purple leaf peach (Prunus persica 'Atropurpurea') are significant ornamental plants within the Rosaceae family. The coloration of their fruits and leaves is crucial in their appearance and nutritional quality. However, qualitative and quantitative studies on flavonoids in the succulent fruits and leaves of multicolored Rosaceae plants are lacking. To unveil the diversity and variety-specificity of flavonoids in these three varieties, we conducted a comparative analysis of flavonoid metabolic components using ultra-high-performance liquid phase mass spectrometry (UPLC-MS/MS). The results revealed the detection of 311 metabolites, including 47 flavonoids, 105 flavonols, 16 chalcones, 37 dihydroflavonoids, 8 dihydroflavonols, 30 anthocyanins, 14 flavonoid carbon glycosides, 23 flavanols, 8 isoflavones, 11 tannins, and 12 proanthocyanidins. Notably, although the purple plum and peach leaves exhibited distinct anthocyanin compounds, paeoniflorin and corythrin glycosides were common but displayed varying glycosylation levels. While the green purple leaf peach fruit (PEF) and red flesh apple leaf (AL) possessed the lowest anthocyanin content, they exhibited the highest total flavonoid content. Conversely, the red flesh apple fruit (AF) displayed the highest anthocyanin content and a diverse range of anthocyanin glycosylation modifications, indicating that anthocyanins predominantly influenced the fruit's color. Purple PLF, PLL, and PEL showcased varying concentrations of anthocyanins, suggesting that their colors result from the co-color interaction between specific types of anthocyanins and secondary metabolites, such as flavonols, flavonoids, and dihydroflavonoids. This study provides novel insights into the variations in tissue metabolites among Rosaceae plants with distinct fruit and leaf colors.
Collapse
Affiliation(s)
- Chen Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271000, China
| | - Nan Sun
- Hebei Agricultural University, College of Horticulture, Baoding, 071001, China
| | - Xin Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271000, China
| | - Yangbo Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271000, China
- Hebei Agricultural University, College of Horticulture, Baoding, 071001, China
| | - Mengyi Sui
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271000, China
| | - Yawen Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271000, China
| | - Yanli Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271000, China
| | - Yunfei Mao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271000, China.
| | - Xiang Shen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271000, China.
| |
Collapse
|
8
|
Xiang Y, Zhang T, Zhao Y, Dong H, Chen H, Hu Y, Huang CH, Xiang J, Ma H. Angiosperm-wide analysis of fruit and ovary evolution aided by a new nuclear phylogeny supports association of the same ovary type with both dry and fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:228-251. [PMID: 38351714 DOI: 10.1111/jipb.13618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Fruit functions in seed protection and dispersal and belongs to many dry and fleshy types, yet their evolutionary pattern remains unclear in part due to uncertainties in the phylogenetic relationships among several orders and families. Thus we used nuclear genes of 502 angiosperm species representing 231 families to reconstruct a well supported phylogeny, with resolved relationships for orders and families with previously uncertain placements. Using this phylogeny as a framework, molecular dating supports a Triassic origin of the crown angiosperms, followed by the emergence of most orders in the Jurassic and Cretaceous and their rise to ecological dominance during the Cretaceous Terrestrial Revolution. The robust phylogeny allowed an examination of the evolutionary pattern of fruit and ovary types, revealing a trend of parallel carpel fusions during early diversifications in eudicots, monocots, and magnoliids. Moreover, taxa in the same order or family with the same ovary type can develop either dry or fleshy fruits with strong correlations between specific types of dry and fleshy fruits; such associations of ovary, dry and fleshy fruits define several ovary-fruit "modules" each found in multiple families. One of the frequent modules has an ovary containing multiple ovules, capsules and berries, and another with an ovary having one or two ovules, achenes (or other single-seeded dry fruits) and drupes. This new perspective of relationships among fruit types highlights the closeness of specific dry and fleshy fruit types, such as capsule and berry, that develop from the same ovary type and belong to the same module relative to dry and fleshy fruits of other modules (such as achenes and drupes). Further analyses of gene families containing known genes for ovary and fruit development identified phylogenetic nodes with multiple gene duplications, supporting a possible role of whole-genome duplications, in combination with climate changes and animal behaviors, in angiosperm fruit and ovary diversification.
Collapse
Affiliation(s)
- Yezi Xiang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, 27708, NC, USA
| | - Taikui Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hongjin Dong
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Hongyi Chen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Yi Hu
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Hong Ma
- Department of Biology, the Eberly College of Science, and the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, 16802, PA, USA
| |
Collapse
|
9
|
Huntsman SV, Leslie AB. The ontogeny of disparity in Cupressaceae seed cones. THE NEW PHYTOLOGIST 2023. [PMID: 38148572 DOI: 10.1111/nph.19482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/25/2023] [Indexed: 12/28/2023]
Abstract
Ontogenetic shape change has long been recognized to be important in generating patterns of morphological diversity and may be especially important in plant reproductive structures. We explore how seed cone disparity in Cupressaceae changes over ontogeny by comparing pollination-stage and mature cones. We sampled cones at pollen and seed release and measured cone scales using basic morphometric shape variables. We used multivariate statistical methods, particularly hypervolume overlap calculations, to measure morphospace occupation and disparity. Cone scales at both pollination and maturity exhibit substantial variability, although the disparity is greater at maturity. Mature cone scales are also more clustered in trait space, showing less overlap with other taxa than at pollination. These patterns reflect two growth strategies that generate closed cones over maturation, either through thin laminar scales or relatively thick, peltate scales, resulting in two distinct regions of morphospace occupation. Disparity patterns in Cupressaceae seed cones change over ontogeny, reflecting shifting functional demands that require specific patterns of cone scale growth. The evolution of Cupressaceae reproductive disparity therefore represents selection for trajectories of ontogenetic shape change, a phenomenon that should be widespread across seed plants.
