1
|
Wang X, Komasa S, Tahara Y, Inui S, Matsumoto M, Maekawa K. Novel Injectable Collagen/Glycerol/Pullulan Gel Promotes Osteogenic Differentiation of Mesenchymal Stem Cells and the Repair of Rat Cranial Defects. Gels 2024; 10:775. [PMID: 39727533 DOI: 10.3390/gels10120775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Bone tissue engineering is a technique that simulates the bone tissue microenvironment by utilizing cells, tissue scaffolds, and growth factors. The collagen hydrogel is a three-dimensional network bionic material that has properties and structures comparable to those of the extracellular matrix (ECM), making it an ideal scaffold and drug delivery system for tissue engineering. The clinical applications of this material are restricted due to its low mechanical strength. In this investigation, a collagen-based gel (atelocollagen/glycerol/pullulan [Col/Gly/Pul] gel) that is moldable and injectable with high adhesive qualities was created by employing a straightforward technique that involved the introduction of Gly and Pul. This study aimed to characterize the internal morphology and chemical composition of the Col/Gly/Pul gel, as well as to verify its osteogenic properties through in vivo and in vitro experiments. When compared to a standard pure Col hydrogel, this material is more adaptable to the complexity of the local environment of bone defects and the apposition of irregularly shaped flaws due to its greater mechanical strength, injectability, and moldability. Overall, the Col/Gly/Pul gel is an implant that shows great potential for the treatment of complex bone defects and the enhancement of bone regeneration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi 573-1121, Osaka, Japan
| | - Satoshi Komasa
- Department of Oral Health Sciences, Osaka Dental University, 1-4-4, Makino-honmachi, Hirakata-shi 573-1144, Osaka, Japan
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe 610-0321, Kyoto, Japan
| | - Shihoko Inui
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi 573-1121, Osaka, Japan
| | - Michiaki Matsumoto
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe 610-0321, Kyoto, Japan
| | - Kenji Maekawa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi 573-1121, Osaka, Japan
| |
Collapse
|
2
|
Huerta-López C, Clemente-Manteca A, Velázquez-Carreras D, Espinosa FM, Sanchez JG, Martínez-del-Pozo Á, García-García M, Martín-Colomo S, Rodríguez-Blanco A, Esteban-González R, Martín-Zamora FM, Gutierrez-Rus LI, Garcia R, Roca-Cusachs P, Elosegui-Artola A, del Pozo MA, Herrero-Galán E, Sáez P, Plaza GR, Alegre-Cebollada J. Cell response to extracellular matrix viscous energy dissipation outweighs high-rigidity sensing. SCIENCE ADVANCES 2024; 10:eadf9758. [PMID: 39546608 PMCID: PMC11567001 DOI: 10.1126/sciadv.adf9758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024]
Abstract
The mechanics of the extracellular matrix (ECM) determine cell activity and fate through mechanoresponsive proteins including Yes-associated protein 1 (YAP). Rigidity and viscous relaxation have emerged as the main mechanical properties of the ECM steering cell behavior. However, how cells integrate coexisting ECM rigidity and viscosity cues remains poorly understood, particularly in the high-stiffness regime. Here, we have exploited engineered stiff viscoelastic protein hydrogels to show that, contrary to current models of cell-ECM interaction, substrate viscous energy dissipation attenuates mechanosensing even when cells are exposed to higher effective rigidity. This unexpected behavior is however readily captured by a pull-and-hold model of molecular clutch-based cell mechanosensing, which also recapitulates opposite cellular response at low rigidities. Consistent with predictions of the pull-and-hold model, we find that myosin inhibition can boost mechanosensing on cells cultured on dissipative matrices. Together, our work provides general mechanistic understanding on how cells respond to the viscoelastic properties of the ECM.
Collapse
Affiliation(s)
- Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | - Juan G. Sanchez
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Álvaro Martínez-del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María García-García
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Sara Martín-Colomo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | | | | | | | | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, Francis Crick Institute, London, 1 Midland Road, NW1 1AT, UK
- Department of Physics, King’s College London, London, WC2R 2LS, UK
| | - Miguel A. del Pozo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Pablo Sáez
- Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya–BarcelonaTech, Barcelona, Spain
- Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Barcelona, Spain
| | - Gustavo R. Plaza
- ETSI de Caminos and Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
3
|
Albrecht FB, Schick AK, Klatt A, Schmidt FF, Nellinger S, Kluger PJ. Exploring Morphological and Molecular Properties of Different Adipose Cell Models: Monolayer, Spheroids, Gellan Gum-Based Hydrogels, and Explants. Macromol Biosci 2024:e2400320. [PMID: 39450850 DOI: 10.1002/mabi.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Indexed: 10/26/2024]
Abstract
White adipose tissue (WAT) plays a crucial role in energy homeostasis and secretes numerous adipokines with far-reaching effects. WAT is linked to diseases such as diabetes, cardiovascular disease, and cancer. There is a high demand for suitable in vitro models to study diseases and tissue metabolism. Most of these models are covered by 2D-monolayer cultures. This study aims to evaluate the performance of different WAT models to better derive potential applications. The stability of adipocyte characteristics in spheroids and two 3D gellan gum hydrogels with ex situ lobules and 2D-monolayer culture is analyzed. First, the differentiation to achieve adipocyte-like characteristics is determined. Second, to evaluate the maintenance of differentiated ASC-based models, an adipocyte-based model, and explants over 3 weeks, viability, intracellular lipid content, perilipin A expression, adipokine, and gene expression are analyzed. Several advantages are supported using each of the models. Including, but not limited to, the strong differentiation in 2D-monolayers, the self-assembling within spheroids, the long-term stability of the stem cell-containing hydrogels, and the mature phenotype within adipocyte-containing hydrogels and the lobules. This study highlights the advantages of 3D models due to their more in vivo-like behavior and provides an overview of the different adipose cell models.
Collapse
Affiliation(s)
- Franziska B Albrecht
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
- Faculty of Natural Science, University of Hohenheim, Schloss Hohenheim 1, 70599, Stuttgart, Germany
| | - Ann-Kathrin Schick
- Faculty of Science, Energy and Building Services, Esslingen University, Kanalstraße 33, 73728, Esslingen, Germany
| | - Annemarie Klatt
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Freia F Schmidt
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Svenja Nellinger
- Reutlingen Research Institute, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| | - Petra J Kluger
- School of Life Sciences, Reutlingen University, Alteburgstraße 150, 72762, Reutlingen, Germany
| |
Collapse
|
4
|
Niculet E, Radaschin DS, Arbune M, Bobeica C, Craescu M, Onisor C, Gurau G, Busila C, Vasile CI, Tatu AL. Basal Cell Carcinoma Cleft: The Missing Piece of the Puzzle. Cureus 2024; 16:e71244. [PMID: 39525230 PMCID: PMC11550456 DOI: 10.7759/cureus.71244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This study aims to explore the tumor-stroma separation or the cleft characterizing basal cell carcinoma (BCC). METHODOLOGY In this retrospective cohort investigation, we enrolled 244 patients who received a confirmed diagnosis of BCC through histopathological examination in the period of 2019-2020 at the Pathology Laboratory of the "Sfântul Apostol Andrei" Emergency Clinical Hospital located in Galați, Romania. The identification of patients was accomplished by utilizing electronic health records, and relevant clinical, demographic, and histopathological data were retrieved from the physical database of the Pathology Laboratory. Key tumor characteristics were gathered, and an in-depth analysis of case slides was performed. RESULTS The average tumor-stroma cleft's width measurement was 48.136 µm, while its respective tumor island's width was on average 952.587 µm. The cleft's width and its respective tumor island's width are dependent on the BCC subtype, just like the ratio between the tumor island's measurement and its cleft's width are, being larger in basosquamous BCC, micronodular BCC, infiltrative BCC, and morpheaform BCC. CONCLUSION The BCC tumor islands were found to have a minimal approximately equal measurement to the tumor-stroma separation cleft, but they were always larger than the latter. Large clefts and their respective tumor islands were found in specific tumor subtypes such as basosquamous BCC, micronodular BCC, infiltrative BCC, and morpheaform BCC, but in nodular BCC also.
Collapse
Affiliation(s)
- Elena Niculet
- Department of Pathology, "Sfantul Apostol Andrei" Emergency Clinical Hospital of Galati, Romania, Galati, ROU
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galati, ROU
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR), "Dunărea de Jos" University, Galati, ROU
| | - Diana S Radaschin
- Department of Dermatology, Saint Parascheva Infectious Disease Clinical Hospital, Galati, ROU
- Biomedical Doctoral School, "Dunărea de Jos" University, Galati, ROU
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR), "Dunărea de Jos" University, Galati, ROU
- Department of Clinical Medicine, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galati, ROU
| | - Manuela Arbune
- Department of Clinical Medicine, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galati, ROU
| | - Carmen Bobeica
- Department of Clinical Medicine, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galati, ROU
| | - Mihaela Craescu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galati, ROU
| | - Cristian Onisor
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galati, ROU
| | - Gabriela Gurau
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galati, ROU
| | - Camelia Busila
- Department of Clinical Medicine, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galați, ROU
| | - Claudiu I Vasile
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galati, ROU
| | - Alin L Tatu
- Multidisciplinary Integrated Center of Dermatological Interface Research (MIC-DIR), "Dunărea de Jos" University, Galati, ROU
- Department of Dermatology, "Sf. Cuvioasa Parascheva" Clinical Hospital of Infectious Diseases, Galati, ROU
- Department of Clinical Medicine, Faculty of Medicine and Pharmacy, "Dunărea de Jos" University, Galati, ROU
| |
Collapse
|
5
|
He K, Kou G, Cai H, Tian G, Xu Z, Yang Z. Effects of Contact Surface Shape on Dynamic Lifetime and Strength of Molecular Bond Clusters under Displacement- and Force-Controlled Loading Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10947-10956. [PMID: 38752855 DOI: 10.1021/acs.langmuir.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Many experimental and theoretical studies have shown that the mechanical properties of cells and the extracellular matrix can significantly affect the lifetime and strength of the adhesion clusters of molecular bonds. However, there are few studies on how the shape of the contact surface affects the lifetime and strength of the adhesion clusters of molecular bonds, especially theoretical studies in this area. An idealized model of focal adhesion is adopted, in which two rigid media are bonded together by an array of receptor-ligand bonds modeled as Hookean springs on a complex surface topography, which is described by three parameters: the surface shape factor β, the length of a single identical surface shape L, and the amplitude of surface shapes w. In this study, systematic Monte Carlo simulations of this model are conducted to study the lifetime of the molecular bond cluster under linear incremental force loading and the strength of the molecular bond cluster under linear incremental displacement loading. We find that both small surface shape amplitudes and large surface shape factors will increase the lifetime and strength of the adhesion cluster, whereas the length of a single surface shape causes oscillations in the lifetime and strength of the cluster, and this oscillation amplitude is affected by the surface shape amplitude and the factor. At the same time, we also find that the pretension in the cluster will play a dominant role in the adhesion strength under large amplitudes and small factors of surface shapes. The physical mechanisms behind these phenomena are that the changes of the length of a single surface shape, the amplitude of surface shapes, and the surface shape factor cause the changes of stress concentration in the adhesion region, bond affinity, and the number of similar affinity bonds.
