1
|
Zhang H, Yu B, Fang Y, Xie Z, Xiong Q, Zhang D, Cheng J, Guo Q, Su Y, Zhao J. Long-lasting, UV shielding, and cellulose-based avermectin nano/micro spheres with dual smart stimuli-microenvironment responsiveness for Plutella xylostella control. Carbohydr Polym 2024; 345:122553. [PMID: 39227095 DOI: 10.1016/j.carbpol.2024.122553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 09/05/2024]
Abstract
The requirement to improve the efficiency of pesticide utilization has led to the development of sustainable and smart stimuli-responsive pesticide delivery systems. Herein, a novel avermectin nano/micro spheres (AVM@HPMC-Oxalate) with sensitive stimuli-response function target to the Lepidoptera pests midgut microenvironment (pH 8.0-9.5) was constructed using hydroxypropyl methylcellulose (HPMC) as the cost-effective and biodegradable material. The avermectin (AVM) loaded nano/micro sphere was achieved with high AVM loading capacity (up to 66.8 %). The simulated release experiment proved the rapid stimuli-responsive and pesticides release function in weak alkaline (pH 9) or cellulase environment, and the release kinetics were explained through release models and SEM characterization. Besides, the nano/micro sphere size made AVM@HPMC-Oxalate has higher foliar retention rate (1.6-2.1-fold higher than commercial formulation) which is beneficial for improving the utilization of pesticides. The in vivo bioassay proved that AVM@HPMC-Oxalate could achieve the long-term control of Plutella xylostella by extending UV shielding performance (9 fold higher than commercial formulation). After 3 h of irradiation, the mortality rate of P. xylostella treated by AVM@HPMC-Oxalate still up to 56.7 % ± 5.8 %. Moreover, AVM@HPMC-Oxalate was less toxic to non-target organisms, and the acute toxicity to zebrafish was reduced by 2-fold compared with AVM technical.
Collapse
Affiliation(s)
- Haonan Zhang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Bin Yu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Yun Fang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Zhengang Xie
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Qiuyu Xiong
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Donglai Zhang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Jingli Cheng
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Qunzhen Guo
- Zhejiang Zhuji United Chemicals Co., Ltd., Hangzhou 321042, PR China
| | - Yehua Su
- Bayin Aobao Industry Park, Alxa Economic Development Zone, Alxa League, Inner Mongolia, PR China
| | - Jinhao Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Cao X, Li M, Wu X, Fan S, Lin L, Xu L, Zhang X, Zhou F. Gut fungal diversity across different life stages of the onion fly Delia antiqua. MICROBIAL ECOLOGY 2024; 87:115. [PMID: 39266780 PMCID: PMC11393149 DOI: 10.1007/s00248-024-02431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
A significant number of microorganisms inhabit the intestinal tract or the body surface of insects. While the majority of research on insect microbiome interaction has mainly focused on bacteria, of late multiple studies have been acknowledging the importance of fungi and have started reporting the fungal communities as well. In this study, high-throughput sequencing was used to compare the diversity of intestinal fungi in Delia antiqua (Diptera: Anthomyiidae) at different growth stages, and effect of differential fungi between adjacent life stages on the growth and development of D. antiqua was investigated. The results showed that there were significant differences in the α and β diversity of gut fungal communities between two adjacent growth stages. Among the dominant fungi, genera Penicillium and Meyerozyma and family Cordycipitaceae had higher abundances. Cordycipitaceae was mainly enriched in the pupal and adult (male and female) stages, Penicillium was mainly enriched in the pupal, 2nd instar and 3rd instar larval stages, and Meyerozyma was enriched in the pupal stage. Only three fungal species were found to differ between two adjacent growth stages. These three fungal species including Fusarium oxysporum, Meyerozyma guilliermondii and Penicillium roqueforti generally inhibited the growth and development of D. antiqua, with only P. roqueforti promoting the growth and development of female insects. This study will provide theoretical support for the search for new pathogenic microorganisms for other fly pests control and the development of new biological control strategies for fly pests.
Collapse
Affiliation(s)
- Xin Cao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshidong Road, Licheng District, Ji'nan, 250103, China
| | - Miaomiao Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshidong Road, Licheng District, Ji'nan, 250103, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshidong Road, Licheng District, Ji'nan, 250103, China
| | - Susu Fan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshidong Road, Licheng District, Ji'nan, 250103, China
| | - Luyao Lin
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshidong Road, Licheng District, Ji'nan, 250103, China
| | - Linfeng Xu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshidong Road, Licheng District, Ji'nan, 250103, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshidong Road, Licheng District, Ji'nan, 250103, China.
| | - Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 Jingshidong Road, Licheng District, Ji'nan, 250103, China.
| |
Collapse
|
3
|
Guedes LM, Aguilera N, Kuster VC, da Silva Carneiro RG, de Oliveira DC. Integrated insights into the cytological, histochemical, and cell wall composition features of Espinosa nothofagi (Hymenoptera) gall tissues: implications for functionality. PROTOPLASMA 2024:10.1007/s00709-024-01985-4. [PMID: 39249158 DOI: 10.1007/s00709-024-01985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
Many insect-induced galls are considered complex structures due to their tissue compartmentalization and multiple roles performed by them. The current study investigates the complex interaction between Nothofagus obliqua host plant and the hymenopteran gall-inducer Espinosa nothofagi, focusing on cell wall properties and cytological features. The E. nothofagi galls present an inner cortex with nutritive and storage tissues, as well as outer cortex with epidermis, chlorenchyma, and water-storing parenchyma. The water-storing parenchyma cells are rich in pectins, heteromannans, and xyloglucans in their walls, and have large vacuoles. Homogalacturonans contribute to water retention, and periplasmic spaces function as additional water reservoirs. Nutritive storage cell walls support nutrient storage, with plasmodesmata facilitating nutrient mobilization crucial for larval nutrition. Their primary and sometimes thick secondary cell walls support structural integrity and act as a carbon reserve. The absent labeling of non-cellulosic epitopes indicates a predominantly cellulosic nature in nutritive cell walls, facilitating larval access to lipid, protein, and reducing sugar-rich contents. The nutritive tissue, with functional chloroplasts and high metabolism-related organelles, displays signs of self-sufficiency, emphasizing its role in larval nutrition and cellular maintenance. Overall, the intricate cell wall composition in E. nothofagi galls showcases adaptations for water storage, nutrient mobilization, and larval nutrition, contributing significantly to our understanding of plant-insect interactions.
Collapse
Affiliation(s)
- Lubia María Guedes
- Laboratorio de Semioquímica Aplicada, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160‑C, 4030000, Concepción, Chile
| | - Narciso Aguilera
- Laboratorio de Semioquímica Aplicada, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160‑C, 4030000, Concepción, Chile
| | - Vinícius Coelho Kuster
- Laboratório de Anatomia Vegetal, Instituto de Biociências, Universidade Federal de Jataí, Campus Jatobá, Cidade Universitária, Jataí, Goiás, Brazil
| | - Renê Gonçalves da Silva Carneiro
- Laboratório de Anatomia Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás, Brazil
| | - Denis Coelho de Oliveira
- Laboratório de Anatomia, Desenvolvimento Vegetal E Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Akiki P, Delamotte P, Montagne J. Lipid Metabolism in Relation to Carbohydrate Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39192070 DOI: 10.1007/5584_2024_821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Carbohydrates and lipids integrate into a complex metabolic network that is essential to maintain homeostasis. In insects, as in most metazoans, dietary carbohydrates are taken up as monosaccharides whose excess is toxic, even at relatively low concentrations. To cope with this toxicity, monosaccharides are stored either as glycogen or neutral lipids, the latter constituting a quasi-unlimited energy store. Breakdown of these stores in response to energy demand depends on insect species and on several physiological parameters. In this chapter, we review the multiple metabolic pathways and strategies linking carbohydrates and lipids that insects utilize to respond to nutrient availability, food scarcity or physiological activities.
Collapse
Affiliation(s)
- Perla Akiki
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pierre Delamotte
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Sylvester T, Adams R, Mitchell RF, Ray AM, Shen R, Shin NR, McKenna DD. Comparative analyses of the banded alder borer (Rosalia funebris) and Asian longhorned beetle (Anoplophora glabripennis) genomes reveal significant differences in genome architecture and gene content among these and other Cerambycidae. J Hered 2024; 115:516-523. [PMID: 38551670 DOI: 10.1093/jhered/esae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/27/2024] [Indexed: 08/21/2024] Open
Abstract
Rosalia funebris (RFUNE; Cerambycidae), the banded alder borer, is a longhorn beetle whose larvae feed on the wood of various economically and ecologically significant trees in western North America. Adults are short-lived and not known to consume plant material substantially. We sequenced, assembled, and annotated the RFUNE genome using HiFi and RNASeq data. We documented genome architecture and gene content, focusing on genes putatively involved in plant feeding (phytophagy). Comparisons were made to the well-studied genome of the Asian longhorned beetle (AGLAB; Anoplophora glabripennis) and other Cerambycidae. The 814 Mb RFUNE genome assembly was distributed across 42 contigs, with an N50 of 30.18 Mb. Repetitive sequences comprised 60.27% of the genome, and 99.0% of expected single-copy orthologous genes were fully assembled. We identified 12,657 genes, fewer than in the four other species studied, and 46.4% fewer than for Aromia moschata (same subfamily as RFUNE). Of the 7,258 orthogroups shared between RFUNE and AGLAB, 1,461 had more copies in AGLAB and 1,023 had more copies in RFUNE. We identified 240 genes in RFUNE that putatively arose via horizontal transfer events. The RFUNE genome encoded substantially fewer putative plant cell wall degrading enzymes than AGLAB, which may relate to the longer-lived plant-feeding adults of the latter species. The RFUNE genome provides new insights into cerambycid genome architecture and gene content and provides a new vantage point from which to study the evolution and genomic basis of phytophagy in beetles.