Collapse
Affiliation(s)
- Stepfan V Huntsman
- Department of Earth and Planetary Sciences, Stanford University, 450 Jane Stanford Way, Building 320, Room 118, Stanford, CA, 94305, USA
| | - Andrew B Leslie
- Department of Earth and Planetary Sciences, Stanford University, 450 Jane Stanford Way, Building 320, Room 118, Stanford, CA, 94305, USA
| |
Collapse
|
10
|
Li M, Mount SM, Liu Z. Rosaceae fruit transcriptome database (ROFT)-a useful genomic resource for comparing fruits of apple, peach, strawberry, and raspberry. HORTICULTURE RESEARCH 2023; 10:uhad240. [PMID: 38162465 PMCID: PMC10756754 DOI: 10.1093/hr/uhad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Rosaceae is a large plant family consisting of many economically important fruit crops including peach, apple, pear, strawberry, raspberry, plum, and others. Investigations into their growth and development will promote both basic understanding and progress toward increasing fruit yield and quality. With the ever-increasing high-throughput sequencing data of Rosaceae, comparative studies are hindered by inconsistency of sample collection with regard to tissue, stage, growth conditions, and by vastly different handling of the data. Therefore, databases that enable easy access and effective utilization of directly comparable transcript data are highly desirable. Here, we describe a database for comparative analysis, ROsaceae Fruit Transcriptome database (ROFT), based on RNA-seq data generated from the same laboratory using similarly dissected and staged fruit tissues of four important Rosaceae fruit crops: apple, peach, strawberry, and red raspberry. Hence, the database is unique in allowing easy and robust comparisons among fruit gene expression across the four species. ROFT enables researchers to query orthologous genes and their expression patterns during different fruit developmental stages in the four species, identify tissue-specific and tissue-/stage-specific genes, visualize and compare ortholog expression in different fruit types, explore consensus co-expression networks, and download different data types. The database provides users access to vast amounts of RNA-seq data across the four economically important fruits, enables investigations of fruit type specification and evolution, and facilitates the selection of genes with critical roles in fruit development for further studies.
Collapse
Affiliation(s)
- Muzi Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Perotti MF, Posé D, Martín-Pizarro C. Non-climacteric fruit development and ripening regulation: 'the phytohormones show'. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6237-6253. [PMID: 37449770 PMCID: PMC10627154 DOI: 10.1093/jxb/erad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Fruit ripening involves numerous physiological, structural, and metabolic changes that result in the formation of edible fruits. This process is controlled at different molecular levels, with essential roles for phytohormones, transcription factors, and epigenetic modifications. Fleshy fruits are classified as either climacteric or non-climacteric species. Climacteric fruits are characterized by a burst in respiration and ethylene production at the onset of ripening, while regulation of non-climacteric fruit ripening has been commonly attributed to abscisic acid (ABA). However, there is controversy as to whether mechanisms regulating fruit ripening are shared between non-climacteric species, and to what extent other hormones contribute alongside ABA. In this review, we summarize classic and recent studies on the accumulation profile and role of ABA and other important hormones in the regulation of non-climacteric fruit development and ripening, as well as their crosstalk, paying special attention to the two main non-climacteric plant models, strawberry and grape. We highlight both the common and different roles of these regulators in these two crops, and discuss the importance of the transcriptional and environmental regulation of fruit ripening, as well as the need to optimize genetic transformation methodologies to facilitate gene functional analyses.
Collapse
Affiliation(s)
- María Florencia Perotti
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - David Posé
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Carmen Martín-Pizarro
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| |
Collapse
|
12
|
Liu Z, Liang T, Kang C. Molecular bases of strawberry fruit quality traits: Advances, challenges, and opportunities. PLANT PHYSIOLOGY 2023; 193:900-914. [PMID: 37399254 DOI: 10.1093/plphys/kiad376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
The strawberry is one of the world's most popular fruits, providing humans with vitamins, fibers, and antioxidants. Cultivated strawberry (Fragaria × ananassa) is an allo-octoploid and highly heterozygous, making it a challenge for breeding, quantitative trait locus (QTL) mapping, and gene discovery. Some wild strawberry relatives, such as Fragaria vesca, have diploid genomes and are becoming laboratory models for the cultivated strawberry. Recent advances in genome sequencing and CRISPR-mediated genome editing have greatly improved the understanding of various aspects of strawberry growth and development in both cultivated and wild strawberries. This review focuses on fruit quality traits that are most relevant to the consumers, including fruit aroma, sweetness, color, firmness, and shape. Recently available phased-haplotype genomes, single nucleotide polymorphism (SNP) arrays, extensive fruit transcriptomes, and other big data have made it possible to locate key genomic regions or pinpoint specific genes that underlie volatile synthesis, anthocyanin accumulation for fruit color, and sweetness intensity or perception. These new advances will greatly facilitate marker-assisted breeding, the introgression of missing genes into modern varieties, and precise genome editing of selected genes and pathways. Strawberries are poised to benefit from these recent advances, providing consumers with fruit that is tastier, longer-lasting, healthier, and more beautiful.
Collapse
Affiliation(s)
- Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Tong Liang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
13
|
Zhou J, Li M, Li Y, Xiao Y, Luo X, Gao S, Ma Z, Sadowski N, Timp W, Dardick C, Callahan A, Mount SM, Liu Z. Comparison of red raspberry and wild strawberry fruits reveals mechanisms of fruit type specification. PLANT PHYSIOLOGY 2023; 193:1016-1035. [PMID: 37440715 DOI: 10.1093/plphys/kiad409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023]
Abstract
Belonging to Rosaceae, red raspberry (Rubus idaeus) and wild strawberry (Fragaria vesca) are closely related species with distinct fruit types. While the numerous ovaries become the juicy drupelet fruits in raspberry, their strawberry counterparts become dry and tasteless achenes. In contrast, while the strawberry receptacle, the stem tip, enlarges to become a red fruit, the raspberry receptacle shrinks and dries. The distinct fruit-forming ability of homologous organs in these 2 species allows us to investigate fruit type determination. We assembled and annotated the genome of red raspberry (R. idaeus) and characterized its fruit development morphologically and physiologically. Subsequently, transcriptomes of dissected and staged raspberry fruit tissues were compared to those of strawberry from a prior study. Class B MADS box gene expression was negatively associated with fruit-forming ability, which suggested a conserved inhibitory role of class B heterodimers, PISTILLATA/TM6 or PISTILLATA/APETALA3, for fruit formation. Additionally, the inability of strawberry ovaries to develop into fruit flesh was associated with highly expressed lignification genes and extensive lignification of the ovary pericarp. Finally, coexpressed gene clusters preferentially expressed in the dry strawberry achenes were enriched in "cell wall biosynthesis" and "ABA signaling," while coexpressed clusters preferentially expressed in the fleshy raspberry drupelets were enriched in "protein translation." Our work provides extensive genomic resources as well as several potential mechanisms underlying fruit type specification. These findings provide the framework for understanding the evolution of different fruit types, a defining feature of angiosperms.
