1
|
Calderin JD, Zhang C, Tan TJC, Wu NC, Fratti R. Use of Bio-Layer Interferometry (BLI) to Measure Binding Affinities of SNAREs and Phosphoinositides. Methods Mol Biol 2025; 2887:103-117. [PMID: 39806149 DOI: 10.1007/978-1-0716-4314-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies. Unlike surface plasmon resonance (SPR), BLI is an open system that does not require microfluidics, which eliminates issues that result from clogging and changes in viscosity. Importantly, BLI readings can be completed in minutes and can be formatted for high throughput screening. Here we use biotinylated short chain phosphoinositides and phosphatidic acid bound to streptavidin BLI biosensors to measure the binding of the soluble Qc SNARE Vam7 from Saccharomyces cerevisiae. Unlike most SNAREs, Vam7 lacks a transmembrane domain or lipid anchor to associate with membranes. Instead Vam7 associates to yeast vacuolar membranes using its N-terminal PX domain that binds to phosphatidylinositol 3-phosphate (PI3P) and phosphatidic acid (PA). Using full length Vam7, Vam7Y42A, and PX domain alone, we determined and compared the dissociation constants (KD) of each to biotinylated PI3P and PA biosensors.
Collapse
Affiliation(s)
- Jorge D Calderin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chi Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy J C Tan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rutilio Fratti
- Dept of Biochemistry & Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Chen X, Hu J, Zhong H, Wu Q, Fang Z, Cai Y, Huang P, Abubakar YS, Zhou J, Naqvi NI, Wang Z, Zheng W. Vacuolar recruitment of retromer by a SNARE complex enables infection-related trafficking in rice blast. THE NEW PHYTOLOGIST 2024; 244:997-1012. [PMID: 39180241 DOI: 10.1111/nph.20069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
The retromer complex is a conserved sorting machinery that maintains cellular protein homeostasis by transporting vesicles containing cargo proteins to defined destinations. It is known to sort proteins at the vacuole membranes for retrograde trafficking, preventing their degradation in the vacuole. However, the detailed mechanism of retromer recruitment to the vacuole membrane has not yet been elucidated. Here, we show that the vacuolar SNARE complex MoPep12-MoVti1-MoVam7-MoYkt6 regulates retromer-mediated vesicle trafficking by recruiting the retromer to the vacuole membrane, which promotes host invasion in Magnaporthe oryzae. Such recruitment is also essential for the retrieval of the autophagy regulator MoAtg8 and enables appressorium-mediated host penetration. Furthermore, the vacuolar SNARE subunits are involved in suppressing the host defense response by regulating the deployment of retromer-MoSnc1-mediated effector secretion. Altogether, our results provide insights into the mechanism of vacuolar SNAREs-dependent retromer recruitment which is necessary for pathogenicity-related membrane trafficking events in the rice blast fungus.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Jiexiong Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Haoming Zhong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Qiuqiu Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Zhenyu Fang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Yan Cai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Panpan Huang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria, 810281, Nigeria
| | - Jie Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, 117604, Singapore
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenhui Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
- Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| |
Collapse
|
3
|
Zhang C, Calderin JD, Hurst LR, Gokbayrak ZD, Hrabak MR, Balutowski A, Rivera-Kohr DA, Kazmirchuk TDD, Brett CL, Fratti RA. Sphingolipids containing very long-chain fatty acids regulate Ypt7 function during the tethering stage of vacuole fusion. J Biol Chem 2024; 300:107808. [PMID: 39307308 PMCID: PMC11530833 DOI: 10.1016/j.jbc.2024.107808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024] Open
Abstract
Sphingolipids are essential in membrane trafficking and cellular homeostasis. Here, we show that sphingolipids containing very long-chain fatty acids (VLCFAs) promote homotypic vacuolar fusion in Saccharomyces cerevisiae. The elongase Elo3 adds the last two carbons to VLCFAs that are incorporated into sphingolipids. Cells lacking Elo3 have fragmented vacuoles, which is also seen when WT cells are treated with the sphingolipid synthesis inhibitor Aureobasidin-A. Isolated elo3Δ vacuoles show acidification defects and increased membrane fluidity, and this correlates with deficient fusion. Fusion arrest occurs at the tethering stage as elo3Δ vacuoles fail to cluster efficiently in vitro. Unlike HOPS and fusogenic lipids, GFP-Ypt7 does not enrich at elo3Δ vertex microdomains, a hallmark of vacuole docking prior to fusion. Pulldown assays using bacterially expressed GST-Ypt7 showed that HOPS from elo3Δ vacuole extracts failed to bind GST-Ypt7 while HOPS from WT extracts interacted strongly with GST-Ypt7. Treatment of WT vacuoles with the fluidizing anesthetic dibucaine recapitulates the elo3Δ phenotype and shows increased membrane fluidity, mislocalized GFP-Ypt7, inhibited fusion, and attenuated acidification. Together these data suggest that sphingolipids contribute to Rab-mediated tethering and docking required for vacuole fusion.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | | | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
4
|
Hodgens C, Flaherty DT, Pullen AM, Khan I, English NJ, Gillan L, Rojas-Pierce M, Akpa BS. Model-based inference of a dual role for HOPS in regulating guard cell vacuole fusion. IN SILICO PLANTS 2024; 6:diae015. [PMID: 39611053 PMCID: PMC11599693 DOI: 10.1093/insilicoplants/diae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/28/2024] [Indexed: 11/30/2024]
Abstract
Guard cell movements depend, in part, on the remodelling of vacuoles from a highly fragmented state to a fused morphology during stomata opening. Indeed, full opening of plant stomata requires vacuole fusion to occur. Fusion of vacuole membranes is a highly conserved process in eukaryotes, with key roles played by two multi-subunit complexes: HOPS (homotypic fusion and vacuolar protein sorting) and SNARE (soluble NSF attachment protein receptor). HOPS is a vacuole tethering factor that is thought to chaperone SNAREs from apposing vacuole membranes into a fusion-competent complex capable of rearranging membranes. In plants, recruitment of HOPS subunits to the tonoplast has been shown to require the presence of the phosphoinositide phosphatidylinositol 3-phosphate. However, chemically depleting this lipid induces vacuole fusion. To resolve this counter-intuitive observation regarding the role of HOPS in regulating plant vacuole morphology, we defined a quantitative model of vacuole fusion dynamics and used it to generate testable predictions about HOPS-SNARE interactions. We derived our model by using simulation-based inference to integrate prior knowledge about molecular interactions with limited, qualitative observations of emergent vacuole phenotypes. By constraining the model parameters to yield the emergent outcomes observed for stoma opening-as induced by two distinct chemical treatments-we predicted a dual role for HOPS and identified a stalled form of the SNARE complex that differs from phenomena reported in yeast. We predict that HOPS has contradictory actions at different points in the fusion signalling pathway, promoting the formation of SNARE complexes, but limiting their activity.
Collapse
Affiliation(s)
- Charles Hodgens
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - D T Flaherty
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Anne-Marie Pullen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Imran Khan
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Nolan J English
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lydia Gillan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Belinda S Akpa
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
5
|
Tian Z, Diao J. A matter of timing. eLife 2024; 13:e99181. [PMID: 38831693 PMCID: PMC11149926 DOI: 10.7554/elife.99181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
A change in the electric charge of autophagosome membranes controls the recruitment of SNARE proteins to ensure that membrane fusion occurs at the right time during autophagy.
Collapse
Affiliation(s)
- Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
6
|
Watanabe H, Urano S, Kikuchi N, Kubo Y, Kikuchi A, Gomi K, Shintani T. Ykt6 functionally overlaps with vacuolar and exocytic R-SNAREs in the yeast Saccharomyces cerevisiae. J Biol Chem 2024; 300:107274. [PMID: 38588809 PMCID: PMC11091695 DOI: 10.1016/j.jbc.2024.107274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 03/17/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex forms a 4-helix coiled-coil bundle consisting of 16 layers of interacting side chains upon membrane fusion. The central layer (layer 0) is highly conserved and comprises three glutamines (Q) and one arginine (R), and thus SNAREs are classified into Qa-, Qb-, Qc-, and R-SNAREs. Homotypic vacuolar fusion in Saccharomyces cerevisiae requires the SNAREs Vam3 (Qa), Vti1 (Qb), Vam7 (Qc), and Nyv1 (R). However, the yeast strain lacking NYV1 (nyv1Δ) shows no vacuole fragmentation, whereas the vam3Δ and vam7Δ strains display fragmented vacuoles. Here, we provide genetic evidence that the R-SNAREs Ykt6 and Nyv1 are functionally redundant in vacuole homotypic fusion in vivo using a newly isolated ykt6 mutant. We observed the ykt6-104 mutant showed no defect in vacuole morphology, but the ykt6-104 nyv1Δ double mutant had highly fragmented vacuoles. Furthermore, we show the defect in homotypic vacuole fusion caused by the vam7-Q284R mutation was compensated by the nyv1-R192Q or ykt6-R165Q mutations, which maintained the 3Q:1R ratio in the layer 0 of the SNARE complex, indicating that Nyv1 is exchangeable with Ykt6 in the vacuole SNARE complex. Unexpectedly, we found Ykt6 assembled with exocytic Q-SNAREs when the intrinsic exocytic R-SNAREs Snc1 and its paralog Snc2 lose their ability to assemble into the exocytic SNARE complex. These results suggest that Ykt6 may serve as a backup when other R-SNAREs become dysfunctional and that this flexible assembly of SNARE complexes may help cells maintain the robustness of the vesicular transport network.