Collapse
Affiliation(s)
- Terrence Sylvester
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Richard Adams
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, United States
- Agricultural Statistics Laboratory, University of Arkansas, Fayetteville, AR 72704, United States
| | - Robert F Mitchell
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, United States
| | - Ann M Ray
- Department of Biology, Xavier University, Cincinnati, OH 45207, United States
| | - Rongrong Shen
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Na Ra Shin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| | - Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, United States
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, United States
| |
Collapse
|
6
|
Carpentier J, Abenaim L, Luttenschlager H, Dessauvages K, Liu Y, Samoah P, Francis F, Caparros Megido R. Microorganism Contribution to Mass-Reared Edible Insects: Opportunities and Challenges. INSECTS 2024; 15:611. [PMID: 39194816 DOI: 10.3390/insects15080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
The interest in edible insects' mass rearing has grown considerably in recent years, thereby highlighting the challenges of domesticating new animal species. Insects are being considered for use in the management of organic by-products from the agro-industry, synthetic by-products from the plastics industry including particular detoxification processes. The processes depend on the insect's digestive system which is based on two components: an enzymatic intrinsic cargo to the insect species and another extrinsic cargo provided by the microbial community colonizing-associated with the insect host. Advances have been made in the identification of the origin of the digestive functions observed in the midgut. It is now evident that the community of microorganisms can adapt, improve, and extend the insect's ability to digest and detoxify its food. Nevertheless, edible insect species such as Hermetia illucens and Tenebrio molitor are surprisingly autonomous, and no obligatory symbiosis with a microorganism has yet been uncovered for digestion. Conversely, the intestinal microbiota of a given species can take on different forms, which are largely influenced by the host's environment and diet. This flexibility offers the potential for the development of novel associations between insects and microorganisms, which could result in the creation of synergies that would optimize or expand value chains for agro-industrial by-products, as well as for contaminants.
Collapse
Affiliation(s)
- Joachim Carpentier
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Linda Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Hugo Luttenschlager
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Kenza Dessauvages
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Yangyang Liu
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
- Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Haidian District, Beijing 100193, China
| | - Prince Samoah
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Rudy Caparros Megido
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
7
|
Pavithran S, Murugan M, Mannu J, Sathyaseelan C, Balasubramani V, Harish S, Natesan S. Salivary gland transcriptomics of the cotton aphid Aphis gossypii and comparative analysis with other sap-sucking insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22123. [PMID: 38860775 DOI: 10.1002/arch.22123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
Aphids are sap-sucking insects responsible for crop losses and a severe threat to crop production. Proteins in the aphid saliva are integral in establishing an interaction between aphids and plants and are responsible for host plant adaptation. The cotton aphid, Aphis gossypii (Hemiptera: Aphididae) is a major pest of Gossypium hirsutum. Despite extensive studies of the salivary proteins of various aphid species, the components of A. gossypii salivary glands are unknown. In this study, we identified 123,008 transcripts from the salivary gland of A. gossypii. Among those, 2933 proteins have signal peptides with no transmembrane domain known to be secreted from the cell upon feeding. The transcriptome includes proteins with more comprehensive functions such as digestion, detoxification, regulating host defenses, regulation of salivary glands, and a large set of uncharacterized proteins. Comparative analysis of salivary proteins of different aphids and other insects with A. gossypii revealed that 183 and 88 orthologous clusters were common in the Aphididae and non-Aphididae groups, respectively. The structure prediction for highly expressed salivary proteins indicated that most possess an intrinsically disordered region. These results provide valuable reference data for exploring novel functions of salivary proteins in A. gossypii with their host interactions. The identified proteins may help develop a sustainable way to manage aphid pests.
Collapse
Affiliation(s)
- Shanmugasundram Pavithran
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Chakkarai Sathyaseelan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Venkatasamy Balasubramani
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| | - Senthil Natesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
8
|
Huang Q, Han W, Posada-Florez F, Evans JD. Microbiomes, diet flexibility, and the spread of a beetle parasite of honey bees. Front Microbiol 2024; 15:1387248. [PMID: 38881661 PMCID: PMC11176428 DOI: 10.3389/fmicb.2024.1387248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Invasive pests may disturb and destructively reformat the local ecosystem. The small hive beetle (SHB), Aethina tumida, originated in Africa and has expanded to America, Australia, Europe, and Asia. A key factor facilitating its fast global expansion is its ability to subsist on diverse food inside and outside honey bee colonies. SHBs feed on various plant fruits and exudates in the environment while searching for bee hives. After sneaking into a bee hive, they switch their diet to honey, pollen, and bee larvae. How SHBs survive on such a broad range of food remains unclear. In this study, we simulated the outside and within hive stages by providing banana and hive resources and quantified the SHB associated microbes adjusted by the diet. We found that SHBs fed on bananas were colonized by microbes coding more carbohydrate-active enzymes and a higher alpha diversity than communities from SHBs feeding on hive products or those collected directly from bee hives. SHBs fed on bananas and those collected from the hive showed high symbiont variance, indicated by the beta diversity. Surprisingly, we found the honey bee core symbiont Snodgrassella alvi in the guts of SHBs collected in bee hives. To determine the role of S. alvi in SHB biology, we inoculated SHBs with a genetically tagged culture of S. alvi, showing that this symbiont is a likely transient of SHBs. In contrast, the fungus Kodamaea ohmeri is the primary commensal of SHBs. Diet-based microbiome shifts are likely to play a key role in the spread and success of SHBs.
Collapse
Affiliation(s)
- Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| | - Wensu Han
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Francisco Posada-Florez
- USDA, Beltsville Agricultural Research Center, Bee Research Laboratory, Agricultural Research Service, Beltsville, MD, United States
| | - Jay D Evans
- USDA, Beltsville Agricultural Research Center, Bee Research Laboratory, Agricultural Research Service, Beltsville, MD, United States
| |
Collapse
|
9
|
Copeland M, Landa S, Owoyemi A, Jonika MM, Alfieri J, Sylvester T, Hoover Z, Hjelmen CE, Spencer Johnston J, Kyre BR, Rieske LK, Blackmon H, Casola C. Genome assembly of the southern pine beetle ( Dendroctonus frontalis Zimmerman) reveals the origins of gene content reduction in Dendroctonus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.592785. [PMID: 38766115 PMCID: PMC11100688 DOI: 10.1101/2024.05.08.592785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dendroctonus frontalis, also known as southern pine beetle (SPB), represents the most damaging forest pest in the southeastern United States. Strategies to predict, monitor and suppress SPB outbreaks have had limited success. Genomic data are critical to inform on pest biology and to identify molecular targets to develop improved management approaches. Here, we produced a chromosome-level genome assembly of SPB using long-read sequencing data. Synteny analyses confirmed the conservation of the core coleopteran Stevens elements and validated the bona fide SPB X chromosome. Transcriptomic data were used to obtain 39,588 transcripts corresponding to 13,354 putative protein-coding loci. Comparative analyses of gene content across 14 beetle and 3 other insects revealed several losses of conserved genes in the Dendroctonus clade and gene gains in SPB and Dendroctonus that were enriched for loci encoding membrane proteins and extracellular matrix proteins. While lineage-specific gene losses contributed to the gene content reduction observed in Dendroctonus, we also showed that widespread misannotation of transposable elements represents a major cause of the apparent gene expansion in several non-Dendroctonus species. Our findings uncovered distinctive features of the SPB gene complement and disentangled the role of biological and annotation-related factors contributing to gene content variation across beetles.
