1
|
Duell J, Westin J. The future of immunotherapy for diffuse large B-cell lymphoma. Int J Cancer 2025; 156:251-261. [PMID: 39319495 PMCID: PMC11578085 DOI: 10.1002/ijc.35156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 09/26/2024]
Abstract
With the introduction of anti-CD19 chimeric antigen receptor (CAR) T-cell (CAR T) therapies, bispecific CD3/CD20 antibodies and anti-CD19 antibodies, immunotherapy continues to transform the treatment of diffuse large B-cell lymphoma (DLBCL). A number of novel immunotherapeutic strategies are under investigation to build upon current clinical benefit and offer further options to those patients who cannot tolerate conventional intensive therapies due to their age and/or state of health. Alongside immunotherapies that leverage the adaptive immune response, natural killer (NK) cell and myeloid cell-engaging therapies can utilize the innate immune system. Monoclonal antibodies engineered for greater recognition by the patient's immune system can enhance antitumor cytotoxic mechanisms mediated by NK cells and macrophages. In addition, CAR technology is extending into NK cells and macrophages and investigational immune checkpoint inhibitors targeting macrophage/myeloid cell checkpoints via the CD47/SIRPα axis are in development. Regimens that engage both innate and adaptive immune responses may help to overcome resistance to current immunotherapies. Furthermore, combinations of immunotherapy and oncogenic pathway inhibitors to reprogram the immunosuppressive tumor microenvironment of DLBCL may also potentiate antitumor responses. As immunotherapy treatment options continue to expand, both in the first-line setting and further lines of therapy, understanding how to harness these immunotherapies and the potential for combination approaches will be important for the development of future DLBCL treatment approaches.
Collapse
Affiliation(s)
- Johannes Duell
- Department of Internal Medicine 2University Hospital of WürzburgWürzburgGermany
| | - Jason Westin
- Department of Lymphoma and MyelomaMD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
2
|
Kennedy PR, Arvindam US, Phung SK, Ettestad B, Feng X, Li Y, Kile QM, Hinderlie P, Khaw M, Huang RS, Kaufman M, Puchalska P, Russell A, Butler J, Abbott L, McClure P, Luo X, Lu QT, Blazar BR, Crawford PA, Lim J, Miller JS, Felices M. Metabolic programs drive function of therapeutic NK cells in hypoxic tumor environments. SCIENCE ADVANCES 2024; 10:eadn1849. [PMID: 39475618 PMCID: PMC11524192 DOI: 10.1126/sciadv.adn1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Limited oxygen (hypoxia) in solid tumors poses a challenge to successful immunotherapy with natural killer (NK) cells. NK cells have impaired cytotoxicity when cultured in hypoxia (1% oxygen) but not physiologic (>5%) or atmospheric oxygen (20%). We found that changes to cytotoxicity were regulated at the transcriptional level and accompanied by metabolic dysregulation. Dosing with interleukin-15 (IL-15) enhanced NK cell cytotoxicity in hypoxia, but preactivation with feeder cells bearing IL-21 and 4-1BBL was even better. Preactivation resulted in less perturbed metabolism in hypoxia; greater resistance to oxidative stress; and no hypoxia-induced loss of transcription factors (T-bet and Eomes), activating receptors, adhesion molecules (CD2), and cytotoxic proteins (TRAIL and FasL). There remained a deficit in CD122/IL-2Rβ when exposed to hypoxia, which affected IL-15 signaling. However, tri-specific killer engager molecules that deliver IL-15 in the context of anti-CD16/FcγRIII were able to bypass this deficit, enhancing cytotoxicity of both fresh and preactivated NK cells in hypoxia.
Collapse
Affiliation(s)
- Philippa R Kennedy
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Upasana Sunil Arvindam
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Shee Kwan Phung
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Brianna Ettestad
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Yunmin Li
- Xcell Biosciences, San Francisco, CA, USA
| | - Quinlan M Kile
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter Hinderlie
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Melissa Khaw
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rih-Sheng Huang
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marissa Kaufman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Russell
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jonah Butler
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lucas Abbott
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Paul McClure
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Xianghua Luo
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James Lim
- Xcell Biosciences, San Francisco, CA, USA
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Pfeifer Serrahima J, Schoenfeld K, Kühnel I, Harwardt J, Macarrón Palacios A, Prüfer M, Kolaric M, Oberoi P, Kolmar H, Wels WS. Bispecific killer cell engagers employing species cross-reactive NKG2D binders redirect human and murine lymphocytes to ErbB2/HER2-positive malignancies. Front Immunol 2024; 15:1457887. [PMID: 39267747 PMCID: PMC11390497 DOI: 10.3389/fimmu.2024.1457887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
NKG2D is an activating receptor expressed by natural killer (NK) cells and other cytotoxic lymphocytes that plays a pivotal role in the elimination of neoplastic cells through recognition of different stress-induced cell surface ligands (NKG2DL). To employ this mechanism for cancer immunotherapy, we generated NKG2D-engaging bispecific antibodies that selectively redirect immune effector cells to cancer cells expressing the tumor-associated antigen ErbB2 (HER2). NKG2D-specific single chain fragment variable (scFv) antibodies cross-reactive toward the human and murine receptors were derived by consecutive immunization of chicken with the human and murine antigens, followed by stringent screening of a yeast surface display immune library. Four distinct species cross-reactive (sc) scFv domains were selected, and reformatted into a bispecific engager format by linking them via an IgG4 Fc domain to a second scFv fragment specific for ErbB2. The resulting molecules (termed scNKAB-ErbB2) were expressed as disulfide-linked homodimers, and demonstrated efficient binding to ErbB2-positive cancer cells as well as NKG2D-expressing primary human and murine lymphocytes, and NK-92 cells engineered with chimeric antigen receptors derived from human and murine NKG2D (termed hNKAR and mNKAR). Two of the scNKAB-ErbB2 molecules were found to compete with the natural NKG2D ligand MICA, while the other two engagers interacted with an epitope outside of the ligand binding site. Nevertheless, all four tested scNKAB-ErbB2 antibodies were similarly effective in redirecting the cytotoxic activity of primary human and murine lymphocytes as well as hNKAR-NK-92 and mNKAR-NK-92 cells to ErbB2-expressing targets, suggesting that further development of these species cross-reactive engager molecules for cancer immunotherapy is warranted.
Collapse
Affiliation(s)
- Jordi Pfeifer Serrahima
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Ines Kühnel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Maren Prüfer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Margareta Kolaric
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Winfried S. Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| |
Collapse
|
4
|
Basto PA, Reticker-Flynn NE. Interrogating the roles of lymph node metastasis in systemic immune surveillance. Clin Exp Metastasis 2024; 41:351-359. [PMID: 38315348 PMCID: PMC11298577 DOI: 10.1007/s10585-023-10261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Lymph nodes (LNs) are principal orchestrators of the adaptive immune response, yet in the context of malignancy, they are typically the first sites of metastasis. When tumors spread to LNs, they alter the immune repertoire, ultimately reconditioning it in a manner that suppresses anti-tumor immunity and promotes further metastatic dissemination. Conversely, activation of anti-tumor immunity within LNs is essential for immunotherapy, suggesting clinical approaches to radiotherapy in LNs and lymphadenectomy may need to be reconsidered in the context of immune checkpoint blockade (ICB). Herein, we discuss our understanding of the immune remodeling that coincides with LN metastasis as well as recent clinical studies exploring neoadjuvant immunotherapy and the roles of LNs in treatment of solid organ malignancies.
Collapse
Affiliation(s)
- Pamela A Basto
- Division of Hematology and Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Nathan E Reticker-Flynn
- Department of Otolaryngology - Head & Neck Surgery, Stanford University, Stanford, CA, 94305, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Matson AW, Hullsiek R, Dixon KJ, Wang S, Lindstedt AJ, Friess RR, Phung SK, Freedman TS, Felices M, Truckenbrod EN, Wu J, Miller JS, Walcheck B. Enhanced IL-15-mediated NK cell activation and proliferation by an ADAM17 function-blocking antibody involves CD16A, CD137, and accessory cells. J Immunother Cancer 2024; 12:e008959. [PMID: 39053944 DOI: 10.1136/jitc-2024-008959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are being extensively studied as a cell therapy for cancer. These cells are activated by recognition of ligands and antigens on tumor cells. Cytokine therapies, such as IL-15, are also broadly used to stimulate endogenous and adoptively transferred NK cells in patients with cancer. These stimuli activate the membrane protease ADAM17, which cleaves various cell-surface receptors on NK cells as a negative feedback loop to limit their cytolytic function. ADAM17 inhibition can enhance IL-15-mediated NK cell proliferation in vitro and in vivo. In this study, we investigated the underlying mechanism of this process. METHODS Peripheral blood mononuclear cells (PBMCs) or enriched NK cells from human peripheral blood, either unlabeled or labeled with a cell proliferation dye, were cultured for up to 7 days in the presence of rhIL-15±an ADAM17 function-blocking antibody. Different fully human versions of the antibody were generated; Medi-1 (IgG1), Medi-4 (IgG4), Medi-PGLALA, Medi-F(ab')2, and TAB16 (anti-ADAM17 and anti-CD16 bispecific) to modulate CD16A binding. Flow cytometry was used to assess NK cell proliferation and phenotypic markers, immunoblotting to examine CD16A signaling, and IncuCyte-based live cell imaging to measure NK cell antitumor activity. RESULTS The ADAM17 function-blocking monoclonal antibody (mAb) Medi-1 markedly increased early NK cell activation by IL-15. By using different engineered versions of the antibody, we demonstrate involvement by CD16A, an activating Fcγ receptor and well-described ADAM17 substrate. Hence, Medi-1 when bound to ADAM17 on NK cells is engaged by CD16A and blocks its shedding, inducing and prolonging its signaling. This process did not promote evident NK cell fratricide or dysfunction. Synergistic signaling by Medi-1 and IL-15 enhanced the upregulation of CD137 on CD16A+ NK cells and augmented their proliferation in the presence of PBMC accessory cells or an anti-CD137 agonistic mAb. CONCLUSIONS Our data reveal for the first time that CD16A and CD137 underpin Medi-1 enhancement of IL-15-driven NK cell activation and proliferation, respectively, with the latter requiring PBMC accessory cells. The use of Medi-1 represents a novel strategy to enhance IL-15-driven NK cell proliferation, and it may be of therapeutic importance by increasing the antitumor activity of NK cells in patients with cancer.