Collapse
Affiliation(s)
- Hayate Watanabe
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shingo Urano
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Nozomi Kikuchi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yurika Kubo
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayumi Kikuchi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Katsuya Gomi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takahiro Shintani
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
7
|
Wang S, Ma C. A practical guide for fast implementation of SNARE-mediated liposome fusion. BIOPHYSICS REPORTS 2024; 10:31-40. [PMID: 38737475 PMCID: PMC11079601 DOI: 10.52601/bpr.2023.230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 05/14/2024] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAER) family proteins are the engines of most intra-cellular and exocytotic membrane fusion pathways (Jahn and Scheller 2006). Over the past two decades, in-vitro liposome fusion has been proven to be a powerful tool to reconstruct physiological SNARE-mediated membrane fusion processes (Liu et al. 2017). The reconstitution of the membrane fusion process not only provides direct evidence of the capability of the cognate SNARE complex in driving membrane fusion but also allows researchers to study the functional mechanisms of regulatory proteins in related pathways (Wickner and Rizo 2017). Heretofore, a variety of delicate methods for in-vitro SNARE-mediated liposome fusion have been established (Bao et al. 2018; Diao et al. 2012; Duzgunes 2003; Gong et al. 2015; Heo et al. 2021; Kiessling et al. 2015; Kreye et al. 2008; Kyoung et al. 2013; Liu et al. 2017; Scott et al. 2003). Although technological advances have made reconstitution more physiologically relevant, increasingly elaborate experimental procedures, instruments, and data processing algorithms nevertheless hinder the non-experts from setting up basic SNARE-mediated liposome fusion assays. Here, we describe a low-cost, timesaving, and easy-to-handle protocol to set up a foundational in-vitro SNARE-mediated liposome fusion assay based on our previous publications (Liu et al. 2023; Wang and Ma 2022). The protocol can be readily adapted to assess various types of SNARE-mediated membrane fusion and the actions of fusion regulators by using appropriate alternative additives (e.g., proteins, macromolecules, chemicals, etc.). The total time required for one round of the assay is typically two days and could be extremely compressed into one day.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Hinsch CL, Venkata JK, Hsu T, Dammai V. Controlled Plasma Membrane Delivery of FGFR1 and Modulation of Signaling by a Novel Regulated Anterograde RTK Transport Pathway. Cancers (Basel) 2023; 15:5837. [PMID: 38136383 PMCID: PMC10741464 DOI: 10.3390/cancers15245837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
How human FGFR1 localizes to the PM is unknown. Currently, it is assumed that newly synthesized FGFR1 is continuously delivered to the PM. However, evidence indicates that FGFR1 is mostly sequestered in intracellular post-Golgi vesicles (PGVs) under normal conditions. In this report, live-cell imaging and total internal reflection fluorescence microscopy (TIRFM) were employed to study the dynamics of these FGFR1-positive vesicles. We designed recombinant proteins to target different transport components to and from the FGFR1 vesicles. Mouse embryoid bodies (mEBs) were used as a 3D model system to confirm major findings. Briefly, we found that Rab2a, Rab6a, Rab8a, RalA and caveolins are integral components of FGFR1-positive vesicles, representing a novel compartment. While intracellular sequestration prevented FGFR1 activation, serum starvation and hypoxia stimulated PM localization of FGFR1. Under these conditions, FGFR1 C-terminus acts as a scaffold to assemble proteins to (i) inactivate Rab2a and release sequestration, and (ii) assemble Rab6a for localized activation of Rab8a and RalA-exocyst to deliver the receptor to the PM. This novel pathway is named Regulated Anterograde RTK Transport (RART). This is the first instance of RTK regulated through control of PM delivery.
Collapse
Affiliation(s)
- Claire Leist Hinsch
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29401, USA (J.K.V.)
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Jagadish Kummetha Venkata
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29401, USA (J.K.V.)
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Tien Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40433, Taiwan
| | - Vincent Dammai
- Aldevron LLC (Danaher Corporation), Fargo, ND 58104, USA
| |
Collapse
|
9
|
Hodgens C, Flaherty DT, Pullen AM, Khan I, English NJ, Gillan L, Rojas-Pierce M, Akpa BS. Model-based inference of a plant-specific dual role for HOPS in regulating guard cell vacuole fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565947. [PMID: 37986942 PMCID: PMC10659295 DOI: 10.1101/2023.11.07.565947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Stomata are the pores on a leaf surface that regulate gas exchange. Each stoma consists of two guard cells whose movements regulate pore opening and thereby control CO2 fixation and water loss. Guard cell movements depend in part on the remodeling of vacuoles, which have been observed to change from a highly fragmented state to a fused morphology during stomata opening. This change in morphology requires a membrane fusion mechanism that responds rapidly to environmental signals, allowing plants to respond to diurnal and stress cues. With guard cell vacuoles being both large and responsive to external signals, stomata represent a unique system in which to delineate mechanisms of membrane fusion. Fusion of vacuole membranes is a highly conserved process in eukaryotes, with key roles played by two multi-subunit complexes: HOPS (homotypic fusion and vacuolar protein sorting) and SNARE (soluble NSF attachment protein receptor). HOPS is a vacuole tethering factor that is thought to chaperone SNAREs from apposing vacuole membranes into a fusion-competent complex capable of rearranging membranes. To resolve a counter-intuitive observation regarding the role of HOPS in regulating plant vacuole morphology, we derived a quantitative model of vacuole fusion dynamics and used it to generate testable predictions about HOPS-SNARE interactions. We derived our model by applying simulation-based inference to integrate prior knowledge about molecular interactions with limited, qualitative observations of emergent vacuole phenotypes. By constraining the model parameters to yield the emergent outcomes observed for stoma opening - as induced by two distinct chemical treatments - we predicted a dual role for HOPS and identified a stalled form of the SNARE complex that differs from phenomena reported in yeast. We predict that HOPS has contradictory actions at different points in the fusion signaling pathway, promoting the formation of SNARE complexes, but limiting their activity.
Collapse
Affiliation(s)
- Charles Hodgens
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | - DT Flaherty
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Anne-Marie Pullen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Imran Khan
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Nolan J English
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Lydia Gillan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Belinda S Akpa
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
10
|
Guo R, Zhang Q, Qian K, Ying Y, Liao W, Gan L, Mao C, Wang Y, Whelan J, Shou H. Phosphate-dependent regulation of vacuolar trafficking of OsSPX-MFSs is critical for maintaining intracellular phosphate homeostasis in rice. MOLECULAR PLANT 2023; 16:1304-1320. [PMID: 37464739 DOI: 10.1016/j.molp.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Vacuolar storage of inorganic phosphate (Pi) is essential for Pi homeostasis in plants. The SPX-MFS family proteins have been demonstrated to be vacuolar Pi transporters in many plant species. Transcriptional regulation of the predominant transporter among rice SPX-MFSs, OsSPX-MFS3, was only moderately suppressed by Pi starvation. Thus, post-transcriptional mechanisms were hypothesized to regulate the activity of OsSPX-MFS3. In this study, we found that the tonoplast localization of OsSPX-MFSs is inhibited under Pi-depleted conditions, resulting in their retention in the pre-vacuolar compartments (PVCs). A yeast two-hybrid screen identified that two SNARE proteins, OsSYP21 and OsSYP22, interact with the MFS domain of OsSPX-MFS3. Further genetic and cytological analyses indicate that OsSYP21 and OsSYP22 facilitate trafficking of OsSPX-MFS3 from PVCs to the tonoplast. Although a homozygous frameshift mutation in OsSYP22 appeared to be lethal, tonoplast localization of OsSPX-MFS3 was significantly inhibited in transgenic plants expressing a negative-dominant form of OsSYP22 (OsSYP22-ND), resulting in reduced vacuolar Pi concentrations in OsSYP22-ND plants. Under Pi-depleted conditions, the interaction between OsSYP22 and OsSPX-MFS3 was disrupted, and this process depended on the presence of the SPX domain. Deleting the SPX domains of OsSPX-MFSs resulted in their tonoplast localization under both Pi-depleted and Pi-replete conditions. Complementation of the osspx-mfs1/2/3 triple mutants with the MFS domain or the SPX domain of OsSPX-MFS3 confirmed that the MFS and SPX domains are responsive to Pi transport activity and Pi-dependent regulation, respectively. These data indicated that the SPX domains of OsSPX-MFSs sense cellular Pi (InsP) levels and, under Pi-depleted conditions, inhibit the interaction between OsSPX-MFSs and OsSYP21/22 and subsequent trafficking of OsSPX-MFSs from PVCs to the tonoplast.
Collapse
Affiliation(s)
- Runze Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Hainan Institute, Zhejiang University, Sanya 572025, China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Qi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China; Zhijiang lab, Hangzhou 310012, China
| | - Kun Qian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Wenying Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Lening Gan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Yong Wang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - James Whelan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Hainan Institute, Zhejiang University, Sanya 572025, China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, China.
| |
Collapse
|
11
|
Cui G, Jiang Z, Chen Y, Li Y, Ai S, Sun R, Yi X, Zhong G. Evolutional insights into the interaction between Rab7 and RILP in lysosome motility. iScience 2023; 26:107040. [PMID: 37534141 PMCID: PMC10391735 DOI: 10.1016/j.isci.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 12/12/2022] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Lysosome motility is critical for the cellular function. However, Rab7-related transport elements showed genetic differences between vertebrates and invertebrates, making the mechanism of lysosomal motility mysterious. We suggested that Rab7 interacted with RILP as a feature of highly evolved organisms since they could interact with each other in Spodoptera frugiperda but not in Drosophila melanogaster. The N-terminus of Sf-RILP was identified to be necessary for their interaction, and Glu61 was supposed to be the key point for the stability of the interaction. A GC-rich domain on the C-terminal parts of Sf-RILP hampered the expression of Sf-RILP and its interaction with Sf-Rab7. Although the corresponding vital amino acids in the mammalian model at the C-terminus of Sf-RILP turned to be neutral, the C-terminus would also help with the homologous interactions between RILP fragments in insects. The significantly different interactions in invertebrates shed light on the biodiversity and complexity of lysosomal motility.
Collapse
Affiliation(s)
- Gaofeng Cui
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Zhiyan Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Chen
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yun Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shupei Ai
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ranran Sun
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Liu RJY, Al-Molieh Y, Chen SZ, Drobac M, Urban D, Chen CH, Yao HHY, Geng RSQ, Li L, Pluthero FG, Benlekbir S, Rubinstein JL, Kahr WHA. The Sec1/Munc18 protein VPS33B forms a uniquely bidirectional complex with VPS16B. J Biol Chem 2023; 299:104718. [PMID: 37062417 DOI: 10.1016/j.jbc.2023.104718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Loss of function variants of VPS33B and VIPAS39 (encoding VPS16B) are causative for arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, where early lethality of patients indicates that VPS33B and VPS16B play essential cellular roles. VPS33B is a member of the Sec1/Munc18 (SM) protein family, and thus thought to facilitate vesicular fusion via interaction with SNARE complexes, as does its paralog VPS33A in the homotypic fusion and vacuole sorting (HOPS) complex. VPS33B and VPS16B have been shown to associate, but little is known about the composition, structure or function of the VPS33B/VPS16B complex. We show here that human VPS33B/VPS16B is a high molecular weight complex, which we expressed in yeast to obtain material for structural, composition and stability analysis. Circular dichroism data indicate VPS33B/VPS16B has a well-folded α-helical secondary structure, for which size exclusion chromatography-multi angle light scattering revealed a MW of ∼315 kDa. Quantitative immunoblotting indicated the complex has a VPS33B:VPS16B ratio of 2:3. Expression of ARC syndrome-causing VPS33B missense variants showed that L30P disrupts complex formation, but not S243F or H344D. Truncated VPS16B containing amino acids 143-316 was sufficient to form a complex with VPS33B. Small angle X-ray scattering and negative staining electron microscopy revealed a two-lobed shape for VPS33B/VPS16B. Avidin tagging indicated that each lobe contains a VPS33B molecule, and they are oriented in opposite directions. From this we propose a structure for VPS33B/VPS16B that allows the copies of VPS33B at each end to interact with separate SNARE bundles and/or SNAREpins, plus their associated membrane components. Thus our observations reveal the only known potentially bidirectional SM protein complex.