Collapse
Affiliation(s)
- Kuncheng He
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Guangjie Kou
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Hui Cai
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Gan Tian
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Zhigao Xu
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| | - Zhengwei Yang
- Xi'an Research Institute of High Technology, Xi'an 710025, China
| |
Collapse
|
6
|
Schöpf J, Uhrig S, Heilig CE, Lee KS, Walther T, Carazzato A, Dobberkau AM, Weichenhan D, Plass C, Hartmann M, Diwan GD, Carrero ZI, Ball CR, Hohl T, Kindler T, Rudolph-Hähnel P, Helm D, Schneider M, Nilsson A, Øra I, Imle R, Banito A, Russell RB, Jones BC, Lipka DB, Glimm H, Hübschmann D, Hartmann W, Fröhling S, Scholl C. Multi-omic and functional analysis for classification and treatment of sarcomas with FUS-TFCP2 or EWSR1-TFCP2 fusions. Nat Commun 2024; 15:51. [PMID: 38168093 PMCID: PMC10761971 DOI: 10.1038/s41467-023-44360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Linking clinical multi-omics with mechanistic studies may improve the understanding of rare cancers. We leverage two precision oncology programs to investigate rhabdomyosarcoma with FUS/EWSR1-TFCP2 fusions, an orphan malignancy without effective therapies. All tumors exhibit outlier ALK expression, partly accompanied by intragenic deletions and aberrant splicing resulting in ALK variants that are oncogenic and sensitive to ALK inhibitors. Additionally, recurrent CKDN2A/MTAP co-deletions provide a rationale for PRMT5-targeted therapies. Functional studies show that FUS-TFCP2 blocks myogenic differentiation, induces transcription of ALK and truncated TERT, and inhibits DNA repair. Unlike other fusion-driven sarcomas, TFCP2-rearranged tumors exhibit genomic instability and signs of defective homologous recombination. DNA methylation profiling demonstrates a close relationship with undifferentiated sarcomas. In two patients, sarcoma was preceded by benign lesions carrying FUS-TFCP2, indicating stepwise sarcomagenesis. This study illustrates the potential of linking precision oncology with preclinical research to gain insight into the classification, pathogenesis, and therapeutic vulnerabilities of rare cancers.
Collapse
Affiliation(s)
- Julia Schöpf
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sebastian Uhrig
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg, and DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christoph E Heilig
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kwang-Seok Lee
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Tatjana Walther
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Alexander Carazzato
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Anna Maria Dobberkau
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | | | | | - Mark Hartmann
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Gaurav D Diwan
- Bioquant, Heidelberg University, Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Zunamys I Carrero
- Department for Translational Medical Oncology, NCT, NCT/UCC Dresden, a Partnership Between DKFZ, Heidelberg Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
| | - Claudia R Ball
- Department for Translational Medical Oncology, NCT, NCT/UCC Dresden, a Partnership Between DKFZ, Heidelberg Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD, Dresden, Germany
- Faculty of Biology, TUD Dresden University of Technology, Dresden, Germany
| | - Tobias Hohl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Thomas Kindler
- University Cancer Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center, Mainz, Germany
- German Cancer Consortium (DKTK), Mainz, Germany
| | - Patricia Rudolph-Hähnel
- University Cancer Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center, Mainz, Germany
- German Cancer Consortium (DKTK), Mainz, Germany
| | - Dominic Helm
- Proteomics Core Facility, DKFZ, Heidelberg, Germany
| | | | - Anna Nilsson
- Pediatric Oncology and Coagulation, Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid Øra
- Pediatric Oncology and Hematology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Roland Imle
- Soft-Tissue Sarcoma Junior Research Group, DKFZ, Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ) and NCT Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ana Banito
- Soft-Tissue Sarcoma Junior Research Group, DKFZ, Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ) and NCT Heidelberg, Heidelberg, Germany
| | - Robert B Russell
- Bioquant, Heidelberg University, Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Barbara C Jones
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ) and NCT Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel B Lipka
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany
| | - Hanno Glimm
- Department for Translational Medical Oncology, NCT, NCT/UCC Dresden, a Partnership Between DKFZ, Heidelberg Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD, Dresden, Germany
- Translational Functional Cancer Genomics, DKFZ, Heidelberg, Germany
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, NCT Heidelberg, and DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Wolfgang Hartmann
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, DKFZ, and NCT Heidelberg, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), and National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
7
|
Shu W, Kaplan CN. A multiscale whole-cell theory for mechanosensitive migration on viscoelastic substrates. Biophys J 2023; 122:114-129. [PMID: 36493781 PMCID: PMC9822805 DOI: 10.1016/j.bpj.2022.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing experimental evidence validates that both the elastic stiffness and viscosity of the extracellular matrix regulate mesenchymal cell behavior, such as the rational switch between durotaxis (cell migration to stiffer regions), anti-durotaxis (migration to softer regions), and adurotaxis (stiffness-insensitive migration). To reveal the mechanisms underlying the crossover between these motility regimes, we have developed a multiscale chemomechanical whole-cell theory for mesenchymal migration. Our framework couples the subcellular focal adhesion dynamics at the cell-substrate interface with the cellular cytoskeletal mechanics and the chemical signaling pathways involving Rho GTPase proteins. Upon polarization by the Rho GTPase gradients, our simulated cell migrates by concerted peripheral protrusions and contractions, a hallmark of the mesenchymal mode. The resulting cell dynamics quantitatively reproduces the experimental migration speed as a function of the uniform substrate stiffness and explains the influence of viscosity on the migration efficiency. In the presence of stiffness gradients and absence of chemical polarization, our simulated cell can exhibit durotaxis, anti-durotaxis, and adurotaxis respectively with increasing substrate stiffness or viscosity. The cell moves toward an optimally stiff region from softer regions during durotaxis and from stiffer regions during anti-durotaxis. We show that cell polarization through steep Rho GTPase gradients can reverse the migration direction dictated by the mechanical cues. Overall, our theory demonstrates that opposing durotactic behaviors emerge via the interplay between intracellular signaling and cell-medium mechanical interactions in agreement with experiments, thereby elucidating complex mechanosensing at the single-cell level.
Collapse
Affiliation(s)
- Wenya Shu
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - C Nadir Kaplan
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
| |
Collapse
|
8
|
Chen PC, Feng XQ, Li B. Unified multiscale theory of cellular mechanical adaptations to substrate stiffness. Biophys J 2022; 121:3474-3485. [PMID: 35978549 PMCID: PMC9515123 DOI: 10.1016/j.bpj.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Rigidity of the extracellular matrix markedly regulates many cellular processes. However, how cells detect and respond to matrix rigidity remains incompletely understood. Here, we propose a unified two-dimensional multiscale framework accounting for the chemomechanical feedback to explore the interrelated cellular mechanosensing, polarization, and migration, which constitute the dynamic cascade in cellular response to matrix stiffness but are often modeled separately in previous theories. By combining integrin dynamics and intracellular force transduction, we show that substrate stiffness can act as a switch to activate or deactivate cell polarization. Our theory quantitatively reproduces rich stiffness-dependent cellular dynamics, including spreading, polarity selection, migration pattern, durotaxis, and even negative durotaxis, reported in a wide spectrum of cell types, and reconciles some inconsistent experimental observations. We find that a specific bipolarized mode can determine the optimal substrate stiffness, which enables the fastest cell migration rather than the largest traction forces that cells apply on the substrate. We identify that such a mechanical adaptation stems from the force balance across the whole cell. These findings could yield universal insights into various stiffness-mediated cellular processes within the context of tissue morphogenesis, wound healing, and cancer invasion.
Collapse
Affiliation(s)
- Peng-Cheng Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Guo Y, Mofrad MRK, Tepole AB. On modeling the multiscale mechanobiology of soft tissues: Challenges and progress. BIOPHYSICS REVIEWS 2022; 3:031303. [PMID: 38505274 PMCID: PMC10903412 DOI: 10.1063/5.0085025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/12/2022] [Indexed: 03/21/2024]
Abstract
Tissues grow and remodel in response to mechanical cues, extracellular and intracellular signals experienced through various biological events, from the developing embryo to disease and aging. The macroscale response of soft tissues is typically nonlinear, viscoelastic anisotropic, and often emerges from the hierarchical structure of tissues, primarily their biopolymer fiber networks at the microscale. The adaptation to mechanical cues is likewise a multiscale phenomenon. Cell mechanobiology, the ability of cells to transform mechanical inputs into chemical signaling inside the cell, and subsequent regulation of cellular behavior through intra- and inter-cellular signaling networks, is the key coupling at the microscale between the mechanical cues and the mechanical adaptation seen macroscopically. To fully understand mechanics of tissues in growth and remodeling as observed at the tissue level, multiscale models of tissue mechanobiology are essential. In this review, we summarize the state-of-the art modeling tools of soft tissues at both scales, the tissue level response, and the cell scale mechanobiology models. To help the interested reader become more familiar with these modeling frameworks, we also show representative examples. Our aim here is to bring together scientists from different disciplines and enable the future leap in multiscale modeling of tissue mechanobiology.