Collapse
Affiliation(s)
- Megan Copeland
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Shelby Landa
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | - Adekola Owoyemi
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
| | | | - Jamie Alfieri
- Department of Molecular Biosciences, University of Texas Austin, Austin, TX, USA
| | - Terrence Sylvester
- Department of Biological Sciences, The University of Memphis, Memphis, TN, USA
| | - Zachary Hoover
- Department of Biochemistry, Texas A&M University, College Station, TX, USA
| | - Carl E. Hjelmen
- Department of Biology, Utah Valley University, Orem, UT, USA
| | | | - Bethany R. Kyre
- USDA Forest Service, Forest Health Protection, San Bernardino, CA, USA
| | - Lynne K. Rieske
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Doctoral Degree Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, USA
- Interdisciplinary Doctoral Degree Program in Genetics and Genomics, Texas A&M University, College Station, USA
| | - Claudio Casola
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Doctoral Degree Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, USA
- Interdisciplinary Doctoral Degree Program in Genetics and Genomics, Texas A&M University, College Station, USA
| |
Collapse
|
10
|
Tang XF, Sun YF, Liang YS, Yang KY, Chen PT, Li HS, Huang YH, Pang H. Metabolism, digestion, and horizontal transfer: potential roles and interaction of symbiotic bacteria in the ladybird beetle Novius pumilus and their prey Icerya aegyptiaca. Microbiol Spectr 2024; 12:e0295523. [PMID: 38497713 PMCID: PMC11064573 DOI: 10.1128/spectrum.02955-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
In this study, we first time sequenced and analyzed the 16S rRNA gene data of predator ladybird beetles Novius pumilus and globally distributed invasive pest Icerya aegyptiaca at different stages, and combined data with bacterial genome sequences in N. pumilus to explored the taxonomic distribution, alpha and beta diversity, differentially abundant bacteria, co-occurrence network, and putative functions of their microbial community. Our finding revealed that Candidatus Walczuchella, which exhibited a higher abundance in I. aegyptiaca, possessed several genes in essential amino acid biosynthesis and seemed to perform roles in providing nutrients to the host, similar to other obligate symbionts in scale insects. Lactococcus, Serratia, and Pseudomonas, more abundant in N. pumilus, were predicted to have genes related to hydrocarbon, fatty acids, and chitin degradation, which may assist their hosts in digesting the wax shell covering the scale insects. Notably, our result showed that Lactococcus had relatively higher abundances in adults and eggs compared to other stages in N. pumilus, indicating potential vertical transmission. Additionally, we found that Arsenophonus, known to influence sex ratios in whitefly and wasp, may also function in I. aegyptiaca, probably by influencing nutrient metabolism as it similarly had many genes corresponding to vitamin B and essential amino acid biosynthesis. Also, we observed a potential horizontal transfer of Arsenophonus between the scale insect and its predator, with a relatively high abundance in the ladybirds compared to other bacteria from the scale insects.IMPORTANCEThe composition and dynamic changes of microbiome in different developmental stages of ladybird beetles Novius pumilus with its prey Icerya aegyptiaca were detected. We found that Candidatus Walczuchella, abundant in I. aegyptiaca, probably provide nutrients to their host based on their amino acid biosynthesis-related genes. Abundant symbionts in N. pumilus, including Lactococcus, Serratia, and Pseudophonus, may help the host digest the scale insects with their hydrocarbon, fatty acid, and chitin degrading-related genes. A key endosymbiont Arsenophonus may play potential roles in the nutrient metabolisms and sex determination in I. aegyptiaca, and is possibly transferred from the scale insect to the predator.
Collapse
Affiliation(s)
- Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yi-Fei Sun
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yuan-Sen Liang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Kun-Yu Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Pei-Tao Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
11
|
Anand R, Divya D, Mazumdar-Leighton S, Bentur JS, Nair S. Expression Analysis Reveals Differentially Expressed Genes in BPH and WBPH Associated with Resistance in Rice RILs Derived from a Cross between RP2068 and TN1. Int J Mol Sci 2023; 24:13982. [PMID: 37762286 PMCID: PMC10531025 DOI: 10.3390/ijms241813982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
BPH (brown planthopper) and WBPH (white backed planthopper) are significant rice pests that often co-occur as sympatric species and cause substantial yield loss. Despite their genetic similarities, different host-resistance genes confer resistance against these two hoppers. The defense mechanisms in rice against these pests are complex, and the molecular processes regulating their responses remain largely unknown. This study used specific recombinant inbred lines (RILs) derived from a cross between rice varieties RP2068-18-3-5 (BPH- and WBPH-resistant) and TN1 (BPH- and WBPH-susceptible) to investigate the mechanisms of interaction between these planthoppers and their rice hosts. WBPH and BPH were allowed to feed on specific RILs, and RNA-Seq was carried out on WBPH insects. Transcriptome profiling and qRT-PCR results revealed differential expression of genes involved in detoxification, digestion, transportation, cuticle formation, splicing, and RNA processing. A higher expression of sugar transporters was observed in both hoppers feeding on rice with resistance against either hopper. This is the first comparative analysis of gene expressions in these insects fed on genetically similar hosts but with differential resistance to BPH and WBPH. These results complement our earlier findings on the differential gene expression of the same RILs (BPH- or WBPH-infested) utilized in this study. Moreover, identifying insect genes and pathways responsible for countering host defense would augment our understanding of BPH and WBPH interaction with their rice hosts and enable us to develop lasting strategies to control these significant pests.
Collapse
Affiliation(s)
- Rashi Anand
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Plant Biotic Interaction Lab, Department of Botany, University of Delhi, Delhi 110007, India;
| | - Dhanasekar Divya
- Agri Biotech Foundation, Rajendranagar, Hyderabad 500030, India; (D.D.); (J.S.B.)
| | | | - Jagadish S. Bentur
- Agri Biotech Foundation, Rajendranagar, Hyderabad 500030, India; (D.D.); (J.S.B.)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
12
|
Bhuvaragavan S, Reshma T, Hilda K, Meenakumari M, Sruthi K, Nivetha R, Janarthanan S. Predominant contribution of an endogenous cellulase (OlCel) to the cellulolysis in the digestive system of larvae of banana pseudostem weevil, Odoiporus longicollis (Coleoptera: Curculionidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22031. [PMID: 37322608 DOI: 10.1002/arch.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Insects have evolved with effective strategies to utilize cellulose as an energy source by possessing cellulolytic enzymes which can be used as an optimal resource in the bioenergy sector. The study was aimed at evaluating the cellulolytic enzyme in the larval gut of the banana pseudostem weevil, Odoiporus longicollis Olivier (Coleoptera: Curculionidae). Primarily, cellulase activity was localized along the gut, in which the midgut showed the highest activity (2858 U/mg). The thermo-tolerance of cellulase activity was found to be up to 80°C (highest at 60°C), and the enzyme was stable at a pH between 5 and 6. Various concentrations of divalent cations (CaCl2 , MgCl2 , and CuCl2 ) have differential enhancing and inhibitory effects on cellulase activity. The cellulase (OlCel) was purified using anion exchange chromatography. The molecular weight of the cellulase was determined to be 47 kDa. The physicochemical parameters of the purified enzyme were similar to that of enzyme activity of whole gut extract. Mass spectrometry results identified sequence similarities of purified cellulase to the glycosyl hydrolase family 5 (GHF5) family. The gut microbial cellulase activity as exogenous source showed no competence compared with the endogenous activity.
Collapse
Affiliation(s)
| | | | | | | | - Kannan Sruthi
- Department of Zoology, University of Madras, Chennai, India
| | | | | |
Collapse
|
13
|
Wang H, Shi S, Hua W. Advances of herbivore-secreted elicitors and effectors in plant-insect interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1176048. [PMID: 37404545 PMCID: PMC10317074 DOI: 10.3389/fpls.2023.1176048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 07/06/2023]
Abstract
Diverse molecular processes regulate the interactions between insect herbivores and their host plants. When plants are exposed to insects, elicitors induce plant defenses, and complex physiological and biochemical processes are triggered, such as the activation of the jasmonic acid (JA) and salicylic acid (SA) pathways, Ca2+ flux, reactive oxygen species (ROS) burst, mitogen-activated protein kinase (MAPK) activation, and other responses. For better adaptation, insects secrete a large number of effectors to interfere with plant defenses on multiple levels. In plants, resistance (R) proteins have evolved to recognize effectors and trigger stronger defense responses. However, only a few effectors recognized by R proteins have been identified until now. Multi-omics approaches for high-throughput elicitor/effector identification and functional characterization have been developed. In this review, we mainly highlight the recent advances in the identification of the elicitors and effectors secreted by insects and their target proteins in plants and discuss their underlying molecular mechanisms, which will provide new inspiration for controlling these insect pests.
Collapse
Affiliation(s)
- Huiying Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
14
|
Dai Y, Liu D, Guo W, Liu Z, Zhang X, Shi L, Zhou D, Wang L, Kang K, Wang F, Zhao S, Tan Y, Hu T, Chen W, Li P, Zhou Q, Yuan L, Zhang Z, Chen Y, Zhang W, Li J, Yu L, Xiao S. Poaceae-specific β-1,3;1,4-d-glucans link jasmonate signalling to OsLecRK1-mediated defence response during rice-brown planthopper interactions. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1286-1300. [PMID: 36952539 PMCID: PMC10214751 DOI: 10.1111/pbi.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/30/2023] [Accepted: 02/25/2023] [Indexed: 05/27/2023]
Abstract
Brown planthopper (BPH, Nilaparvata lugens), a highly destructive insect pest, poses a serious threat to rice (Oryza sativa) production worldwide. Jasmonates are key phytohormones that regulate plant defences against BPH; however, the molecular link between jasmonates and BPH responses in rice remains largely unknown. Here, we discovered a Poaceae-specific metabolite, mixed-linkage β-1,3;1,4-d-glucan (MLG), which contributes to jasmonate-mediated BPH resistance. MLG levels in rice significantly increased upon BPH attack. Overexpressing OsCslF6, which encodes a glucan synthase that catalyses MLG biosynthesis, significantly enhanced BPH resistance and cell wall thickness in vascular bundles, whereas knockout of OsCslF6 reduced BPH resistance and vascular wall thickness. OsMYC2, a master transcription factor of jasmonate signalling, directly controlled the upregulation of OsCslF6 in response to BPH feeding. The AT-rich domain of the OsCslF6 promoter varies in rice varieties from different locations and natural variants in this domain were associated with BPH resistance. MLG-derived oligosaccharides bound to the plasma membrane-anchored LECTIN RECEPTOR KINASE1 OsLecRK1 and modulated its activity. Thus, our findings suggest that the OsMYC2-OsCslF6 module regulates pest resistance by modulating MLG production to enhance vascular wall thickness and OsLecRK1-mediated defence signalling during rice-BPH interactions.