Collapse
Affiliation(s)
- Richard J Y Liu
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yusef Al-Molieh
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shao Z Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marko Drobac
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Denisa Urban
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Chang H Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Helen H Y Yao
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ryan S Q Geng
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Molecular Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Walter H A Kahr
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
13
|
Jang E, Moon Y, Yoon SY, Diaz JAR, Lee M, Ko N, Park J, Eom SH, Lee C, Jun Y. Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition. J Cell Biol 2023; 222:e202109090. [PMID: 36757370 PMCID: PMC9949273 DOI: 10.1083/jcb.202109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
The dynamin-like GTPase atlastin is believed to be the minimal machinery required for homotypic endoplasmic reticulum (ER) membrane fusion, mainly because Drosophila atlastin is sufficient to drive liposome fusion. However, it remains unclear whether mammalian atlastins, including the three human atlastins, are sufficient to induce liposome fusion, raising doubts about their major roles in mammalian cells. Here, we show that all human atlastins are sufficient to induce fusion when reconstituted into liposomes with a lipid composition mimicking that of the ER. Although the fusogenic activity of ATL1, which is predominantly expressed in neuronal cells, was weaker than that of ATL2 or ATL3, the addition of M1-spastin, a neuron-specific factor, markedly increased ATL1-mediated liposome fusion. Although we observed efficient fusion between ER microsomes isolated from cultured, non-neuronal cells that predominantly express ATL2-1, an autoinhibited isoform of ATL2, ATL2-1 failed to support liposome fusion by itself as reported previously, indicating that cellular factors enable ATL2-1 to mediate ER fusion in vivo.
Collapse
Affiliation(s)
- Eunhong Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yeojin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - So Young Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Joyce Anne R. Diaz
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Miriam Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Naho Ko
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
14
|
Schleinitz A, Pöttgen LA, Keren-Kaplan T, Pu J, Saftig P, Bonifacino JS, Haas A, Jeschke A. Consecutive functions of small GTPases guide HOPS-mediated tethering of late endosomes and lysosomes. Cell Rep 2023; 42:111969. [PMID: 36640308 PMCID: PMC10018218 DOI: 10.1016/j.celrep.2022.111969] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 10/12/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
The transfer of endocytosed cargoes to lysosomes (LYSs) requires HOPS, a multiprotein complex that tethers late endosomes (LEs) to LYSs before fusion. Many proteins interact with HOPS on LEs/LYSs. However, it is not clear whether these HOPS interactors localize to LEs or LYSs or how they participate in tethering. Here, we biochemically characterized endosomes purified from untreated or experimentally manipulated cells to put HOPS and interacting proteins in order and to establish their functional interdependence. Our results assign Rab2a and Rab7 to LEs and Arl8 and BORC to LYSs and show that HOPS drives LE-LYS fusion by bridging late endosomal Rab2a with lysosomal BORC-anchored Arl8. We further show that Rab7 is absent from sites of HOPS-dependent tethering but promotes fusion by moving LEs toward LYSs via dynein. Thus, our study identifies the topology of the machinery for LE-LYS tethering and elucidates the role of different small GTPases in the process.
Collapse
Affiliation(s)
| | | | - Tal Keren-Kaplan
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, and Autophagy, Inflammation, and Metabolism, Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131, USA
| | - Paul Saftig
- Biochemical Institute, University of Kiel, 24118 Kiel, Germany
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Albert Haas
- Cell Biology Institute, University of Bonn, 53121 Bonn, Germany.
| | - Andreas Jeschke
- Cell Biology Institute, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|
15
|
Rice KL, Chan CM, Kelu JJ, Miller AL, Webb SE. A Role for Two-Pore Channel Type 2 (TPC2)-Mediated Regulation of Membrane Contact Sites During Zebrafish Notochord Biogenesis? CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231211409. [PMID: 38028019 PMCID: PMC10658360 DOI: 10.1177/25152564231211409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
We have previously shown that in the developing trunk of zebrafish embryos, two-pore channel type 2 (TPC2)-mediated Ca2+ release from endolysosomes plays a role in the formation of the skeletal slow muscle. In addition, TPC2-mediated Ca2+ signaling is required for axon extension and the establishment of synchronized activity in the primary motor neurons. Here, we report that TPC2 might also play a role in the development of the notochord of zebrafish embryos. For example, when tpcn2 was knocked down or out, increased numbers of small vacuoles were formed in the inner notochord cells, compared with the single large vacuole in the notochord of control embryos. This abnormal vacuolation was associated with embryos displaying attenuated body axis straightening. We also showed that TPC2 has a distinct pattern of localization in the notochord in embryos at ∼24 hpf. Finally, we conducted RNAseq to identify differentially expressed genes in tpcn2 mutants compared to wild-type controls, and found that those involved in actin filament severing, cellular component morphogenesis, Ca2+ binding, and structural constituent of cytoskeleton were downregulated in the mutants. Together, our data suggest that TPC2 activity plays a key role in notochord biogenesis in zebrafish embryos.
Collapse
Affiliation(s)
- Keira L. Rice
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Ching Man Chan
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Jeffrey J. Kelu
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Andrew L. Miller
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| | - Sarah E. Webb
- The Division of Life Science and Key State Laboratory for Molecular Neuroscience, HKUST, Hong Kong, People’s Republic of China
| |
Collapse
|
16
|
Yan C, Jiang J, Yang Y, Geng X, Dong W. The function of VAMP2 in mediating membrane fusion: An overview. Front Mol Neurosci 2022; 15:948160. [PMID: 36618823 PMCID: PMC9816800 DOI: 10.3389/fnmol.2022.948160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Vesicle-associated membrane protein 2 (VAMP2, also known as synaptobrevin-2), encoded by VAMP2 in humans, is a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. VAMP2 combined with syntaxin-1A (SYX-1A) and synaptosome-associated protein 25 (SNAP-25) produces a force that induces the formation of fusion pores, thereby mediating the fusion of synaptic vesicles and the release of neurotransmitters. VAMP2 is largely unstructured in the absence of interaction partners. Upon interaction with other SNAREs, the structure of VAMP2 stabilizes, resulting in the formation of four structural domains. In this review, we highlight the current knowledge of the roles of the VAMP2 domains and the interaction between VAMP2 and various fusion-related proteins in the presynaptic cytoplasm during the fusion process. Our summary will contribute to a better understanding of the roles of the VAMP2 protein in membrane fusion.
Collapse
Affiliation(s)
- Chong Yan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Jiang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqi Geng
- Department of Neurosurgery, Neurosurgical Clinical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: Xiaoqi Geng,
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China,Wei Dong,
| |
Collapse
|
17
|
Chen Y, Liu J, Fan Y, Xiang M, Kang S, Wei D, Liu X. SNARE Protein DdVam7 of the Nematode-Trapping Fungus Drechslerella dactyloides Regulates Vegetative Growth, Conidiation, and the Predatory Process via Vacuole Assembly. Microbiol Spectr 2022; 10:e0187222. [PMID: 36287065 PMCID: PMC9769606 DOI: 10.1128/spectrum.01872-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 01/07/2023] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play conserved roles in membrane fusion events in eukaryotes and have been documented to be involved in fungal growth and pathogenesis. However, little is known about the roles of SNAREs in trap morphogenesis in nematode-trapping fungi (NTF). Drechslerella dactyloides, one of the constricting ring-forming NTF, captures free-living nematodes via rapid ring cell inflation. Here, we characterized DdVam7 of D. dactyloides, a homolog of the yeast SNARE protein Vam7p. Deletion of DdVam7 significantly suppressed vegetative growth and conidiation. The mutation significantly impaired trap formation and ring cell inflation, resulting in a markedly decreased nematode-trapping ability. A large vacuole could develop in ring cells within ~2.5 s after instant inflation in D. dactyloides. In the ΔDdVam7 mutant, the vacuoles were small and fragmented in hyphae and uninflated ring cells, and the large vacuole failed to form in inflated ring cells. The localization of DdVam7 in vacuoles suggests its involvement in vacuole fusion. In summary, our results suggest that DdVam7 regulates vegetative growth, conidiation, and the predatory process by mediating vacuole assembly in D. dactyloides, and this provides a basis for studying mechanisms of SNAREs in NTF and ring cell rapid inflation. IMPORTANCE D. dactyloides is a nematode-trapping fungus that can capture nematodes through a constricting ring, the most sophisticated trapping device. It is amazing that constricting ring cells can inflate to triple their size within seconds to capture a nematode. A large centrally located vacuole is a unique signature associated with inflated ring cells. However, the mechanism underpinning trap morphogenesis, especially vacuole dynamics during ring cell inflation, remains unclear. Here, we documented the dynamics of vacuole assembly during ring cell inflation via time-lapse imaging for the first time. We characterized a SNARE protein in D. dactyloides (DdVam7) that was involved in vacuole assembly in hyphae and ring cells and played important roles in vegetative growth, conidiation, trap morphogenesis, and ring cell inflation. Overall, this study expands our understanding of biological functions of the SNARE proteins and vacuole assembly in NTF trap morphogenesis and provides a foundation for further study of ring cell rapid inflation mechanisms.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Jia Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Dongsheng Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| |
Collapse
|
18
|
Golden CK, Kazmirchuk TDD, McNally EK, El eissawi M, Gokbayrak ZD, Richard JD, Brett CL. A two-tiered system for selective receptor and transporter protein degradation. PLoS Genet 2022; 18:e1010446. [PMID: 36215320 PMCID: PMC9584418 DOI: 10.1371/journal.pgen.1010446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/20/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Diverse physiology relies on receptor and transporter protein down–regulation and degradation mediated by ESCRTs. Loss–of–function mutations in human ESCRT genes linked to cancers and neurological disorders are thought to block this process. However, when homologous mutations are introduced into model organisms, cells thrive and degradation persists, suggesting other mechanisms compensate. To better understand this secondary process, we studied degradation of transporter (Mup1) or receptor (Ste3) proteins when ESCRT genes (VPS27, VPS36) are deleted in Saccharomyces cerevisiae using live-cell imaging and organelle biochemistry. We find that endocytosis remains intact, but internalized proteins aberrantly accumulate on vacuolar lysosome membranes within cells. Here they are sorted for degradation by the intralumenal fragment (ILF) pathway, constitutively or when triggered by substrates, misfolding or TOR activation in vivo and in vitro. Thus, the ILF pathway functions as fail–safe layer of defense when ESCRTs disregard their clients, representing a two–tiered system that ensures degradation of surface polytopic proteins. Receptor, transporter and channel proteins on the plasma membranes (or surface) of all cells mediate extensive physiology. This requires precise control of their numbers, and damaged copies must be removed to prevent cytotoxicity. Their downregulation and degradation is mediated by lysosomes after endocytosis and entry into the multi–vesicular body (MVB) pathway which depends on ESCRTs (Endosomal Sorting Complexes Required for Transport). Loss–of–function mutations in ESCRT genes are linked to cancers and neurological disease, but cells survive and some proteins continue to be degraded. Herein, we use baker’s yeast (Saccharomyces cerevisiae) as model to better understand how surface proteins are degraded in cells missing ESCRT genes. Using fluorescence microscopy matched with biochemical and genetic approaches, we find that the methionine transporter Mup1 and G-protein coupled receptor Ste3 continue to be degraded when two ESCRT genes are deleted. They are endocytosed but rerouted to membranes of vacuolar lysosomes after stimuli are applied to trigger their downregulation. Here they are sorted into intralumenal fragments and degraded by acid hydrolases within vacuolar lysosomes upon homotypic membrane fusion. We propose that this intralumenal fragment (ILF) pathway functions as a secondary mechanism to degrade surface proteins with the canonical MVB pathway is disrupted.