Collapse
Affiliation(s)
- Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Mohammad R. K. Mofrad
- Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
10
|
Palumbo S, Benvenuti E, Fraldi M. Actomyosin contractility and buckling of microtubules in nucleation, growth and disassembling of focal adhesions. Biomech Model Mechanobiol 2022; 21:1187-1200. [PMID: 35614374 PMCID: PMC9283365 DOI: 10.1007/s10237-022-01584-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/08/2022] [Indexed: 11/24/2022]
Abstract
Building up and maintenance of cytoskeletal structure in living cells are force-dependent processes involving a dynamic chain of polymerization and depolymerization events, which are also at the basis of cells’ remodelling and locomotion. All these phenomena develop by establishing cell–matrix interfaces made of protein complexes, known as focal adhesions, which govern mechanosensing and mechanotransduction mechanisms mediated by stress transmission between cell interior and external environment. Within this framework, by starting from a work by Cao et al. (Biophys J 109:1807–1817, 2015), we here investigate the role played by actomyosin contractility of stress fibres in nucleation, growth and disassembling of focal adhesions. In particular, we propose a tensegrity model of an adherent cell incorporating nonlinear elasticity and unstable behaviours, which provides a new kinematical interpretation of cellular contractile forces and describes how stress fibres, microtubules and adhesion plaques interact mechanobiologically. The results confirm some experimental evidences and suggest how the actomyosin contraction level could be exploited by cells to actively control their adhesion, eventually triggering cytoskeleton reconfigurations and migration processes observed in both physiological conditions and diseases.
Collapse
Affiliation(s)
- S Palumbo
- Department of Structures for Engineering and Architecture, University of Napoli "Federico II", Napoli, Italy
| | - E Benvenuti
- Department of Engineering, University of Ferrara, Ferrara, Italy
| | - M Fraldi
- Department of Structures for Engineering and Architecture, University of Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
11
|
Elasticity-associated rebinding rate of molecular bonds between soft elastic media. Biophys J 2022; 121:2297-2311. [PMID: 35610970 DOI: 10.1016/j.bpj.2022.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
A quantitative understanding of how cells interact with their extracellular matrix via molecular bonds is fundamental for many important processes in cell biology and engineering. In these interactions, the deformability of cells and matrix are usually comparable with that of the bonds, making their rebinding events globally coupled with the deformation states of whole systems. Unfortunately, this important principle is not realized or adopted in most conventional theoretical models for analyzing cellular adhesions. In this study, we considered a new theoretical model of a cluster of ligand-receptor bonds between two soft elastic bodies, in which the rebinding rates of ligands to receptors are described, by considering the deformation of the overall system under the influence of bond distributions. On the basis of theory of continuum mechanics and statistical mechanics, we obtained an elasticity-associated rebinding rate of open bonds in a closed analytical form that highly depends on the binding states and distributions of all other bonds, as well as on the overall deformation energy stored in the elastic bodies and all closed bonds. On the basis of this elasticity-associated rebinding rate and by performing Monte Carlo simulations, we uncovered new mechanisms underlying the adhesion stability of molecular bond clusters associated with deformable elastic bodies. Moreover, we revealed that the rebinding processes of molecular bonds is not only dependent on interfacial separation but is related to overall energy. This newly proposed rebinding rate may substantially improve our understanding of how cells adapt to their microenvironments by adjusting their mechanical properties through cytoskeleton remodeling.
Collapse
|
12
|
Tofighi Nasab S, Roodbari NH, Goodarzi V, Khonakdar HA, Mansoori K, Nourani MR. Novel electrospun conduit based on polyurethane/collagen enhanced by nanobioglass for peripheral nerve tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:801-822. [PMID: 34983332 DOI: 10.1080/09205063.2021.2021350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Peripheral nerve injury can significantly affect the daily life of individuals with impaired nerve function and permanent nerve deformity. One of the most common treatments is autograft transplantation. Tissue engineering is one of the efficient methods to regenerate injured nerves using scaffolds, cells, and growth factors. Conduits, which are produced by a variety of techniques, could be used as an alternative treatment for patients with damaged nerves. The electrospinning technique is one of the most important and widely used methods for generating nanofiber conduits from biocompatible polymers. In this study, using the electrospinning method, three different conduits, including polyurethane (PU), polyurethane/collagen (PU/C), and a new conduit based on polyurethane + collagen + nanobioglass (PU/C/NBG), were prepared. The characteristics of these three types of conduits were evaluated by SEM, XRD, and various experiments, including porosity, degradation, contact angle, DMTA, FTIR, MTT, and DAPI staining. The results of MTT and DAPI assays revealed the safety of conduits and proper cell attachment. Overall, the results obtained from various experiments showed that the novel PU/C/NBG conduit has better mechanical properties in terms of porosity, hydrophilicity, and biocompatibility in comparison with PU and PU/C conduits and could be a suitable candidate for peripheral nerve regeneration and axonal growth due to its repair potential.
Collapse
Affiliation(s)
- Somayeh Tofighi Nasab
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahabodin Goodarzi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Kourosh Mansoori
- Neuromusculoskeletal Research Center Firozgar Hospital, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Nourani
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Cai P, Wang C, Gao H, Chen X. Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007977. [PMID: 34197013 DOI: 10.1002/adma.202007977] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Indexed: 06/13/2023]
Abstract
The knowledge of mechanics of materials has been extensively implemented in developing functional materials, giving rise to recent advances in soft actuators, flexible electronics, mechanical metamaterials, tunable mechanochromics, regenerative mechanomedicine, etc. While conventional mechanics of materials offers passive access to mechanical properties of materials in existing forms, a paradigm shift is emerging toward proactive programming of materials' functionality by leveraging the force-geometry-property relationships. Here, such a rising field is coined as "mechanomaterials". To profile the concept, the design principles in this field at four scales is first outlined, namely the atomic scale, the molecular scale, the manipulation of nanoscale materials, and the microscale design of structural materials. A variety of techniques have been recruited to deliver the multiscale programming of functional mechanomaterials, such as strain engineering, capillary assembly, topological interlocking, kirigami, origami, to name a few. Engineering optical and biological functionalities have also been achieved by implementing the fundamentals of mechanochemistry and mechanobiology. Nonetheless, the field of mechanomaterials is still in its infancy, with many open challenges and opportunities that need to be addressed. The authors hope this review can serve as a modest spur to attract more researchers to further advance this field.
Collapse
Affiliation(s)
- Pingqiang Cai
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changxian Wang
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Huajian Gao
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
14
|
Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B 2021; 9:6536-6552. [PMID: 34324619 DOI: 10.1039/d1tb01005k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine adhesions (IUAs) are caused by damage to the underlying lining of the endometrium. They' re related to disorder of endometrial repair. In recent years, hydrogels with controllable biological activity have been widely used for treating IUAs. They encapsulate estrogen, cytokines, cells, or exosomes, forming a delivery system to release therapeutic components for the treatment of IUAs. In addition, the hydrogel acting as a barrier can be degraded in the body automatically, reducing the risk of infection caused by secondary surgeries. In this review, we summarize the recent progress of hydrogels and their application in IUAs as both a novel alternative therapeutic and an artificial delivery strategy.
Collapse
Affiliation(s)
- Houyi Lv
- Department of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Karagöz Z, Rijns L, Dankers PY, van Griensven M, Carlier A. Towards understanding the messengers of extracellular space: Computational models of outside-in integrin reaction networks. Comput Struct Biotechnol J 2020; 19:303-314. [PMID: 33425258 PMCID: PMC7779863 DOI: 10.1016/j.csbj.2020.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The interactions between cells and their extracellular matrix (ECM) are critically important for homeostatic control of cell growth, proliferation, differentiation and apoptosis. Transmembrane integrin molecules facilitate the communication between ECM and the cell. Since the characterization of integrins in the late 1980s, there has been great advancement in understanding the function of integrins at different subcellular levels. However, the versatility in molecular pathways integrins are involved in, the high diversity in their interaction partners both outside and inside the cell as well as on the cell membrane and the short lifetime of events happening at the cell-ECM interface make it difficult to elucidate all the details regarding integrin function experimentally. To overcome the experimental challenges and advance the understanding of integrin biology, computational modeling tools have been used extensively. In this review, we summarize the computational models of integrin signaling while we explain the function of integrins at three main subcellular levels (outside the cell, cell membrane, cytosol). We also discuss how these computational modeling efforts can be helpful in other disciplines such as biomaterial design. As such, this review is a didactic modeling summary for biomaterial researchers interested in complementing their experimental work with computational tools or for seasoned computational scientists that would like to advance current in silico integrin models.
Collapse
Affiliation(s)
- Zeynep Karagöz
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Laura Rijns
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Patricia Y.W. Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
16
|
Alcorta-Sevillano N, Macías I, Infante A, Rodríguez CI. Deciphering the Relevance of Bone ECM Signaling. Cells 2020; 9:E2630. [PMID: 33297501 PMCID: PMC7762413 DOI: 10.3390/cells9122630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Bone mineral density, a bone matrix parameter frequently used to predict fracture risk, is not the only one to affect bone fragility. Other factors, including the extracellular matrix (ECM) composition and microarchitecture, are of paramount relevance in this process. The bone ECM is a noncellular three-dimensional structure secreted by cells into the extracellular space, which comprises inorganic and organic compounds. The main inorganic components of the ECM are calcium-deficient apatite and trace elements, while the organic ECM consists of collagen type I and noncollagenous proteins. Bone ECM dynamically interacts with osteoblasts and osteoclasts to regulate the formation of new bone during regeneration. Thus, the composition and structure of inorganic and organic bone matrix may directly affect bone quality. Moreover, proteins that compose ECM, beyond their structural role have other crucial biological functions, thanks to their ability to bind multiple interacting partners like other ECM proteins, growth factors, signal receptors and adhesion molecules. Thus, ECM proteins provide a complex network of biochemical and physiological signals. Herein, we summarize different ECM factors that are essential to bone strength besides, discussing how these parameters are altered in pathological conditions related with bone fragility.