Collapse
Affiliation(s)
- Yang‐Shuo Dai
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Di Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wuxiu Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhi‐Xuan Liu
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Xue Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Li‐Li Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - De‐Mian Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ling‐Na Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Kui Kang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Feng‐Zhu Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Shan‐Shan Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yi‐Fang Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Tian Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wu Chen
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Peng Li
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Qing‐Ming Zhou
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Long‐Yu Yuan
- Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Zhenfei Zhang
- Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yue‐Qin Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Wen‐Qing Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Juan Li
- College of AgronomyHunan Agricultural UniversityChangshaChina
| | - Lu‐Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
15
|
Zhang H, Lin R, Liu Q, Lu J, Qiao G, Huang X. Transcriptomic and proteomic analyses provide insights into host adaptation of a bamboo-feeding aphid. FRONTIERS IN PLANT SCIENCE 2023; 13:1098751. [PMID: 36714746 PMCID: PMC9874943 DOI: 10.3389/fpls.2022.1098751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Salivary glands and their secreted proteins play an important role in the feeding process of sap-sucking aphids. The determination of saliva composition is an important step in understanding host plant adaptation of aphids. Pseudoregma bambucicola is a severe bamboo pest in subtropical areas and the only aphid species that can exclusively feed on hard stalks of bamboos. How this species can penetrate and degrade hard bamboo cell walls and utilize a very specialized niche are important unanswered questions. METHODS In this study, comprehensive analyses based on transcriptome sequencing, RT-qPCR, liquid chromatography-tandem spectrometry (LC-MS/MS) and bioinformatics were conducted on dissected salivary glands and secreted saliva of P. bambucicola to characterize the overall gene expression and salivary protein composition, and to identify putative effector proteins important for aphid-plant interactions. RESULTS AND DISCUSSION Some secretory proteins homologous to known aphid effectors important for aphid-plant interactions, such as digestive enzymes, detoxifying and antioxidant enzymes and some effectors modulating plant defenses, are also detected in salivary gland transcriptome and salivary gland and/or saliva secretomes in P. bambucicola. This indicates that these effectors are probably be essential for enabling P. bambucicola feeding on bamboo host. Although several plant cell wall degrading enzymes (PCWDEs) can be identified from transcriptome, most of the enzymes identified in salivary glands showed low expression levels and they only represent a small fraction of the complete set of enzymes for degrading cellulose and hemicellulose. In addition, our data show that P. bambucicola has no its own ability to produce pectinases. Overall, our analyses indicate that P. bambucicola may lose its own ability to express and secrete key PCWDEs, and its adaptation to unique feeding habit may depend on its symbiotic bacteria.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ruixun Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianjun Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Guo W, Wang W, Tang J, Li T, Li X. Genome analysis and genomic comparison of a fungal cultivar of the nonsocial weevil Euops chinensis reveals its plant decomposition and protective roles in fungus-farming mutualism. Front Microbiol 2023; 14:1048910. [PMID: 36876094 PMCID: PMC9978505 DOI: 10.3389/fmicb.2023.1048910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Fungus-farming mutualisms are models for studying co-evolutionary among species. Compared to well-documented fungus-farming in social insects, the molecular aspects of fungus-farming mutualisms in nonsocial insects have been poorly explored. Euops chinensis is a solitary leaf-rolling weevil feeding on Japanese knotweed (Fallopia japonica). This pest has evolved a special proto-farming bipartite mutualism with the fungus Penicillium herquei, which provide nutrition and defensive protection for the E. chinensis larvae. Here, the genome of P. herquei was sequenced, and the structure and specific gene categories in the P. herquei genome were then comprehensively compared with the other two well-studied Penicillium species (P. decumbens and P. chrysogenum). The assembled P. herquei genome had a 40.25 Mb genome size with 46.7% GC content. A diverse set of genes associating with carbohydrate-active enzymes, cellulose and hemicellulose degradation, transporter, and terpenoid biosynthesis were detected in the P. herquei genome. Comparative genomics demonstrate that the three Penicillium species show similar metabolic and enzymatic potential, however, P. herquei has more genes associated with plant biomass degradation and defense but less genes associating with virulence pathogenicity. Our results provide molecular evidence for plant substrate breakdown and protective roles of P. herquei in E. chinensis mutualistic system. Large metabolic potential shared by Penicillium species at the genus level may explain why some Penicillium species are recruited by the Euops weevils as crop fungi.
Collapse
Affiliation(s)
- Wenfeng Guo
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China.,Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Wei Wang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Jun Tang
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Tianyu Li
- Wuhan Benagen Technology Company Limited, Wuhan, Hubei, China
| | - Xiaoqiong Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
17
|
Cornelissen JHC, Cornwell WK, Freschet GT, Weedon JT, Berg MP, Zanne AE. Coevolutionary legacies for plant decomposition. Trends Ecol Evol 2023; 38:44-54. [PMID: 35945074 DOI: 10.1016/j.tree.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022]
Abstract
Coevolution has driven speciation and evolutionary novelty in functional traits across the Tree of Life. Classic coevolutionary syndromes such as plant-pollinator, plant-herbivore, and host-parasite have focused strongly on the fitness consequences during the lifetime of the interacting partners. Less is known about the consequences of coevolved traits for ecosystem-level processes, in particular their 'afterlife' legacies for litter decomposition, nutrient cycling, and the functional ecology of decomposers. We review the mechanisms by which traits resulting from coevolution between plants and their consumers, microbial symbionts, or humans, and between microbial decomposers and invertebrates, drive plant litter decomposition pathways and rates. This supports the idea that much of current global variation in the decomposition of plant material is a legacy of coevolution.
Collapse
Affiliation(s)
- J Hans C Cornelissen
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands.
| | - William K Cornwell
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Grégoire T Freschet
- Station d'Ecologie Théorique et Expérimentale, Centre National de la Recherche Scientifique (CNRS), Moulis, France
| | - James T Weedon
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Matty P Berg
- A-LIFE, Ecology and Evolution Section, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Community and Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Amy E Zanne
- Department of Biology, University of Miami, Miami, FL, USA
| |
Collapse
|
18
|
Dietary Association with Midgut Microbiota Components of Eocanthecona furcellata (Wolff). DIVERSITY 2022. [DOI: 10.3390/d14121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eocanthecona furcellata is an important predatory stinkbug that attacks many lepidopteran pests. For mass-rearing, artificial diets are used to rear this predator in the laboratory; however, the fitness of the predators is reduced, and little is known about the cause. Since gut microbiota plays vital roles in the digestion and development of many hosts and can consequently affect host fitness, an understanding of the microbial community composition of E. furcellata may help to solve this unresolved problem. We compared the development and reproduction of E. furcellata reared on an artificial diet, and a natural (Spodoptera litura) or semi-natural (Tenebrio molitor) diet, and then the midgut microbiota were assessed using high-throughput 16S rRNA. The results of the high-throughput 16S rRNA show that the bacterial richness and diversity in the artificial diet gut samples increased considerably compared with the other samples. Proteobacteria and Firmicutes were the dominant phyla in E. furcellata. At the genus level, Serratia (however, the relative abundance was lower in the artificial diet gut samples), Enterococcus, and an uncultured bacterium genus of family Enterobacteriaceae, were dominant. The midgut microbiota components significantly differed among the diets, indicating that the gut bacteria had a dietary association with E. furcellata. This study provides a better understanding of midgut microbiota and the artificial diets that might affect them in E. furcellata.
Collapse
|
19
|
Metabolic novelty originating from horizontal gene transfer is essential for leaf beetle survival. Proc Natl Acad Sci U S A 2022; 119:e2205857119. [PMID: 36161953 PMCID: PMC9546569 DOI: 10.1073/pnas.2205857119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer (HGT) provides an evolutionary shortcut for recipient organisms to gain novel functions. Although reports of HGT in higher eukaryotes are rapidly accumulating, in most cases the evolutionary trajectory, metabolic integration, and ecological relevance of acquired genes remain unclear. Plant cell wall degradation by HGT-derived enzymes is widespread in herbivorous insect lineages. Pectin is an abundant polysaccharide in the walls of growing parts of plants. We investigated the significance of horizontally acquired pectin-digesting polygalacturonases (PGs) of the leaf beetle Phaedon cochleariae. Using a CRISPR/Cas9-guided gene knockout approach, we generated a triple knockout and a quadruple PG-null mutant in order to investigate the enzymatic, biological, and ecological effects. We found that pectin-digestion 1) is exclusively linked to the horizontally acquired PGs from fungi, 2) became fixed in the host genome by gene duplication leading to functional redundancy, 3) compensates for nutrient-poor diet by making the nutritious cell contents more accessible, and 4) facilitates the beetles development and survival. Our analysis highlights the selective advantage PGs provide to herbivorous insects and demonstrate the impact of HGT on the evolutionary success of leaf-feeding beetles, major contributors to species diversity.