Collapse
Affiliation(s)
| | | | - Erin Kate McNally
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
19
|
Zhang C, Balutowski A, Feng Y, Calderin JD, Fratti RA. High throughput analysis of vacuolar acidification. Anal Biochem 2022; 658:114927. [PMID: 36167157 DOI: 10.1016/j.ab.2022.114927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022]
Abstract
Eukaryotic cells are compartmentalized into membrane-bound organelles, allowing each organelle to maintain the specialized conditions needed for their specific functions. One of the features that change between organelles is lumenal pH. In the endocytic and secretory pathways, lumenal pH is controlled by isoforms and concentration of the vacuolar-type H+-ATPase (V-ATPase). In the endolysosomal pathway, copies of complete V-ATPase complexes accumulate as membranes mature from early endosomes to late endosomes and lysosomes. Thus, each compartment becomes more acidic as maturation proceeds. Lysosome acidification is essential for the breakdown of macromolecules delivered from endosomes as well as cargo from different autophagic pathways, and dysregulation of this process is linked to various diseases. Thus, it is important to understand the regulation of the V-ATPase. Here we describe a high-throughput method for screening inhibitors/activators of V-ATPase activity using Acridine Orange (AO) as a fluorescent reporter for acidified yeast vacuolar lysosomes. Through this method, the acidification of purified vacuoles can be measured in real-time in half-volume 96-well plates or a larger 384-well format. This not only reduces the cost of expensive low abundance reagents, but it drastically reduces the time needed to measure individual conditions in large volume cuvettes.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yilin Feng
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
20
|
Wang S, Ma C. Stability profile of the neuronal SNARE complex reflects its potency to drive fast membrane fusion. Biophys J 2022; 121:3081-3102. [PMID: 35810329 PMCID: PMC9463651 DOI: 10.1016/j.bpj.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) form the SNARE complex to mediate most fusion events of the secretory pathway. The neuronal SNARE complex is featured by its high stability and half-zippered conformation required for driving robust and fast synaptic exocytosis. However, these two features seem to be thermodynamically mutually exclusive. In this study, we have employed temperature-dependent disassociation assays and single-molecule Förster resonance energy transfer (FRET) experiments to analyze the stability and conformation of the neuronal SNARE complex. We reclassified the amino acids of the SNARE motif into four sub-groups (core, core-side I and II, and non-contact). Our data showed that the core residues predominantly contribute to the complex stability to meet a basal requirement for SNARE-mediated membrane fusion, while the core-side residues exert an unbalanced effect on the N- and C-half bundle stability that determines the half-zippered conformation of the neuronal SNARE complex, which would accommodate essential regulations by complexins and synaptotagmins for fast Ca2+-triggered membrane fusion. Furthermore, our data confirmed a strong coupling of folding energy between the N- and C-half assembly of the neuronal SNARE complex, which rationalizes the strong potency of the half-zippered conformation to conduct robust and fast fusion. Overall, these results uncovered that the stability profile of the neuronal SNARE complex reflects its potency to drive fast and robust membrane fusion. Based on these results, we also developed a new parameter, the stability factor (Fs), to characterize the overall stability of the neuronal SNARE complex and resolved a linear correlation between the stability and inter-residue coulombic interactions of the neuronal SNARE complex, which would help rationally design artificial SNARE complexes and remold functional SNARE complexes with desirable stability.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Zhang Y, Ma L, Bao H. Energetics, kinetics, and pathways of SNARE assembly in membrane fusion. Crit Rev Biochem Mol Biol 2022; 57:443-460. [PMID: 36151854 PMCID: PMC9588726 DOI: 10.1080/10409238.2022.2121804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fusion of transmitter-containing vesicles with plasma membranes at the synaptic and neuromuscular junctions mediates neurotransmission and muscle contractions, respectively, thereby underlying all thoughts and actions. The fusion process is driven by the coupled folding and assembly of three synaptic SNARE proteins--syntaxin-1 and SNAP-25 on the target plasma membrane (t-SNAREs) and VAMP2 on the vesicular membrane (v-SNARE) into a four-helix bundle. Their assembly is chaperoned by Munc18-1 and many other proteins to achieve the speed and accuracy required for neurotransmission. However, the physiological pathway of SNARE assembly and its coupling to membrane fusion remains unclear. Here, we review recent progress in understanding SNARE assembly and membrane fusion, with a focus on results obtained by single-molecule manipulation approaches and electric recordings of single fusion pores. We describe two pathways of synaptic SNARE assembly, their associated intermediates, energetics, and kinetics. Assembly of the three SNAREs in vitro begins with the formation of a t-SNARE binary complex, on which VAMP2 folds in a stepwise zipper-like fashion. Munc18-1 significantly alters the SNARE assembly pathway: syntaxin-1 and VAMP2 first bind on the surface of Munc18-1 to form a template complex, with which SNAP-25 associates to conclude SNARE assembly and displace Munc18-1. During membrane fusion, multiple trans-SNARE complexes cooperate to open a dynamic fusion pore in a manner dependent upon their copy number and zippering states. Together, these results demonstrate that stepwise and cooperative SNARE assembly drive stagewise membrane fusion.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA;,Conatct: and
| | - Lu Ma
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA;,Present address: Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Huan Bao
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458,Conatct: and
| |
Collapse
|
22
|
Gokbayrak ZD, Patel D, Brett CL. Acetate and hypertonic stress stimulate vacuole membrane fission using distinct mechanisms. PLoS One 2022; 17:e0271199. [PMID: 35834522 PMCID: PMC9282455 DOI: 10.1371/journal.pone.0271199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/25/2022] [Indexed: 11/19/2022] Open
Abstract
Vacuoles in plants and fungi play critical roles in cell metabolism and osmoregulation. To support these functions, vacuoles change their morphology, e.g. they fragment when these organisms are challenged with draught, high salinity or metabolic stress (e.g. acetate accumulation). In turn, morphology reflects an equilibrium between membrane fusion and fission that determines size, shape and copy number. By studying Saccharomyces cerevisiae and its vacuole as models, conserved molecular mechanisms responsible for fusion have been revealed. However, a detailed understanding of vacuole fission and how these opposing processes respond to metabolism or osmoregulation remain elusive. Herein we describe a new fluorometric assay to measure yeast vacuole fission in vitro. For proof–of–concept, we use this assay to confirm that acetate, a metabolic stressor, triggers vacuole fission and show it blocks homotypic vacuole fusion in vitro. Similarly, hypertonic stress induced by sorbitol or glucose caused robust vacuole fission in vitro whilst inhibiting fusion. Using wortmannin to inhibit phosphatidylinositol (PI) -kinases or rGyp1-46 to inactivate Rab–GTPases, we show that acetate stress likely targets PI signaling, whereas osmotic stress affects Rab signaling on vacuole membranes to stimulate fission. This study sets the stage for further investigation into the mechanisms that change vacuole morphology to support cell metabolism and osmoregulation.
Collapse
Affiliation(s)
| | - Dipti Patel
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
23
|
Abstract
Major recent advances and previous data have led to a plausible model of how key proteins mediate neurotransmitter release. In this model, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin form tight complexes that bring the membranes together and are crucial for membrane fusion. NSF and SNAPs disassemble SNARE complexes and ensure that fusion occurs through an exquisitely regulated pathway that starts with Munc18-1 bound to a closed conformation of syntaxin-1. Munc18-1 also binds to synaptobrevin, forming a template to assemble the SNARE complex when Munc13-1 opens syntaxin-1 while bridging the vesicle and plasma membranes. Synaptotagmin-1 and complexin bind to partially assembled SNARE complexes, likely stabilizing them and preventing fusion until Ca2+ binding to synaptotagmin-1 causes dissociation from the SNARE complex and induces interactions with phospholipids that help trigger release. Although fundamental questions remain about the mechanism of membrane fusion, these advances provide a framework to investigate the mechanisms underlying presynaptic plasticity.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
24
|
A Phosphoinositide-Binding Protein Acts in the Trafficking Pathway of Hemoglobin in the Malaria Parasite Plasmodium falciparum. mBio 2022; 13:e0323921. [PMID: 35038916 PMCID: PMC8764524 DOI: 10.1128/mbio.03239-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phosphoinositide lipids play key roles in a variety of processes in eukaryotic cells, but our understanding of their functions in the malaria parasite Plasmodium falciparum is still very much limited. To gain a deeper comprehension of the roles of phosphoinositides in this important pathogen, we attempted gene inactivation for 24 putative effectors of phosphoinositide metabolism. Our results reveal that 79% of the candidates are refractory to genetic deletion and are therefore potentially essential for parasite growth. Inactivation of the gene coding for a Plasmodium-specific putative phosphoinositide-binding protein, which we named PfPX1, results in a severe growth defect. We show that PfPX1 likely binds phosphatidylinositol-3-phosphate and that it localizes to the membrane of the digestive vacuole of the parasite and to vesicles filled with host cell cytosol and labeled with endocytic markers. Critically, we provide evidence that it is important in the trafficking pathway of hemoglobin from the host erythrocyte to the digestive vacuole. Finally, inactivation of PfPX1 renders parasites resistant to artemisinin, the frontline antimalarial drug. Globally, the minimal redundancy in the putative phosphoinositide proteins uncovered in our work supports that targeting this pathway has potential for antimalarial drug development. Moreover, our identification of a phosphoinositide-binding protein critical for the trafficking of hemoglobin provides key insight into this essential process. IMPORTANCE Malaria represents an enormous burden for a significant proportion of humanity, and the lack of vaccines and problems with drug resistance to all antimalarials demonstrate the need to develop new therapeutics. Inhibitors of phosphoinositide metabolism are currently being developed as antimalarials but our understanding of this biological pathway is incomplete. The malaria parasite lives inside human red blood cells where it imports hemoglobin to cover some of its nutritional needs. In this work, we have identified a phosphoinositide-binding protein that is important for the transport of hemoglobin in the parasite. Inactivation of this protein decreases the ability of the parasite to proliferate. Our results have therefore identified a potential new target for antimalarial development.