Collapse
Affiliation(s)
- Anders W Matson
- Graduate Program in Comparative and Molecular Biosciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Rob Hullsiek
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kate J Dixon
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sam Wang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anders J Lindstedt
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, Minnesota, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan R Friess
- Graduate Program in Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shee Kwan Phung
- Graduate Program in Comparative and Molecular Biosciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Tanya S Freedman
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emily N Truckenbrod
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Matson AW, Hullsiek RH, Dixon KJ, Wang S, Lindstedt AJ, Friess RR, Phung SK, Freedman TS, Felices M, Truckenbrod EN, Wu J, Miller JS, Walcheck B. Enhanced IL-15-mediated NK cell activation and proliferation by an ADAM17 function-blocking antibody involves CD16A, CD137, and accessory cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593347. [PMID: 38798522 PMCID: PMC11118905 DOI: 10.1101/2024.05.09.593347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background NK cells are being extensively studied as a cell therapy for cancer. Their effector functions are induced by the recognition of ligands on tumor cells and by various cytokines. IL-15 is broadly used to stimulate endogenous and adoptively transferred NK cells in cancer patients. These stimuli activate the membrane protease ADAM17, which then cleaves assorted receptors on the surface of NK cells as a negative feedback loop to limit their activation and function. We have shown that ADAM17 inhibition can enhance IL-15-mediated NK cell proliferation in vitro and in vivo . In this study, we investigated the underlying mechanism of this process. Methods PBMCs or enriched NK cells from human peripheral blood, either unlabeled or labeled with a cell proliferation dye, were cultured for up to 7 days in the presence of rhIL-15 +/- an ADAM17 function-blocking antibody. Different versions of the antibody were generated; Medi-1 (IgG1), Medi-4 (IgG4), Medi-PGLALA, Medi-F(ab') 2 , and TAB16 (anti-ADAM17 and anti-CD16 bispecific) to modulate CD16A engagement on NK cells. Flow cytometry was used to assess NK cell proliferation and phenotypic markers, immunoblotting to examine CD16A signaling, and IncuCyte-based live cell imaging to measure NK cell anti-tumor activity. Results The ADAM17 function-blocking mAb Medi-1 markedly increased initial NK cell activation by IL-15. Using different engineered versions of the antibody revealed that the activating Fcγ receptor CD16A, a well-described ADAM17 substrate, was critical for enhancing IL-15 stimulation. Hence, Medi-1 bound to ADAM17 on NK cells can be engaged by CD16A and block its shedding, inducing and prolonging its signaling. This process did not promote evident NK cell fratricide, phagocytosis, or dysfunction. Synergistic activity by Medi-1 and IL-15 enhanced the upregulation of CD137 on CD16A + NK cells and augmented their proliferation in the presence of PBMC accessory cells. Conclusions Our data reveal for the first time that CD16A and CD137 underpin Medi-1 enhancement of IL-15-driven NK cell activation and proliferation, respectively. The use of Medi-1 represents a novel strategy to enhance IL-15-driven NK cell proliferation, and it may be of therapeutic importance by increasing the anti-tumor activity of NK cells in cancer patients. What is already known on this topic NK cell therapies are being broadly investigated to treat cancer. NK cell stimulation by IL-15 prolongs their survival in cancer patients. Various stimuli including IL-15 activate ADAM17 in NK cells, a membrane protease that regulates the cell surface density of various receptors as a negative feedback mechanism. What this study adds Treating NK cells with the ADAM17 function-blocking mAb Medi-1 markedly enhanced their activation and proliferation. Our study reveals that the Fc and Fab regions of Medi-1 function synergistically with IL-15 in NK cell activation. Medi-1 treatment augments the upregulation of CD137 by NK cells, which enhances their proliferation in the presence of PBMC accessory cells. How this study might affect research practice or policy Our study is of translational importance as Medi-1 treatment in combination with IL-15 could potentially augment the proliferation and function of endogenous or adoptively transferred NK cells in cancer patients. Graphical abstract
Collapse
|
7
|
Jurišić V. Investigation of NK cell function against two target hematological cell line using radioactive chromium assay. Appl Radiat Isot 2024; 206:111251. [PMID: 38422944 DOI: 10.1016/j.apradiso.2024.111251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
NK (Natural killer) cells are a special population of peripheral blood lymphocytes that kill virus-infected cells as well as tumor cells. For testing NK cell function, the classic gold standard assay has been used for a long time, determining the activity from target tumor cells using radioactive chromium in cell cultures for 4h. In this study two hematological cell lines K562 and MDS where used and target and results showed different sensitivity to killing by NK cells separated from healthy volunteers. Results have been shown that MDS release significantly more radioactive chromium indicating higher degree of necrosis during cell culture. In addition, K562 cell line is better target for NK killing in all different E:T ratio in comparison to MDS cell line previously described. Based on this, it is suggested that K562 cells be continues used in the future as better target for investigation NK killing.
Collapse
Affiliation(s)
- Vladimir Jurišić
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia.
| |
Collapse
|
8
|
Wang M, Krueger JB, Gilkey AK, Stelljes EM, Kluesner MG, Pomeroy EJ, Skeate JG, Slipek NJ, Lahr WS, Vázquez PNC, Zhao Y, Eaton EJ, Laoharawee K, Webber BR, Moriarity BS. Precision Enhancement of CAR-NK Cells through Non-Viral Engineering and Highly Multiplexed Base Editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.582637. [PMID: 38496503 PMCID: PMC10942345 DOI: 10.1101/2024.03.05.582637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Natural killer (NK) cells' unique ability to kill transformed cells expressing stress ligands or lacking major histocompatibility complexes (MHC) has prompted their development for immunotherapy. However, NK cells have demonstrated only moderate responses against cancer in clinical trials and likely require advanced genome engineering to reach their full potential as a cancer therapeutic. Multiplex genome editing with CRISPR/Cas9 base editors (BE) has been used to enhance T cell function and has already entered clinical trials but has not been reported in human NK cells. Here, we report the first application of BE in primary NK cells to achieve both loss-of-function and gain-of-function mutations. We observed highly efficient single and multiplex base editing, resulting in significantly enhanced NK cell function. Next, we combined multiplex BE with non-viral TcBuster transposon-based integration to generate IL-15 armored CD19 CAR-NK cells with significantly improved functionality in a highly suppressive model of Burkitt's lymphoma both in vitro and in vivo. The use of concomitant non-viral transposon engineering with multiplex base editing thus represents a highly versatile and efficient platform to generate CAR-NK products for cell-based immunotherapy and affords the flexibility to tailor multiple gene edits to maximize the effectiveness of the therapy for the cancer type being treated.
Collapse
Affiliation(s)
- Minjing Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Joshua B Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Alexandria K Gilkey
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Erin M Stelljes
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Mitchell G Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Molecular and Cellular Biology Graduate Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Patricia N Claudio Vázquez
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Yueting Zhao
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ella J Eaton
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Pandey P, Garg A, Singh V, Rai G, Mishra N. Clinical Trials and Future Prospects of Autophagy and ROS in Cancer. CANCER DRUG DISCOVERY AND DEVELOPMENT 2024:337-369. [DOI: 10.1007/978-3-031-66421-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Burger MC, Forster MT, Romanski A, Straßheimer F, Macas J, Zeiner PS, Steidl E, Herkt S, Weber KJ, Schupp J, Lun JH, Strecker MI, Wlotzka K, Cakmak P, Opitz C, George R, Mildenberger IC, Nowakowska P, Zhang C, Röder J, Müller E, Ihrig K, Langen KJ, Rieger MA, Herrmann E, Bonig H, Harter PN, Reiss Y, Hattingen E, Rödel F, Plate KH, Tonn T, Senft C, Steinbach JP, Wels WS. Intracranial injection of natural killer cells engineered with a HER2-targeted chimeric antigen receptor in patients with recurrent glioblastoma. Neuro Oncol 2023; 25:2058-2071. [PMID: 37148198 PMCID: PMC10628939 DOI: 10.1093/neuonc/noad087] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Glioblastoma (GB) is incurable at present without established treatment options for recurrent disease. In this phase I first-in-human clinical trial we investigated safety and feasibility of adoptive transfer of clonal chimeric antigen receptor (CAR)-NK cells (NK-92/5.28.z) targeting HER2, which is expressed at elevated levels by a subset of glioblastomas. METHODS Nine patients with recurrent HER2-positive GB were treated with single doses of 1 × 107, 3 × 107, or 1 × 108 irradiated CAR-NK cells injected into the margins of the surgical cavity during relapse surgery. Imaging at baseline and follow-up, peripheral blood lymphocyte phenotyping and analyses of the immune architecture by multiplex immunohistochemistry and spatial digital profiling were performed. RESULTS There were no dose-limiting toxicities, and none of the patients developed a cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome. Five patients showed stable disease after relapse surgery and CAR-NK injection that lasted 7 to 37 weeks. Four patients had progressive disease. Pseudoprogression was found at injection sites in 2 patients, suggestive of a treatment-induced immune response. For all patients, median progression-free survival was 7 weeks, and median overall survival was 31 weeks. Furthermore, the level of CD8+ T-cell infiltration in recurrent tumor tissue prior to CAR-NK cell injection positively correlated with time to progression. CONCLUSIONS Intracranial injection of HER2-targeted CAR-NK cells is feasible and safe in patients with recurrent GB. 1 × 108 NK-92/5.28.z cells was determined as the maximum feasible dose for a subsequent expansion cohort with repetitive local injections of CAR-NK cells.
Collapse
Affiliation(s)
- Michael C Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | | | - Annette Romanski
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt and Red Cross Blood Donation Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Florian Straßheimer
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Jadranka Macas
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pia S Zeiner
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Eike Steidl
- Institute of Neuroradiology, Goethe University Hospital, Frankfurt, Germany
| | - Stefanie Herkt
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt and Red Cross Blood Donation Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Katharina J Weber
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center (UCT), Goethe University Hospital, Frankfurt, Germany
| | - Jonathan Schupp
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer H Lun
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maja I Strecker
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Karolin Wlotzka
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Pinar Cakmak
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corinna Opitz
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Rosemol George
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Iris C Mildenberger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
| | - Paulina Nowakowska
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt and Red Cross Blood Donation Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Jasmin Röder
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Elvira Müller
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Kristina Ihrig
- University Cancer Center (UCT), Goethe University Hospital, Frankfurt, Germany
| | - Karl-Josef Langen
- Research Center Jülich, Institute of Neuroscience and Medicine, Jülich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Michael A Rieger
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine II, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Eva Herrmann
- Institute for Biostatistics and Mathematical Modelling, Goethe University, Frankfurt, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt and Red Cross Blood Donation Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Patrick N Harter
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yvonne Reiss
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University Hospital, Frankfurt, Germany
| | - Franz Rödel
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Karl H Plate
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), Goethe University Hospital, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
| | - Torsten Tonn
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Christian Senft
- Department of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Winfried S Wels
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| |
Collapse
|
11
|
Cho Y, Kim J, Park J, Doh J. Surface nanotopography and cell shape modulate tumor cell susceptibility to NK cell cytotoxicity. MATERIALS HORIZONS 2023; 10:4532-4540. [PMID: 37559559 DOI: 10.1039/d3mh00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes exerting cytotoxicity against virally infected cells and tumor cells. NK cell cytotoxicity is primarily determined by biochemical signals received from ligands expressed on target cell surfaces, but it is also possible that biophysical environments of tumor cells, such as nanoscale surface topography typically existing on extracellular matrixes (ECMs) or cell morphology determined by ECM spaces or cell density, regulate NK cell cytotoxicity. In this study, micro/nanofabrication technology was applied to examine this possibility. Tumor cells were plated on flat or nanogrooved surfaces, or micropatterned into circular or elliptical geometries, and the effects of surface topography and tumor cell morphology on NK cell cytotoxicity were investigated. NK cells exhibited significantly higher cytotoxicity against tumor cells on nanogrooved surfaces or tumor cells in elliptical patterns than tumor cells on flat surfaces or tumor cells in circular patterns, respectively. The amounts of stress fiber formation in tumor cells positively correlated with NK cell cytotoxicity, indicating that increased cellular tension of tumor cells, either mediated by nanogrooved surfaces or elongated morphologies, was a key factor regulating NK cell cytotoxicity. These results may provide insight into the design of NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yongbum Cho
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, 77, Cheongam-ro, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - JangHyuk Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
| | - Jeehun Park
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
- Institute of Engineering Research, BioMAX, Seoul National University, Seoul, South Korea
| |
Collapse
|
12
|
Nakazawa T, Morimoto T, Maeoka R, Matsuda R, Nakamura M, Nishimura F, Ouji N, Yamada S, Nakagawa I, Park YS, Ito T, Nakase H, Tsujimura T. CIS deletion by CRISPR/Cas9 enhances human primary natural killer cell functions against allogeneic glioblastoma. J Exp Clin Cancer Res 2023; 42:205. [PMID: 37563692 PMCID: PMC10413513 DOI: 10.1186/s13046-023-02770-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant brain tumor and has "immunologically cold" features. Changing GBM to an "immunologically hot" tumor requires a strong trigger that induces initial immune responses in GBM. Allogeneic natural killer cells (NKCs) have gained considerable attention as promising immunotherapeutic tools against cancer, where gene-edited NKCs would result in effective anti-cancer treatment. The present study focused on the immune checkpoint molecule cytokine-inducible SH2-containing protein (CISH, or CIS) as a critical negative regulator in NKCs. METHODS The GBM tumor environment featured with immunological aspect was analyzed with Cancer immunogram and GlioVis. We generated human primary CIS-deleted NKCs (NK dCIS) using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) with single guide RNA targeting genome sites on CIS coding exons. The genome-edited NKCs underwent microarray with differential expression analysis and gene set enrichment analysis (GSEA). The anti-GBM activity of the genome-edited NKCs was evaluated by apoptosis induction effects against allogeneic GBM cells and spheroids. We further detected in vivo antitumor effects using xenograft brain tumor mice. RESULTS We successfully induced human CIS-deleted NKCs (NK dCIS) by combining our specific human NKC expansion method available for clinical application and genome editing technology. CIS gene-specific guide RNA/Cas9 protein complex suppressed CIS expression in the expanded NKCs with high expansion efficacy. Comprehensive gene expression analysis demonstrated increased expression of 265 genes and decreased expression of 86 genes in the NK dCIS. Gene set enrichment analysis revealed that the enriched genes were involved in NKC effector functions. Functional analysis revealed that the NK dCIS had increased interferon (IFN)ɤ and tumor necrosis factor (TNF) production. CIS deletion enhanced NKC-mediated apoptosis induction against allogeneic GBM cells and spheroids. Intracranial administration of the allogeneic NKCs prolonged the overall survival of xenograft brain tumor mice. Furthermore, the NK dCIS extended the overall survival of the mice. CONCLUSION The findings demonstrated the successful induction of human primary NK dCIS with CRISPR/Cas9 with efficient expansion. CIS deletion enhanced the NKC-mediated anti-tumor effects in allogeneic GBM and could be a promising immunotherapeutic alternative for patients with GBM.