Collapse
Affiliation(s)
- Junhui Zhou
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences, Weifang, Shandong 2611325, China
| | - Muzi Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yongping Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yuwei Xiao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Shenglan Gao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences, Weifang, Shandong 2611325, China
| | - Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences, Weifang, Shandong 2611325, China
| | - Norah Sadowski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chris Dardick
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV 25430, USA
| | - Ann Callahan
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV 25430, USA
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
14
|
Li Q, Luo S, Zhang L, Feng Q, Song L, Sapkota M, Xuan S, Wang Y, Zhao J, van der Knaap E, Chen X, Shen S. Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. HORTICULTURE RESEARCH 2023; 10:uhad108. [PMID: 37577396 PMCID: PMC10419822 DOI: 10.1093/hr/uhad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/12/2023] [Indexed: 08/15/2023]
Abstract
Fleshy fruit shape is an important external quality trait influencing the usage of fruits and consumer preference. Thus, modification of fruit shape has become one of the major objectives for crop improvement. However, the underlying mechanisms of fruit shape regulation are poorly understood. In this review we summarize recent progress in the genetic basis of fleshy fruit shape regulation using tomato, cucumber, and peach as examples. Comparative analyses suggest that the OFP-TRM (OVATE Family Protein - TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathways are probably conserved in regulating fruit shape by primarily modulating cell division patterns across fleshy fruit species. Interestingly, cucumber homologs of FRUITFULL (FUL1), CRABS CLAW (CRC) and 1-aminocyclopropane-1-carboxylate synthase 2 (ACS2) were found to regulate fruit elongation. We also outline the recent progress in fruit shape regulation mediated by OFP-TRM and IQD pathways in Arabidopsis and rice, and propose that the OFP-TRM pathway and IQD pathway coordinate regulate fruit shape through integration of phytohormones, including brassinosteroids, gibberellic acids, and auxin, and microtubule organization. In addition, functional redundancy and divergence of the members of each of the OFP, TRM, and IQD families are also shown. This review provides a general overview of current knowledge in fruit shape regulation and discusses the possible mechanisms that need to be addressed in future studies.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuangxia Luo
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Liying Zhang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qian Feng
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Lijun Song
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Manoj Sapkota
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Shuxin Xuan
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yanhua Wang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jianjun Zhao
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Xueping Chen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuxing Shen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| |
Collapse
|
15
|
Song S, Jin J, Li M, Kong D, Cao M, Wang X, Li Y, Chen X, Zhang X, Pang X, Bo W, Hao Q. The Key Metabolic Network and Genes Regulating the Fresh Fruit Texture of Jujube ( Ziziphus jujuba Mill.) Revealed via Metabolomic and Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112087. [PMID: 37299066 DOI: 10.3390/plants12112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
The texture of fresh jujube fruit is related to its popularity and commercial value. The metabolic networks and essential genes that regulate the texture of jujube (Ziziphus jujuba) fruit are still unknown. In this study, two jujube cultivars with significantly different textures were selected by a texture analyzer. The four developmental stages of the exocarp and mesocarp of jujube fruit were studied separately using metabolomic and transcriptomic analyses. Differentially accumulated metabolites were enriched in several critical pathways related to cell wall substance synthesis and metabolism. Transcriptome analysis confirmed this by finding enriched differential expression genes in these pathways. Combined analysis showed that 'Galactose metabolism' was the most overlapping pathway in two omics. Genes such as β-Gal, MYB and DOF may affect fruit texture by regulating cell wall substances. Overall, this study provides an essential reference for the establishment of texture-related metabolic and gene networks of jujube fruit.
Collapse
Affiliation(s)
- Shuang Song
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Juan Jin
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Meiyu Li
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan 467000, China
| | - Decang Kong
- National Foundation for Improved Cultivar of Chinese Jujube, Cangzhou 061000, China
| | - Ming Cao
- National Foundation for Improved Cultivar of Chinese Jujube, Cangzhou 061000, China
| | - Xue Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yingyue Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xuexun Chen
- Bureau of Forestry of Aohan, Chifeng 028000, China
| | - Xiuli Zhang
- Bureau of Forestry of Aohan, Chifeng 028000, China
| | - Xiaoming Pang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qing Hao
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
16
|
Wang G, Guo L, Guo Z, Guan SL, Zhu N, Qi K, Gu C, Zhang S. The involvement of Ein3-binding F-box protein PbrEBF3 in regulating ethylene signaling during Cuiguan pear fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111600. [PMID: 36682586 DOI: 10.1016/j.plantsci.2023.111600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Ein3-binding F-box (EBF) proteins have been determined to modulate ethylene response processes by regulating EIN3/EIL protein degradation in Arabidopsis and tomato. However, the function of pear PbrEBFs in ethylene-dependent responses during fruit ripening remains unclear. In this study, PbrEBF1, PbrEBF2, and PbrEBF3 display contrasting expression patterns in response to ethylene and 1-MCP treatment. PbrEBF3 displayed potential fruit ripening-associated function in a transient expression experiment. Yeast two-hybrid (Y2H) and Firefly luciferase complementation imaging (LCI) assays indicated that PbrEBF3 interacts with PbrEIL1, PbrEIL2, and PbrEIL3 proteins. In turn, the transcription of PbrEBF3 is directly regulated by PbrEILs via a feedback loop. PbrEILs trigger a transcriptional cascade of PbrERF24 and finally affect ethylene synthesis. Overall, PbrEBF3 plays a central role in pear fruit ripening through mediation of the ethylene signaling pathway.