Collapse
|
25
|
SNARE proteins: zip codes in vesicle targeting? Biochem J 2022; 479:273-288. [PMID: 35119456 PMCID: PMC8883487 DOI: 10.1042/bcj20210719] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022]
Abstract
Membrane traffic in eukaryotic cells is mediated by transport vesicles that bud from a precursor compartment and are transported to their destination compartment where they dock and fuse. To reach their intracellular destination, transport vesicles contain targeting signals such as Rab GTPases and polyphosphoinositides that are recognized by tethering factors in the cytoplasm and that connect the vesicles with their respective destination compartment. The final step, membrane fusion, is mediated by SNARE proteins. SNAREs are connected to targeting signals and tethering factors by multiple interactions. However, it is still debated whether SNAREs only function downstream of targeting and tethering or whether they also participate in regulating targeting specificity. Here, we review the evidence and discuss recent data supporting a role of SNARE proteins as targeting signals in vesicle traffic.
Collapse
|
26
|
Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants. THE PLANT CELL 2022; 34:146-173. [PMID: 34550393 PMCID: PMC8773984 DOI: 10.1093/plcell/koab235] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 05/10/2023]
Abstract
Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.
Collapse
Affiliation(s)
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
27
|
Sardar A, Dewangan N, Panda B, Bhowmick D, Tarafdar PK. Lipid and Lipidation in Membrane Fusion. J Membr Biol 2022; 255:691-703. [PMID: 36102950 PMCID: PMC9472184 DOI: 10.1007/s00232-022-00267-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022]
Abstract
Membrane fusion plays a lead role in the transport of vesicles, neurotransmission, mitochondrial dynamics, and viral infection. There are fusion proteins that catalyze and regulate the fusion. Interestingly, various types of fusion proteins are present in nature and they possess diverse mechanisms of action. We have highlighted the importance of the functional domains of intracellular heterotypic fusion, homotypic endoplasmic reticulum (ER), homotypic mitochondrial, and type-I viral fusion. During intracellular heterotypic fusion, the SNAREs and four-helix bundle formation are prevalent. Type-I viral fusion is controlled by the membrane destabilizing properties of fusion peptide and six-helix bundle formation. The ER/mitochondrial homotypic fusion is controlled by GTPase activity and the membrane destabilization properties of the amphipathic helix(s). Although the mechanism of action of these fusion proteins is diverse, they have some similarities. In all cases, the lipid composition of the membrane greatly affects membrane fusion. Next, examples of lipidation of the fusion proteins were discussed. We suggest that the fatty acyl hydrophobic tail not only acts as an anchor but may also modulate the energetics of membrane fusion intermediates. Lipidation is also important to design more effective peptide-based fusion inhibitors. Together, we have shown that membrane lipid composition and lipidation are important to modulate membrane fusion.
Collapse
Affiliation(s)
- Avijit Sardar
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Nikesh Dewangan
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Bishvanwesha Panda
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Debosmita Bhowmick
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| | - Pradip K. Tarafdar
- grid.417960.d0000 0004 0614 7855Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur, West Bengal 741246 India
| |
Collapse
|
28
|
Fan Y, Zhang W, Chen Y, Xiang M, Liu X. DdaSTE12 is involved in trap formation, ring inflation, conidiation, and vegetative growth in the nematode-trapping fungus Drechslerella dactyloides. Appl Microbiol Biotechnol 2021; 105:7379-7393. [PMID: 34536100 DOI: 10.1007/s00253-021-11455-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Ste12 transcription factors, downstream of mitogen-activated protein kinase (MAPK) signalling pathways, are exclusively found in the fungal kingdom and regulate fungal mating, development, and pathogenicity. The nematode-trapping fungus Drechslerella dactyloides can capture free-living nematodes using constricting rings by cell inflation within 1 s when stimulated by nematodes entering the rings. The MAPK signalling pathways are involved in the trap formation of nematode-trapping fungi, but their downstream regulation is not clearly understood. In this study, disruption of the DdaSTE12 gene in D. dactyloides disabled cell inflation of constricting rings and led to an inability to capture nematodes. The number of septa of constricting rings and the ring cell vacuoles were changed in ΔDdaSTE12. Compared with the wild type, ΔDdaSTE12 reduced trap formation, conidiation, and vegetative growth by 79.3%, 80.3%, and 21.5%, respectively. The transcriptomes of ΔDdaSTE12-3, compared with those of the wild type, indicated that the expression of genes participating in trap formation processes, including signal transduction (Gpa2 and a 7-transmembrane receptor), vesicular transport and cell fusion (MARVEL domain-containing proteins), and nematode infection (PEX11 and CFEM domain-containing proteins), is regulated by DdaSTE12. The results suggest that DdaSTE12 is involved in trap formation and ring cell inflation, as well as conidiation and vegetative growth, by regulating a wide range of downstream functions. Our findings expanded the roles of Ste12 homologous transcription factors in the development of constricting rings and provided new insights into the downstream regulation of the MAPK signalling pathway involved in nematode predation. KEY POINTS: • DdaSTE12 was the first gene disrupted in D. dactyloides. • DdaSTE12 is related to ring cell inflation, vegetative growth, and conidiation. • DdaSTE12 deletion resulted in defects in trap formation and ring development.
Collapse
Affiliation(s)
- Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Chen
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
29
|
Su Z, Zeng Y, Li X, Perumal AB, Zhu J, Lu X, Dai M, Liu X, Lin F. The Endophytic Fungus Piriformospora Indica-Assisted Alleviation of Cadmium in Tobacco. J Fungi (Basel) 2021; 7:jof7080675. [PMID: 34436214 PMCID: PMC8398633 DOI: 10.3390/jof7080675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Increasing evidence suggests that the endophytic fungus Piriformospora indica helps plants overcome various abiotic stresses, especially heavy metals. However, the mechanism of heavy metal tolerance has not yet been elucidated. Here, the role of P. indica in alleviating cadmium (Cd) toxicities in tobacco was investigated. It was found that P. indica improved Cd tolerance to tobacco, increasing Cd accumulation in roots but decreasing Cd accumulation in leaves. The colonization of P. indica altered the subcellular repartition of Cd, increasing the Cd proportion in cell walls while reducing the Cd proportion in membrane/organelle and soluble fractions. During Cd stress, P. indica significantly enhanced the peroxidase (POD) activity and glutathione (GSH) content in tobacco. The spatial distribution of GSH was further visualized by Raman spectroscopy, showing that GSH was distributed in the cortex of P. indica-inoculated roots while in the epidermis of the control roots. A LC-MS/MS-based label-free quantitative technique evaluated the differential proteomics of P. indica treatment vs. control plants under Cd stress. The expressions of peroxidase, glutathione synthase, and photosynthesis-related proteins were significantly upregulated. This study provided extensive evidence for how P. indica enhances Cd tolerance in tobacco at physiological, cytological, and protein levels.
Collapse
Affiliation(s)
- Zhenzhu Su
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.S.); (Y.Z.); (J.Z.); (X.L.); (X.L.)
| | - Yulan Zeng
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.S.); (Y.Z.); (J.Z.); (X.L.); (X.L.)
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.L.); (A.B.P.)
| | - Anand Babu Perumal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.L.); (A.B.P.)
| | - Jianan Zhu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.S.); (Y.Z.); (J.Z.); (X.L.); (X.L.)
| | - Xuanjun Lu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.S.); (Y.Z.); (J.Z.); (X.L.); (X.L.)
| | - Mengdi Dai
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Xiaohong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.S.); (Y.Z.); (J.Z.); (X.L.); (X.L.)
| | - Fucheng Lin
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.S.); (Y.Z.); (J.Z.); (X.L.); (X.L.)
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Correspondence: ; Tel.: +86-571-8640-4007
| |
Collapse
|
30
|
Sofou K, Meier K, Sanderson LE, Kaminski D, Montoliu‐Gaya L, Samuelsson E, Blomqvist M, Agholme L, Gärtner J, Mühlhausen C, Darin N, Barakat TS, Schlotawa L, van Ham T, Asin Cayuela J, Sterky FH. Bi-allelic VPS16 variants limit HOPS/CORVET levels and cause a mucopolysaccharidosis-like disease. EMBO Mol Med 2021; 13:e13376. [PMID: 33938619 PMCID: PMC8103096 DOI: 10.15252/emmm.202013376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Lysosomal storage diseases, including mucopolysaccharidoses, result from genetic defects that impair lysosomal catabolism. Here, we describe two patients from two independent families presenting with progressive psychomotor regression, delayed myelination, brain atrophy, neutropenia, skeletal abnormalities, and mucopolysaccharidosis-like dysmorphic features. Both patients were homozygous for the same intronic variant in VPS16, a gene encoding a subunit of the HOPS and CORVET complexes. The variant impaired normal mRNA splicing and led to an ~85% reduction in VPS16 protein levels in patient-derived fibroblasts. Levels of other HOPS/CORVET subunits, including VPS33A, were similarly reduced, but restored upon re-expression of VPS16. Patient-derived fibroblasts showed defects in the uptake and endosomal trafficking of transferrin as well as accumulation of autophagosomes and lysosomal compartments. Re-expression of VPS16 rescued the cellular phenotypes. Zebrafish with disrupted vps16 expression showed impaired development, reduced myelination, and a similar accumulation of lysosomes and autophagosomes in the brain, particularly in glia cells. This disorder resembles previously reported patients with mutations in VPS33A, thus expanding the family of mucopolysaccharidosis-like diseases that result from mutations in HOPS/CORVET subunits.