Collapse
Affiliation(s)
- Tsutomu Nakazawa
- Grandsoul Research Institute for Immunology, Inc, 8-1 Matsui, Uda, Nara, 634-8522, Japan.
- Clinic Grandsoul Nara, Uda, Nara, Japan.
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan.
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Mitsutoshi Nakamura
- Clinic Grandsoul Nara, Uda, Nara, Japan
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Noriko Ouji
- Department of Immunology, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Young Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc, 8-1 Matsui, Uda, Nara, 634-8522, Japan
- Clinic Grandsoul Nara, Uda, Nara, Japan
| |
Collapse
|
13
|
Liu K, Sadeghipour N, Hoover AR, Valero TI, Furrer C, Adams J, Naqash AR, Zhao M, Papin JF, Chen WR. Single-cell transcriptomics reveals that tumor-infiltrating natural killer cells are activated by localized ablative immunotherapy and share anti-tumor signatures induced by immune checkpoint inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539163. [PMID: 37205468 PMCID: PMC10187236 DOI: 10.1101/2023.05.02.539163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rationale Natural killer (NK) cells provide protective anti-cancer immunity. However, the cancer therapy induced activation gene signatures and pathways in NK cells remain unclear. Methods We applied a novel localized ablative immunotherapy (LAIT) by synergizing photothermal therapy (PTT) with intra-tumor delivering of the immunostimulant N-dihydrogalactochitosan (GC), to treat breast cancer using a mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) mouse model. We performed single-cell RNA sequencing (scRNAseq) analysis to unveil the cellular heterogeneity and compare the transcriptional alterations induced by PTT, GC, and LAIT in NK cells within the tumor microenvironment (TME). Results ScRNAseq showed that NK subtypes, including cycling, activated, interferon-stimulated, and cytotoxic NK cells. Trajectory analysis revealed a route toward activation and cytotoxicity following pseudotime progression. Both GC and LAIT elevated gene expression associated with NK cell activation, cytolytic effectors, activating receptors, IFN pathway components, and cytokines/chemokines in NK subtypes. Single-cell transcriptomics analysis using immune checkpoint inhibitor (ICI)-treated animal and human samples revealed that ICI-induced NK activation and cytotoxicity across several cancer types. Furthermore, ICI-induced NK gene signatures were also induced by LAIT treatment. We also discovered that several types of cancer patients had significantly longer overall survival when they had higher expression of genes in NK cells that were also specifically upregulated by LAIT. Conclusion Our findings show for the first time that LAIT activates cytotoxicity in NK cells and the upregulated genes positively correlate with beneficial clinical outcomes for cancer patients. More importantly, our results further establish the correlation between the effects of LAIT and ICI on NK cells, hence expanding our understanding of mechanism of LAIT in remodeling TME and shedding light on the potentials of NK cell activation and anti-tumor cytotoxic functions in clinical applications.
Collapse
|
14
|
Piccinelli S, Romee R, Shapiro RM. The natural killer cell immunotherapy platform: an overview of the landscape of clinical trials in liquid and solid tumors. Semin Hematol 2023; 60:42-51. [PMID: 37080710 DOI: 10.1053/j.seminhematol.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
The translation of natural killer (NK) cells to the treatment of malignant disease has made significant progress in the last few decades. With a variety of available sources and improvements in both in vitro and in vivo NK cell expansion, the NK cell immunotherapy platform has come into its own. The enormous effort continues to further optimize this platform, including ways to enhance NK cell persistence, trafficking to the tumor microenvironment, and cytotoxicity. As this effort bears fruit, it is translated into a plethora of clinical trials in patients with advanced malignancies. The adoptive transfer of NK cells, either as a standalone therapy or in combination with other immunotherapies, has been applied for the treatment of both liquid and solid tumors, with numerous early-phase trials showing promising results. This review aims to summarize the key advantages of NK cell immunotherapy, highlight several of the current approaches being taken for its optimization, and give an overview of the landscape of clinical trials translating this platform into clinic.
Collapse
|
15
|
Kennedy PR, Vallera DA, Ettestad B, Hallstrom C, Kodal B, Todhunter DA, Bendzick L, Hinderlie P, Walker JT, Pulkrabek B, Pastan I, Kratzke RA, Fujioka N, Miller JS, Felices M. A tri-specific killer engager against mesothelin targets NK cells towards lung cancer. Front Immunol 2023; 14:1060905. [PMID: 36911670 PMCID: PMC9992642 DOI: 10.3389/fimmu.2023.1060905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
New treatments are required to enhance current therapies for lung cancer. Mesothelin is a surface protein overexpressed in non-small cell lung cancer (NSCLC) that shows promise as an immunotherapeutic target in phase I clinical trials. However, the immunosuppressive environment in NSCLC may limit efficacy of these therapies. We applied time-of-flight mass cytometry to examine the state of circulating mononuclear cells in fourteen patients undergoing treatment for unresectable lung cancer. Six patients had earlier stage NSCLC (I-IVA) and eight had highly advanced NSCLC (IVB). The advanced NSCLC patients relapsed with greater frequency than the earlier stage patients. Before treatment, patients with very advanced NSCLC had a greater proportion of CD14- myeloid cells than patients with earlier NSCLC. These patients also had fewer circulating natural killer (NK) cells bearing an Fc receptor, CD16, which is crucial to antibody-dependent cellular cytotoxicity. We designed a high affinity tri-specific killer engager (TriKE®) to enhance NK cytotoxicity against mesothelin+ targets in this environment. The TriKE consisted of CD16 and mesothelin binding elements linked together by IL-15. TriKE enhanced proliferation of lung cancer patient NK cells in vitro. Lung cancer lines are refractory to NK cell killing, but the TriKE enhanced cytotoxicity and cytokine production by patient NK cells when challenged with tumor. Importantly, TriKE triggered NK cell responses from patients at all stages of disease and treatment, suggesting TriKE can enhance current therapies. These pre-clinical studies suggest mesothelin-targeted TriKE has the potential to overcome the immunosuppressive environment of NSCLC to treat disease.
Collapse
Affiliation(s)
- Philippa R. Kennedy
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel A. Vallera
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
| | - Brianna Ettestad
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Caroline Hallstrom
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Behiye Kodal
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Deborah A. Todhunter
- Department of Radiation Oncology, University of Minnesota, Minneapolis, MN, United States
| | - Laura Bendzick
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN, United States
| | - Peter Hinderlie
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Joshua T. Walker
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Brittany Pulkrabek
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ira Pastan
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Robert A. Kratzke
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Naomi Fujioka
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
Moran J, Mylod E, Kane LE, Marion C, Keenan E, Mekhaeil M, Lysaght J, Dev KK, O’Sullivan J, Conroy MJ. Investigating the Effects of Olaparib on the Susceptibility of Glioblastoma Multiforme Tumour Cells to Natural Killer Cell-Mediated Responses. Pharmaceutics 2023; 15:360. [PMID: 36839682 PMCID: PMC9959685 DOI: 10.3390/pharmaceutics15020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common adult primary brain malignancy, with dismal survival rates of ~14.6 months. The current standard-of-care consists of surgical resection and chemoradiotherapy, however the treatment response is limited by factors such as tumour heterogeneity, treatment resistance, the blood-brain barrier, and immunosuppression. Several immunotherapies have undergone clinical development for GBM but demonstrated inadequate efficacy, yet future combinatorial approaches are likely to hold more promise. Olaparib is FDA-approved for BRCA-mutated advanced ovarian and breast cancer, and clinical studies have revealed its utility as a safe and efficacious radio- and chemo-sensitiser in GBM. The ability of Olaparib to enhance natural killer (NK) cell-mediated responses has been reported in prostate, breast, and lung cancer. This study examined its potential combination with NK cell therapies in GBM by firstly investigating the susceptibility of the GBM cell line T98G to NK cells and, secondly, examining whether Olaparib can sensitise T98G cells to NK cell-mediated responses. Here, we characterise the NK receptor ligand profile of T98G cells and demonstrate that Olaparib does not dampen T98G susceptibility to NK cells or elicit immunomodulatory effects on the function of NK cells. This study provides novel insights into the potential combination of Olaparib with NK cell therapies for GBM.
Collapse
Affiliation(s)
- Jennifer Moran
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Eimear Mylod
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Laura E. Kane
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Caroline Marion
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Emily Keenan
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Marianna Mekhaeil
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Kumlesh K. Dev
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity Translational Medicine Institute and Trinity St. James’s Cancer Institute, St. James’s Hospital, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Melissa J. Conroy
- Cancer Immunology Research Group, Department of Physiology, Trinity College Dublin, D02 R590 Dublin, Ireland
| |
Collapse
|
17
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
18
|
Aguilar OA, Gonzalez-Hinojosa MD, Arakawa-Hoyt JS, Millan AJ, Gotthardt D, Nabekura T, Lanier LL. The CD16 and CD32b Fc-gamma receptors regulate antibody-mediated responses in mouse natural killer cells. J Leukoc Biol 2023; 113:27-40. [PMID: 36822164 PMCID: PMC10197019 DOI: 10.1093/jleuko/qiac003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes capable of mediating immune responses without prior sensitization. NK cells express Fc-gamma receptors (FcγRs) that engage the Fc region of IgG. Studies investigating the role of FcγRs on mouse NK cells have been limited due to lack specific reagents. In this study, we characterize the expression and biological consequences of activating mouse NK cells through their FcγRs. We demonstrate that most NK cells express the activating CD16 receptor, and a subset of NK cells also expresses the inhibitory CD32b receptor. Critically, these FcγRs are functional on mouse NK cells and can modulate antibody-mediated responses. We also characterized mice with conditional knockout alleles of Fcgr3 (CD16) or Fcgr2b (CD32b) in the NK and innate lymphoid cell (ILC) lineage. NK cells in these mice did not reveal any developmental defects and were responsive to cross-linking activating NK receptors, cytokine stimulation, and killing of YAC-1 targets. Importantly, CD16-deficient NK cells failed to induce antibody-directed cellular cytotoxicity of antibody-coated B-cell lymphomas in in vitro assays. In addition, we demonstrate the important role of CD16 on NK cells using an in vivo model of cancer immunotherapy using anti-CD20 antibody treatment of B-cell lymphomas.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Maria D.R. Gonzalez-Hinojosa
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Janice S. Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Alberto J. Millan
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Dagmar Gotthardt
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Present Address: Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Tsukasa Nabekura
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California - San Francisco and Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
19
|
Smith DM, Schafer JR, Tullius B, Witkam L, Paust S. Natural killer cells for antiviral therapy. Sci Transl Med 2023; 15:eabl5278. [PMID: 36599006 DOI: 10.1126/scitranslmed.abl5278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) cell-based immunotherapy is being explored for treating infectious diseases, including viral infections. Here, we discuss evidence of NK cell responses to different viruses, ongoing clinical efforts to treat such infections with NK cell products, and review platforms to generate NK cell products.