Collapse
Affiliation(s)
- Guoming Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Lei Guo
- College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, United States
| | - Zhihua Guo
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Sophia Lee Guan
- College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, United States
| | - Nan Zhu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Huang J, Xu W, Zhai J, Hu Y, Guo J, Zhang C, Zhao Y, Zhang L, Martine C, Ma H, Huang CH. Nuclear phylogeny and insights into whole-genome duplications and reproductive development of Solanaceae plants. PLANT COMMUNICATIONS 2023:100595. [PMID: 36966360 PMCID: PMC10363554 DOI: 10.1016/j.xplc.2023.100595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Solanaceae, the nightshade family, have ∼2700 species, including the important crops potato and tomato, ornamentals, and medicinal plants. Several sequenced Solanaceae genomes show evidence for whole-genome duplication (WGD), providing an excellent opportunity to investigate WGD and its impacts. Here, we generated 93 transcriptomes/genomes and combined them with 87 public datasets, for a total of 180 Solanaceae species representing all four subfamilies and 14 of 15 tribes. Nearly 1700 nuclear genes from these transcriptomic/genomic datasets were used to reconstruct a highly resolved Solanaceae phylogenetic tree with six major clades. The Solanaceae tree supports four previously recognized subfamilies (Goetzeioideae, Cestroideae, Nicotianoideae, and Solanoideae) and the designation of three other subfamilies (Schizanthoideae, Schwenckioideae, and Petunioideae), with the placement of several previously unassigned genera. We placed a Solanaceae-specific whole-genome triplication (WGT1) at ∼81 million years ago (mya), before the divergence of Schizanthoideae from other Solanaceae subfamilies at ∼73 mya. In addition, we detected two gene duplication bursts (GDBs) supporting proposed WGD events and four other GDBs. An investigation of the evolutionary histories of homologs of carpel and fruit developmental genes in 14 gene (sub)families revealed that 21 gene clades have retained gene duplicates. These were likely generated by the Solanaceae WGT1 and may have promoted fleshy fruit development. This study presents a well-resolved Solanaceae phylogeny and a new perspective on retained gene duplicates and carpel/fruit development, providing an improved understanding of Solanaceae evolution.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China; Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Weibin Xu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Caifei Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yiyong Zhao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | | | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, State College, PA 16802, USA.
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
18
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
19
|
Wang Y, Kong L, Wang W, Qin G. Global ubiquitinome analysis reveals the role of E3 ubiquitin ligase FaBRIZ in strawberry fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:214-232. [PMID: 36215033 PMCID: PMC9786855 DOI: 10.1093/jxb/erac400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Ubiquitination is an important post-translational modification that mediates protein degradation in eukaryotic cells, participating in multiple biological processes. However, the profiling of protein ubiquitination and the function of this crucial modification in fruit ripening remain largely unknown. In this study, we found that suppression of proteasome by the inhibitor MG132 retarded strawberry fruit ripening. Using K-ɛ-GG antibody enrichment combined with high-resolution mass spectrometry, we performed a comprehensive ubiquitinome analysis in strawberry fruit. We identified 2947 ubiquitination sites for 2878 peptides within 1487 proteins, which are involved in a variety of cellular functions. The lysine at position 48 (K48)-linked poly-ubiquitin chains appeared to be the most prevalent type of modification among the identified ubiquitinated proteins. A large number of ubiquitination sites exhibited altered ubiquitination levels after proteasome inhibition, including those within ripening-related proteins associated with sugar and acid metabolism, cell wall metabolism, anthocyanin synthesis, and ABA biosynthesis and signalling. We further demonstrated that FaBRIZ, a RING-type E3 ligase, functions as a negative regulator of ripening in strawberry fruit. Our findings highlight the critical regulatory roles of protein ubiquitination in fruit ripening. The ubiquitinome data provide a basis for further exploration of the function of ubiquitination on specific proteins.
Collapse
|
20
|
Sánchez-Gómez C, Posé D, Martín-Pizarro C. Insights into transcription factors controlling strawberry fruit development and ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:1022369. [PMID: 36299782 PMCID: PMC9589285 DOI: 10.3389/fpls.2022.1022369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Fruit ripening is a highly regulated and complex process involving a series of physiological and biochemical changes aiming to maximize fruit organoleptic traits to attract herbivores, maximizing therefore seed dispersal. Furthermore, this process is of key importance for fruit quality and therefore consumer acceptance. In fleshy fruits, ripening involves an alteration in color, in the content of sugars, organic acids and secondary metabolites, such as volatile compounds, which influence flavor and aroma, and the remodeling of cell walls, resulting in the softening of the fruit. The mechanisms underlying these processes rely on the action of phytohormones, transcription factors and epigenetic modifications. Strawberry fruit is considered a model of non-climacteric species, as its ripening is mainly controlled by abscisic acid. Besides the role of phytohormones in the regulation of strawberry fruit ripening, a number of transcription factors have been identified as important regulators of these processes to date. In this review, we present a comprehensive overview of the current knowledge on the role of transcription factors in the regulation of strawberry fruit ripening, as well as in compiling candidate regulators that might play an important role but that have not been functionally studied to date.
Collapse
Affiliation(s)
| | - David Posé
- *Correspondence: David Posé, ; Carmen Martín-Pizarro,
| | | |
Collapse
|
21
|
Guo L, Luo X, Li M, Joldersma D, Plunkert M, Liu Z. Mechanism of fertilization-induced auxin synthesis in the endosperm for seed and fruit development. Nat Commun 2022; 13:3985. [PMID: 35810202 PMCID: PMC9271072 DOI: 10.1038/s41467-022-31656-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
The dominance of flowering plants on earth is owed largely to the evolution of maternal tissues such as fruit and seedcoat that protect and disseminate the seeds. The mechanism of how fertilization triggers the development of these specialized maternal tissues is not well understood. A key event is the induction of auxin synthesis in the endosperm, and the mobile auxin subsequently stimulates seedcoat and fruit development. However, the regulatory mechanism of auxin synthesis in the endosperm remains unknown. Here, we show that a type I MADS box gene AGL62 is required for the activation of auxin synthesis in the endosperm in both Fragaria vesca, a diploid strawberry, and in Arabidopsis. Several strawberry FveATHB genes were identified as downstream targets of FveAGL62 and act to repress auxin biosynthesis. In this work, we identify a key mechanism for auxin induction to mediate fertilization success, a finding broadly relevant to flowering plants. In flowering plants, fertilization triggers auxin synthesis in the endosperm to promote seed and fruit development. Here the authors show that an MADS-box transcription factor AGL62 is required to activate auxin synthesis in the endosperms of Fragaria vesca, a diploid strawberry, and Arabidopsis.