Collapse
Affiliation(s)
| | | | - Arantza Infante
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| | - Clara I. Rodríguez
- Stem Cells and Cell Therapy Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Plaza de Cruces S/N, Barakaldo, 48903 Bizkaia, Spain; (N.A.-S.); (I.M.)
| |
Collapse
|
17
|
Impact of crosslink heterogeneity on extracellular matrix mechanics and remodeling. Comput Struct Biotechnol J 2020; 18:3969-3976. [PMID: 33335693 PMCID: PMC7734217 DOI: 10.1016/j.csbj.2020.11.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Mechanical interactions between cells and the extracellular matrix (ECM) lead to the formation of biophysical cues, notably in the form of cell-generated tension, stiffness, and concentration profiles in the ECM. Fibrillar ECMs have nonlinear stiffnesses, linked to the reorientation of fibers under stress and strain, and nonelastic properties, resulting from the force-induced unbinding of transient bonds (crosslinks) that interconnect fibers. Mechanical forces generated by cells can lead to local ECM stiffening and densification. Cell tension is also propagated through the ECM network. The underlying factors that regulate the relative emergence of these signals are not well understood. Here, through computational simulations of 3D ECM fiber networks, we show that the composition of ECM crosslinks is a key determinant of the degree of densification and stiffening that can be achieved by cell-generated forces. This also regulates the sustainability of tensions propagated through the ECM. In particular, highly transient force-sensitive crosslinks promote nonelastic densification and rapid tension relaxation, whereas permanent crosslinks promote nonlinear stiffening and stable tension profiles. A heterogeneous population of crosslinks with different unbinding kinetics enables ECMs to exhibit accumulation, tension propagation, and stiffening simultaneously in response to mechanical interactions with cells.
Collapse
|
18
|
Fujiwara S, Deguchi S, Magin TM. Disease-associated keratin mutations reduce traction forces and compromise adhesion and collective migration. J Cell Sci 2020; 133:jcs243956. [PMID: 32616561 DOI: 10.1242/jcs.243956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
Keratin intermediate filament (IF) proteins constitute the major cytoskeletal components in epithelial cells. Missense mutations in keratin 5 (K5; also known as KRT5) or keratin 14 (K14; also known as KRT14), highly expressed in the basal epidermis, cause the severe skin blistering disease epidermolysis bullosa simplex (EBS). EBS-associated mutations disrupt keratin networks and change keratinocyte mechanics; however, molecular mechanisms by which mutations shape EBS pathology remain incompletely understood. Here, we demonstrate that, in contrast to keratin-deficient keratinocytes, cells expressing K14R125C, a mutation that causes severe EBS, generate lower traction forces, accompanied by immature focal adhesions with an altered cellular distribution. Furthermore, mutant keratinocytes display reduced directionality during collective migration. Notably, RhoA activity is downregulated in human EBS keratinocytes, and Rho activation rescues stiffness-dependent cell-extracellular matrix (ECM) adhesion formation of EBS keratinocytes. Collectively, our results strongly suggest that intact keratin IF networks regulate mechanotransduction through a Rho signaling pathway upstream of cell-ECM adhesion formation and organized cell migration. Our findings provide insights into the underlying pathophysiology of EBS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sachiko Fujiwara
- Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig 04103, Germany
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Thomas M Magin
- Institute of Biology, Faculty of Life Sciences, University of Leipzig, Leipzig 04103, Germany
| |
Collapse
|
19
|
Zhang Z, Rosakis P, Hou TY, Ravichandran G. A minimal mechanosensing model predicts keratocyte evolution on flexible substrates. J R Soc Interface 2020; 17:20200175. [PMID: 32370690 DOI: 10.1098/rsif.2020.0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A mathematical model is proposed for shape evolution and locomotion of fish epidermal keratocytes on elastic substrates. The model is based on mechanosensing concepts: cells apply contractile forces onto the elastic substrate, while cell shape evolution depends locally on the substrate stress generated by themselves or external mechanical stimuli acting on the substrate. We use the level set method to study the behaviour of the model numerically, and predict a number of distinct phenomena observed in experiments, such as (i) symmetry breaking from the stationary centrosymmetric to the well-known steadily propagating crescent shape, (ii) asymmetric bipedal oscillations and travelling waves in the lamellipodium leading edge, (iii) response to remote mechanical stress externally applied to the substrate (tensotaxis) and (iv) changing direction of motion towards an interface with a rigid substrate (durotaxis).
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Phoebus Rosakis
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion 70013 Crete, Greece.,Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Voutes 70013 Crete, Greece
| | - Thomas Y Hou
- Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
20
|
On the mechanical response of the actomyosin cortex during cell indentations. Biomech Model Mechanobiol 2020; 19:2061-2079. [PMID: 32356071 DOI: 10.1007/s10237-020-01324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/02/2020] [Indexed: 01/01/2023]
Abstract
A mechanical model is presented to analyze the mechanics and dynamics of the cell cortex during indentation. We investigate the impact of active contraction on the cross-linked actin network for different probe sizes and indentation rates. The essential molecular mechanisms of filament stretching, cross-linking and motor activity, are represented by an active and viscous mechanical continuum. The filaments behave as worm-like chains linked either by passive rigid linkers or by myosin motors. In the first example, the effects of probe size and loading rate are evaluated using the model for an idealized rounded cell shape in which properties are based on the results of parallel-plate rheometry available in the literature. Extreme cases of probe size and indentation rate are taken into account. Afterward, AFM experiments were done by engaging smooth muscle cells with both sharp and spherical probes. By inverse analysis with finite element software, our simulations mimicking the experimental conditions show the model is capable of fitting the AFM data. The results provide spatiotemporal dependence on the size and rate of the mechanical stimuli. The model captures the general features of the cell response. It characterizes the actomyosin cortex as an active solid at short timescales and as a fluid at longer timescales by showing (1) higher levels of contraction in the zones of high curvature; (2) larger indentation forces as the probe size increases; and (3) increase in the apparent modulus with the indentation depth but no dependence on the rate of the mechanical stimuli. The methodology presented in this work can be used to address and predict microstructural dependence on the force generation of living cells, which can contribute to understanding the broad spectrum of results in cell experiments.
Collapse
|
21
|
Zhou C, Zhang D, Du W, Zou J, Li X, Xie J. Substrate mechanics dictate cell-cell communication by gap junctions in stem cells from human apical papilla. Acta Biomater 2020; 107:178-193. [PMID: 32105834 DOI: 10.1016/j.actbio.2020.02.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
It is recognized that the interaction between cells and their physical microenvironment plays a fundamental role in controlling cell behaviors and even in determining cell fate. Any change in the physical properties of the extracellular matrix (ECM), such as its topography, geometry, and stiffness, controls this interaction. In the current study, we revealed a potent interconnection between the cell-matrix interaction and cell-cell communication that is mediated by interface stiffness, and elucidated this process in stem cells from human apical papilla (hSCAPs) in terms of mechanosensing, mechanotransduction, and gap junction-mediated cell-cell communication. We first fabricated polydimethylsiloxane (PDMS) substrates with the same topography and geometry but different stiffnesses and found that the cell morphology of the hSCAPs actively changed to adapt to the difference in substrate stiffness. We also found that the hSCAPs secreted more fibronectin in response to the stiff substrate. The focal adhesion plaques were changed by altering the expression of focal adhesion kinase (FAK) and paxillin. The FAK and paxillin bound to connexin 43 and, as a result, altered the gap junction formation. By performing a Lucifer yellow transfer assay, we further confirmed that the interface stiffness mediated cell-cell communication in living hSCAPs through changes in gap junction tunnels. The intrinsic mechanism that mediated cell-cell communication by extracellular stiffness show the great influence of the interaction between cells and their external physical microenvironment and stress the importance of microenvironmental mechanics in organ development and diseases. STATEMENT OF SIGNIFICANCE: Biochemical factors could direct cell behaviors such as cell proliferation, migration, differentiation, cell cycling and apoptosis. Likewise, biophysical factors could also determine cell behaviors in all biological processes. In the current study, we revealed a potent interconnection between the cell-matrix interaction and cell-cell communication by elucidating the whole process from cell mechanosensing, mechanotransduction to gap junction-mediated cell-cell communication. This process occurs in a collective of cells but not in that of a single cell. Biophysical properties of ECM induced cell-to-cell communication indicates the importance of microenvironmental mechanics in organ development and diseases. These findings should be of great interest in all biological fields, especially in biomaterials - cell/molecular biology involved in the interactions between the cell and its matrix.
Collapse
|
22
|
Fourriere L, Jimenez AJ, Perez F, Boncompain G. The role of microtubules in secretory protein transport. J Cell Sci 2020; 133:133/2/jcs237016. [PMID: 31996399 DOI: 10.1242/jcs.237016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Microtubules are part of the dynamic cytoskeleton network and composed of tubulin dimers. They are the main tracks used in cells to organize organelle positioning and trafficking of cargos. In this Review, we compile recent findings on the involvement of microtubules in anterograde protein transport. First, we highlight the importance of microtubules in organelle positioning. Second, we discuss the involvement of microtubules within different trafficking steps, in particular between the endoplasmic reticulum and the Golgi complex, traffic through the Golgi complex itself and in post-Golgi processes. A large number of studies have assessed the involvement of microtubules in transport of cargo from the Golgi complex to the cell surface. We focus here on the role of kinesin motor proteins and protein interactions in post-Golgi transport, as well as the impact of tubulin post-translational modifications. Last, in light of recent findings, we highlight the role microtubules have in exocytosis, the final step of secretory protein transport, occurring close to focal adhesions.