Collapse
Affiliation(s)
- Davey M Smith
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | - Laura Witkam
- Kiadis Pharma, Sanofi, 1105BP Amsterdam, Netherlands
| | - Silke Paust
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Gascón-Ruiz M, Ramírez-Labrada A, Lastra R, Martínez-Lostao L, Paño-Pardo JR, Sesma A, Zapata-García M, Moratiel A, Quílez E, Torres-Ramón I, Yubero A, Domingo MP, Esteban P, Gálvez EM, Pardo J, Isla D. A Subset of PD-1-Expressing CD56 bright NK Cells Identifies Patients with Good Response to Immune Checkpoint Inhibitors in Lung Cancer. Cancers (Basel) 2023; 15:cancers15020329. [PMID: 36672279 PMCID: PMC9856517 DOI: 10.3390/cancers15020329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
(1) Despite the effectiveness of immune checkpoint inhibitors (ICIs) in lung cancer, there is a lack of knowledge about predictive biomarkers. The objective of our study is to analyze different subsets of T-lymphocytes and natural killer (NK) cells as predictive biomarkers in a cohort of patients with nonsmall cell lung cancer (NSCLC) treated with ICI. (2) This is an observational, prospective study with 55 NSCLC patients treated with ICI. A total of 43 T and NK cell subsets are analyzed in peripheral blood, including the main markers of exhaustion, differentiation, memory, activation, and inhibition. (3) Regarding the descriptive data, Granzyme B+CD4+ Treg lymphocytes stand out (median 17.4%), and within the NK populations, most patients presented cytotoxic NK cells (CD56+CD3-CD16+GranzymeB+; median 94.8%), and about half of them have highly differentiated adaptive-like NK cells (CD56+CD3-CD16+CD57+ (mean 59.8%). A statistically significant difference was observed between the expression of PD1 within the CD56bright NK cell subpopulation (CD56+CD3-CD16-PD-1+) (p = 0.047) and a better OS. (4) Circulating immune cell subpopulations are promising prognostic biomarkers for ICI. Pending on validation with a larger sample, here we provide an analysis of the major circulating T and NK cell subsets involved in cancer immunity, with promising results despite a small sample size.
Collapse
Affiliation(s)
- Marta Gascón-Ruiz
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Correspondence:
| | - Ariel Ramírez-Labrada
- Nanotoxicology and Immunotoxicology Unit (IIS Aragón), 50009 Zaragoza, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Rodrigo Lastra
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Luis Martínez-Lostao
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Immunology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Nanoscience Institute, 50018 Zaragoza, Spain
- Aragon Materials Science Institute, 50009 Zaragoza, Spain
| | - J. Ramón Paño-Pardo
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
- Infectious Disease Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
| | - Andrea Sesma
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - María Zapata-García
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Alba Moratiel
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Elisa Quílez
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Irene Torres-Ramón
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Alfonso Yubero
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - María Pilar Domingo
- Instituto de Carboquímica (ICB-CSIC), Miguel Luesma 4, 50018 Zaragoza, Spain
| | - Patricia Esteban
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Eva M. Gálvez
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
- Instituto de Carboquímica (ICB-CSIC), Miguel Luesma 4, 50018 Zaragoza, Spain
| | - Julián Pardo
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
- Microbiology, Radiology, Pediatry and Public Health Department Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Dolores Isla
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
21
|
Ma S, Barr T, Yu J. Recent Advances of RNA m 6A Modifications in Cancer Immunoediting and Immunotherapy. Cancer Treat Res 2023; 190:49-94. [PMID: 38112999 DOI: 10.1007/978-3-031-45654-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cancer immunotherapy, which modulates immune responses against tumors using immune-checkpoint inhibitors or adoptive cell transfer, has emerged as a novel and promising therapy for tumors. However, only a minority of patients demonstrate durable responses, while the majority of patients are resistant to immunotherapy. The immune system can paradoxically constrain and promote tumor development and progression. This process is referred to as cancer immunoediting. The mechanisms of resistance to immunotherapy seem to be that cancer cells undergo immunoediting to evade recognition and elimination by the immune system. RNA modifications, specifically N6-methyladenosine (m6A) methylation, have emerged as a key regulator of various post-transcriptional gene regulatory processes, such as RNA export, splicing, stability, and degradation, which play unappreciated roles in various physiological and pathological processes, including immune system development and cancer pathogenesis. Therefore, a deeper understanding of the mechanisms by which RNA modifications impact the cancer immunoediting process can provide insight into the mechanisms of resistance to immunotherapies and the strategies that can be used to overcome such resistance. In this chapter, we briefly introduce the background of cancer immunoediting and immunotherapy. We also review and discuss the roles and mechanisms of RNA m6A modifications in fine-tuning the innate and adaptive immune responses, as well as in regulating tumor escape from immunosurveillance. Finally, we summarize the current strategies targeting m6A regulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA, 91010, USA.
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, 91010, USA.
| |
Collapse
|
22
|
Fan X, Wang K, Lu Q, Lu Y, Sun J. Cell-Based Drug Delivery Systems Participate in the Cancer Immunity Cycle for Improved Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205166. [PMID: 36437050 DOI: 10.1002/smll.202205166] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Immunotherapy aims to activate the cancer patient's immune system for cancer therapy. The whole process of the immune system against cancer referred to as the "cancer immunity cycle", gives insight into how drugs can be designed to affect every step of the anticancer immune response. Cancer immunotherapy such as immune checkpoint inhibitor (ICI) therapy, cancer vaccines, as well as small molecule modulators has been applied to fight various cancers. However, the effect of immunotherapy in clinical applications is still unsatisfactory due to the limited response rate and immune-related adverse events. Mounting evidence suggests that cell-based drug delivery systems (DDSs) with low immunogenicity, superior targeting, and prolonged circulation have great potential to improve the efficacy of cancer immunotherapy. Therefore, with the rapid development of cell-based DDSs, understanding their important roles in various stages of the cancer immunity cycle guides the better design of cell-based cancer immunotherapy. Herein, an overview of how cell-based DDSs participate in cancer immunotherapy at various stages is presented and an outlook on possible challenges of clinical translation and application in future development.
Collapse
Affiliation(s)
- Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Yutong Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| |
Collapse
|
23
|
Moi D, Zeng B, Minnie SA, Bhatt R, Wood J, Sester DP, Mazzieri R, Dolcetti R. Multiparametric flow cytometry to characterize vaccine-induced polyfunctional T cell responses and T cell/NK cell exhaustion and memory phenotypes in mouse immuno-oncology models. Front Immunol 2023; 14:1127896. [PMID: 37090730 PMCID: PMC10115975 DOI: 10.3389/fimmu.2023.1127896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Suitable methods to assess in vivo immunogenicity and therapeutic efficacy of cancer vaccines in preclinical cancer models are critical to overcome current limitations of cancer vaccines and enhance the clinical applicability of this promising immunotherapeutic strategy. In particular, availability of methods allowing the characterization of T cell responses to endogenous tumor antigens is required to assess vaccine potency and improve the antigen formulation. Moreover, multiparametric assays to deeply characterize tumor-induced and therapy-induced immune modulation are relevant to design mechanism-based combination immunotherapies. Here we describe a versatile multiparametric flow cytometry method to assess the polyfunctionality of tumor antigen-specific CD4+ and CD8+ T cell responses based on their production of multiple cytokines after short-term ex vivo restimulation with relevant tumor epitopes of the most common mouse strains. We also report the development and application of two 21-color flow cytometry panels allowing a comprehensive characterization of T cell and natural killer cell exhaustion and memory phenotypes in mice with a particular focus on preclinical cancer models.
Collapse
Affiliation(s)
- Davide Moi
- The University of Queensland Frazer Institute, Woolloongabba, QLD, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Bijun Zeng
- The University of Queensland Frazer Institute, Woolloongabba, QLD, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Simone A. Minnie
- The University of Queensland Frazer Institute, Woolloongabba, QLD, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Rituparna Bhatt
- The University of Queensland Frazer Institute, Woolloongabba, QLD, Australia
| | - Jack Wood
- The University of Queensland Frazer Institute, Woolloongabba, QLD, Australia
| | - David P. Sester
- TRI Flow Cytometry Suite, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Roberta Mazzieri
- The University of Queensland Frazer Institute, Woolloongabba, QLD, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Riccardo Dolcetti
- The University of Queensland Frazer Institute, Woolloongabba, QLD, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Riccardo Dolcetti,
| |
Collapse
|
24
|
Nitin S, Srinivasa R. B, Monica MS, Thyago H. C. Incursions by severe acute respiratory syndrome coronavirus-2 on the host anti-viral immunity during mild, moderate, and severe coronavirus disease 2019 disease. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/ei.2022.00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in the human host can lead to various clinical manifestations, from symptomless carriers to mild to moderate to severe/critical illness. Therefore, the clinical classification of SARS-CoV-2 disease, based on severity, is a reliable way to predict disease states in SARS-CoV-2 infection. Recent studies on genomics, transcriptomics, epigenomics, and immunogenomics, along with spatial analysis of immune cells have delineated and defined the categorization of these disease groups using these high throughout technologies. These technologies hold the promise of providing not only a detailed but a holistic view of SARS-CoV-2-led pathogenesis. The main genomic, cellular, and immunologic features of each disease category, and what separates them spatially and molecularly are discussed in this brief review to provide a foundational spatial understanding of SARS-CoV-2 immunopathogenesis.
Collapse
Affiliation(s)
- Saksena Nitin
- Institute for Health and Sport, Victoria University, Footscray Campus, Melbourne VIC. 3011, Australia; Aegros Therapeutics Pty Ltd, Macquarie Park, Sydney 2019, Australia
| | - Bonam Srinivasa R.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Miranda-Saksena Monica
- Westmead Institute of Medical Research (WIMR), Herpes Virus Laboratory, Sydney 2145, Australia
| | - Cardoso Thyago H.
- OMICS Centre of Excellence, G42 Healthcare, Mazdar City, Abu Dhabi 3079, United Arab Emirates
| |
Collapse
|
25
|
Lamers-Kok N, Panella D, Georgoudaki AM, Liu H, Özkazanc D, Kučerová L, Duru AD, Spanholtz J, Raimo M. Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J Hematol Oncol 2022; 15:164. [DOI: 10.1186/s13045-022-01382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractNatural killer (NK) cells are unique immune effectors able to kill cancer cells by direct recognition of surface ligands, without prior sensitization. Allogeneic NK transfer is a highly valuable treatment option for cancer and has recently emerged with hundreds of clinical trials paving the way to finally achieve market authorization. Advantages of NK cell therapies include the use of allogenic cell sources, off-the-shelf availability, and no risk of graft-versus-host disease (GvHD). Allogeneic NK cell therapies have reached the clinical stage as ex vivo expanded and differentiated non-engineered cells, as chimeric antigen receptor (CAR)-engineered or CD16-engineered products, or as combination therapies with antibodies, priming agents, and other drugs. This review summarizes the recent clinical status of allogeneic NK cell-based therapies for the treatment of hematological and solid tumors, discussing the main characteristics of the different cell sources used for NK product development, their use in cell manufacturing processes, the engineering methods and strategies adopted for genetically modified products, and the chosen approaches for combination therapies. A comparative analysis between NK-based non-engineered, engineered, and combination therapies is presented, examining the choices made by product developers regarding the NK cell source and the targeted tumor indications, for both solid and hematological cancers. Clinical trial outcomes are discussed and, when available, assessed in comparison with preclinical data. Regulatory challenges for product approval are reviewed, highlighting the lack of specificity of requirements and standardization between products. Additionally, the competitive landscape and business field is presented. This review offers a comprehensive overview of the effort driven by biotech and pharmaceutical companies and by academic centers to bring NK cell therapies to pivotal clinical trial stages and to market authorization.