Collapse
|
20
|
Souza CR, Teixeira MFNP, Morais PB. Diversity of cellulolytic and xylanolytic fungi associated with the digestive tract of aquatic insect larvae in streams of the Amazon Forest and Cerrado in Brazil. BRAZ J BIOL 2022; 82:e265681. [PMID: 36134871 DOI: 10.1590/1519-6984.265681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
The study of the relationship between fungi and insects brings important contributions to the knowledge of fungal biodiversity and to the understanding of mutualistic ecological interactions. This study reports the occurrence of a community of filamentous fungi in the digestive tract (DT) of mining insect larvae belonging to genus Stenochironomus in streams of two Brazilian biomes. Fungi were obtained from the digestive tract of larvae found on trunks and leaves of low-order streams in the Amazon Forest and Cerrado in the north of Brazil. The fungal community was screened for xylanolytic and cellulolytic activities. The diversity of fungal species in the DT of larvae is possibly related to the diversity of diets of species of that genus and the diversity of substrates in the ecosystems. The diversity and richness of fungal species were influenced by ecological differences between locations more than by the types of substrates in which they were collected (trunk and leaf). Most fungi in the DT of Stenochironomus larvae sampled in leaves exhibited cellulolytic enzyme activity. Such results stress that the mycobiomes of the DT of Stenochiromonus larvae produce enzymes that contribute to the process of breaking down plant remains in their hosts.
Collapse
Affiliation(s)
- C R Souza
- Universidade Federal do Tocantins, Programa de Doutorado em Biodiversidade e Biotecnologia, Laboratório de Microbiologia Ambiental e Biotecnologia e Coleção de Culturas Microbianas Carlos Rosa, Palmas, TO, Brasil.,Instituto Federal de Educação, Ciência e Tecnologia do Tocantins, Gurupi, TO, Brasil
| | - M F N P Teixeira
- Universidade Federal do Tocantins, Programa de Doutorado em Biodiversidade e Biotecnologia, Laboratório de Microbiologia Ambiental e Biotecnologia e Coleção de Culturas Microbianas Carlos Rosa, Palmas, TO, Brasil
| | - P B Morais
- Universidade Federal do Tocantins, Programa de Doutorado em Biodiversidade e Biotecnologia, Laboratório de Microbiologia Ambiental e Biotecnologia e Coleção de Culturas Microbianas Carlos Rosa, Palmas, TO, Brasil
| |
Collapse
|
21
|
Wang Q, Liu L, Zhang S, Wu H, Huang J. A chromosome-level genome assembly and intestinal transcriptome of Trypoxylus dichotomus (Coleoptera: Scarabaeidae) to understand its lignocellulose digestion ability. Gigascience 2022; 11:giac059. [PMID: 35764601 PMCID: PMC9239855 DOI: 10.1093/gigascience/giac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Lignocellulose, as the key structural component of plant biomass, is a recalcitrant structure, difficult to degrade. The traditional management of plant waste, including landfill and incineration, usually causes serious environmental pollution and health problems. Interestingly, the xylophagous beetle, Trypoxylus dichotomus, can decompose lignocellulosic biomass. However, the genomics around the digestion mechanism of this beetle remain to be elucidated. Here, we assembled the genome of T. dichotomus, showing that the draft genome size of T. dichotomus is 636.27 Mb, with 95.37% scaffolds anchored onto 10 chromosomes. Phylogenetic results indicated that a divergent evolution between the ancestors of T. dichotomus and the closely related scarabaeid species Onthophagus taurus occurred in the early Cretaceous (120 million years ago). Through gene family evolution analysis, we found 67 rapidly evolving gene families, within which there were 2 digestive gene families (encoding Trypsin and Enoyl-(Acyl carrier protein) reductase) that have experienced significant expansion, indicating that they may contribute to the high degradation efficiency of lignocellulose in T. dichotomus. Additionally, events of chromosome breakage and rearrangement were observed by synteny analysis during the evolution of T. dichotomus due to chromosomes 6 and 8 of T. dichotomus being intersected with chromosomes 2 and 10 of Tribolium castaneum, respectively. Furthermore, the comparative transcriptome analyses of larval guts showed that the digestion-related genes were more commonly expressed in the midgut or mushroom residue group than the hindgut or sawdust group. This study reports the well-assembled and annotated genome of T. dichotomus, providing genomic and transcriptomic bases for further understanding the functional and evolutionary mechanisms of lignocellulose digestion in T. dichotomus.
Collapse
Affiliation(s)
- Qingyun Wang
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Liwei Liu
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
- Zhejiang Museum of Natural History, No. 6 West Lake Cultural Square, Hangzhou, Zhejiang 310014, China
| | - Sujiong Zhang
- Dapanshan Insect Institute of Zhejiang, Pan'an, Zhejiang 322300, China
| | - Hong Wu
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Junhao Huang
- National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
22
|
Wang K, Gao P, Geng L, Liu C, Zhang J, Shu C. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line. MICROBIOME 2022; 10:90. [PMID: 35698170 PMCID: PMC9195238 DOI: 10.1186/s40168-022-01291-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Scarabaeidae insect Protaetia brevitarsis (PB) has recently gained increasing research interest as a resource insect because its larvae can effectively convert decaying organic matter to plant growth-promoting frass with a high humic acid content and produce healthy, nutritional insect protein sources. Lignocellulose is the main component of PB larvae (PBL) feed, but PB genome annotation shows that PBL carbohydrate-active enzymes are not able to complete the lignocellulose degradation process. Thus, the mechanism by which PBL efficiently degrade lignocellulose is worthy of further study. RESULTS Herein, we used combined host genomic and gut metagenomic datasets to investigate the lignocellulose degradation activity of PBL, and a comprehensive reference catalog of gut microbial genes and host gut transcriptomic genes was first established. We characterized a gene repertoire comprising highly abundant and diversified lignocellulose-degrading enzymes and demonstrated that there was unique teamwork between PBL and their gut bacterial microbiota for efficient lignocellulose degradation. PBL selectively enriched lignocellulose-degrading microbial species, mainly from Firmicutes and Bacteroidetes, which are capable of producing a broad array of cellulases and hemicellulases, thus playing a major role in lignocellulosic biomass degradation. In addition, most of the lignocellulose degradation-related module sequences in the PBL microbiome were novel. PBL provide organic functional complementarity for lignocellulose degradation via their evolved strong mouthparts, alkaline midgut, and mild stable hindgut microenvironment to facilitate lignocellulosic biomass grinding, dissolving, and symbiotic microbial fermentation, respectively. CONCLUSIONS This work shows that PBL are a promising model to study lignocellulose degradation, which can provide highly abundant novel enzymes and relevant lignocellulose-degrading bacterial strains for biotechnological biomass conversion industries. The unique teamwork between PBL and their gut symbiotic bacterial microbiota for efficient lignocellulose degradation will expand the knowledge of holobionts and open a new beginning in the theory of holobionts. Video Abstract.
Collapse
Affiliation(s)
- Kui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Peiwen Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Chunqin Liu
- Hebei Key Laboratory of Soil Entomology, Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou, 061001 China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
23
|
Liu J, Feng R, Fu X, Zhao J, Zhang S, Wang J, Wang X, Wei J. Lignans dramatically enhance the resistance of Fraxinus velutina Torr. by adjusting the dominant bacterium group of Agrilus planipennis Fairmaire. PEST MANAGEMENT SCIENCE 2022; 78:1386-1397. [PMID: 34897966 DOI: 10.1002/ps.6755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Velvet ash (Fraxinus velutina Torr.) is an important wood and ornamental tree species. Emerald ash borer (EAB), Agrilus planipennis Fairmaire, is a major wood borer of velvet ash. The aim of this study was to identify the secondary metabolites of velvet ash involved in regulating the dominant bacterium group of EAB. RESULTS The amount of lignans in the phloem of infested trees had increased by 290.96% because of A. planipennis infection. The addition of lignans to the artificial diet significantly reduced the weight of the larvae and decreased the dominant bacterial group in the larval midgut, such as Pseudomonadaceae, Xanthomonadaceae, and Enterobacteriaceae. The FvPLR1, a key gene for lignan synthesis, was obtained based on the phloem transcriptome of velvet ash. The expression of FvPLR1 in the phloem of the infested tree was significantly higher than that in the noninfested tree. Meanwhile, FvPLR1 silenced by virus-induced gene silencing showed that its expression level and the lignan content were decreased by 69.91% and 31.65%, respectively. Interestingly, silencing FvPLR1 induced alterations in the dominant bacteria group in the larvae, with the reverse trend in the lignan-fed treatment. CONCLUSION The evidence showed that FvPLR1 was a positive regulator. The increasing synthesis of lignans leads to resistance improvement in velvet ash, which will provide comprehensive insights into the tree defense system to wood borer infestation. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianfeng Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Runxia Feng
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xiaohong Fu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Jie Zhao
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Sufang Zhang
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Jianjun Wang
- Liaoning Academy of Forestry Science, Shenyang, China
| | - Xiaoyi Wang
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Jianrong Wei
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
24
|
Salivary protein 7 of the brown planthopper functions as an effector for mediating tricin metabolism in rice plants. Sci Rep 2022; 12:3205. [PMID: 35217680 PMCID: PMC8881502 DOI: 10.1038/s41598-022-07106-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is an important pest that affects rice (Oryza sativa) production in Asia. The flavone tricin (5,7,4'-trihydroxy-3',5'-dimethoxy flavone) is a valuable secondary metabolite commonly found in rice plants that can defend rice plants against infestation by BPH. BPH damage can reduce the metabolic level of tricin in rice. Our preliminary transcriptome research results showed that BPH salivary protein 7 (NlSP7), is highly responsive to tricin stimuli. However, the function of NlSP7 in mediating the interaction between the rice plant and the BPH is unknown. In this study, we cloned the NlSP7 gene in N. lugens and found that its mRNA level was greater in the presence of high tricin content than low tricin content, regardless of whether the BPHs were fed a rice plant diet or an artificial diet containing 100 mg/L tricin. Knocking down NlSP7 resulted in BPH individuals spending more time in the non-penetration and pathway phase, and less time feeding on the phloem of rice plants. These changes decreased BPH food intake, feeding behavior, and fitness, as well as the tricin content of the rice plants. These findings demonstrate that the salivary protein 7 of BPH functions as an effector for tricin metabolism in rice.