Collapse
Affiliation(s)
- Lou Fourriere
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Ana Joaquina Jimenez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
23
|
Porter L, Minaisah RM, Ahmed S, Ali S, Norton R, Zhang Q, Ferraro E, Molenaar C, Holt M, Cox S, Fountain S, Shanahan C, Warren D. SUN1/2 Are Essential for RhoA/ROCK-Regulated Actomyosin Activity in Isolated Vascular Smooth Muscle Cells. Cells 2020; 9:cells9010132. [PMID: 31935926 PMCID: PMC7017107 DOI: 10.3390/cells9010132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the predominant cell type in the blood vessel wall. Changes in VSMC actomyosin activity and morphology are prevalent in cardiovascular disease. The actin cytoskeleton actively defines cellular shape and the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex, comprised of nesprin and the Sad1p, UNC-84 (SUN)-domain family members SUN1/2, has emerged as a key regulator of actin cytoskeletal organisation. Although SUN1 and SUN2 function is partially redundant, they possess specific functions and LINC complex composition is tailored for cell-type-specific functions. We investigated the importance of SUN1 and SUN2 in regulating actomyosin activity and cell morphology in VSMCs. We demonstrate that siRNA-mediated depletion of either SUN1 or SUN2 altered VSMC spreading and impaired actomyosin activity and RhoA activity. Importantly, these findings were recapitulated using aortic VSMCs isolated from wild-type and SUN2 knockout (SUN2 KO) mice. Inhibition of actomyosin activity, using the rho-associated, coiled-coil-containing protein kinase1/2 (ROCK1/2) inhibitor Y27632 or blebbistatin, reduced SUN2 mobility in the nuclear envelope and decreased the association between SUN2 and lamin A, confirming that SUN2 dynamics and interactions are influenced by actomyosin activity. We propose that the LINC complex exists in a mechanical feedback circuit with RhoA to regulate VSMC actomyosin activity and morphology.
Collapse
Affiliation(s)
- Lauren Porter
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Rose-Marie Minaisah
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Sultan Ahmed
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Seema Ali
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Rosemary Norton
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Qiuping Zhang
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Elisa Ferraro
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Chris Molenaar
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Mark Holt
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London SE1 1YR, UK
| | - Susan Cox
- Randall Division of Cell and Molecular Biophysics, New Hunt’s House, King’s College London, London SE1 1YR, UK
| | - Samuel Fountain
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Catherine Shanahan
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
| | - Derek Warren
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King’s College London, London SE5 9NU, UK
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Correspondence:
| |
Collapse
|
24
|
Wang L, Wang C, Wu S, Fan Y, Li X. Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomater Sci 2020; 8:2714-2733. [DOI: 10.1039/d0bm00269k] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have clarified the influence of the mechanical properties of biomaterials on degradability and cell response, and also mechanical design targets and approaches.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Shuai Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| |
Collapse
|
25
|
Saidova AA, Vorobjev IA. Lineage Commitment, Signaling Pathways, and the Cytoskeleton Systems in Mesenchymal Stem Cells. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:13-25. [PMID: 31663422 DOI: 10.1089/ten.teb.2019.0250] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) from adult tissues are promising candidates for personalized cell therapy and tissue engineering. Significant progress was achieved in our understanding of the regulation of MSCs proliferation and differentiation by different cues during the past years. Proliferation and differentiation of MSCs are sensitive to the extracellular matrix (ECM) properties, physical cues, and chemical signaling. Sheath stress, matrix stiffness, surface adhesiveness, and micro- and nanotopography define cell shape and dictate lineage commitment of MSCs even in the absence of specific chemical signals. We discuss mechanotransduction as the major route from ECM through the cytoskeleton toward signaling pathways and gene expression. All components of the cytoskeleton from primary cilium and focal adhesions (FAs) to actin, microtubules (MTs), and intermediate filaments (IFs) are involved in the mechanotransduction. Differentiation of MSCs is regulated via the complex network of interrelated signaling pathways, including RhoA/ROCK, Akt/Erk, and YAP/TAZ effectors of Hippo pathway. These pathways could be regulated both by chemical and mechanical stimuli. Attenuation of these pathways in MSCs results in specific changes in FAs and actin cytoskeleton. Besides, differentiation of MSCs affects MTs and IFs. Recent findings highlight the role of intranuclear actin in the regulation of transcription factors in response to mechanical environmental stimuli. Alterations of cytoskeletal components reflect the MSC senescence state and their migratory capacity. In this review, we discuss the relationships between the molecular interactions in signaling pathways and morphological response of cytoskeletal components and reveal the complex interrelations between cytoskeleton systems and signaling pathways during lineage commitment of MSCs. Impact Statement This review describes the complex network of relationships between mechanical and biochemical stimuli in mesenchymal stem cells (MSC) and their balance which defines the morphological changes of cell shape due to rearrangement of cytoskeletal systems during lineage commitment of MSCs.
Collapse
Affiliation(s)
- Aleena A Saidova
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia.,Center of Experimental Embryology and Reproductive Biotechnology, Moscow, Russia
| | - Ivan A Vorobjev
- Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Biology, School of Science and Humanities and National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
26
|
Panzetta V, Fusco S, Netti PA. Cell mechanosensing is regulated by substrate strain energy rather than stiffness. Proc Natl Acad Sci U S A 2019; 116:22004-22013. [PMID: 31570575 PMCID: PMC6825315 DOI: 10.1073/pnas.1904660116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of cells to perceive the mechanical identity of extracellular matrix, generally known as mechanosensing, is generally depicted as a consequence of an intricate balance between pulling forces actuated by the actin fibers on the adhesion plaques and the mechanical reaction of the supporting material. However, whether the cell is sensitive to the stiffness or to the energy required to deform the material remains unclear. To address this important issue, here the cytoskeleton mechanics of BALB/3T3 and MC3T3 cells seeded on linearly elastic substrates under different levels of deformation were studied. In particular, the effect of prestrain on cell mechanics was evaluated by seeding cells both on substrates with no prestrain and on substrates with different levels of prestrain. Results indicated that cells recognize the existence of prestrain, exhibiting a stiffer cytoskeleton on stretched material compared to cells seeded on unstretched substrate. Cytoskeleton mechanics of cells seeded on stretched material were, in addition, comparable to those measured after the stretching of the substrate and cells together to the same level of deformation. This observation clearly suggests that cell mechanosensing is not mediated only by the stiffness of the substrate, as widely assumed in the literature, but also by the deformation energy associated with the substrate. Indeed, the clutch model, based on the exclusive dependence of cell mechanics upon substrate stiffness, fails to describe our experimental results. By modifying the clutch model equations to incorporate the dependence on the strain energy, we were able to correctly interpret the experimental evidence.
Collapse
Affiliation(s)
- Valeria Panzetta
- Centro di Ricerca Interdipartimentale sui Biomateriali, Università degli Studi di Napoli Federico II, 80125 Napoli, Italy
| | - Sabato Fusco
- Centro di Ricerca Interdipartimentale sui Biomateriali, Università degli Studi di Napoli Federico II, 80125 Napoli, Italy;
| | - Paolo A Netti
- Centro di Ricerca Interdipartimentale sui Biomateriali, Università degli Studi di Napoli Federico II, 80125 Napoli, Italy
- Centre for Advanced Biomaterial for Health Care, Istituto Italiano di Tecnologia, 80125 Napoli, Italy
| |
Collapse
|
27
|
Abstract
Cell migration is essential for physiological processes as diverse as development, immune defence and wound healing. It is also a hallmark of cancer malignancy. Thousands of publications have elucidated detailed molecular and biophysical mechanisms of cultured cells migrating on flat, 2D substrates of glass and plastic. However, much less is known about how cells successfully navigate the complex 3D environments of living tissues. In these more complex, native environments, cells use multiple modes of migration, including mesenchymal, amoeboid, lobopodial and collective, and these are governed by the local extracellular microenvironment, specific modalities of Rho GTPase signalling and non-muscle myosin contractility. Migration through 3D environments is challenging because it requires the cell to squeeze through complex or dense extracellular structures. Doing so requires specific cellular adaptations to mechanical features of the extracellular matrix (ECM) or its remodelling. In addition, besides navigating through diverse ECM environments and overcoming extracellular barriers, cells often interact with neighbouring cells and tissues through physical and signalling interactions. Accordingly, cells need to call on an impressively wide diversity of mechanisms to meet these challenges. This Review examines how cells use both classical and novel mechanisms of locomotion as they traverse challenging 3D matrices and cellular environments. It focuses on principles rather than details of migratory mechanisms and draws comparisons between 1D, 2D and 3D migration.
Collapse
Affiliation(s)
- Kenneth M Yamada
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
28
|
Shuaib A, Motan D, Bhattacharya P, McNabb A, Skerry TM, Lacroix D. Heterogeneity in The Mechanical Properties of Integrins Determines Mechanotransduction Dynamics in Bone Osteoblasts. Sci Rep 2019; 9:13113. [PMID: 31511609 PMCID: PMC6739315 DOI: 10.1038/s41598-019-47958-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
Bone cells are exposed to dynamic mechanical stimulation that is transduced into cellular responses by mechanotransduction mechanisms. The extracellular matrix (ECM) provides a physical link between loading and bone cells, where mechanoreceptors, such as integrins, initiate mechanosensation. Though this relationship is well studied, the dynamic interplay between mechanosensation, mechanotransduction and cellular responses is unclear. A hybrid-multiscale model combining molecular, cellular and tissue interactions was developed to examine links between integrins’ mechanosensation and effects on mechanotransduction, ECM modulation and cell-ECM interaction. The model shows that altering integrin mechanosensitivity threshold (MT) increases mechanotransduction durations from hours to beyond 4 days, where bone formation starts. This is relevant to bone, where it is known that a brief stimulating period provides persistent influences for over 24 hours. Furthermore, the model forecasts that integrin heterogeneity, with respect to MT, would be able to induce sustained increase in pERK baseline > 15% beyond 4 days. This is analogous to the emergence of molecular mechanical memory signalling dynamics. Therefore, the model can provide a greater understanding of mechanical adaptation to differential mechanical responses at different times. Given reduction of bone sensitivity to mechanical stimulation with age, these findings may lead towards useful therapeutic targets for upregulation of bone mass.