Collapse
|
26
|
Pinto S, Pahl J, Schottelius A, Carter PJ, Koch J. Reimagining antibody-dependent cellular cytotoxicity in cancer: the potential of natural killer cell engagers. Trends Immunol 2022; 43:932-946. [PMID: 36306739 DOI: 10.1016/j.it.2022.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Bi-, tri- and multispecific antibodies have enabled the development of targeted cancer immunotherapies redirecting immune effector cells to eliminate malignantly transformed cells. These antibodies allow for simultaneous binding of surface antigens on malignant cells and activating receptors on innate immune cells, such as natural killer (NK) cells, macrophages, and neutrophils. Significant progress with such antibodies has been achieved, particularly in hematological malignancies. Nevertheless, several major challenges remain, including increasing their immunotherapeutic efficacy in a greater proportion of patients, particularly in those harboring solid tumors, and overcoming dose-limiting toxicities and immunogenicity. Here, we discuss novel antibody-engineering developments designed to maximize the potential of NK cells by NK cell engagers mediating antibody-dependent cellular cytotoxicity (ADCC), thereby expanding the armamentarium for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Paul J Carter
- Genentech, Department of Antibody Engineering, San Francisco, CA, USA
| | | |
Collapse
|
27
|
Hosseinalizadeh H, Habibi Roudkenar M, Mohammadi Roushandeh A, Kuwahara Y, Tomita K, Sato T. Natural killer cell immunotherapy in glioblastoma. Discov Oncol 2022; 13:113. [PMID: 36305981 PMCID: PMC9616998 DOI: 10.1007/s12672-022-00567-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022] Open
Abstract
Glioblastoma (GBM) is one of the most difficult cancers to treat because GBM has the high therapeutic resistance. Recently, immunotherapies for GBM have been used instead of conventional treatments. Among them, Natural killer (NK) cell-based immunotherapy has the potential to treat GBM due to its properties such as the absence of restriction by antigen-antibody reaction and deep penetration into the tumor microenvironment. Especially, genetically engineered NK cells, such as chimeric antigen receptor (CAR)-NK cells, dual antigen-targeting CAR NK cells, and adapter chimeric antigen receptor NK cells are considered to be an important tool for GBM immunotherapy. Therefore, this review describes the recent efforts of NK cell-based immunotherapy in GBM patients. We also describe key receptors expressing on NK cells such as killer cell immunoglobulin-like receptor, CD16, and natural killer group 2, member D (NKG2DL) receptor and discuss the function and importance of these molecules.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
28
|
Angka L, Tanese de Souza C, Baxter KE, Khan ST, Market M, Martel AB, Tai LH, Kennedy MA, Bell JC, Auer RC. Perioperative arginine prevents metastases by accelerating natural killer cell recovery after surgery. Mol Ther 2022; 30:3270-3283. [PMID: 35619558 PMCID: PMC9552810 DOI: 10.1016/j.ymthe.2022.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022] Open
Abstract
Profound natural killer (NK) cell suppression after cancer surgery is a main driver of metastases and recurrence, for which there is no clinically approved intervention available. Surgical stress is known to cause systemic postoperative changes that negatively modulate NK cell function including the expansion of surgery-induced myeloid-derived suppressor cells (Sx-MDSCs) and a marked reduction in arginine bioavailability. In this study, we determine that Sx-MDSCs regulate systemic arginine levels in the postoperative period and that restoring arginine imbalance after surgery by dietary intake alone was sufficient to significantly reduce surgery-induced metastases in our preclinical murine models. Importantly, the effects of perioperative arginine were dependent upon NK cells. Although perioperative arginine did not prevent immediate NK cell immunoparalysis after surgery, it did accelerate their return to preoperative cytotoxicity, interferon gamma secretion, and activating receptor expression. Finally, in a cohort of patients with colorectal cancer, postoperative arginine levels were shown to correlate with their Sx-MDSC levels. Therefore, this study lends further support for the use of perioperative arginine supplementation by improving NK cell recovery after surgery.
Collapse
Affiliation(s)
- Leonard Angka
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | | | - Katherine E Baxter
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Sarwat T Khan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marisa Market
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Andre B Martel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Lee-Hwa Tai
- Department of Immunology & Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Michael A Kennedy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - John C Bell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Rebecca C Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Division of General Surgery, Department of Surgery, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada.
| |
Collapse
|
29
|
Bioactivity of Exosomes Derived from Trained Natural Killer Cells versus Non-Trained One: More Functional and Antitumor Activity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5396628. [PMID: 36060136 PMCID: PMC9433262 DOI: 10.1155/2022/5396628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
Background Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system, capable of killing viral-infected and cancerous cells. NK cell-mediated immunotherapy has remarkably changed the current paradigm of cancer treatment in recent years. It emerged as a safe and effective therapeutic approach for patients with advanced-stage leukemia. Several immune-escape mechanisms can be enacted by cancer cells to avoid NK-mediated killing. Exosomes released by NK cells that carry proteins and miRNAs can exert an antitumor effect. In the present study, we hypothesized that maybe exosomes derived from trained natural killer cells show more antitumor effect in comparison to non-trained one. Methods PBMC was separated by the Ficoll method and cultured with IL-2 for 21 days to expand NK cells. The NK cells were co-cultured with K562 for 72 hours and exosome-derived co-cultured (as trained) and natural killer cell-derived exosomes (as non-trained) were extracted by Exo kit. The exosomes were confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM), flow cytometry, and western blotting. The K562 cells were separately treated by trained and non-trained exosomes and MTT assay, apoptosis, and real-time PCR were performed. Results Based on flow cytometry, CD56 marker was 89.7% and 40.1% for NK cells and NK-derived exosomes, respectively. CD63 and CD9 were positive for exosomes by western blotting. The morphology of exosome was confirmed by TEM. Treated K562 cells by trained exosomes indicated the diminished cell viability and higher apoptosis. Furthermore, the trained exosomes showed up-regulation in both P53 and caspase3 genes as compared with non-trained sample. Discussion. Trained Exos showed a potent inhibitory effect on proliferation and induced apoptosis on K562 cell lines compared to the same dose of non-trained Exos. According to the results of qRT-PCR, trained Exos exerted an antitumor activity through up-regulation of caspase 3 and P53 in the apoptotic signaling pathway in tumor cells. Our findings indicate an effective action of trained Exos against cancer cells.
Collapse
|
30
|
Wang G, Wang W. Advanced Cell Therapies for Glioblastoma. Front Immunol 2022; 13:904133. [PMID: 36052072 PMCID: PMC9425637 DOI: 10.3389/fimmu.2022.904133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The sheer ubiquity of Gioblastoma (GBM) cases would lead you to believe that there should have been many opportunities for the discovery of treatments to successfully render it into remission. Unfortunately, its persistent commonality is due in large part to the fact that it is the most treatment-resistant tumors in adults. That completely changes the treatment plan of attack. Long established and accepted treatment therapies such as surgical resection, radiation, and aggressive chemotherapy, (and any combination thereof) have only confirmed that the disease lives up to its treatment-resistant reputation. To add to the seemingly insurmountable task of finding a cure, GBM has also proven to be a very stubborn and formidable opponent to newer immunotherapies. Across the board, regardless of the therapy combination, the five-year survival rate of GBM patients is still very poor at a heartbreaking 5.6%. Obviously, the present situation cannot be tolerated or deemed acceptable. The grave situation calls for researchers to be more innovative and find more efficient strategies to discover new and successful strategies to treat GBM. Inspired by researchers worldwide attempting to control GBM, we provide in this review a comprehensive overview of the many diverse cell therapies currently being used to treat GBM. An overview of the treatments include: CAR T cells, CAR NK cells, gamma-delta T cells, NKT cells, dendritic cells, macrophages, as well stem cell-based strategies. To give you the complete picture, we will discuss the efficacy, safety, and developmental stages, the mechanisms of action and the challenges of each of these therapies and detail their potential to be the next-generation immunotherapeutic to eliminate this dreadful disease.
Collapse
Affiliation(s)
- Guangwen Wang
- BlueRock Therapeutics, Department of Process Development, Cambridge, MA, United States
- *Correspondence: Wenshi Wang, ; Guangwen Wang,
| | - Wenshi Wang
- Metagenomi Inc., Department of Cell Therapy, Emeryville, CA, United States
- *Correspondence: Wenshi Wang, ; Guangwen Wang,
| |
Collapse
|
31
|
Boyd-Gibbins N, Karagiannis P, Hwang DW, Kim SI. iPSCs in NK Cell Manufacturing and NKEV Development. Front Immunol 2022; 13:890894. [PMID: 35874677 PMCID: PMC9305199 DOI: 10.3389/fimmu.2022.890894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022] Open
Abstract
Natural killer (NK) cell immunotherapies for cancer can complement existing T cell therapies while benefiting from advancements already made in the immunotherapy field. For NK cell manufacturing, induced pluripotent stem cells (iPSCs) offer advantages including eliminating donor variation and providing an ideal platform for genome engineering. At the same time, extracellular vesicles (EVs) have become a major research interest, and purified NK cell extracellular vesicles (NKEVs) have been shown to reproduce the key functions of their parent NK cells. NKEVs have the potential to be developed into a standalone therapeutic with reduced complexity and immunogenicity compared to cell therapies. This review explores the role iPSC technology can play in both NK cell manufacturing and NKEV development.
Collapse
Affiliation(s)
| | - Peter Karagiannis
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Do Won Hwang
- Research and Development Center, THERABEST Co., Ltd., Seoul, South Korea
| | - Shin-Il Kim
- THERABEST Japan, Inc., Kobe, Japan
- Research and Development Center, THERABEST Co., Ltd., Seoul, South Korea
- *Correspondence: Shin-Il Kim,
| |
Collapse
|
32
|
Judge SJ, Bloomstein JD, Sholevar CJ, Darrow MA, Stoffel KM, Vick LV, Dunai C, Cruz SM, Razmara AM, Monjazeb AM, Rebhun RB, Murphy WJ, Canter RJ. Transcriptome Analysis of Tumor-Infiltrating Lymphocytes Identifies NK Cell Gene Signatures Associated With Lymphocyte Infiltration and Survival in Soft Tissue Sarcomas. Front Immunol 2022; 13:893177. [PMID: 35874727 PMCID: PMC9300876 DOI: 10.3389/fimmu.2022.893177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/16/2022] [Indexed: 01/26/2023] Open
Abstract
Purpose Clinical successes using current T-cell based immunotherapies have been limited in soft tissue sarcomas (STS), while pre-clinical studies have shown evidence of natural killer (NK) cell activity. Since tumor immune infiltration, especially tumor-infiltrating lymphocytes, is associated with improved survival in most solid tumors, we sought to evaluate the gene expression profile of tumor and blood NK and T cells, as well as tumor cells, with the goal of identifying potential novel immune targets in STS. Experimental Design Using fluorescence-activated cell sorting, we isolated blood and tumor-infiltrating CD3-CD56+ NK and CD3+ T cells and CD45- viable tumor cells from STS patients undergoing surgery. We then evaluated differential gene expression (DGE) of these purified populations with RNA sequencing analysis. To evaluate survival differences and validate primary DGE results, we also queried The Cancer Genome Atlas (TCGA) database to compare outcomes stratified by bulk gene expression. Results Sorted intra-tumoral CD3+ T cells showed significant upregulation of established activating (CD137) and inhibitory genes (TIM-3) compared to circulating T cells. In contrast, intra-tumoral NK cells did not exhibit upregulation of canonical cytotoxic genes (IFNG, GZMB), but rather significant DGE in mitogen signaling (DUSP4) and metabolic function (SMPD3, SLC7A5). Tumors with higher NK and T cell infiltration exhibited significantly increased expression of the pro-inflammatory receptor TLR4 in sorted CD45- tumor cells. TCGA analysis revealed that tumors with high TLR4 expression (P = 0.03) and low expression of STMN1 involved in microtubule polymerization (P < 0.001) were associated with significantly improved survival. Conclusions Unlike T cells, which demonstrate significant DGE consistent with upregulation of both activating and inhibiting receptors in tumor-infiltrating subsets, NK cells appear to have more stable gene expression between blood and tumor subsets, with alterations restricted primarily to metabolic pathways. Increased immune cell infiltration and improved survival were positively correlated with TLR4 expression and inversely correlated with STMN1 expression within tumors, suggesting possible novel therapeutic targets for immunotherapy in STS.