Collapse
|
25
|
Fu ZY, An JQ, Liu W, Zhang HP, Yang P. Genomic Analyses of the Fungus Paraconiothyrium sp. Isolated from the Chinese White Wax Scale Insect Reveals Its Symbiotic Character. Genes (Basel) 2022; 13:genes13020338. [PMID: 35205383 PMCID: PMC8872350 DOI: 10.3390/genes13020338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
The Chinese white wax scale, Ericerus pela, is an insect native to China. It harbors a variety of microbes. The Paraconiothyrium fungus was isolated from E. pela and genome sequenced in this study. A fungal cytotoxicity assay was performed on the Aedes albopictus cell line C6/36. The assembled Paraconiothyrium sp. genome was 39.55 Mb and consisted of 14,174 genes. The coding sequences accounted for 50.75% of the entire genome. Functional pathway analyses showed that Paraconiothyrium sp. possesses complete pathways for the biosynthesis of 20 amino acids, 10 of which E. pela lacks. It also had complementary genes in the vitamin B groups synthesis pathways. Secondary metabolism prediction showed many gene clusters that produce polyketide. Additionally, a large number of genes associated with ‘reduced virulence’ in the genome were annotated with the Pathogen–Host Interaction database. A total of 651 genes encoding carbohydrate-active enzymes were predicted to be mostly involved in plant polysaccharide degradation. Pan-specific genomic analyses showed that genes unique to Paraconiothyrium sp. were enriched in the pathways related to amino acid metabolism and secondary metabolism. GO annotation analysis yielded similar results. The top COG categories were ‘carbohydrate transport and metabolism’, ‘lipid transport and metabolism’, and ‘secondary metabolite biosynthesis, transport and catabolism’. Phylogenetic analyses based on gene family and pan genes showed that Paraconiothyrium sp is clustered together with species from the Didymosphaeriaceae family. A multi-locus sequence analysis showed that it converged with the same branch as P. brasiliense and they formed one group with fungi from the Paraconiothyrium genus. To validate the in vitro toxicity of Paraconiothyrium sp., a cytotoxicity assay was performed. The results showed that medium-cultured Paraconiothyrium sp. had no harmful effect on cell viability. No toxins were secreted by the fungus during growth. Our results imply that Paraconiothyrium sp. may establish a symbiotic relationship with the host to supply complementary nutrition to E. pela.
Collapse
Affiliation(s)
- Zuo-Yi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Jia-Qi An
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Wei Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Hong-Ping Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China;
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (Z.-Y.F.); (J.-Q.A.); (W.L.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
- Correspondence:
| |
Collapse
|
26
|
Castelo MK, Crespo JE. Microorganismal Cues Involved in Host-Location in Asilidae Parasitoids. BIOLOGY 2022; 11:129. [PMID: 35053126 PMCID: PMC8773287 DOI: 10.3390/biology11010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/17/2022]
Abstract
Parasitoids are organisms that kill their host before completing their development. Typical parasitoids belong to Hymenoptera, whose females search for the hosts. But some atypical Diptera parasitoids also have searching larvae that must orientate toward, encounter, and accept hosts, through cues with different levels of detectability. In this work, the chemical cues involved in the detection of the host by parasitoid larvae of the genus Mallophora are shown with a behavioral approach. Through olfactometry assays, we show that two species of Mallophora orient to different host species and that chemical cues are produced by microorganisms. We also show that treating potential hosts with antibiotics reduces attractiveness on M. ruficauda but not to M. bigoti suggesting that endosymbiotic bacteria responsible for the host cues production should be located in different parts of the host. In fact, we were able to show that M. bigoti is attracted to frass from the most common host. Additionally, we evaluated host orientation under a context of interspecific competence and found that both parasitoid species orient to Cyclocephaala signaticollis showing that host competition could occur in the field. Our work shows how microorganisms mediate orientation to hosts but differences in their activity or location in the host result in differences in the attractiveness of different cues. We show for the first time that M. bigoti behaves similar to M. ruficauda extending and reinforcing that all Mallophora species have adopted a parasitoid lifestyle.
Collapse
Affiliation(s)
- Marcela K. Castelo
- Laboratorio de Entomología Experimental—Grupo de Investigación en Ecofisiología de Parasitoides y Otros Insectos (GIEP), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto IEGEBA (CONICET-UBA), Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina;
| | | |
Collapse
|
27
|
Schapheer C, Pellens R, Scherson R. Arthropod-Microbiota Integration: Its Importance for Ecosystem Conservation. Front Microbiol 2021; 12:702763. [PMID: 34408733 PMCID: PMC8365148 DOI: 10.3389/fmicb.2021.702763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Recent reports indicate that the health of our planet is getting worse and that genuine transformative changes are pressing. So far, efforts to ameliorate Earth's ecosystem crises have been insufficient, as these often depart from current knowledge of the underlying ecological processes. Nowadays, biodiversity loss and the alterations in biogeochemical cycles are reaching thresholds that put the survival of our species at risk. Biological interactions are fundamental for achieving biological conservation and restoration of ecological processes, especially those that contribute to nutrient cycles. Microorganism are recognized as key players in ecological interactions and nutrient cycling, both free-living and in symbiotic associations with multicellular organisms. This latter assemblage work as a functional ecological unit called "holobiont." Here, we review the emergent ecosystem properties derived from holobionts, with special emphasis on detritivorous terrestrial arthropods and their symbiotic microorganisms. We revisit their relevance in the cycling of recalcitrant organic compounds (e.g., lignin and cellulose). Finally, based on the interconnection between biodiversity and nutrient cycling, we propose that a multicellular organism and its associates constitute an Ecosystem Holobiont (EH). This EH is the functional unit characterized by carrying out key ecosystem processes. We emphasize that in order to meet the challenge to restore the health of our planet it is critical to reduce anthropic pressures that may threaten not only individual entities (known as "bionts") but also the stability of the associations that give rise to EH and their ecological functions.
Collapse
Affiliation(s)
- Constanza Schapheer
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santiago, Chile
- Laboratorio de Sistemática y Evolución, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - Roseli Pellens
- UMR 7205, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Ecole Pratique de Hautes Etudes, Institut de Systématique, Évolution, Biodiversité, Sorbonne Université, Université des Antilles, Paris, France
| | - Rosa Scherson
- Laboratorio de Sistemática y Evolución, Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Aguirre-Rojas LM, Scully ED, Trick HN, Zhu KY, Smith CM. Comparative analyses of transcriptional responses of Dectes texanus LeConte (Coleoptera: Cerambycidae) larvae fed on three different host plants and artificial diet. Sci Rep 2021; 11:11448. [PMID: 34075134 PMCID: PMC8169664 DOI: 10.1038/s41598-021-90932-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Dectes texanus is an important coleopteran pest of soybeans and cultivated sunflowers in the Midwestern United States that causes yield losses by girdling stems of their host plants. Although sunflower and giant ragweed are primary hosts of D. texanus, they began colonizing soybeans approximately 50 years ago and no reliable management method has been established to prevent or reduce losses by this pest. To identify genes putatively involved when feeding soybean, we compared gene expression of D. texanus third-instar larvae fed soybean to those fed sunflower, giant ragweed, or artificial diet. Dectes texanus larvae differentially expressed 514 unigenes when fed on soybean compared to those fed the other diet treatments. Enrichment analyses of gene ontology terms from up-regulated unigenes in soybean-fed larvae compared to those fed both primary hosts highlighted unigenes involved in oxidoreductase and polygalacturonase activities. Cytochrome P450s, carboxylesterases, major facilitator superfamily transporters, lipocalins, apolipoproteins, glycoside hydrolases 1 and 28, and lytic monooxygenases were among the most commonly up-regulated unigenes in soybean-fed larvae compared to those fed their primary hosts. These results suggest that D. texanus larvae differentially expressed unigenes involved in biotransformation of allelochemicals, digestion of plant cell walls and transport of small solutes and lipids when feeding in soybean.