Collapse
Affiliation(s)
- Aban Shuaib
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK. .,Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
| | - Daniyal Motan
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Pinaki Bhattacharya
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK.,Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Alex McNabb
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Timothy M Skerry
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Damien Lacroix
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK.,Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Gou X, E JC, Yang H, Sun D. Combined Single-Cell Manipulation and Chemomechanical Modeling to Probe Cell Migration Mechanism During Cell-to-Cell Interaction. IEEE Trans Biomed Eng 2019; 67:1474-1482. [PMID: 31484106 DOI: 10.1109/tbme.2019.2938569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spatial presentations of chemical and mechanical information are key parameters for cell migration. However, previous theoretical and experimental studies focus on probing the mechanisms caused by a single type of stimulus, while ignoring the synergetic effects, especially for single cell migration during cell-to-cell interaction. Here we develop a chemomechanical model to assess the biochemical and biophysical modulators of single cell migration during cell-to-cell interaction. This model considers the stimulation of chemoattractant concentration gradient, influence of dynamic adhesion strength and relative motion between cells. The model is validated with single cell manipulation of leukemia cancer cell on stromal cell layer using optical tweezers. Both the modeling and experimental results demonstrate that cell migration velocity caused by chemotaxis can be biased by dynamic adhesion force, which is related to the retrograde flow of stromal cell layer. Besides, the biophysical modulators can influence the effect of drug treatment for specific signaling pathway. Our work provides a quantitative description of single cell migration in a complex environment that is close to realistic in vivo situation and is useful for further exploration of cell signaling pathway during cell-to-cell interactions for investigation of potential therapeutic strategy.
Collapse
|
30
|
Ehrig S, Schamberger B, Bidan CM, West A, Jacobi C, Lam K, Kollmannsberger P, Petersen A, Tomancak P, Kommareddy K, Fischer FD, Fratzl P, Dunlop JWC. Surface tension determines tissue shape and growth kinetics. SCIENCE ADVANCES 2019; 5:eaav9394. [PMID: 31535019 PMCID: PMC6739108 DOI: 10.1126/sciadv.aav9394] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/15/2019] [Indexed: 05/23/2023]
Abstract
The collective self-organization of cells into three-dimensional structures can give rise to emergent physical properties such as fluid behavior. Here, we demonstrate that tissues growing on curved surfaces develop shapes with outer boundaries of constant mean curvature, similar to the energy minimizing forms of liquids wetting a surface. The amount of tissue formed depends on the shape of the substrate, with more tissue being deposited on highly concave surfaces, indicating a mechano-biological feedback mechanism. Inhibiting cell-contractility further revealed that active cellular forces are essential for generating sufficient surface stresses for the liquid-like behavior and growth of the tissue. This suggests that the mechanical signaling between cells and their physical environment, along with the continuous reorganization of cells and matrix is a key principle for the emergence of tissue shape.
Collapse
Affiliation(s)
- S. Ehrig
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - B. Schamberger
- Paris-Lodron University of Salzburg, Department of the Chemistry and Physics of Materials, Salzburg, Austria
| | - C. M. Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Université Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique (LIPhy), Grenoble, France
| | - A. West
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - C. Jacobi
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - K. Lam
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - P. Kollmannsberger
- Center for Computational and Theoretical Biology, University of Würzburg, Germany
| | - A. Petersen
- Berlin-Brandenburg Center for Regenerative Therapies, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - P. Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - K. Kommareddy
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - F. D. Fischer
- Montanuniversität Leoben, Institute of Mechanics, Leoben, Austria
| | - P. Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - John W. C. Dunlop
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Paris-Lodron University of Salzburg, Department of the Chemistry and Physics of Materials, Salzburg, Austria
| |
Collapse
|
31
|
Lin SZ, Bi D, Li B, Feng XQ. Dynamic instability and migration modes of collective cells in channels. J R Soc Interface 2019; 16:20190258. [PMID: 31362619 PMCID: PMC6685016 DOI: 10.1098/rsif.2019.0258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Migrating cells constantly experience geometrical confinements in vivo, as exemplified by cancer invasion and embryo development. In this paper, we investigate how intrinsic cellular properties and extrinsic channel confinements jointly regulate the two-dimensional migratory dynamics of collective cells. We find that besides external confinement, active cell motility and cell crowdedness also shape the migration modes of collective cells. Furthermore, the effects of active cell motility, cell crowdedness and confinement size on collective cell migration can be integrated into a unified dimensionless parameter, defined as the cellular motility number (CMN), which mirrors the competition between active motile force and passive elastic restoring force of cells. A low CMN favours laminar-like cell flows, while a high CMN destabilizes cell motions, resulting in a series of mode transitions from a laminar phase to an ordered vortex chain, and further to a mesoscale turbulent phase. These findings not only explain recent experiments but also predict dynamic behaviours of cell collectives, such as the existence of an ordered vortex chain mode and the mode selection under non-straight confinements, which are experimentally testable across different epithelial cell lines.
Collapse
Affiliation(s)
- Shao-Zhen Lin
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
32
|
Zhou C, Zhang D, Zou J, Li X, Zou S, Xie J. Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26448-26459. [PMID: 31251564 DOI: 10.1021/acsami.9b07147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
33
|
Ma Y, Lin M, Huang G, Li Y, Wang S, Bai G, Lu TJ, Xu F. 3D Spatiotemporal Mechanical Microenvironment: A Hydrogel-Based Platform for Guiding Stem Cell Fate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705911. [PMID: 30063260 DOI: 10.1002/adma.201705911] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/05/2018] [Indexed: 05/06/2023]
Abstract
Stem cells hold great promise for widespread biomedical applications, for which stem cell fate needs to be well tailored. Besides biochemical cues, accumulating evidence has demonstrated that spatiotemporal biophysical cues (especially mechanical cues) imposed by cell microenvironments also critically impact on the stem cell fate. As such, various biomaterials, especially hydrogels due to their tunable physicochemical properties and advanced fabrication approaches, are developed to spatiotemporally manipulate biophysical cues in vitro so as to recapitulate the 3D mechanical microenvironment where stem cells reside in vivo. Here, the main mechanical cues that stem cells experience in their native microenvironment are summarized. Then, recent advances in the design of hydrogel materials with spatiotemporally tunable mechanical properties for engineering 3D the spatiotemporal mechanical microenvironment of stem cells are highlighted. These in vitro engineered spatiotemporal mechanical microenvironments are crucial for guiding stem cell fate and their potential biomedical applications are subsequently discussed. Finally, the challenges and future perspectives are presented.
Collapse
Affiliation(s)
- Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shuqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310003, P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, 310003, P. R. China
- Institute for Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310029, P. R. China
| | - Guiqin Bai
- Department of Gynaecology and Obstetrics, First Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
34
|
Zügel M, Maganaris CN, Wilke J, Jurkat-Rott K, Klingler W, Wearing SC, Findley T, Barbe MF, Steinacker JM, Vleeming A, Bloch W, Schleip R, Hodges PW. Fascial tissue research in sports medicine: from molecules to tissue adaptation, injury and diagnostics: consensus statement. Br J Sports Med 2018; 52:1497. [PMID: 30072398 PMCID: PMC6241620 DOI: 10.1136/bjsports-2018-099308] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 01/10/2023]
Abstract
The fascial system builds a three-dimensional continuum of soft, collagen-containing, loose and dense fibrous connective tissue that permeates the body and enables all body systems to operate in an integrated manner. Injuries to the fascial system cause a significant loss of performance in recreational exercise as well as high-performance sports, and could have a potential role in the development and perpetuation of musculoskeletal disorders, including lower back pain. Fascial tissues deserve more detailed attention in the field of sports medicine. A better understanding of their adaptation dynamics to mechanical loading as well as to biochemical conditions promises valuable improvements in terms of injury prevention, athletic performance and sports-related rehabilitation. This consensus statement reflects the state of knowledge regarding the role of fascial tissues in the discipline of sports medicine. It aims to (1) provide an overview of the contemporary state of knowledge regarding the fascial system from the microlevel (molecular and cellular responses) to the macrolevel (mechanical properties), (2) summarise the responses of the fascial system to altered loading (physical exercise), to injury and other physiological challenges including ageing, (3) outline the methods available to study the fascial system, and (4) highlight the contemporary view of interventions that target fascial tissue in sport and exercise medicine. Advancing this field will require a coordinated effort of researchers and clinicians combining mechanobiology, exercise physiology and improved assessment technologies.
Collapse
Affiliation(s)
- Martina Zügel
- Division of Sports Medicine, Ulm University, Ulm, Germany
| | - Constantinos N Maganaris
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jan Wilke
- Department of Sports Medicine, Goethe University, Frankfurt, Germany
| | | | - Werner Klingler
- Department of Anesthesiology, BKH Günzburg, Günzburg, Germany
| | - Scott C Wearing
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Thomas Findley
- Department of Physical Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Andry Vleeming
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Medical University Ghent, Ghent, Belgium
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Robert Schleip
- Fascia Research Group, Experimental Anesthesiology, Ulm University, Ulm, Germany
| | - Paul William Hodges
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Gating and inactivation of mechanosensitive channels of small conductance: A continuum mechanics study. J Mech Behav Biomed Mater 2018; 90:502-514. [PMID: 30453114 DOI: 10.1016/j.jmbbm.2018.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/27/2018] [Accepted: 10/30/2018] [Indexed: 11/21/2022]
Abstract
Mechanosensitive channels of small conductance (MscS) in Escherichia coli (E. coli) serve as a paradigm for understanding the gating behaviors of the MscS family of ion channels. In this work, we develop a continuum mechanics framework to explore the conformational states of MscS during the gating transition. A complete gating transition trajectory from the closed to the open state along with partially open intermediates is obtained, and the open structure is close to the available structural model from crystallographic studies. The computational efficiency of the modeling framework makes it possible to explore the roles of various structural elements (e.g., loops that connect transmembrane helices) and specific interactions in the gating transition. It is observed that removing either the Asp62-Arg131 salt bridge or the Phe68-Leu111 non-polar interaction leads to essentially non-conducting structures even with a membrane tension close to the lysis limit. The loop connecting TM2 (the second transmembrane helix) and TM3 is found to be essential for force transmission during gating, while the loop connecting TM1 and TM2 does not make any major contribution. Based on the different structural evolutions observed when the TM3 kink is treated as a loop or a helical segment, we propose that the helical propensity of the kink plays a central role in inactivation; i.e., under prolonged sub-threshold membrane tension, transition of the initially flexible loop to a helical segment in TM3 may lead to MscS inactivation. Finally, the gating transition of MscS under different transmembrane voltages is explored and found to be essentially voltage independent. Collectively, results from the current continuum mechanics analysis provide further insights into the gating transition of MscS at structural and physical levels, and specific predictions are proposed for further experimental investigations.