Collapse
Affiliation(s)
- Sean J. Judge
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Joshua D. Bloomstein
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Cyrus J. Sholevar
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Morgan A. Darrow
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, United States
| | - Kevin M. Stoffel
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Logan V. Vick
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States
| | - Sylvia M. Cruz
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Aryana M. Razmara
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California, Davis, Sacramento, CA, United States
| | - Robert B. Rebhun
- Center for Companion Animal Health, Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - William J. Murphy
- Department of Dermatology, University of California, Davis, Sacramento, CA, United States,Division of Hematology and Oncology, Department of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, United States,*Correspondence: Robert J. Canter,
| |
Collapse
|
33
|
Hadjigol S, Shah BA, O’Brien-Simpson NM. The 'Danse Macabre'-Neutrophils the Interactive Partner Affecting Oral Cancer Outcomes. Front Immunol 2022; 13:894021. [PMID: 35784290 PMCID: PMC9243430 DOI: 10.3389/fimmu.2022.894021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, tremendous advances in the prevention, diagnosis, and treatment of cancer have taken place. However for head and neck cancers, including oral cancer, the overall survival rate is below 50% and they remain the seventh most common malignancy worldwide. These cancers are, commonly, aggressive, genetically complex, and difficult to treat and the delay, which often occurs between early recognition of symptoms and diagnosis, and the start of treatment of these cancers, is associated with poor prognosis. Cancer development and progression occurs in concert with alterations in the surrounding stroma, with the immune system being an essential element in this process. Despite neutrophils having major roles in the pathology of many diseases, they were thought to have little impact on cancer development and progression. Recent studies are now challenging this notion and placing neutrophils as central interactive players with other immune and tumor cells in affecting cancer pathology. This review focuses on how neutrophils and their sub-phenotypes, N1, N2, and myeloid-derived suppressor cells, both directly and indirectly affect the anti-tumor and pro-tumor immune responses. Emphasis is placed on what is currently known about the interaction of neutrophils with myeloid innate immune cells (such as dendritic cells and macrophages), innate lymphoid cells, natural killer cells, and fibroblasts to affect the tumor microenvironment and progression of oral cancer. A better understanding of this dialog will allow for improved therapeutics that concurrently target several components of the tumor microenvironment, increasing the possibility of constructive and positive outcomes for oral cancer patients. For this review, PubMed, Web of Science, and Google Scholar were searched for manuscripts using keywords and combinations thereof of "oral cancer, OSCC, neutrophils, TANs, MDSC, immune cells, head and neck cancer, and tumor microenvironment" with a focus on publications from 2018 to 2021.
Collapse
Affiliation(s)
- Sara Hadjigol
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| | | | - Neil M. O’Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
34
|
Wiedemann GM. Localization Matters: Epigenetic Regulation of Natural Killer Cells in Different Tissue Microenvironments. Front Immunol 2022; 13:913054. [PMID: 35707540 PMCID: PMC9191276 DOI: 10.3389/fimmu.2022.913054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Natural Killer cells (NK cells) are cytotoxic innate lymphoid cells (ILCs), which play a key role in the early protection against viral infection and cancer. In addition to mounting rapid effector responses, NK cells possess the capacity to generate long-lived memory cells in response to certain stimuli, thus blurring the lines between innate and adaptive immunity and making NK cells an ideal candidate for tumor immunotherapy. NK cell development, activation and memory formation are regulated by epigenetic alterations driven by a complex interplay of external and internal signals. These epigenetic modifications can convey long-lasting functional and phenotypic changes and critically modify their response to stimulation. Here, we review how NK cell functionality and plasticity are regulated at the epigenetic level in different tissue microenvironments and within tumor microenvironments. An in-depth understanding of the epigenetic modifications underlying NK cell functional diversity in different environments is an essential step in the development of NK cell-based cancer therapies.
Collapse
|
35
|
Sajid M, Liu L, Sun C. The Dynamic Role of NK Cells in Liver Cancers: Role in HCC and HBV Associated HCC and Its Therapeutic Implications. Front Immunol 2022; 13:887186. [PMID: 35669776 PMCID: PMC9165341 DOI: 10.3389/fimmu.2022.887186] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains an important complication of chronic liver disease, especially when cirrhosis occurs. Existing treatment strategies include surgery, loco-regional techniques, and chemotherapy. Natural killer cells are distinctive cytotoxic lymphocytes that play a vital role in fighting tumors and infections. As an important constituent of the innate immune system against cancer, phenotypic and functional deviations of NK cells have been demonstrated in HCC patients who also exhibit perturbation of the NK-activating receptor/ligand axis. The rate of recurrence of tumor-infiltrating and circulating NK cells are positively associated with survival benefits in HCC and have prognostic significance, suggesting that NK cell dysfunction is closely related to HCC progression. NK cells are the first-line effector cells of viral hepatitis and play a significant role by directly clearing virus-infected cells or by activating antigen-specific T cells by producing IFN-γ. In addition, chimeric antigen receptor (CAR) engineered NK cells suggest an exclusive opportunity to produce CAR-NKs with several specificities with fewer side effects. In the present review, we comprehensively discuss the innate immune landscape of the liver, particularly NK cells, and the impact of tumor immune microenvironment (TIME) on the function of NK cells and the biological function of HCC. Furthermore, the role of NK cells in HCC and HBV-induced HCC has also been comprehensively elaborated. We also elaborate on available NK cell-based immunotherapeutic approaches in HCC treatment and summarize current advancements in the treatment of HCC. This review will facilitate researchers to understand the importance of the innate immune landscape of NK cells and lead to devising innovative immunotherapeutic strategies for the systematic treatment of HCC.
Collapse
Affiliation(s)
- Muhammad Sajid
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Cheng Sun
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
36
|
Hullsiek R, Li Y, Snyder KM, Wang S, Di D, Borgatti A, Lee C, Moore PF, Zhu C, Fattori C, Modiano JF, Wu J, Walcheck B. Examination of IgG Fc Receptor CD16A and CD64 Expression by Canine Leukocytes and Their ADCC Activity in Engineered NK Cells. Front Immunol 2022; 13:841859. [PMID: 35281028 PMCID: PMC8907477 DOI: 10.3389/fimmu.2022.841859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Human natural killer (NK) cells can target tumor cells in an antigen-specific manner by the recognition of cell bound antibodies. This process induces antibody-dependent cell-mediated cytotoxicity (ADCC) and is exclusively mediated by the low affinity IgG Fc receptor CD16A (FcγRIIIA). Exploiting ADCC by NK cells is a major area of emphasis for advancing cancer immunotherapies. CD64 (FcγRI) is the only high affinity IgG FcR and it binds to the same IgG isotypes as CD16A, but it is not expressed by human NK cells. We have generated engineered human NK cells expressing recombinant CD64 with the goal of increasing their ADCC potency. Preclinical testing of this approach is essential for establishing efficacy and safety of the engineered NK cells. The dog provides particular advantages as a model, which includes spontaneous development of cancer in the setting of an intact and outbred immune system. To advance this immunotherapy model, we cloned canine CD16A and CD64 and generated specific mAbs. We report here for the first time the expression patterns of these FcγRs on dog peripheral blood leukocytes. CD64 was expressed by neutrophils and monocytes, but not lymphocytes, while canine CD16A was expressed at high levels by a subset of monocytes and lymphocytes. These expression patterns are similar to that of human leukocytes. Based on phenotypic characteristics, the CD16A+ lymphocytes consisted of T cells (CD3+ CD8+ CD5dim α/β TCR+) and NK cells (CD3− CD5− CD94+), but not B cells. Interestingly, the majority of canine CD16A+ lymphocytes were from the T cell population. Like human CD16A, canine CD16A was downregulated by a disintegrin and metalloproteinase 17 (ADAM17) upon leukocyte activation, revealing a conserved means of regulation. We also directly demonstrate that both canine CD16A and CD64 can induce ADCC when expressed in the NK cell line NK-92. These findings pave the way to engineering canine NK cells or T cells with high affinity recombinant canine CD64 to maximize ADCC and to test their safety and efficacy to benefit both humans and dogs.
Collapse
Affiliation(s)
- Robert Hullsiek
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Yunfang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Kristin M Snyder
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States
| | - Sam Wang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Da Di
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Antonella Borgatti
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Clinical Investigation Center, University of Minnesota, St. Paul, MN, United States
| | - Chae Lee
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Peter F Moore
- Department of Pathology, Microbiology, Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Cong Zhu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Chiara Fattori
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States.,Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
37
|
Aguilar OA, Fong LK, Ishiyama K, DeGrado WF, Lanier LL. The CD3ζ adaptor structure determines functional differences between human and mouse CD16 Fc receptor signaling. J Exp Med 2022; 219:e20220022. [PMID: 35320345 PMCID: PMC8953085 DOI: 10.1084/jem.20220022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells can detect antibody-coated cells through recognition by the CD16 Fc receptor. The importance of CD16 in human NK cell biology has long been appreciated, but how CD16 functions in mouse NK cells remains poorly understood. Here, we report drastic differences between human and mouse CD16 functions in NK cells. We demonstrate that one of the adaptor molecules that CD16 associates with and signals through, CD3ζ, plays a critical role in these functional differences. Using a systematic approach, we demonstrate that residues in the transmembrane domain of the mouse CD3ζ molecule prevent efficient complex formation with mouse CD16, thereby dampening receptor function. Mutating these residues in mouse CD3ζ to those encoded by human CD3ζ resulted in rescue of CD16 receptor function. We reveal that the mouse CD3ζ transmembrane domain adopts a tightly packed confirmation, preventing association with CD16, whereas human CD3ζ adopts a versatile configuration that accommodates receptor assembly.
Collapse
Affiliation(s)
- Oscar A. Aguilar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| | - Lam-Kiu Fong
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
38
|
Zhuang X, Long EO. NK Cells Equipped With a Chimeric Antigen Receptor That Overcomes Inhibition by HLA Class I for Adoptive Transfer of CAR-NK Cells. Front Immunol 2022; 13:840844. [PMID: 35585985 PMCID: PMC9108249 DOI: 10.3389/fimmu.2022.840844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
Dominant inhibitory receptors for HLA class I (HLA-I) endow NK cells with high intrinsic responsiveness, a process termed licensing or education, but hinder their ability to kill HLA-I+ tumor cells. Cancer immunotherapy with adoptive transfer of NK cells must overcome inhibitory signals by such receptors to promote elimination of HLA-I+ tumor cells. As proof of concept, we show here that a chimeric antigen receptor (CAR) can be engineered to overcome inhibition by receptors for HLA-I and to promote lysis of HLA-I+ tumor cells by CAR-NK cells. The design of this NK-tailored CAR (NK-CAR) relied on the potent NK cell activation induced by the synergistic combination of NK receptors CD28H (CD28 homolog, TMIGD2) and 2B4 (CD244, SLAMF4). An NK-CAR consisting of the single-chain fragment variable (scFv) of a CD19 antibody, the CD28H transmembrane domain, and the fusion of CD28H, 2B4, and TCRζ signaling domains was compared to a third-generation T-cell CAR with a CD28-41BB-TCRζ signaling domain. The NK-CAR delivered stronger activation signals to NK cells and induced more robust tumor cell lysis. Furthermore, such CAR-NK cells could overcome inhibition by HLA-E or HLA-C expressed on tumor cells. Therefore, engineering of CAR-NK cells that could override inhibition by HLA-I in patients undergoing cancer immunotherapy is feasible. This approach offers an attractive alternative to more complex strategies, such as genetic editing of inhibitory receptors in CAR-NK cells or treatment of patients with a combination of CAR-NK cells and checkpoint blockade with antibodies to inhibitory receptors. A significant benefit of inhibition-resistant NK-CARs is that NK cell inhibition would be overcome only during contact with targeted tumor cells and that HLA-I on healthy cells would continue to maintain NK cell responsiveness through licensing.