Collapse
Affiliation(s)
- Lina M Aguirre-Rojas
- Deparment of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92506, USA
| | - Erin D Scully
- Stored Product Insect and Engineering Research Unit, USDA-ARS-CGAHR, Manhattan, KS, 66502, USA
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - C Michael Smith
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
29
|
Liu M, Zhao X, Li X, Wu X, Zhou H, Gao Y, Zhang X, Zhou F. Antagonistic Effects of Delia antiqua (Diptera: Anthomyiidae)-Associated Bacteria Against Four Phytopathogens. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:597-610. [PMID: 33547790 DOI: 10.1093/jee/toab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 06/12/2023]
Abstract
Recent studies have revealed multiple roles of insect-associated microbes such as lignin degradation, entomopathogen inhibition, and antibiotic production. These functions improve insect host fitness, and provide a novel source of discovering beneficial microbes for industrial and agricultural production. Previously published research found that in the symbiosis formed by the dipteran pest Delia antiqua (Meigen) (Diptera: Anthomyiidae) and its associated bacteria, the bacteria showed effective inhibition of one fungal entomopathogen, Beauveria bassiana. The antifungal activity of those associated bacteria indicates their potential to be used as biocontrol agents for fungal phytopathogens. In this study, we first isolated and identified bacteria associated with D. antiqua using a culture-dependent method. Second, we tested the antifungal activity of these bacteria against four phytopathogens including Fusarium moniliforme, Botryosphaeria dothidea, and two Fusarium oxysporum strains using the dual-culture method. In total, 74 species belonging to 30 genera, 23 families, eight classes, and four phyla were isolated and identified. Among those bacteria, Ochrobactrum anthropi, Morganella morganii, Arthrobacter sp. 3, and Acinetobacter guillouiae showed significant volatile inhibition activity against F. moniliforme, B. dothidea, and both F. oxysporum, respectively. Moreover, bacteria including Rhodococcus equi, Leucobacter aridicollis, Paenibacillus sp. 3, and Lampropedia sp. showed significant contact inhibition activity against F. moniliforme, B. dothidea, and both F. oxysporum. Our work provides a new source for discovering biocontrol agents against phytopathogens.
Collapse
Affiliation(s)
- Mei Liu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xiaoyan Zhao
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | | | - Xiaoqing Wu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Hongzi Zhou
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Yunxiao Gao
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xinjian Zhang
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| |
Collapse
|
30
|
Xue HJ, Niu YW, Segraves KA, Nie RE, Hao YJ, Zhang LL, Cheng XC, Zhang XW, Li WZ, Chen RS, Yang XK. The draft genome of the specialist flea beetle Altica viridicyanea (Coleoptera: Chrysomelidae). BMC Genomics 2021; 22:243. [PMID: 33827435 PMCID: PMC8028732 DOI: 10.1186/s12864-021-07558-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altica (Coleoptera: Chrysomelidae) is a highly diverse and taxonomically challenging flea beetle genus that has been used to address questions related to host plant specialization, reproductive isolation, and ecological speciation. To further evolutionary studies in this interesting group, here we present a draft genome of a representative specialist, Altica viridicyanea, the first Alticinae genome reported thus far. RESULTS The genome is 864.8 Mb and consists of 4490 scaffolds with a N50 size of 557 kb, which covered 98.6% complete and 0.4% partial insect Benchmarking Universal Single-Copy Orthologs. Repetitive sequences accounted for 62.9% of the assembly, and a total of 17,730 protein-coding gene models and 2462 non-coding RNA models were predicted. To provide insight into host plant specialization of this monophagous species, we examined the key gene families involved in chemosensation, detoxification of plant secondary chemistry, and plant cell wall-degradation. CONCLUSIONS The genome assembled in this work provides an important resource for further studies on host plant adaptation and functionally affiliated genes. Moreover, this work also opens the way for comparative genomics studies among closely related Altica species, which may provide insight into the molecular evolutionary processes that occur during ecological speciation.
Collapse
Affiliation(s)
- Huai-Jun Xue
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yi-Wei Niu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kari A Segraves
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA
- Archbold Biological Station, 123 Main Drive, Venus, FL, 33960, USA
| | - Rui-E Nie
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ya-Jing Hao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Li Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Chao Cheng
- Biomarker Technologies Corporation, Floor 8, Shunjie Building, 12 Fuqian Road, Nanfaxin Town, Shunyi District, Beijing, 101300, China
| | - Xue-Wen Zhang
- Biomarker Technologies Corporation, Floor 8, Shunjie Building, 12 Fuqian Road, Nanfaxin Town, Shunyi District, Beijing, 101300, China
| | - Wen-Zhu Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Run-Sheng Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xing-Ke Yang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
31
|
Insect derived extra oral GH32 plays a role in susceptibility of wheat to Hessian fly. Sci Rep 2021; 11:2081. [PMID: 33483565 PMCID: PMC7822839 DOI: 10.1038/s41598-021-81481-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
The Hessian fly is an obligate parasite of wheat causing significant economic damage, and triggers either a resistant or susceptible reaction. However, the molecular mechanisms of susceptibility leading to the establishment of the larvae are unknown. Larval survival on the plant requires the establishment of a steady source of readily available nutrition. Unlike other insect pests, the Hessian fly larvae have minute mandibles and cannot derive their nutrition by chewing tissue or sucking phloem sap. Here, we show that the virulent larvae produce the glycoside hydrolase MdesGH32 extra-orally, that localizes within the leaf tissue being fed upon. MdesGH32 has strong inulinase and invertase activity aiding in the breakdown of the plant cell wall inulin polymer into monomers and converting sucrose, the primary transport sugar in plants, to glucose and fructose, resulting in the formation of a nutrient-rich tissue. Our finding elucidates the molecular mechanism of nutrient sink formation and establishment of susceptibility.
Collapse
|
32
|
Li HS, Tang XF, Huang YH, Xu ZY, Chen ML, Du XY, Qiu BY, Chen PT, Zhang W, Ślipiński A, Escalona HE, Waterhouse RM, Zwick A, Pang H. Horizontally acquired antibacterial genes associated with adaptive radiation of ladybird beetles. BMC Biol 2021; 19:7. [PMID: 33446206 PMCID: PMC7807722 DOI: 10.1186/s12915-020-00945-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/22/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) has been documented in many herbivorous insects, conferring the ability to digest plant material and promoting their remarkable ecological diversification. Previous reports suggest HGT of antibacterial enzymes may have contributed to the insect immune response and limit bacterial growth. Carnivorous insects also display many evolutionary successful lineages, but in contrast to the plant feeders, the potential role of HGTs has been less well-studied. RESULTS Using genomic and transcriptomic data from 38 species of ladybird beetles, we identified a set of bacterial cell wall hydrolase (cwh) genes acquired by this group of beetles. Infection with Bacillus subtilis led to upregulated expression of these ladybird cwh genes, and their recombinantly produced proteins limited bacterial proliferation. Moreover, RNAi-mediated cwh knockdown led to downregulation of other antibacterial genes, indicating a role in antibacterial immune defense. cwh genes are rare in eukaryotes, but have been maintained in all tested Coccinellinae species, suggesting that this putative immune-related HGT event played a role in the evolution of this speciose subfamily of predominant predatory ladybirds. CONCLUSION Our work demonstrates that, in a manner analogous to HGT-facilitated plant feeding, enhanced immunity through HGT might have played a key role in the prey adaptation and niche expansion that promoted the diversification of carnivorous beetle lineages. We believe that this represents the first example of immune-related HGT in carnivorous insects with an association with a subsequent successful species radiation.
Collapse
Affiliation(s)
- Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xue-Fei Tang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ze-Yu Xu
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mei-Lan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
- School of Environment and Life Science, Nanning Normal University, Nanning, 530001, China
| | - Xue-Yong Du
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bo-Yuan Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Pei-Tao Chen
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Adam Ślipiński
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Hermes E Escalona
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Andreas Zwick
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
33
|
Haeger W, Wielsch N, Shin NR, Gebauer-Jung S, Pauchet Y, Kirsch R. New Players in the Interaction Between Beetle Polygalacturonases and Plant Polygalacturonase-Inhibiting Proteins: Insights From Proteomics and Gene Expression Analyses. FRONTIERS IN PLANT SCIENCE 2021; 12:660430. [PMID: 34149758 PMCID: PMC8213348 DOI: 10.3389/fpls.2021.660430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/26/2021] [Indexed: 05/12/2023]
Abstract
Plants possess various defense strategies to counter attacks from microorganisms or herbivores. For example, plants reduce the cell-wall-macerating activity of pathogen- or insect-derived polygalacturonases (PGs) by expressing PG-inhibiting proteins (PGIPs). PGs and PGIPs belong to multi-gene families believed to have been shaped by an evolutionary arms race. The mustard leaf beetle Phaedon cochleariae expresses both active PGs and catalytically inactive PG pseudoenzymes. Previous studies demonstrated that (i) PGIPs target beetle PGs and (ii) the role of PG pseudoenzymes remains elusive, despite having been linked to the pectin degradation pathway. For further insight into the interaction between plant PGIPs and beetle PG family members, we combined affinity purification with proteomics and gene expression analyses, and identified novel inhibitors of beetle PGs from Chinese cabbage (Brassica rapa ssp. pekinensis). A beetle PG pseudoenzyme was not targeted by PGIPs, but instead interacted with PGIP-like proteins. Phylogenetic analysis revealed that PGIP-like proteins clustered apart from "classical" PGIPs but together with proteins, which have been involved in developmental processes. Our results indicate that PGIP-like proteins represent not only interesting novel PG inhibitor candidates in addition to "classical" PGIPs, but also fascinating new players in the arms race between herbivorous beetles and plant defenses.