Collapse
Affiliation(s)
- Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Muzi Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Dirk Joldersma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Madison Plunkert
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
22
|
Fan D, Wang W, Hao Q, Jia W. Do Non-climacteric Fruits Share a Common Ripening Mechanism of Hormonal Regulation? FRONTIERS IN PLANT SCIENCE 2022; 13:923484. [PMID: 35755638 PMCID: PMC9218805 DOI: 10.3389/fpls.2022.923484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Fleshy fruits have been traditionally categorized into climacteric (CL) and non-climacteric (NC) groups. CL fruits share a common ripening mechanism of hormonal regulation, i.e., the ethylene regulation, whereas whether NC fruits share a common mechanism remains controversial. Abscisic acid (ABA) has been commonly thought to be a key regulator in NC fruit ripening; however, besides ABA, many other hormones have been increasingly suggested to play crucial roles in NC fruit ripening. NC fruits vary greatly in their organ origin, constitution, and structure. Development of different organs may be different in the pattern of hormonal regulation. It has been well demonstrated that the growth and development of strawberry, the model of NC fruits, is largely controlled by a hormonal communication between the achenes and receptacle; however, not all NC fruits contain achenes. Accordingly, it is particularly important to understand whether strawberry is indeed able to represent a universal mechanism for the hormonal regulation of NC fruit ripening. In this mini-review, we summarized the recent research advance on the hormone regulation of NC ripening in relation to fruit organ origination, constitution, and structure, whereby analyzing and discussing whether NC fruits may share a common mechanism of hormonal regulation.
Collapse
Affiliation(s)
- Dingyu Fan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wei Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Pinzón-Sandoval EH, Balaguera-Lopez HE, Becerra-Gonzalez ME. Phenological and physicochemical changes during fruit development in two peach cultivars in the high tropics. REVISTA U.D.C.A ACTUALIDAD & DIVULGACIÓN CIENTÍFICA 2022. [DOI: 10.31910/rudca.v25.n1.2022.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Li M, Galimba K, Xiao Y, Dardick C, Mount SM, Callahan A, Liu Z. Comparative transcriptomic analysis of apple and peach fruits: insights into fruit type specification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1614-1629. [PMID: 34905278 DOI: 10.1111/tpj.15633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/21/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Fruits represent key evolutionary innovations in angiosperms and exhibit diverse types adapted for seed dissemination. However, the mechanisms that underlie fruit type diversity are not understood. The Rosaceae family comprises many different fruit types, including 'pome' and 'drupe' fruits, and hence is an excellent family for investigating the genetic basis of fruit type specification. Using comparative transcriptomics, we investigated the molecular events that correlate with pome (apple) and drupe (peach) fleshy fruit development, focusing on the earliest stages of fruit initiation. We identified PI and TM6, MADS box genes whose expression negatively correlates with fruit flesh-forming tissues irrespective of fruit type. In addition, the MADS box gene FBP9 is expressed in fruit-forming tissues in both species, and was lost multiple times in the genomes of dry-fruit-forming eudicots including Arabidopsis. Network analysis reveals co-expression between FBP9 and photosynthesis genes in both apple and peach, suggesting that FBP9 and photosynthesis may both promote fleshy fruit development. The large transcriptomic datasets at the earliest stages of pome and drupe fruit development provide rich resources for comparative studies, and the work provides important insights into fruit-type specification.
Collapse
Affiliation(s)
- Muzi Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Kelsey Galimba
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Appalachian Fruit Research Station, USDA-ARS, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Yuwei Xiao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Chris Dardick
- Appalachian Fruit Research Station, USDA-ARS, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Ann Callahan
- Appalachian Fruit Research Station, USDA-ARS, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
25
|
Li T, Dai Z, Zeng B, Li J, Ouyang J, Kang L, Wang W, Jia W. Autocatalytic biosynthesis of abscisic acid and its synergistic action with auxin to regulate strawberry fruit ripening. HORTICULTURE RESEARCH 2022; 9:uhab076. [PMID: 35043192 PMCID: PMC9123230 DOI: 10.1093/hr/uhab076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Abscisic acid (ABA) plays a major role in the regulation of strawberry fruit ripening; however, the origin of the ABA signal is largely unknown. Here, we report an autocatalytic mechanism for ABA biosynthesis and its synergistic interaction with the auxin to regulate strawberry fruit ripening. We demonstrate that ABA biosynthesis is self-induced in the achenes, but not in the receptacle, which results its substantial accumulation during ripening. ABA was found to regulate both IAA transport and biosynthesis, thereby modulating IAA content during both early fruit growth and later during ripening. Taken together, these results reveal the origins of the ABA signal and demonstrate the importance of its coordinated action with IAA in the regulation of strawberry fruit development and ripening.