Collapse
|
36
|
Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through β-catenin transduction. Acta Biomater 2018; 79:83-95. [PMID: 30134207 DOI: 10.1016/j.actbio.2018.08.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 02/05/2023]
Abstract
It is generally recognised that mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical properties of the substrates. However, the precise biophysical mechanism that enables MSCs to respond to substrate properties remains unclear. In the current study, polydimethylsiloxane (PDMS) substrates with different stiffnesses were fabricated and the way in which the elastic modulus of the substrate regulated differentiation towards osteogenesis and adipogenesis in adipose-derived stromal cells (ASCs) was explored. Initially, a cell morphology change by SEM was observed between the stiff and soft substrates. The cytoskeleton stains including microfilament by F-actin and microtubule by α- and β-tubulin further showed a larger cell spreading area on the stiff substrate. Then the expression of vinculin, in charge for the linkage of adhesion molecules to the actin cytoskeleton, was enhanced on the stiff substrate. This change in focal adhesion plaque further triggered intracellular β-catenin signaling and promoted its nuclear translocation especially on the stiff substrate. The influence of β-catenin signaling on direct differentiation to osteogenic lineages was through direct binding between its downstream protein, Lef-1, and the osteogenic transcriptional factors, Runx2 and Osx, while on differentiation to adipogenic lineages was through modulating the expression of PPARγ. The imbalance of stiffness-induced β-catenin signaling finally induced a stronger osteogenesis and a weaker adipogenesis on the stiff substrate relative to those on the soft substrate. This study indicates the importance of stiffness on ASC differentiation and could help to increase understanding of the mechanism underlying molecular signal transduction from mechanosensing, mechanotransducing to stem cell differentiation. STATEMENT OF SIGNIFICANCE Mesenchymal stem cells can differentiate into multiple lineages, such as adipogenesis, myogenesis, neurogenesis, angiogenesis and osteogenesis, through influence of biophysical properties of the extracellular matrix. However, the precise bio-mechanism that triggers stem cell differentiation in response to matrix biophysical properties remains unclear. In the current study, we provide a series of experiments involving the characterization of cell morphology, microfilament, microtubule and adhesion capacity of adipose-derived stromal cells (ASCs) in response to substrate stiffness, and further elucidation of cytoplasmic β-catenin-dependent signal transduction, nuclear translocation and resultant promoter activation of transcriptional factors for osteogenesis and adipogenesis. This study provides an explanation on deeper understanding of bio-mechanism underlying substrate stiffness-triggered β-catenin signal transduction from active mechanosensing, mechanotransducing to stem cell differentiation.
Collapse
|
37
|
Xie J, Zhang D, Ling Y, Yuan Q, Chenchen Z, Wei D, Zhou X. Substrate elasticity regulates vascular endothelial growth factor A (VEGFA) expression in adipose-derived stromal cells: Implications for potential angiogenesis. Colloids Surf B Biointerfaces 2018; 175:576-585. [PMID: 30580148 DOI: 10.1016/j.colsurfb.2018.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/22/2018] [Accepted: 08/16/2018] [Indexed: 02/05/2023]
Abstract
Adipose-derived stromal cells (ASCs) have potential in bioengineering angiogenesis due to their paracrine role in supporting endothelial tubulogenesis and vascular network formation. However, the precise mechanism of the inner angiogenic capacity of ASCs determined by the biophysical properties of the extracellular matrix needs to be further elucidated. In the current study, we fabricated two silicon-based elastomer polydimethylsiloxane (PDMS) substrates with different stiffnesses (stiff substrate, E = 195 kPa and soft substrate, E = 15 kPa) and found there were cytoskeletal changes in ASCs in response to different substrate stiffnesses. We then showed the expression of vinculin in focal adhesion plaques was enhanced and the nuclear translocation of β-catenin signaling was increased in ASCs on the stiff substrate relative to those on the soft substrate. We next used bioinformatics and found the downstream proteins of β-catenin signaling had binding sites in the promoter of vascular endothelial growth factor A (VEGFA), which is responsible for angiogenesis; then, we further confirmed the enhanced endogenous VEGFA expression in ASCs on the stiff substrate relative to that on the soft substrate. Finally, by using ectogenic VEGFA, we showed the stiff substrate could promote angiogenesis of ASCs in the form of more ring-like formations in 2D and vessel-like structure formations in 3D under VEGFA induction compared to that of the soft substrate. This study not only indicates the inner angiogenic capacity of ASCs but also elucidates the influence of substrate elasticity on ASC differentiation in bioengineering angiogenesis.
Collapse
Affiliation(s)
- Jing Xie
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Ling
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhou Chenchen
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Du Wei
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Collective cell polarization and alignment on curved surfaces. J Mech Behav Biomed Mater 2018; 88:330-339. [PMID: 30196189 DOI: 10.1016/j.jmbbm.2018.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/31/2018] [Accepted: 08/17/2018] [Indexed: 01/06/2023]
Abstract
Curvature as an important topological parameter of 3D extra-cellular matrix has drawn growing attention in recent years. But the underlying mechanism that curvature influences cell behaviors has remained unknown. In this study, we seeded cells on semi-cylindrical and hemispheric surfaces and tested cell alignment and polarization. We found that the surface curvature has profound effect on cell behaviors. With the decrease of diameter of the cylinder/sphere (i.e. increase of curvature), the cells would more preferentially align and polarize with large aspect ratio in the axial/peripheral direction. And the behaviors of the alignment and polarization were position-dependent. For example, at the end of the cylinder, the cells preferred to align circumferentially; while in the interior region, the cells preferred to align in the axial direction. We showed that the cell polarization and alignment were closely correlated with the in-plane stresses in cell layer. That is, the cell polarization and alignment were controlled by the maximum shear stress, which drove cells to align and polarize along the maximum principal stress. The curvature could influence the magnitude of the maximum shear stress and thus regulate cell behaviors. This study provided important insights into the mechanisms of surface curvature influencing cell behaviors in tissue morphogenesis. In addition, our theory of the stress dependent cellular polarity provides a generalized interpretation of the curvature and edge effects which might be extended to understand other steric effects in cell behaviors.
Collapse
|
39
|
Xie J, Zhou C, Zhang D, Cai L, Du W, Li X, Zhou X. Compliant Substratum Changes Osteocyte Functions: The Role of ITGB3/FAK/β-Catenin Signaling Matters. ACS APPLIED BIO MATERIALS 2018; 1:792-801. [PMID: 34996170 DOI: 10.1021/acsabm.8b00246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
40
|
Wang G, Nola S, Bovio S, Bun P, Coppey-Moisan M, Lafont F, Galli T. Biomechanical Control of Lysosomal Secretion Via the VAMP7 Hub: A Tug-of-War between VARP and LRRK1. iScience 2018; 4:127-143. [PMID: 30240735 PMCID: PMC6147023 DOI: 10.1016/j.isci.2018.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/05/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
The rigidity of the cell environment can vary tremendously between tissues and in pathological conditions. How this property may affect intracellular membrane dynamics is still largely unknown. Here, using atomic force microscopy, we show that cells deficient in the secretory lysosome v-SNARE VAMP7 are impaired in adaptation to substrate rigidity. Conversely, VAMP7-mediated secretion is stimulated by more rigid substrate and this regulation depends on the Longin domain of VAMP7. We further find that the Longin domain binds the kinase and retrograde trafficking adaptor LRRK1 and that LRRK1 negatively regulates VAMP7-mediated exocytosis. Conversely, VARP, a VAMP7- and kinesin 1-interacting protein, further controls the availability for secretion of peripheral VAMP7 vesicles and response of cells to mechanical constraints. LRRK1 and VARP interact with VAMP7 in a competitive manner. We propose a mechanism whereby biomechanical constraints regulate VAMP7-dependent lysosomal secretion via LRRK1 and VARP tug-of-war control of the peripheral pool of secretory lysosomes.