Collapse
Affiliation(s)
- Kalliopi Sofou
- Department of PaediatricsInstitute of Clinical SciencesUniversity of GothenburgGothenburgSweden
| | - Kolja Meier
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GoettingenGoettingenGermany
| | - Leslie E Sanderson
- Department of Clinical GeneticsErasmus University Medical Center RotterdamRotterdamThe Netherlands
| | - Debora Kaminski
- Department of Laboratory MedicineInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| | - Laia Montoliu‐Gaya
- Department of Laboratory MedicineInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| | - Emma Samuelsson
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Maria Blomqvist
- Department of Laboratory MedicineInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Lotta Agholme
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GoettingenGoettingenGermany
| | - Chris Mühlhausen
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GoettingenGoettingenGermany
| | - Niklas Darin
- Department of PaediatricsInstitute of Clinical SciencesUniversity of GothenburgGothenburgSweden
| | - Tahsin Stefan Barakat
- Department of Clinical GeneticsErasmus University Medical Center RotterdamRotterdamThe Netherlands
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GoettingenGoettingenGermany
| | - Tjakko van Ham
- Department of Clinical GeneticsErasmus University Medical Center RotterdamRotterdamThe Netherlands
| | - Jorge Asin Cayuela
- Department of Laboratory MedicineInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Fredrik H Sterky
- Department of Laboratory MedicineInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
31
|
Song H, Torng TL, Orr AS, Brunger AT, Wickner WT. Sec17/Sec18 can support membrane fusion without help from completion of SNARE zippering. eLife 2021; 10:67578. [PMID: 33944780 PMCID: PMC8143792 DOI: 10.7554/elife.67578] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Membrane fusion requires R-, Qa-, Qb-, and Qc-family SNAREs that zipper into RQaQbQc coiled coils, driven by the sequestration of apolar amino acids. Zippering has been thought to provide all the force driving fusion. Sec17/αSNAP can form an oligomeric assembly with SNAREs with the Sec17 C-terminus bound to Sec18/NSF, the central region bound to SNAREs, and a crucial apolar loop near the N-terminus poised to insert into membranes. We now report that Sec17 and Sec18 can drive robust fusion without requiring zippering completion. Zippering-driven fusion is blocked by deleting the C-terminal quarter of any Q-SNARE domain or by replacing the apolar amino acids of the Qa-SNARE that face the center of the 4-SNARE coiled coils with polar residues. These blocks, singly or combined, are bypassed by Sec17 and Sec18, and SNARE-dependent fusion is restored without help from completing zippering.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Thomas L Torng
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Amy S Orr
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Axel T Brunger
- Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology Stanford University, Stanford, United States
| | - William T Wickner
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
32
|
Wang S, Liu Y, Crisman L, Wan C, Miller J, Yu H, Shen J. Genetic evidence for an inhibitory role of tomosyn in insulin-stimulated GLUT4 exocytosis. Traffic 2021; 21:636-646. [PMID: 32851733 DOI: 10.1111/tra.12760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
Exocytosis is a vesicle fusion process driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). A classic exocytic pathway is insulin-stimulated translocation of the glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane in adipocytes and skeletal muscles. The GLUT4 exocytic pathway plays a central role in maintaining blood glucose homeostasis and is compromised in insulin resistance and type 2 diabetes. A candidate regulator of GLUT4 exocytosis is tomosyn, a soluble protein expressed in adipocytes. Tomosyn directly binds to GLUT4 exocytic SNAREs in vitro but its role in GLUT4 exocytosis was unknown. In this work, we used CRISPR-Cas9 genome editing to delete the two tomosyn-encoding genes in adipocytes. We observed that both basal and insulin-stimulated GLUT4 exocytosis was markedly elevated in the double knockout (DKO) cells. By contrast, adipocyte differentiation and insulin signaling remained intact in the DKO adipocytes. In a reconstituted liposome fusion assay, tomosyn inhibited all the SNARE complexes underlying GLUT4 exocytosis. The inhibitory activity of tomosyn was relieved by NSF and α-SNAP, which act in concert to remove tomosyn from GLUT4 exocytic SNAREs. Together, these studies revealed an inhibitory role for tomosyn in insulin-stimulated GLUT4 exocytosis in adipocytes. We suggest that tomosyn-arrested SNAREs represent a reservoir of fusion capacity that could be harnessed to treat patients with insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Shifeng Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA.,Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yinghui Liu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Lauren Crisman
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Jessica Miller
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
33
|
Liu Y, Wan C, Rathore SS, Stowell MHB, Yu H, Shen J. SNARE Zippering Is Suppressed by a Conformational Constraint that Is Removed by v-SNARE Splitting. Cell Rep 2021; 34:108611. [PMID: 33440145 PMCID: PMC7837384 DOI: 10.1016/j.celrep.2020.108611] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 12/05/2022] Open
Abstract
Intracellular vesicle fusion is catalyzed by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Vesicle-anchored v-SNAREs pair with target membrane-associated t-SNAREs to form trans-SNARE complexes, releasing free energy to drive membrane fusion. However, trans-SNARE complexes are unable to assemble efficiently unless activated by Sec1/Munc18 (SM) proteins. Here, we demonstrate that SNAREs become fully active when the v-SNARE is split into two fragments, eliminating the requirement of SM protein activation. Mechanistically, v-SNARE splitting accelerates the zippering of trans-SNARE complexes, mimicking the stimulatory function of SM proteins. Thus, SNAREs possess the full potential to drive efficient membrane fusion but are suppressed by a conformational constraint. This constraint is removed by SM protein activation or v-SNARE splitting. We suggest that ancestral SNAREs originally evolved to be fully active in the absence of SM proteins. Later, a conformational constraint coevolved with SM proteins to achieve the vesicle fusion specificity demanded by complex endomembrane systems. SNAREs are unable to drive efficient membrane fusion unless activated by Sec1/Munc18 (SM) proteins. In this work, Liu et al. demonstrate that v-SNARE splitting mimics SM protein activation and unleashes the full membrane fusion potential of SNAREs.
Collapse
Affiliation(s)
- Yinghui Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chun Wan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Shailendra S Rathore
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Haijia Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Jingshi Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
34
|
Schuck S. Microautophagy - distinct molecular mechanisms handle cargoes of many sizes. J Cell Sci 2020; 133:133/17/jcs246322. [PMID: 32907930 DOI: 10.1242/jcs.246322] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is fundamental for cell and organismal health. Two types of autophagy are conserved in eukaryotes: macroautophagy and microautophagy. During macroautophagy, autophagosomes deliver cytoplasmic constituents to endosomes or lysosomes, whereas during microautophagy lytic organelles take up cytoplasm directly. While macroautophagy has been investigated extensively, microautophagy has received much less attention. Nonetheless, it has become clear that microautophagy has a broad range of functions in biosynthetic transport, metabolic adaptation, organelle remodeling and quality control. This Review discusses the selective and non-selective microautophagic processes known in yeast, plants and animals. Based on the molecular mechanisms for the uptake of microautophagic cargo into lytic organelles, I propose to distinguish between fission-type microautophagy, which depends on ESCRT proteins, and fusion-type microautophagy, which requires the core autophagy machinery and SNARE proteins. Many questions remain to be explored, but the functional versatility and mechanistic diversity of microautophagy are beginning to emerge.
Collapse
Affiliation(s)
- Sebastian Schuck
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| |
Collapse
|
35
|
Manandhar SP, Siddiqah IM, Cocca SM, Gharakhanian E. A kinase cascade on the yeast lysosomal vacuole regulates its membrane dynamics: conserved kinase Env7 is phosphorylated by casein kinase Yck3. J Biol Chem 2020; 295:12262-12278. [PMID: 32647006 PMCID: PMC7443493 DOI: 10.1074/jbc.ra119.012346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/02/2020] [Indexed: 01/15/2023] Open
Abstract
Membrane fusion/fission is a highly dynamic and conserved process that responds to intra- and extracellular signals. Whereas the molecular machineries involved in membrane fusion/fission have been dissected, regulation of membrane dynamics remains poorly understood. The lysosomal vacuole of budding yeast (Saccharomyces cerevisiae) has served as a seminal model in studies of membrane dynamics. We have previously established that yeast ENV7 encodes an ortholog of STK16-related kinases that localizes to the vacuolar membrane and downregulates vacuolar membrane fusion. Additionally, we have previously reported that Env7 phosphorylation in vivo depends on YCK3, a gene that encodes a vacuolar membrane casein kinase I (CKI) homolog that nonredundantly functions in fusion regulation. Here, we report that Env7 physically interacts with and is directly phosphorylated by Yck3. We also establish that Env7 vacuole fusion/fission regulation and vacuolar localization are mediated through its Yck3-dependent phosphorylation. Through extensive site-directed mutagenesis, we map phosphorylation to the Env7 C terminus and confirm that Ser-331 is a primary and preferred phosphorylation site. Phospho-deficient Env7 mutants were defective in negative regulation of membrane fusion, increasing the number of prominent vacuoles, whereas a phosphomimetic substitution at Ser-331 increased the number of fragmented vacuoles. Bioinformatics approaches confirmed that Env7 Ser-331 is within a motif that is highly conserved in STK16-related kinases and that it also anchors an SXXS CKI phosphorylation motif (328SRFS331). This study represents the first report on the regulatory mechanism of an STK16-related kinase. It also points to regulation of vacuolar membrane dynamics via a novel Yck3-Env7 kinase cascade.
Collapse
Affiliation(s)
- Surya P Manandhar
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA
| | - Ikha M Siddiqah
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA
| | - Stephanie M Cocca
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA
| | - Editte Gharakhanian
- Department of Biological Sciences, California State University at Long Beach, Long Beach, California, USA.
| |
Collapse
|
36
|
Wang X, Gong J, Zhu L, Wang S, Yang X, Xu Y, Yang X, Ma C. Munc13 activates the Munc18-1/syntaxin-1 complex and enables Munc18-1 to prime SNARE assembly. EMBO J 2020; 39:e103631. [PMID: 32643828 PMCID: PMC7429736 DOI: 10.15252/embj.2019103631] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 11/09/2022] Open
Abstract
Priming of synaptic vesicles involves Munc13-catalyzed transition of the Munc18-1/syntaxin-1 complex to the SNARE complex in the presence of SNAP-25 and synaptobrevin-2; Munc13 drives opening of syntaxin-1 via the MUN domain while Munc18-1 primes SNARE assembly via domain 3a. However, the underlying mechanism remains unclear. In this study, we have identified a number of residues in domain 3a of Munc18-1 that are crucial for Munc13 and Munc18-1 actions in SNARE complex assembly and synaptic vesicle priming. Our results showed that two residues (Q301/K308) at the side of domain 3a mediate the interaction between the Munc18-1/syntaxin-1 complex and the MUN domain. This interaction enables the MUN domain to drive the opening of syntaxin-1 linker region, thereby leading to the extension of domain 3a and promoting synaptobrevin-2 binding. In addition, we identified two residues (K332/K333) at the bottom of domain 3a that mediate the interaction between Munc18-1 and the SNARE motif of syntaxin-1. This interaction ensures Munc18-1 to persistently associate with syntaxin-1 during the conformational change of syntaxin-1 from closed to open, which reinforces the role of Munc18-1 in templating SNARE assembly. Taken together, our data suggest a mechanism by which Munc13 activates the Munc18-1/syntaxin-1 complex and enables Munc18-1 to prime SNARE assembly.