Collapse
Affiliation(s)
- Tianyu Li
- College of Horticulture, China Agricultural
University, Beijing 100193, China
| | - Zhengrong Dai
- College of Horticulture, China Agricultural
University, Beijing 100193, China
| | - Baozhen Zeng
- College of Horticulture, China Agricultural
University, Beijing 100193, China
| | - Jie Li
- College of Horticulture, China Agricultural
University, Beijing 100193, China
| | - Jinyao Ouyang
- College of Horticulture, China Agricultural
University, Beijing 100193, China
| | - Li Kang
- College of Horticulture, China Agricultural
University, Beijing 100193, China
| | - Wei Wang
- College of Horticulture, China Agricultural
University, Beijing 100193, China
| | - Wensuo Jia
- College of Horticulture, China Agricultural
University, Beijing 100193, China
| |
Collapse
|
26
|
Yao JL, Kang C, Gu C, Gleave AP. The Roles of Floral Organ Genes in Regulating Rosaceae Fruit Development. FRONTIERS IN PLANT SCIENCE 2022; 12:644424. [PMID: 35069608 PMCID: PMC8766977 DOI: 10.3389/fpls.2021.644424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The function of floral organ identity genes, APETALA1/2/3, PISTILLATA, AGAMOUS, and SEPALLATA1/2/3, in flower development is highly conserved across angiosperms. Emerging evidence shows that these genes also play important roles in the development of the fruit that originates from floral organs following pollination and fertilization. However, their roles in fruit development may vary significantly between species depending on the floral organ types contributing to the fruit tissues. Fruits of the Rosaceae family develop from different floral organ types depending on the species, for example, peach fruit flesh develops from carpellary tissues, whereas apple and strawberry fruit flesh develop from extra-carpellary tissues, the hypanthium and receptacle, respectively. In this review, we summarize recent advances in understanding floral organ gene function in Rosaceae fruit development and analyze the similarities and diversities within this family as well as between Rosaceae and the model plant species Arabidopsis and tomato. We conclude by suggesting future research opportunities using genomics resources to rapidly dissect gene function in this family of perennial plants.
Collapse
Affiliation(s)
- Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Chunying Kang
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Chao Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Andrew Peter Gleave
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
27
|
Pi M, Hu S, Cheng L, Zhong R, Cai Z, Liu Z, Yao JL, Kang C. The MADS-box gene FveSEP3 plays essential roles in flower organogenesis and fruit development in woodland strawberry. HORTICULTURE RESEARCH 2021; 8:247. [PMID: 34848694 PMCID: PMC8632884 DOI: 10.1038/s41438-021-00673-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 05/02/2023]
Abstract
Flower and fruit development are two key steps for plant reproduction. The ABCE model for flower development has been well established in model plant species; however, the functions of ABCE genes in fruit crops are less understood. In this work, we identified an EMS mutant named R27 in woodland strawberry (Fragaria vesca), showing the conversion of petals, stamens, and carpels to sepaloid organs in a semidominant inheritance fashion. Mapping by sequencing revealed that the class E gene homolog FveSEP3 (FvH4_4g23530) possessed the causative mutation in R27 due to a G to E amino acid change in the conserved MADS domain. Additional fvesep3CR mutants generated by CRISPR/Cas9 displayed similar phenotypes to fvesep3-R27. Overexpressing wild-type or mutated FveSEP3 in Arabidopsis suggested that the mutation in R27 might cause a dominant-negative effect. Further analyses indicated that FveSEP3 physically interacted with each of the ABCE proteins in strawberry. Moreover, both R27 and fvesep3CR mutants exhibited parthenocarpic fruit growth and delayed fruit ripening. Transcriptome analysis revealed that both common and specific differentially expressed genes were identified in young fruit at 6-7 days post anthesis (DPA) of fvesep3 and pollinated wild type when compared to unpollinated wild type, especially those in the auxin pathway, a key hormone regulating fruit set in strawberry. Together, we provided compelling evidence that FveSEP3 plays predominant E functions compared to other E gene homologs in flower development and that FveSEP3 represses fruit growth in the absence of pollination and promotes fruit ripening in strawberry.
Collapse
Affiliation(s)
- Mengting Pi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shaoqiang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Laichao Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruhan Zhong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhuoying Cai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
28
|
Ireland HS, Wu C, Deng CH, Hilario E, Saei A, Erasmuson S, Crowhurst RN, David KM, Schaffer RJ, Chagné D. The Gillenia trifoliata genome reveals dynamics correlated with growth and reproduction in Rosaceae. HORTICULTURE RESEARCH 2021; 8:233. [PMID: 34719690 PMCID: PMC8558331 DOI: 10.1038/s41438-021-00662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 05/03/2023]
Abstract
The Rosaceae family has striking phenotypic diversity and high syntenic conservation. Gillenia trifoliata is sister species to the Maleae tribe of apple and ~1000 other species. Gillenia has many putative ancestral features, such as herb/sub-shrub habit, dry fruit-bearing and nine base chromosomes. This coalescence of ancestral characters in a phylogenetically important species, positions Gillenia as a 'rosetta stone' for translational science within Rosaceae. We present genomic and phenological resources to facilitate the use of Gillenia for this purpose. The Gillenia genome is the first fully annotated chromosome-level assembly with an ancestral genome complement (x = 9), and with it we developed an improved model of the Rosaceae ancestral genome. MADS and NAC gene family analyses revealed genome dynamics correlated with growth and reproduction and we demonstrate how Gillenia can be a negative control for studying fleshy fruit development in Rosaceae.
Collapse
Affiliation(s)
- Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland Mail Centre, Auckland, 1142, New Zealand
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Chen Wu
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland Mail Centre, Auckland, 1142, New Zealand
- Genomics Aotearoa, ℅ Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland Mail Centre, Auckland, 1142, New Zealand
- Genomics Aotearoa, ℅ Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland Mail Centre, Auckland, 1142, New Zealand
- Genomics Aotearoa, ℅ Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Ali Saei
- Genomics Aotearoa, ℅ Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Sylvia Erasmuson
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 4704, Christchurch Mail Centre, Christchurch, 8140, New Zealand
| | - Ross N Crowhurst
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland Mail Centre, Auckland, 1142, New Zealand
- Genomics Aotearoa, ℅ Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Karine M David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Robert J Schaffer
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, RD 3, Motueka, 7198, New Zealand
| | - David Chagné
- Genomics Aotearoa, ℅ Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Palmerston North, 4442, New Zealand.
| |
Collapse
|
29
|
Molecular Insights of Fruit Quality Traits in Peaches, Prunus persica. PLANTS 2021; 10:plants10102191. [PMID: 34686000 PMCID: PMC8541108 DOI: 10.3390/plants10102191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023]
Abstract
Fleshy fruits are the most demanded fruits because of their organoleptic qualities and nutritional values. The genus Prunus is a rich source of diversified stone/drupe fruits such as almonds, apricots, plums, sweet cherries, peaches, and nectarines. The fruit-ripening process in Prunus involves coordinated biochemical and physiological changes resulting in changes in fruit texture, aroma gain, color change in the pericarp, sugar/organic acid balance, fruit growth, and weight gain. There are different varieties of peaches with unique palatable qualities and gaining knowledge in the genetics behind these quality traits helps in seedling selection for breeding programs. In addition, peaches have shorter post-harvest life due to excessive softening, resulting in fruit quality reduction and market loss. Many studies have been executed to understand the softening process at the molecular level to find the genetic basis. To summarize, this review focused on the molecular aspects of peach fruit quality attributes and their related genetics to understand the underlying mechanisms.