Collapse
Affiliation(s)
- Guan Wang
- Membrane Traffic in Health & Disease, Institut Jacques Monod, CNRS UMR7592, INSERM U950, Sorbonne Paris-Cité, Université Paris Diderot, Paris 75205, France; Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, 102-108 rue de la Santé, Paris 75014, France
| | - Sébastien Nola
- Membrane Traffic in Health & Disease, Institut Jacques Monod, CNRS UMR7592, INSERM U950, Sorbonne Paris-Cité, Université Paris Diderot, Paris 75205, France; Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, 102-108 rue de la Santé, Paris 75014, France
| | - Simone Bovio
- Cellular Microbiology and Physics of Infection Group, Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, Institut Pasteur de Lille, Centre Hospitalier Régional de Lille, Université de Lille, Lille, France
| | - Philippe Bun
- NeurImag Tech Core Facility, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, Paris 75014, France
| | - Maïté Coppey-Moisan
- Mechanotransduction: from Cell Surface to Nucleus, Institut Jacques Monod, CNRS UMR7592, Sorbonne Paris-Cité, Université Paris-Diderot, Paris, France
| | - Frank Lafont
- Cellular Microbiology and Physics of Infection Group, Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U1019, Institut Pasteur de Lille, Centre Hospitalier Régional de Lille, Université de Lille, Lille, France
| | - Thierry Galli
- Membrane Traffic in Health & Disease, Institut Jacques Monod, CNRS UMR7592, INSERM U950, Sorbonne Paris-Cité, Université Paris Diderot, Paris 75205, France; Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, 102-108 rue de la Santé, Paris 75014, France.
| |
Collapse
|
41
|
Chagnon-Lessard S, Jean-Ruel H, Godin M, Pelling AE. Cellular orientation is guided by strain gradients. Integr Biol (Camb) 2018; 9:607-618. [PMID: 28534911 DOI: 10.1039/c7ib00019g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strain-induced reorientation response of cyclically stretched cells has been well characterized in uniform strain fields. In the present study, we comprehensively analyse the behaviour of human fibroblasts subjected to a highly non-uniform strain field within a polymethylsiloxane microdevice. Our results indicate that the strain gradient amplitude and direction regulate cell reorientation through a coordinated gradient avoidance response. We provide critical evidence that strain gradient is a key physical cue that can guide cell organization. Specifically, our work suggests that cells are able to pinpoint the location under the cell of multiple physical cues and integrate this information (strain and strain gradient amplitudes and directions), resulting in a coordinated response. To gain insight into the underlying mechanosensing processes, we studied focal adhesion reorganization and the effect of modulating myosin-II contractility. The extracted focal adhesion orientation distributions are similar to those obtained for the cell bodies, and their density is increased by the presence of stretching forces. Moreover, it was found that the myosin-II activity promoter calyculin-A has little effect on the cellular response, while the inhibitor blebbistatin suppresses cell and focal adhesion alignment and reduces focal adhesion density. These results confirm that similar internal structures involved in sensing and responding to strain direction and amplitude are also key players in strain gradient mechanosensing and avoidance.
Collapse
Affiliation(s)
- Sophie Chagnon-Lessard
- Department of Physics, Center for Interdisciplinary Nanophysics, University of Ottawa, 598 King Edward, Ottawa, ON K1N 6N5, Canada.
| | | | | | | |
Collapse
|
42
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
43
|
Differential Expression Profiling of Long Noncoding RNA and mRNA during Osteoblast Differentiation in Mouse. Int J Genomics 2018; 2018:7691794. [PMID: 29765976 PMCID: PMC5885395 DOI: 10.1155/2018/7691794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/22/2017] [Accepted: 01/17/2018] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as an important controller affecting metabolic tissue development, signaling, and function. However, little is known about the function and profile of lncRNAs in osteoblastic differentiation in mice. Here, we analyzed the RNA-sequencing (RNA-Seq) datasets obtained for 18 days in two-day intervals from neonatal mouse calvarial pre-osteoblast-like cells. Over the course of osteoblast differentiation, 4058 mRNAs and 3948 lncRNAs were differentially expressed, and they were grouped into 12 clusters according to the expression pattern by fuzzy c-means clustering. Using weighted gene coexpression network analysis, we identified 9 modules related to the early differentiation stage (days 2–8) and 7 modules related to the late differentiation stage (days 10–18). Gene ontology and KEGG pathway enrichment analysis revealed that the mRNA and lncRNA upregulated in the late differentiation stage are highly associated with osteogenesis. We also identified 72 mRNA and 89 lncRNAs as potential markers including several novel markers for osteoblast differentiation and activation. Our findings provide a valuable resource for mouse lncRNA study and improves our understanding of the biology of osteoblastic differentiation in mice.
Collapse
|
44
|
Abstract
It is important to learn features of locally applied forces by cells during matrix rigidity sensing, since the function of mechanosensing proteins would be affected by force magnitude, loading velocity, or even loading history. Here, we investigate a rigidity-sensing apparatus consisting of a contractile unit on matrices. Strikingly, our analysis indicates that the matrix rigidity is not only sensed with a fixed step size in displacement but also with a fixed apparent loading velocity. The fixed step size is shown to be correlated with the monomer size of actin filament. This work suggests that the loading profile during rigidity sensing is regulated by various aspects of the contractile unit, which then serves as the standard in sensing varied rigidity of the matrix.
Collapse
|
45
|
Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F. Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 2017; 22-23:88-119. [PMID: 28688729 PMCID: PMC5712490 DOI: 10.1016/j.plrev.2017.06.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
Cells in vivo reside within complex microenvironments composed of both biochemical and biophysical cues. The dynamic feedback between cells and their microenvironments hinges upon biophysical cues that regulate critical cellular behaviors. Understanding this regulation from sensing to reaction to feedback is therefore critical, and a large effort is afoot to identify and mathematically model the fundamental mechanobiological mechanisms underlying this regulation. This review provides a critical perspective on recent progress in mathematical models for the responses of cells to the biophysical cues in their microenvironments, including dynamic strain, osmotic shock, fluid shear stress, mechanical force, matrix rigidity, porosity, and matrix shape. The review highlights key successes and failings of existing models, and discusses future opportunities and challenges in the field.
Collapse
Affiliation(s)
- Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Mechanical Engineering & Materials Science, and NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
46
|
He S, Ji B. Mechanics of Cell Mechanosensing in Protrusion and Retraction of Lamellipodium. ACS Biomater Sci Eng 2017; 3:2943-2953. [PMID: 33418714 DOI: 10.1021/acsbiomaterials.6b00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lamellipodia (LP), a subcellular structure at cell front, plays a key role in cell spreading and migration. And its mechanosensing function is of crucial importance for cell activities. But the mechanism of the mechanosensing function remains poorly understood. Here we developed a multiscale model to consider its protrusion and retraction processes, and analyzed the forces acted on the key structural components of the LP and the effect of these forces on LP movement. Our results show that raising substrate rigidity increases the force acting on the focal adhesion (FA) and decreases the force on LP actin, thus promoting the maturation of FA while suppressing the detachment of LP actin from the cell membrane. The membrane tension also influences the LP movement, but its effect is opposite to that of the substrate rigidity. It turns out that the substrate rigidity and membrane tension together regulate the dynamics of FAs and the detachment of LP actin, which in turn determine the LP movement. Interestingly, we found that the effect of substrate rigidity and membrane tension on the LP movement both exhibit a biphasic manner. We show that our predictions agree, in general, with the experiments on cell mechanosensing behaviors at both subcellular and cellular levels.
Collapse
Affiliation(s)
- Shijie He
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
47
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 486] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
48
|
Yu S, Wang H, Ni Y, He L, Huang M, Lin Y, Qian J, Jiang H. Tuning interfacial patterns of molecular bonds via surface morphology. SOFT MATTER 2017; 13:5970-5976. [PMID: 28869265 DOI: 10.1039/c7sm01278k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many studies have demonstrated that the mechanical properties of the extracellular matrix can significantly influence the morphology, strength and lifetime of focal adhesions. However, how the morphology of the contact surface affects the pattern formation of the molecular bonds still remains largely unknown. Here, by simplifying the cell and extracellular matrix to two opposing elastic bodies and considering the lateral diffusion as well as the bonding/debonding of molecular bonds, we study the clustering behavior of receptor-ligand bonds between curved surfaces and the phase diagrams of cluster patterns. We reveal the important role of surface morphology and bond kinetics in regulating the patterns of bond clusters. We further investigate the segregation dynamics of the interfacial bonds under various loading speeds, and we show that the average interfacial stress is rate-dependent while the rupture stress is rate-independent. Finally, we demonstrate that programmable patterning of bond clusters can be achieved through the designed surface morphology.
Collapse
Affiliation(s)
- Sai Yu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Baratchi S, Khoshmanesh K, Woodman OL, Potocnik S, Peter K, McIntyre P. Molecular Sensors of Blood Flow in Endothelial Cells. Trends Mol Med 2017; 23:850-868. [PMID: 28811171 DOI: 10.1016/j.molmed.2017.07.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Mechanical stress from blood flow has a significant effect on endothelial physiology, with a key role in initiating vasoregulatory signals. Disturbances in blood flow, such as in regions of disease-associated stenosis, arterial branch points, and sharp turns, can induce proatherogenic phenotypes in endothelial cells. The disruption of vascular homeostasis as a result of endothelial dysfunction may contribute to early and late stages of atherosclerosis, the underlying cause of coronary artery disease. In-depth knowledge of the mechanobiology of endothelial cells is essential to identifying mechanosensory complexes involved in the pathogenesis of atherosclerosis. In this review, we describe different blood flow patterns and summarize current knowledge on mechanosensory molecules regulating endothelial vasoregulatory functions, with clinical implications. Such information may help in the search for novel therapeutic approaches.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
| | | | - Owen L Woodman
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Simon Potocnik
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Karlheinz Peter
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| |
Collapse
|
50
|
Zent CS, Elliott MR. Maxed out macs: physiologic cell clearance as a function of macrophage phagocytic capacity. FEBS J 2017; 284:1021-1039. [PMID: 27863012 PMCID: PMC5378628 DOI: 10.1111/febs.13961] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 12/28/2022]
Abstract
The phagocytic clearance of host cells is important for eliminating dying cells and for the therapeutic clearance of antibody-targeted cells. As ubiquitous, motile and highly phagocytic immune cells, macrophages are principal players in the phagocytic removal of host cells throughout the body. In recent years, great strides have been made in identifying the molecular mechanisms that control the recognition and phagocytosis of cells by macrophages. However, much less is known about the physical and metabolic constraints that govern the amount of cellular material macrophages can ingest and how these limitations affect the overall efficiency of host cell clearance in health and disease. In this review we will discuss, in the contexts of apoptotic cells and antibody-targeted malignant cells, how physical and metabolic factors associated with the internalization of host cells are relayed to the phagocytic machinery and how these signals can impact the overall efficiency of cell clearance. We also discuss how this information can be leveraged to increase cell clearance for beneficial therapeutic outcomes.
Collapse
Affiliation(s)
- Clive S. Zent
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael R. Elliott
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|