Collapse
Affiliation(s)
- Xianping Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Jihong Gong
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Le Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoyu Yang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Yuanyuan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Xiaofei Yang
- Key Laboratory of Cognitive ScienceHubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & TreatmentLaboratory of Membrane Ion Channels and MedicineCollege of Biomedical EngineeringSouth‐Central University for NationalitiesWuhanChina
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Institute of Brain ResearchHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
37
|
Shi HB, Chen N, Zhu XM, Su ZZ, Wang JY, Lu JP, Liu XH, Lin FC. The casein kinase MoYck1 regulates development, autophagy, and virulence in the rice blast fungus. Virulence 2020; 10:719-733. [PMID: 31392921 PMCID: PMC8647852 DOI: 10.1080/21505594.2019.1649588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Casein kinases are serine/threonine protein kinases that are evolutionarily conserved in yeast and humans and are involved in a range of important cellular processes. However, the biological functions of casein kinases in the fungus Magnaporthe oryzae, the causal agent of destructive rice blast disease, are not characterized. Here, two casein kinases, MoYCK1 and MoHRR25, were identified and targeted for replacement, but only MoYCK1 was further characterized due to the possible nonviability of the MoHRR25 deletion mutant. Disruption of MoYCK1 caused pleiotropic defects in growth, conidiation, conidial germination, and appressorium formation and penetration, therefore resulting in reduced virulence in rice seedlings and barley leaves. Notably, the MoYCK1 deletion triggered quick lipidation of MoAtg8 and degradation of the autophagic marker protein GFP-MoAtg8 under nitrogen starvation conditions, in contrast to the wild type, indicating that autophagy activity was negatively regulated by MoYck1. Furthermore, we found that HOPS (homotypic fusion and vacuolar protein sorting) subunit MoVps41, a putative substrate of MoYck1, was co-located with MoAtg8 and positively required for the degradation of MoAtg8-PE and GFP-MoAtg8. In addition, MoYCK1 is also involved in the response to ionic hyperosmotic and heavy metal cation stresses. Taken together, our results revealed crucial roles of the casein kinase MoYck1 in regulating development, autophagy and virulence in M. oryzae.
Collapse
Affiliation(s)
- Huan-Bin Shi
- a State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University , Hangzhou , China.,b State Key Laboratory of Rice Biology, China National Rice Research Institute , Hangzhou , China
| | - Nan Chen
- a State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University , Hangzhou , China
| | - Xue-Ming Zhu
- a State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University , Hangzhou , China
| | - Zhen-Zhu Su
- a State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University , Hangzhou , China
| | - Jiao-Yu Wang
- c State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Protection Microbiology, Zhejiang Academy of Agricultural Science , Hangzhou , China
| | - Jian-Ping Lu
- d College of Life Sciences, Zhejiang University , Hangzhou , China
| | - Xiao-Hong Liu
- a State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University , Hangzhou , China
| | - Fu-Cheng Lin
- a State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University , Hangzhou , China
| |
Collapse
|
38
|
Zhang J, Tracy C, Pasare C, Zeng J, Krämer H. Hypersensitivity of Vps33B mutant flies to non-pathogenic infections is dictated by aberrant activation of p38b MAP kinase. Traffic 2020; 21:578-589. [PMID: 32677257 DOI: 10.1111/tra.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/29/2022]
Abstract
Loss of the arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-linked Vps33B protein results in exaggerated inflammatory responses upon activation of receptors of the innate immune system in both vertebrates and flies. However, little is known about the signaling elements downstream of these receptors that are critical for the hypersensitivity of Vps33B mutants. Here, we show that p38b MAP kinase contributes to the enhanced inflammatory responses in flies lacking Vps33B. Loss of p38b mitogen-activated protein kinase (MAPK) reduces enhanced inflammatory responses and prolongs the survival of infected Vps33B deficient flies. The function of p38 MAPK is not limited to its proinflammatory effects downstream of the PGRP-LC receptor as p38 also modulates endosomal trafficking of PGRP-LC and phagocytosis of bacteria. Expression of constitutively active p38b MAPK, but not dominant negative p38b MAPK enhances accumulation of endocytosed PGRP-LC receptors or phagocytosed bacteria within cells. Moreover, p38 MAPK is required for induction of macropinocytosis, an alternate pathway for the downregulation of immune receptors. Together, our data indicate that p38 MAPK activates multiple pathways that can contribute to the dysregulation of innate immune signaling in ARC syndrome.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Charles Tracy
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Helmut Krämer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
39
|
Hurst LR, Fratti RA. Lipid Rafts, Sphingolipids, and Ergosterol in Yeast Vacuole Fusion and Maturation. Front Cell Dev Biol 2020; 8:539. [PMID: 32719794 PMCID: PMC7349313 DOI: 10.3389/fcell.2020.00539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/09/2020] [Indexed: 01/15/2023] Open
Abstract
The Saccharomyces cerevisiae lysosome-like vacuole is a useful model for studying membrane fusion events and organelle maturation processes utilized by all eukaryotes. The vacuolar membrane is capable of forming micrometer and nanometer scale domains that can be visualized using microscopic techniques and segregate into regions with surprisingly distinct lipid and protein compositions. These lipid raft domains are liquid-ordered (L o ) like regions that are rich in sphingolipids, phospholipids with saturated acyl chains, and ergosterol. Recent studies have shown that these lipid rafts contain an enrichment of many different proteins that function in essential activities such as nutrient transport, organelle contact, membrane trafficking, and homotypic fusion, suggesting that they are biologically relevant regions within the vacuole membrane. Here, we discuss recent developments and the current understanding of sphingolipid and ergosterol function at the vacuole, the composition and function of lipid rafts at this organelle and how the distinct lipid and protein composition of these regions facilitates the biological processes outlined above.
Collapse
Affiliation(s)
- Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
40
|
A Rab prenyl membrane-anchor allows effector recognition to be regulated by guanine nucleotide. Proc Natl Acad Sci U S A 2020; 117:7739-7744. [PMID: 32213587 DOI: 10.1073/pnas.2000923117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Membrane fusion is catalyzed by conserved proteins R, Qa, Qb, and Qc SNAREs, which form tetrameric RQaQbQc complexes between membranes; SNARE chaperones of the SM, Sec17/αSNAP, and Sec18/NSF families; Rab-GTPases (Rabs); and Rab effectors. Rabs are anchored to membranes by C-terminal prenyl groups, but can also function when anchored by an apolar polypeptide. Rabs are regulated by GTPase-activating proteins (GAPs), activating the hydrolysis of bound GTP. We have reconstituted fusion with pure components from yeast vacuoles including SNAREs, the HOPS (homotypic fusion and vacuole protein sorting) tethering and SNARE-assembly complex, and the Rab Ypt7, bound to membranes by either C-terminal prenyl groups (Ypt7-pr) or a recombinant transmembrane anchor (Ypt7-tm). We now report that HOPS-dependent fusion occurs with Ypt7 anchored by either means, but only Ypt7-pr requires GTP for activation and is inactive either with bound GDP or without bound guanine nucleotide. In contrast, Ypt7-tm is constitutively active for HOPS-dependent fusion, independent of bound guanine nucleotide. Fusion inhibition by the GAP Gyp1-46 is not limited to Ypt7-tm with bound GTP, indicating that this GAP has an additional mode of regulating fusion. Phosphorylation of HOPS by the vacuolar kinase Yck3 renders fusion strictly dependent on GTP-activated Ypt7, whether bound to membranes by prenyl or transmembrane anchor. The binding of GTP or GDP constitutes a selective switch for Ypt7, but with Ypt7-tm, this switch is only read by HOPS after phosphorylation to P-HOPS by its physiological kinase Yck3. The prenyl anchor of Ypt7 allows both HOPS and P-HOPS to be regulated by Ypt7-bound guanine nucleotide.
Collapse
|
41
|
Duan XL, Guo Z, He YT, Li YX, Liu YN, Bai HH, Li HL, Hu XD, Suo ZW. SNAP25/syntaxin4/VAMP2/Munc18-1 Complexes in Spinal Dorsal Horn Contributed to Inflammatory Pain. Neuroscience 2020; 429:203-212. [PMID: 31962145 DOI: 10.1016/j.neuroscience.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) have been implicated in the trafficking of postsynaptic glutamate receptors, including N-methyl-d-aspartate (NMDA)-subtype glutamate receptors (NMDARs) that are critical for nociceptive plasticity and behavioral sensitization. However, the components of SNAREs complex involved in spinal nociceptive processing remain largely unknown. Here we found that SNAP25, syntaxin4, VAMP2 and Munc18-1 were localized at postsynaptic sites and formed the complex in the superficial lamina of spinal cord dorsal horn of rats. The complex formation between these SNAREs components were accelerated after intraplantar injection of complete Freund's adjuvant (CFA), pharmacological removal of GABAergic inhibition or activation of NMDAR in intact rats. The increased SNAP25/syntaxin4/VAMP2/Munc18-1 interaction facilitated the surface delivery and synaptic accumulation of NMDAR during inflammatory pain. Disruption of the molecular interaction between SNAP25 with its SNARE partners by using a blocking peptide derived from the C-terminus of SNAP25 effectively repressed the surface and synaptic accumulation of GluN2B-containing NMDARs in CFA-injected rats. This peptide also alleviated inflammatory mechanical allodynia and thermal hypersensitivity. These data suggested that SNAREs complex assembly in spinal cord dorsal horn was involved in the inflammatory pain hypersensitivity through promoting NMDAR synaptic trafficking.