Collapse
|
30
|
Wang W, Dai Z, Li J, Ouyang J, Li T, Zeng B, Kang L, Jia K, Xi Z, Jia W. A Method for Assaying of Protein Kinase Activity In Vivo and Its Use in Studies of Signal Transduction in Strawberry Fruit Ripening. Int J Mol Sci 2021; 22:ijms221910495. [PMID: 34638834 PMCID: PMC8508642 DOI: 10.3390/ijms221910495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Strawberry (Fragaria × ananassa) fruit ripening is regulated by a complex of cellular signal transduction networks, in which protein kinases are key components. Here, we report a relatively simple method for assaying protein kinase activity in vivo and specifically its application to study the kinase, FaMPK6, signaling in strawberry fruit. Green fluorescent protein (GFP)-tagged FaMPK6 was transiently expressed in strawberry fruit and after stimuli were applied to the fruit it was precipitated using an anti-GFP antibody. The precipitated kinase activity was measured in vitro using 32P-ATP and myelin basic protein (MBP) as substrates. We also report that FaMPK6 is not involved in the abscisic acid (ABA) signaling cascade, which is closely associated with FaMPK6 signaling in other plant species. However, methyl jasmonate (MeJA), low temperature, and high salt treatments were all found to activate FaMPK6. Transient manipulation of FaMPK6 expression was observed to cause significant changes in the expression patterns of 2749 genes, of which 264 were associated with MeJA signaling. The data also suggest a role for FaMPK6 in modulating cell wall metabolism during fruit ripening. Taken together, the presented method is powerful and its use will contribute to a profound exploration to the signaling mechanism of strawberry fruit ripening.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Zhengrong Dai
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Jie Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Jinyao Ouyang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Tianyu Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Baozhen Zeng
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Li Kang
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Kenan Jia
- College of International Education, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Zhiyuan Xi
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing 100193, China; (W.W.); (Z.D.); (J.L.); (J.O.); (T.L.); (B.Z.); (L.K.); (Z.X.)
- Correspondence:
| |
Collapse
|
31
|
Sánchez-Sevilla JF, Botella MA, Valpuesta V, Sanchez-Vera V. Autophagy Is Required for Strawberry Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2021; 12:688481. [PMID: 34512686 PMCID: PMC8429490 DOI: 10.3389/fpls.2021.688481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is a catabolic and recycling pathway that maintains cellular homeostasis under normal growth and stress conditions. Two major types of autophagy, microautophagy and macroautophagy, have been described in plants. During macroautophagy, cellular content is engulfed by a double-membrane vesicle called autophagosome. This vesicle fuses its outer membrane with the tonoplast and releases the content into the vacuole for degradation. During certain developmental processes, autophagy is enhanced by induction of several autophagy-related genes (ATG genes). Autophagy in crop development has been studied in relation to leaf senescence, seed and reproductive development, and vascular formation. However, its role in fruit ripening has only been partially addressed. Strawberry is an important berry crop, representative of non-climacteric fruit. We have analyzed the occurrence of autophagy in developing and ripening fruits of the cultivated strawberry. Our data show that most ATG genes are conserved in the genome of the cultivated strawberry Fragaria x ananassa and they are differentially expressed along the ripening of the fruit receptacle. ATG8-lipidation analysis proves the presence of two autophagic waves during ripening. In addition, we have confirmed the presence of autophagy at the cellular level by the identification of autophagy-related structures at different stages of the strawberry ripening. Finally, we show that blocking autophagy either biochemically or genetically dramatically affects strawberry growth and ripening. Our data support that autophagy is an active and essential process with different implications during strawberry fruit ripening.
Collapse
Affiliation(s)
- José F Sánchez-Sevilla
- Unidad Asociada al CSIC de I+D+i Biotecnología y Mejora en Fresa, Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Centro IFAPA Málaga, Junta de Andalucía, Málaga, Spain
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| | - Victoria Sanchez-Vera
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Málaga, Spain
| |
Collapse
|
32
|
Martín-Pizarro C, Vallarino JG, Osorio S, Meco V, Urrutia M, Pillet J, Casañal A, Merchante C, Amaya I, Willmitzer L, Fernie AR, Giovannoni JJ, Botella MA, Valpuesta V, Posé D. The NAC transcription factor FaRIF controls fruit ripening in strawberry. THE PLANT CELL 2021; 33:1574-1593. [PMID: 33624824 PMCID: PMC8254488 DOI: 10.1093/plcell/koab070] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/20/2021] [Indexed: 05/02/2023]
Abstract
In contrast to climacteric fruits such as tomato, the knowledge on key regulatory genes controlling the ripening of strawberry, a nonclimacteric fruit, is still limited. NAC transcription factors (TFs) mediate different developmental processes in plants. Here, we identified and characterized Ripening Inducing Factor (FaRIF), a NAC TF that is highly expressed and induced in strawberry receptacles during ripening. Functional analyses based on stable transgenic lines aimed at silencing FaRIF by RNA interference, either from a constitutive promoter or the ripe receptacle-specific EXP2 promoter, as well as overexpression lines showed that FaRIF controls critical ripening-related processes such as fruit softening and pigment and sugar accumulation. Physiological, metabolome, and transcriptome analyses of receptacles of FaRIF-silenced and overexpression lines point to FaRIF as a key regulator of strawberry fruit ripening from early developmental stages, controlling abscisic acid biosynthesis and signaling, cell-wall degradation, and modification, the phenylpropanoid pathway, volatiles production, and the balance of the aerobic/anaerobic metabolism. FaRIF is therefore a target to be modified/edited to control the quality of strawberry fruits.