Collapse
Affiliation(s)
| | - Eric O. Long
- *Correspondence: Eric O. Long, ; Xiaoxuan Zhuang,
| |
Collapse
|
39
|
Hasim MS, Marotel M, Hodgins JJ, Vulpis E, Makinson OJ, Asif S, Shih HY, Scheer AK, MacMillan O, Alonso FG, Burke KP, Cook DP, Li R, Petrucci MT, Santoni A, Fallon PG, Sharpe AH, Sciumè G, Veillette A, Zingoni A, Gray DA, McCurdy A, Ardolino M. When killers become thieves: Trogocytosed PD-1 inhibits NK cells in cancer. SCIENCE ADVANCES 2022; 8:eabj3286. [PMID: 35417234 PMCID: PMC9007500 DOI: 10.1126/sciadv.abj3286] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/23/2022] [Indexed: 05/12/2023]
Abstract
Trogocytosis modulates immune responses, with still unclear underlying molecular mechanisms. Using leukemia mouse models, we found that lymphocytes perform trogocytosis at high rates with tumor cells. While performing trogocytosis, both Natural Killer (NK) and CD8+ T cells acquire the checkpoint receptor PD-1 from leukemia cells. In vitro and in vivo investigation revealed that PD-1 on the surface of NK cells, rather than being endogenously expressed, was derived entirely from leukemia cells in a SLAM receptor-dependent fashion. PD-1 acquired via trogocytosis actively suppressed NK cell antitumor immunity. PD-1 trogocytosis was corroborated in patients with clonal plasma cell disorders, where NK cells that stained for PD-1 also stained for tumor cell markers. Our results, in addition to shedding light on a previously unappreciated mechanism underlying the presence of PD-1 on NK and cytotoxic T cells, reveal the immunoregulatory effect of membrane transfer occurring when immune cells contact tumor cells.
Collapse
Affiliation(s)
- Mohamed S. Hasim
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
| | - Marie Marotel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan J. Hodgins
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Elisabetta Vulpis
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
| | - Olivia J. Makinson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Sara Asif
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Han-Yun Shih
- Neuro-Immune Regulome Unit, National Eye Institute, NIH, Bethesda, MD, USA
| | - Amit K. Scheer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Olivia MacMillan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Felipe G. Alonso
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kelly P. Burke
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David P. Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rui Li
- Department of Medicine, McGill University, Montréal, QC, Canada
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Maria Teresa Petrucci
- Department of Cellular Biotechnology and Hematology, “Sapienza” University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
| | - André Veillette
- Department of Medicine, McGill University, Montréal, QC, Canada
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Department of Medicine, University of Montréal, Montréal, QC, Canada
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
| | - Douglas A. Gray
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Arleigh McCurdy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Hematology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
40
|
Kennedy PR, Felices M, Miller JS. Challenges to the broad application of allogeneic natural killer cell immunotherapy of cancer. Stem Cell Res Ther 2022; 13:165. [PMID: 35414042 PMCID: PMC9006579 DOI: 10.1186/s13287-022-02769-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells that recognize malignant cells through a wide array of germline-encoded receptors. Triggering of activating receptors results in cytotoxicity and broad immune system activation. The former is achieved through release of cytotoxic granules and presentation of death receptor ligands, while the latter is mediated by inflammatory cytokines, such as interferon-γ and tumor necrosis factor α. Early success with ex vivo activation of NK cells and adoptive transfer suggest they are a safe therapeutic with promising responses in advanced hematologic malignancies. In particular, adoptive NK cell therapies can serve as a 'bridge' to potentially curative allogeneic stem cell transplantation. In addition, strategies are being developed that expand large numbers of cells from limited starting material and mature NK cells from precursors. Together, these make 'off-the-shelf' NK cells possible to treat a wide range of cancers. Research efforts have focused on creating a range of tools that increase targeting of therapeutic NK cells toward cancer-from therapeutic antibodies that drive antibody-dependent cellular cytotoxicity, to chimeric antigen receptors. As these novel therapies start to show promise in clinical trials, the field is rapidly moving toward addressing other challenges that limit NK cell therapeutics and the goal to treat solid tumors. This review describes the state of therapeutic NK cell targeting of tumors; discusses the challenges that need to be addressed before NK cells can be applied as a wide-ranging treatment for cancer; and points to some of the innovations that are being developed to surmount these challenges. Suppressive cells in the tumor microenvironment pose a direct threat to therapeutic NK cells, through presentation of inhibitory ligands and secretion of suppressive cytokines and metabolites. The nutrient- and oxygen-starved conditions under which NK cells must function necessitate an understanding of therapeutic NK cell metabolism that is still emerging. Prior to these challenges, NK cells must find their way into and persist in the tumor itself. Finally, the desirability of a 'single-shot' NK cell treatment and the problems and benefits of a short-lived rejection-prone NK cellular product are discussed.
Collapse
Affiliation(s)
- Philippa R Kennedy
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, MCRB Rm 520, 425 E River Rd Parkway, Minneapolis, MN, 55455, USA
| | - Martin Felices
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, MCRB Rm 520, 425 E River Rd Parkway, Minneapolis, MN, 55455, USA
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, MCRB Rm 520, 425 E River Rd Parkway, Minneapolis, MN, 55455, USA.
| |
Collapse
|
41
|
Bernareggi D, Xie Q, Prager BC, Yun J, Cruz LS, Pham TV, Kim W, Lee X, Coffey M, Zalfa C, Azmoon P, Zhu H, Tamayo P, Rich JN, Kaufman DS. CHMP2A regulates tumor sensitivity to natural killer cell-mediated cytotoxicity. Nat Commun 2022; 13:1899. [PMID: 35393416 PMCID: PMC8990014 DOI: 10.1038/s41467-022-29469-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are known to mediate killing of various cancer types, but tumor cells can develop resistance mechanisms to escape NK cell-mediated killing. Here, we use a "two cell type" whole genome CRISPR-Cas9 screening system to discover key regulators of tumor sensitivity and resistance to NK cell-mediated cytotoxicity in human glioblastoma stem cells (GSC). We identify CHMP2A as a regulator of GSC resistance to NK cell-mediated cytotoxicity and we confirm these findings in a head and neck squamous cells carcinoma (HNSCC) model. We show that deletion of CHMP2A activates NF-κB in tumor cells to mediate increased chemokine secretion that promotes NK cell migration towards tumor cells. In the HNSCC model we demonstrate that CHMP2A mediates tumor resistance to NK cells via secretion of extracellular vesicles (EVs) that express MICA/B and TRAIL. These secreted ligands induce apoptosis of NK cells to inhibit their antitumor activity. To confirm these in vitro studies, we demonstrate that deletion of CHMP2A in CAL27 HNSCC cells leads to increased NK cell-mediated killing in a xenograft immunodeficient mouse model. These findings illustrate a mechanism of tumor immune escape through EVs secretion and identify inhibition of CHMP2A and related targets as opportunities to improve NK cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Davide Bernareggi
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Qi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Briana C Prager
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Cleveland Clinic Lerner College of Medicine at Cleveland Clinic & Case Western Reserve University, Cleveland, OH, USA
| | - Jiyoung Yun
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Luisjesus S Cruz
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Timothy V Pham
- Center for Novel Therapeutics and Moores Cancer Center, UCSD, San Diego, CA, USA
| | - William Kim
- Center for Novel Therapeutics and Moores Cancer Center, UCSD, San Diego, CA, USA.,Division of Medical Genetics, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Xiqing Lee
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Michael Coffey
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cristina Zalfa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Huang Zhu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pablo Tamayo
- Center for Novel Therapeutics and Moores Cancer Center, UCSD, San Diego, CA, USA.,Division of Medical Genetics, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Jeremy N Rich
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dan S Kaufman
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Navarrete-Galvan L, Guglielmo M, Cruz Amaya J, Smith-Gagen J, Lombardi VC, Merica R, Hudig D. Optimizing NK-92 serial killers: gamma irradiation, CD95/Fas-ligation, and NK or LAK attack limit cytotoxic efficacy. J Transl Med 2022; 20:151. [PMID: 35366943 PMCID: PMC8976335 DOI: 10.1186/s12967-022-03350-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The NK cell line NK-92 and its genetically modified variants are receiving attention as immunotherapies to treat a range of malignancies. However, since NK-92 cells are themselves tumors, they require irradiation prior to transfer and are potentially susceptible to attack by patients' immune systems. Here, we investigated NK-92 cell-mediated serial killing for the effects of gamma-irradiation and ligation of the death receptor Fas (CD95), and NK-92 cell susceptibility to attack by activated primary blood NK cells. METHODS To evaluate serial killing, we used 51Cr-release assays with low NK-92 effector cell to target Raji, Daudi or K562 tumor cell (E:T) ratios to determine killing frequencies at 2-, 4-, 6-, and 8-h. RESULTS NK-92 cells were able to kill up to 14 Raji cells per NK-92 cell in 8 h. NK-92 cells retained high cytotoxic activity immediately after irradiation with 10 Gy but the cells surviving irradiation lost > 50% activity 1 day after irradiation. Despite high expression of CD95, NK-92 cells maintained their viability following overnight Fas/CD95-ligation but lost some cytotoxic activity. However, 1 day after irradiation, NK-92 cells were more susceptible to Fas ligation, resulting in decreased cytotoxic activity of the cells surviving irradiation. Irradiated NK-92 cells were also susceptible to killing by both unstimulated and IL-2 activated primary NK cells (LAK). In contrast, non-irradiated NK-92 cells were more resistant to attack by NK and LAK cells. CONCLUSIONS Irradiation is deleterious to both the survival and cytotoxicity mediated by NK-92 cells and renders the NK-92 cells susceptible to Fas-initiated death and death initiated by primary blood NK cells. Therefore, replacement of irradiation as an antiproliferative pretreatment and genetic deletion of Fas and/or NK activation ligands from adoptively transferred cell lines are indicated as new approaches to increase therapeutic efficacy.