Collapse
Affiliation(s)
- Xing-Lian Duan
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhen Guo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yong-Tao He
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yin-Xia Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yan-Ni Liu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Hu-Hu Bai
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Hu-Ling Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
42
|
Wang S, Crisman L, Miller J, Datta I, Gulbranson DR, Tian Y, Yin Q, Yu H, Shen J. Inducible Exoc7/Exo70 knockout reveals a critical role of the exocyst in insulin-regulated GLUT4 exocytosis. J Biol Chem 2019; 294:19988-19996. [PMID: 31740584 PMCID: PMC6937574 DOI: 10.1074/jbc.ra119.010821] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Insulin promotes glucose uptake by triggering the translocation of glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane through exocytosis. GLUT4 exocytosis is a vesicle fusion event involving fusion of GLUT4-containing vesicles with the plasma membrane. For GLUT4 vesicle fusion to occur, GLUT4 vesicles must first be tethered to the plasma membrane. A key tethering factor in exocytosis is a heterooctameric protein complex called the exocyst. The role of the exocyst in GLUT4 exocytosis, however, remains incompletely understood. Here we first systematically analyzed data from a genome-scale CRISPR screen in HeLa cells that targeted virtually all known genes in the human genome, including 12 exocyst genes. The screen recovered only a subset of the exocyst genes, including exocyst complex component 7 (Exoc7/Exo70). Other exocyst genes, however, were not isolated in the screen, likely because of functional redundancy. Our findings suggest that selection of an appropriate exocyst gene is critical for genetic studies of exocyst functions. Next we developed an inducible adipocyte genome editing system that enabled Exoc7 gene deletion in adipocytes without interfering with adipocyte differentiation. We observed that insulin-stimulated GLUT4 exocytosis was markedly inhibited in Exoc7 KO adipocytes. Insulin signaling, however, remained intact in these KO cells. These results indicate that the exocyst plays a critical role in insulin-stimulated GLUT4 exocytosis in adipocytes. We propose that the strategy outlined in this work could be instrumental in genetically dissecting other membrane-trafficking pathways in adipocytes.
Collapse
Affiliation(s)
- Shifeng Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lauren Crisman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Jessica Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Ishara Datta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Daniel R Gulbranson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Yuan Tian
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Haijia Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingshi Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
43
|
Rathore SS, Liu Y, Yu H, Wan C, Lee M, Yin Q, Stowell MHB, Shen J. Intracellular Vesicle Fusion Requires a Membrane-Destabilizing Peptide Located at the Juxtamembrane Region of the v-SNARE. Cell Rep 2019; 29:4583-4592.e3. [PMID: 31875562 PMCID: PMC6990648 DOI: 10.1016/j.celrep.2019.11.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/13/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Intracellular vesicle fusion is mediated by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18 (SM) proteins. It is generally accepted that membrane fusion occurs when the vesicle and target membranes are brought into close proximity by SNAREs and SM proteins. In this work, we demonstrate that, for fusion to occur, membrane bilayers must be destabilized by a conserved membrane-embedded motif located at the juxtamembrane region of the vesicle-anchored v-SNARE. Comprised of basic and hydrophobic residues, the juxtamembrane motif perturbs the lipid bilayer structure and promotes SNARE-SM-mediated membrane fusion. The juxtamembrane motif can be functionally substituted with an unrelated membrane-disrupting peptide in the membrane fusion reaction. These findings establish the juxtamembrane motif of the v-SNARE as a membrane-destabilizing peptide. Requirement of membrane-destabilizing peptides is likely a common feature of biological membrane fusion.
Collapse
Affiliation(s)
- Shailendra S Rathore
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA
| | - Yinghui Liu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA
| | - MyeongSeon Lee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
44
|
Sec17 (α-SNAP) and Sec18 (NSF) restrict membrane fusion to R-SNAREs, Q-SNAREs, and SM proteins from identical compartments. Proc Natl Acad Sci U S A 2019; 116:23573-23581. [PMID: 31685636 DOI: 10.1073/pnas.1913985116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Membrane fusion at each organelle requires conserved proteins: Rab-GTPases, effector tethering complexes, Sec1/Munc18 (SM)-family SNARE chaperones, SNAREs of the R, Qa, Qb, and Qc families, and the Sec17/α-SNAP and ATP-dependent Sec18/NSF SNARE chaperone system. The basis of organelle-specific fusion, which is essential for accurate protein compartmentation, has been elusive. Rab family GTPases, SM proteins, and R- and Q-SNAREs may contribute to this specificity. We now report that the fusion supported by SNAREs alone is both inefficient and promiscuous with respect to organelle identity and to stimulation by SM family proteins or complexes. SNARE-only fusion is abolished by the disassembly chaperones Sec17 and Sec18. Efficient fusion in the presence of Sec17 and Sec18 requires a tripartite match between the organellar identities of the R-SNARE, the Q-SNAREs, and the SM protein or complex. The functions of Sec17 and Sec18 are not simply negative regulation; they stimulate fusion with either vacuolar SNAREs and their SM protein complex HOPS or endoplasmic reticulum/cis-Golgi SNAREs and their SM protein Sly1. The fusion complex of each organelle is assembled from its own functionally matching pieces to engage Sec17/Sec18 for fusion stimulation rather than inhibition.
Collapse
|
45
|
Vac8 Controls Vacuolar Membrane Dynamics during Different Autophagy Pathways in Saccharomyces cerevisiae. Cells 2019; 8:cells8070661. [PMID: 31262095 PMCID: PMC6678646 DOI: 10.3390/cells8070661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023] Open
Abstract
The yeast vacuole is a vital organelle, which is required for the degradation of aberrant intracellular or extracellular substrates and the recycling of the resulting nutrients as newly available building blocks for the cellular metabolism. Like the plant vacuole or the mammalian lysosome, the yeast vacuole is the destination of biosynthetic trafficking pathways that transport the vacuolar enzymes required for its functions. Moreover, substrates destined for degradation, like extracellular endocytosed cargoes that are transported by endosomes/multivesicular bodies as well as intracellular substrates that are transported via different forms of autophagosomes, have the vacuole as destination. We found that non-selective bulk autophagy of cytosolic proteins as well as the selective autophagic degradation of peroxisomes (pexophagy) and ribosomes (ribophagy) was dependent on the armadillo repeat protein Vac8 in Saccharomyces cerevisiae. Moreover, we showed that pexophagy and ribophagy depended on the palmitoylation of Vac8. In contrast, we described that Vac8 was not involved in the acidification of the vacuole nor in the targeting and maturation of certain biosynthetic cargoes, like the aspartyl-protease Pep4 (PrA) and the carboxy-peptidase Y (CPY), indicating a role of Vac8 in the uptake of selected cargoes. In addition, we found that the hallmark phenotype of the vac8Δ strain, namely the characteristic appearance of fragmented and clustered vacuoles, depended on the growth conditions. This fusion defect observed in standard glucose medium can be complemented by the replacement with oleic acid or glycerol medium. This complementation of vacuolar morphology also partially restores the degradation of peroxisomes. In summary, we found that Vac8 controlled vacuolar morphology and activity in a context- and cargo-dependent manner.
Collapse
|
46
|
CHML promotes liver cancer metastasis by facilitating Rab14 recycle. Nat Commun 2019; 10:2510. [PMID: 31175290 PMCID: PMC6555802 DOI: 10.1038/s41467-019-10364-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
Metastasis-associated recurrence is the major cause of poor prognosis in hepatocellular carcinoma (HCC), however, the underlying mechanisms remain largely elusive. In this study, we report that expression of choroideremia-like (CHML) is increased in HCC, associated with poor survival, early recurrence and more satellite nodules in HCC patients. CHML promotes migration, invasion and metastasis of HCC cells, in a Rab14-dependent manner. Mechanism study reveals that CHML facilitates constant recycling of Rab14 by escorting Rab14 to the membrane. Furthermore, we identify several metastasis regulators as cargoes carried by Rab14-positive vesicles, including Mucin13 and CD44, which may contribute to metastasis-promoting effects of CHML. Altogether, our data establish CHML as a potential promoter of HCC metastasis, and the CHML-Rab14 axis may be a promising therapeutic target for HCC.
Collapse
|
47
|
A Cell-Free Content Mixing Assay for SNARE-Mediated Multivesicular Body-Vacuole Membrane Fusion. Methods Mol Biol 2019; 1860:289-301. [PMID: 30317513 DOI: 10.1007/978-1-4939-8760-3_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Endocytosis is a fundamental process underlying diverse eukaryotic physiology. The terminal stage of this process is membrane fusion between the perimeter membrane of a late endosome filled with intraluminal vesicles, or multivesicular body (MVB), and the lysosome membrane to facilitate catabolism of internalized biomaterials or surface polytopic proteins. To comprehensively understand the mechanisms underlying MVB-lysosome membrane fusion, we developed a quantitative, cell-free assay to study this SNARE-mediated event in molecular detail using Saccharomyces cerevisiae and its vacuolar lysosome, or vacuole, as models. This involves separately isolating organelles from two yeast strains each expressing a different complementary fusion probe targeted to the lumen of either MVBs or vacuoles. Isolated organelles are mixed in vitro under fusogenic conditions. Upon MVB-vacuole membrane fusion, luminal contents mix to facilitate probe interaction, reconstituting β-lactamase activity recorded by a colorimetric enzyme activity assay. This method accommodates a multitude of approaches (e.g., genetics, addition of purified protein reagents) to study this process in isolation, and in theory could be repurposed to study other SNARE-mediated fusion events within cells.
Collapse
|
48
|
Chakrabarti R, Wichmann C. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Int J Mol Sci 2019; 20:E2147. [PMID: 31052288 PMCID: PMC6539712 DOI: 10.3390/ijms20092147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
- Collaborative Research Center 1286 "Quantitative Synaptology", 37099 Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
49
|
|
50
|
Liu J, Lei M, Zhou Y, Chen F. A Comprehensive Analysis of the Small GTPases Ypt7 Involved in the Regulation of Fungal Development and Secondary Metabolism in Monascus ruber M7. Front Microbiol 2019; 10:452. [PMID: 30936855 PMCID: PMC6431638 DOI: 10.3389/fmicb.2019.00452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ypts (yeast protein transports),also called as ras-associated binding GTPases (Rab), are the largest group of the small GTPases family, which have been extensively studied in model eukaryotic cells and play a pivotal role in membane trafficking, while this study showed potential regulation role of Ypts in fungi. One of Ypts, Ypt7 may be involved in fungal development and secondary metabolism, but the exact mechanism still exists a controversy. In current study, the functions of a Monascus ypt7 homologous gene (mrypt7) from Monascus ruber M7 was investigated by combination of gene-deletion (Δmrypt7), overexpression (M7::PtrpC-mrypt7) and transcriptome analysis. Results showed that the radial growth rate of Δmrypt7 was significantly slower than M. ruber M7, little conidia and ascospores can be observed in Δmrypt7, but the yield of intracellular secondary metabolites was dramatically increased. Simultaneously, the mrypt7 overexpression strain possessed similar capacity for sporulation and secondary metabolism observed in M. ruber M7. Transcriptome results further illustrated that mrypt7 could coordinate with numerous genes involved in the vegetative growth, conidiogenesis, secondary metabolism biosynthesis and transportation of M. ruber M7. Combined with the similar effect of Ypt7 homologs on other fungi, we propose that Ypt7 works more like a global regulatory factor in fungi. To our knowledge, it is the first time to investigate Ypt7 functions in Monascus. It could also improve the understanding of Ypt7 functions in fungi.
Collapse
Affiliation(s)
- Jiao Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ming Lei
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Youxiang Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fusheng Chen
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|