Collapse
Affiliation(s)
- Carmen Martín-Pizarro
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
| | - José G Vallarino
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
| | - Sonia Osorio
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
| | - Victoriano Meco
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
| | - María Urrutia
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
| | - Jeremy Pillet
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Ana Casañal
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Catharina Merchante
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Iraida Amaya
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
- Laboratorio de Genómica y Biotecnología, Centro IFAPA de Málaga, Instituto Andaluz de Investigación y Formación Agraria y Pesquera, 29140 Málaga, Spain
| | - Lothar Willmitzer
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 144776, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 144776, Germany
| | - James J Giovannoni
- United States Department of Agriculture and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Miguel A Botella
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
| | - Victoriano Valpuesta
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
- Author for correspondence: ,
| | - David Posé
- Laboratorio de Bioquímica y Biotecnología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
- Author for correspondence: ,
| |
Collapse
|
33
|
Li M, Xiao Y, Mount S, Liu Z. An Atlas of Genomic Resources for Studying Rosaceae Fruits and Ornamentals. FRONTIERS IN PLANT SCIENCE 2021; 12:644881. [PMID: 33868343 PMCID: PMC8047320 DOI: 10.3389/fpls.2021.644881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 05/12/2023]
Abstract
Rosaceae, a large plant family of more than 3,000 species, consists of many economically important fruit and ornamental crops, including peach, apple, strawberry, raspberry, cherry, and rose. These horticultural crops are not only important economic drivers in many regions of the world, but also major sources of human nutrition. Additionally, due to the diversity of fruit types in Rosaceae, this plant family offers excellent opportunities for investigations into fleshy fruit diversity, evolution, and development. With the development of high-throughput sequencing technologies and computational tools, an increasing number of high-quality genomes and transcriptomes of Rosaceae species have become available and will greatly facilitate Rosaceae research and breeding. This review summarizes major genomic resources and genome research progress in Rosaceae, highlights important databases, and suggests areas for further improvement. The availability of these big data resources will greatly accelerate research progress and enhance the agricultural productivity of Rosaceae.
Collapse
Affiliation(s)
| | | | | | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
34
|
Guo L, Plunkert M, Luo X, Liu Z. Developmental regulation of stolon and rhizome. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101970. [PMID: 33296747 DOI: 10.1016/j.pbi.2020.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/30/2020] [Accepted: 10/02/2020] [Indexed: 05/20/2023]
Abstract
Stolons and rhizomes are modified stems for vegetative reproduction. While stolons grow above the ground, rhizomes grow beneath the ground. Stolons and rhizomes maintain the genotypes of hybrids and hence are invaluable for agricultural propagation. Diploid strawberry is a model for studying stolon development. At the axillary meristems, gibberellins and MADS box gene SOC1 promote stolon formation, while the DELLA repressor inhibits stolon development. Photoperiod regulates stolon formation through regulating GA biosynthesis or balancing asexual with sexual mode of reproduction in the axillary meristems. In rhizomatous wild rice, the BLADE-ON-PETIOLE gene promotes sheath-to-blade ratio to confer rhizome tip stiffness and support underground growth. Together, this review aims to encourage further investigations into stolon and rhizome to benefit agriculture and environment.
Collapse
Affiliation(s)
- Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Madison Plunkert
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
35
|
Nilo-Poyanco R, Moraga C, Benedetto G, Orellana A, Almeida AM. Shotgun proteomics of peach fruit reveals major metabolic pathways associated to ripening. BMC Genomics 2021; 22:17. [PMID: 33413072 PMCID: PMC7788829 DOI: 10.1186/s12864-020-07299-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fruit ripening in Prunus persica melting varieties involves several physiological changes that have a direct impact on the fruit organoleptic quality and storage potential. By studying the proteomic differences between the mesocarp of mature and ripe fruit, it would be possible to highlight critical molecular processes involved in the fruit ripening. RESULTS To accomplish this goal, the proteome from mature and ripe fruit was assessed from the variety O'Henry through shotgun proteomics using 1D-gel (PAGE-SDS) as fractionation method followed by LC/MS-MS analysis. Data from the 131,435 spectra could be matched to 2740 proteins, using the peach genome reference v1. After data pre-treatment, 1663 proteins could be used for comparison with datasets assessed using transcriptomic approaches and for quantitative protein accumulation analysis. Close to 26% of the genes that code for the proteins assessed displayed higher expression at ripe fruit compared to other fruit developmental stages, based on published transcriptomic data. Differential accumulation analysis between mature and ripe fruit revealed that 15% of the proteins identified were modulated by the ripening process, with glycogen and isocitrate metabolism, and protein localization overrepresented in mature fruit, as well as cell wall modification in ripe fruit. Potential biomarkers for the ripening process, due to their differential accumulation and gene expression pattern, included a pectin methylesterase inhibitor, a gibbellerin 2-beta-dioxygenase, an omega-6 fatty acid desaturase, a homeobox-leucine zipper protein and an ACC oxidase. Transcription factors enriched in NAC and Myb protein domains would target preferentially the genes encoding proteins more abundant in mature and ripe fruit, respectively. CONCLUSIONS Shotgun proteomics is an unbiased approach to get deeper into the proteome allowing to detect differences in protein abundance between samples. This technique provided a resolution so that individual gene products could be identified. Many proteins likely involved in cell wall and sugar metabolism, aroma and color, change their abundance during the transition from mature to ripe fruit.
Collapse
Affiliation(s)
- Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile
| | - Carol Moraga
- Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
- Inria Grenoble Rhône-Alpes, 38334, Montbonnot, France
| | - Gianfranco Benedetto
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, República 330, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, República 330, Santiago, Chile
- Center for Genome Regulation, Blanco Encalada, 2085, Santiago, Chile
| | - Andrea Miyasaka Almeida
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile.
- Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile.
| |
Collapse
|