Collapse
Affiliation(s)
| | | | | | - Julie Smith-Gagen
- University of Nevada, Reno School of Community Health Sciences, Reno, NV, 89557, USA
| | | | - Rebecca Merica
- Biology Department, St. Olaf College, Northfield, MN, 55057, USA
| | - Dorothy Hudig
- University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
| |
Collapse
|
43
|
Goldenson BH, Hor P, Kaufman DS. iPSC-Derived Natural Killer Cell Therapies - Expansion and Targeting. Front Immunol 2022; 13:841107. [PMID: 35185932 PMCID: PMC8851389 DOI: 10.3389/fimmu.2022.841107] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Treatment of cancer with allogeneic natural killer (NK) cell therapies has seen rapid development, especially use against hematologic malignancies. Clinical trials of NK cell-based adoptive transfer to treat relapsed or refractory malignancies have used peripheral blood, umbilical cord blood and pluripotent stem cell-derived NK cells, with each approach undergoing continued clinical development. Improving the potency of these therapies relies on genetic modifications to improve tumor targeting and to enhance expansion and persistence of the NK cells. Induced pluripotent stem cell (iPSC)-derived NK cells allow for routine targeted introduction of genetic modifications and expansion of the resulting NK cells derived from a clonal starting cell population. In this review, we discuss and summarize recent important advances in the development of new iPSC-derived NK cell therapies, with a focus on improved targeting of cancer. We then discuss improvements in methods to expand iPSC-derived NK cells and how persistence of iPSC-NK cells can be enhanced. Finally, we describe how these advances may combine in future NK cell-based therapy products for the treatment of both hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Benjamin H Goldenson
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Pooja Hor
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
44
|
van Vloten JP, Matuszewska K, Minow MAA, Minott JA, Santry LA, Pereira M, Stegelmeier AA, McAusland TM, Klafuric EM, Karimi K, Colasanti J, McFadden DG, Petrik JJ, Bridle BW, Wootton SK. Oncolytic Orf virus licenses NK cells via cDC1 to activate innate and adaptive antitumor mechanisms and extends survival in a murine model of late-stage ovarian cancer. J Immunother Cancer 2022; 10:jitc-2021-004335. [PMID: 35296558 PMCID: PMC8928368 DOI: 10.1136/jitc-2021-004335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Novel therapies are needed to improve outcomes for women diagnosed with ovarian cancer. Oncolytic viruses are multifunctional immunotherapeutic biologics that preferentially infect cancer cells and stimulate inflammation with the potential to generate antitumor immunity. Herein we describe Parapoxvirus ovis (Orf virus (OrfV)), an oncolytic poxvirus, as a viral immunotherapy for ovarian cancer. METHODS The immunotherapeutic potential of OrfV was tested in the ID8 orthotopic mouse model of end-stage epithelial ovarian carcinoma. Immune cell profiling, impact on secondary lesion development and survival were evaluated in OrfV-treated mice as well as in Batf3 knockout, mice depleted of specific immune cell subsets and in mice where the primary tumor was removed. Finally, we interrogated gene expression datasets from primary human ovarian tumors from the International Cancer Genome Consortium database to determine whether the interplay we observed between natural killer (NK) cells, classical type 1 dendritic cells (cDC1s) and T cells exists and influences outcomes in human ovarian cancer. RESULTS OrfV was an effective monotherapy in a murine model of advanced-stage epithelial ovarian cancer. OrfV intervention relied on NK cells, which when depleted abrogated antitumor CD8+ T-cell responses. OrfV therapy was shown to require cDC1s in experiments with BATF3 knockout mice, which do not have mature cDC1s. Furthermore, cDC1s governed antitumor NK and T-cell responses to mediate antitumor efficacy following OrfV. Primary tumor removal, a common treatment option in human patients, was effectively combined with OrfV for optimal therapeutic outcome. Analysis of human RNA sequencing datasets revealed that cDC1s correlate with NK cells in human ovarian cancer and that intratumoral NK cells correlate positively with survival. CONCLUSIONS The data herein support the translational potential of OrfV as an NK stimulating immunotherapeutic for the treatment of advanced-stage ovarian cancer.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mark A A Minow
- Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jessica A Minott
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Thomas M McAusland
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Elaine M Klafuric
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - D Grant McFadden
- Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
45
|
Lemieszek MK, Komaniecka I, Chojnacki M, Choma A, Rzeski W. Immunomodulatory Properties of Polysaccharide-Rich Young Green Barley ( Hordeum vulgare) Extract and Its Structural Characterization. Molecules 2022; 27:1742. [PMID: 35268844 PMCID: PMC8911554 DOI: 10.3390/molecules27051742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Young green barley (YGB) water extract has revealed a beneficial impact on natural killer (NK) cells' ability to recognize and eliminate human colon cancer cells, without any side effects for normal colon epithelial cells. The direct anticancer effect of the tested compounds has been also shown. The mixture of oligosaccharides found in this extract was characterized by chemical analyses and via FT-IR spectroscopy and MALDI-TOF MS techniques. The YGB preparation contained 26.9% of proteins and 64.2% of sugars, mostly glucose (54.7%) and fructose (42.7%), with a small amount of mannose (2.6%) and galactose (less than 0.5%). Mass spectrometry analysis of YGB has shown that fructose oligomers contained from 3 to 19 sugar units. The number of fructans was estimated to be about 10.2% of the dry weight basis of YGB. The presented results suggest the beneficial effect of the consumption of preparations based on young barley on the human body, in the field of colon cancer prevention.
Collapse
Affiliation(s)
- Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Michał Chojnacki
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Adam Choma
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
46
|
Hejazi M, Zhang C, Bennstein SB, Balz V, Reusing SB, Quadflieg M, Hoerster K, Heinrichs S, Hanenberg H, Oberbeck S, Nitsche M, Cramer S, Pfeifer R, Oberoi P, Rühl H, Oldenburg J, Brossart P, Horn PA, Babor F, Wels WS, Fischer JC, Möker N, Uhrberg M. CD33 Delineates Two Functionally Distinct NK Cell Populations Divergent in Cytokine Production and Antibody-Mediated Cellular Cytotoxicity. Front Immunol 2022; 12:798087. [PMID: 35058934 PMCID: PMC8764454 DOI: 10.3389/fimmu.2021.798087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
The generation and expansion of functionally competent NK cells in vitro is of great interest for their application in immunotherapy of cancer. Since CD33 constitutes a promising target for immunotherapy of myeloid malignancies, NK cells expressing a CD33-specific chimeric antigen receptor (CAR) were generated. Unexpectedly, we noted that CD33-CAR NK cells could not be efficiently expanded in vitro due to a fratricide-like process in which CD33-CAR NK cells killed other CD33-CAR NK cells that had upregulated CD33 in culture. This upregulation was dependent on the stimulation protocol and encompassed up to 50% of NK cells including CD56dim NK cells that do generally not express CD33 in vivo. RNAseq analysis revealed that upregulation of CD33+ NK cells was accompanied by a unique transcriptional signature combining features of canonical CD56bright (CD117high, CD16low) and CD56dim NK cells (high expression of granzyme B and perforin). CD33+ NK cells exhibited significantly higher mobilization of cytotoxic granula and comparable levels of cytotoxicity against different leukemic target cells compared to the CD33- subset. Moreover, CD33+ NK cells showed superior production of IFNγ and TNFα, whereas CD33- NK cells exerted increased antibody-dependent cellular cytotoxicity (ADCC). In summary, the study delineates a novel functional divergence between NK cell subsets upon in vitro stimulation that is marked by CD33 expression. By choosing suitable stimulation protocols, it is possible to preferentially generate CD33+ NK cells combining efficient target cell killing and cytokine production, or alternatively CD33- NK cells, which produce less cytokines but are more efficient in antibody-dependent applications.
Collapse
Affiliation(s)
- Maryam Hejazi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Congcong Zhang
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Sabrina B Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Vera Balz
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Sarah B Reusing
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Keven Hoerster
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Oberbeck
- Department of Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital of Bonn, Bonn, Germany
| | - Marcus Nitsche
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Sophie Cramer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Heiko Rühl
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital of Bonn, Bonn, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Babor
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Johannes C Fischer
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Nina Möker
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
47
|
Han B, Song Y, Park J, Doh J. Nanomaterials to improve cancer immunotherapy based on ex vivo engineered T cells and NK cells. J Control Release 2022; 343:379-391. [DOI: 10.1016/j.jconrel.2022.01.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 02/08/2023]
|
48
|
Angelo LS, Hogg GD, Abeynaike S, Bimler L, Vargas-Hernandez A, Paust S. Phenotypic and Functional Plasticity of CXCR6+ Peripheral Blood NK Cells. Front Immunol 2022; 12:810080. [PMID: 35173710 PMCID: PMC8841448 DOI: 10.3389/fimmu.2021.810080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Human NK cells are comprised of phenotypic subsets, whose potentially unique functions remain largely unexplored. C-X-C-motif-chemokine-receptor-6 (CXCR6)+ NK cells have been identified as phenotypically immature tissue-resident NK cells in mice and humans. A small fraction of peripheral blood (PB)-NK cells also expresses CXCR6. However, prior reports about their phenotypic and functional plasticity are conflicting. In this study, we isolated, expanded, and phenotypically and functionally evaluated CXCR6+ and CXCR6– PB-NK cells, and contrasted results to bulk liver and spleen NK cells. We found that CXCR6+ and CXCR6– PB-NK cells preserved their distinct phenotypic profiles throughout 14 days of in vitro expansion (“day 14”), after which phenotypically immature CXCR6+ PB-NK cells became functionally equivalent to CXCR6– PB-NK cells. Despite a consistent reduction in CD16 expression and enhanced expression of the transcription factor Eomesodermin (Eomes), day 14 CXCR6+ PB-NK cells had superior antibody-dependent cellular cytotoxicity (ADCC) compared to CXCR6– PB-NK cells. Further, bulk liver NK cells responded to IL-15, but not IL-2 stimulation, with STAT-5 phosphorylation. In contrast, bulk splenic and PB-NK cells robustly responded to both cytokines. Our findings may allow for the selection of superior NK cell subsets for infusion products increasingly used to treat human diseases.
Collapse
Affiliation(s)
- Laura S. Angelo
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Graham D. Hogg
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Lynn Bimler
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Alexander Vargas-Hernandez
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
| | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children’s Hospital, Houston, TX, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Silke Paust,
| |
Collapse
|
49
|
Mortezaee K, Majidpoor J. (Im)maturity in Tumor Ecosystem. Front Oncol 2022; 11:813897. [PMID: 35145911 PMCID: PMC8821092 DOI: 10.3389/fonc.2021.813897] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Tumors have special features that make them distinct from their normal counterparts. Immature cells in a tumor mass and their critical contributions to the tumorigenesis will open new windows toward cancer therapy. Incomplete cellular development brings versatile and unique functionality in the cellular tumor ecosystem, such as what is seen for highly potential embryonic cells. There is evidence that maturation of certain types of cells in this ecosystem can recover the sensitivity of the tumor. Therefore, understanding more about the mechanisms that contributed to this immaturity will render new therapeutic approaches in cancer therapy. Targeting such mechanisms can be exploited as a supplementary to the current immunotherapeutic treatment schedules, such as immune checkpoint inhibitor (ICI) therapy. The key focus of this review is to discuss the impact of (im)maturity in cellular tumor ecosystems on cancer progression, focusing mainly on immaturity in the immune cell compartment of the tumor, as well as on the stemness of tumor cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
50
|
Tuomela K, Mukherjee D, Ambrose AR, Harikrishnan A, Mole H, Hurlstone A, Önfelt B, Honeychurch J, Davis DM. Radiotherapy transiently reduces the sensitivity of cancer cells to lymphocyte cytotoxicity. Proc Natl Acad Sci U S A 2022; 119:e2111900119. [PMID: 35042775 PMCID: PMC8785960 DOI: 10.1073/pnas.2111900119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
The impact of radiotherapy on the interaction between immune cells and cancer cells is important not least because radiotherapy can be used alongside immunotherapy as a cancer treatment. Unexpectedly, we found that X-ray irradiation of cancer cells induced significant resistance to natural killer (NK) cell killing. This was true across a wide variety of cancer-cell types as well as for antibody-dependent cellular cytotoxicity. Resistance appeared 72 h postirradiation and persisted for 2 wk. Resistance could also occur independently of radiotherapy through pharmacologically induced cell-cycle arrest. Crucially, multiple steps in NK-cell engagement, synapse assembly, and activation were unaffected by target cell irradiation. Instead, radiotherapy caused profound resistance to perforin-induced calcium flux and lysis. Resistance also occurred to a structurally similar bacterial toxin, streptolysin O. Radiotherapy did not affect the binding of pore-forming proteins at the cell surface or membrane repair. Rather, irradiation instigated a defect in functional pore formation, consistent with phosphatidylserine-mediated perforin inhibition. In vivo, radiotherapy also led to a significant reduction in NK cell-mediated clearance of cancer cells. Radiotherapy-induced resistance to perforin also constrained chimeric antigen receptor T-cell cytotoxicity. Together, these data establish a treatment-induced resistance to lymphocyte cytotoxicity that is important to consider in the design of radiotherapy-immunotherapy protocols.
Collapse
Affiliation(s)
- Karoliina Tuomela
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Debayan Mukherjee
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ashley R Ambrose
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Ashish Harikrishnan
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Holly Mole
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Adam Hurlstone
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom
| | - Björn Önfelt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Applied Physics, Science for Life Laboratory, Kungliga Tekniska Högskolan Royal Institute of Technology, 17165 Stockholm, Sweden
| | - Jamie Honeychurch
- Division of Cancer Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Daniel M Davis
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester M13 9NT, United Kingdom;
| |
Collapse
|