Collapse
Affiliation(s)
- Wiebke Haeger
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Natalie Wielsch
- Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Na Ra Shin
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Steffi Gebauer-Jung
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Roy Kirsch,
| | - Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Yannick Pauchet,
| |
Collapse
|
34
|
Shelomi M, Chen MJ. Culturing-Enriched Metabarcoding Analysis of the Oryctes rhinoceros Gut Microbiome. INSECTS 2020; 11:insects11110782. [PMID: 33187223 PMCID: PMC7696363 DOI: 10.3390/insects11110782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary The coconut rhinoceros beetle is a pest of palm trees, which may have symbiotic gut microbes that help it digest its food. These microbes may produce enzymes like cellulase, which have uses in human industry. If the microbes are essential for the beetle’s survival, then finding ways to attack the microbes could help fight the pest. We sampled microbes from the guts of larval beetles collected in coconut trees in southern Taiwan, and identified the microbes both by culturing and with molecular biology methods. We found several species of bacteria and a yeast, Candida xylanolytica, with potential digestive functions for the beetle. Some of these microbes had been reported in these beetles before while others are new. Broader surveys of the beetle microbiome are needed to determine whether or not they have a conserved microbiome. Abstract Wood-feeding insects should have a source of enzymes like cellulases to digest their food. These enzymes can be produced by the insect, or by microbes living in the wood and/or inside the insect gut. The coconut rhinoceros beetle, Oryctes rhinoceros, is a pest whose digestive microbes are of considerable interest. This study describes the compartments of the O. rhinoceros gut and compares their microbiomes using culturing-enriched metabarcoding. Beetle larvae were collected from a coconut grove in southern Taiwan. Gut contents from the midgut and hindgut were plated on nutrient agar and selective carboxymethylcellulose agar plates. DNA was extracted from gut and fat body samples and 16S rDNA metabarcoding performed to identify unculturable bacteria. Cellulase activity tests were performed on gut fluids and microbe isolates. The midgut and hindgut both showed cellulolytic activity. Bacillus cereus, Citrobacter koseri, and the cellulolytic fungus Candida xylanilytica were cultured from both gut sections in most larvae. Metabarcoding did not find Bacillus cereus, and found that either Citrobacter koseri or Paracoccus sp. were the dominant gut microbes in any given larva. No significant differences were found between midgut and hindgut microbiomes. Bacillus cereus and Citrobacter koseri are common animal gut microbes frequently found in Oryctes rhinoceros studies while Candida xylanilytica and the uncultured Paracoccus sp. had not been identified in this insect before. Some or all of these may well have digestive functions for the beetle, and are most likely acquired from the diet, meaning they may be transient commensalists rather than obligate mutualists. Broader collection efforts and tests with antibiotics will resolve ambiguities in the beetle–microbe interactions.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University; Taipei City 10617, Taiwan
- Correspondence: ; Tel.: +886-02-3366-5588
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei City 10673, Taiwan;
| |
Collapse
|
35
|
Wang JM, Bai J, Zheng FY, Ling Y, Li X, Wang J, Zhi YC, Li XJ. Diversity of the gut microbiome in three grasshopper species using 16S rRNA and determination of cellulose digestibility. PeerJ 2020; 8:e10194. [PMID: 33194406 PMCID: PMC7649011 DOI: 10.7717/peerj.10194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022] Open
Abstract
Background Grasshoppers are typical phytophagous pests, and they have large appetites with high utilization of plants fibers, the digestion of which may depend on the microorganisms in their intestines. Grasshoppers have the potential to be utilized in bioreactors, which could improve straw utilization efficiency in the future. In this study, we describe the gut microbiome in three species of grasshoppers, Oedaleus decorus asiaticus, Aiolopus tamulus and Shirakiacris shirakii, by constructing a 16S rDNA gene library and analyzed the digestibility of cellulose and hemicellulose in the grasshoppers by using moss black phenol colorimetry and anthrone colorimetry. Results There were 509,436 bacterial OTUs (Operational Taxonomic Units) detected in the guts of all the grasshoppers sampled. Among them, Proteobacteria and Firmicutes were the most common, Aiolopus tamulus had the highest bacterial diversity, and Shirakiacris shirakii had the highest bacterial species richness. The intestinal microflora structure varied between the different species of grasshopper, with Aiolopus tamulus and Shirakiacris shirakii being the most similar. Meanwhile, the time at which grasshopper specimens were collected also led to changes in the intestinal microflora structure in the same species of grasshoppers. Klebsiella may form the core elements of the microflora in the grasshopper intestinal tract. The digestibility of cellulose/hemicellulose among the three species grasshoppers varied (38.01/24.99%, 43.95/17.21% and 44.12/47.62%). LEfSe analysis and Spearman correlation coefficients showed that the hemicellulosic digestibility of Shirakiacris shirakii was significantly higher than that of the other two species of grasshopper, which may be related to the presence of Pseudomonas, Stenotrophomonas, Glutamicibacter, Corynebacterium, and Brachybacterium in Shirakiacris shirakii intestinal tract. Conclusion The intestinal microbial communities of the three grasshoppers species are similar on phylum level, but the dominant genera of different species grasshoppers are different. The cellulose digestibility of the three species of grasshoppers is relatively high, which may be correlated with the presence of some gut microbiome. Increasing the understanding of the structure and function of the grasshopper intestinal microflora will facilitate further research and the utilization of intestinal microorganisms in the future.
Collapse
Affiliation(s)
- Jian-Mei Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jing Bai
- The Key Laboratory of Zoological Systematics and Application, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Fang-Yuan Zheng
- The Key Laboratory of Zoological Systematics and Application, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yao Ling
- The Key Laboratory of Zoological Systematics and Application, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Xiang Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jing Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yong-Chao Zhi
- The Key Laboratory of Zoological Systematics and Application, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Xin-Jiang Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| |
Collapse
|
36
|
Gao P, Liu Z, Wen J. Expression Profiling of Plant Cell Wall-Degrading Enzyme Genes in Eucryptorrhynchus scrobiculatus Midgut. Front Physiol 2020; 11:1111. [PMID: 33013475 PMCID: PMC7500146 DOI: 10.3389/fphys.2020.01111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 11/17/2022] Open
Abstract
In China, the wood-boring weevil Eucryptorrhynchus scrobiculatus damages and eventually kills the tree of heaven Ailanthus altissima. To feed and digest the cell wall of A. altissima, E. scrobiculatus requires plant cell wall-degrading enzymes (PCWDEs). In the present study, we used next-generation sequencing to analyze the midgut transcriptome of E. scrobiculatus. Using three midgut transcriptomes, we assembled 21,491 unigenes from 167,714,100 clean reads. We identified 25 putative PCWDEs, including 11 cellulases and 14 pectinases. We constructed phylogenetic trees with a maximum likelihood algorithm to elucidate the relationships between sequences of the PCWDE protein families and speculate the functions of the PCWDE genes in E. scrobiculatus. The expression patterns of 17 enzymes in the midgut transcriptome were analyzed in various tissues by quantitative real-time PCR (RT-qPCR). The relative expression levels of 12 genes in the midgut and two genes in the proboscis were significantly higher than those in the other tissues. The proboscis and midgut are the digestive organs of insects, and the high expression level indirectly indicates that these genes are related to digestion. The present study has enabled us to understand the types and numbers of the PCWDEs of E. scrobiculatus and will be helpful for research regarding other weevils’ PCWDEs in the future.
Collapse
Affiliation(s)
- Peng Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Zhenkai Liu
- Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Junbao Wen
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| |
Collapse
|
37
|
Ben Guerrero E, Salvador R, Talia P. Evaluation of hydrolytic enzyme activities from digestive fluids of Anthonomus grandis (Coleoptera: Curculionidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21730. [PMID: 32737998 DOI: 10.1002/arch.21730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The cotton boll weevil, Anthonomus grandis, is a major pest of cotton crops in South America. In this work, partial biochemical characterizations of (hemi) cellulases and pectinases activities in the digestive system (head- and gut- extracts) of A. grandis were evaluated. Gut extract section from third instar larvae exhibited endoglucanase, xylanase, β-glucosidase, and pectinase activities. The endoglucanase and xylanase activities were localized in the foregut, whereas β-glucosidase activity was mainly detected in the hindgut. In addition, no difference in pectinase activity was observed across the gut sections. Thus, A. grandis digestive system is a potentially interesting reservoir for further lignocellulolytic enzymes research.
Collapse
Affiliation(s)
- Emiliano Ben Guerrero
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Provincia de Buenos Aires, Argentina
| | - Ricardo Salvador
- Instituto de Microbiología y Zoología Agrícola (IMYZA), Hurlingham, Provincia de Buenos Aires, Argentina
| | - Paola Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Provincia de Buenos Aires, Argentina
| |
Collapse
|
38
|
Xia X, Lan B, Tao X, Lin J, You M. Characterization of Spodoptera litura Gut Bacteria and Their Role in Feeding and Growth of the Host. Front Microbiol 2020; 11:1492. [PMID: 32714311 PMCID: PMC7344319 DOI: 10.3389/fmicb.2020.01492] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/08/2020] [Indexed: 12/03/2022] Open
Abstract
Insect gut microbes play important roles in host feeding, digestion, immunity, growth and development. Spodoptera litura is an important agricultural pest distributed of global importance. In the present study, diversity and functions of the gut bacteria in S. litura are investigated based on the approaches of metagenomics and denaturing gradient gel electrophoresis (DGGE). The results showed that the gut bacterial diversity of S. litura reared on taro leaves or an artificial diet, were similar at the phylum level, as both were mainly composed of Proteobacteria, but differed significantly at the order level. Spodoptera litura reared on taro leaves (Sl-tar) had gut biota mainly comprised of Enterobacteriales and Lactobacillales, while those reared on artificial diet (Sl-art) predominantly contained Pseudomonadales and Enterobacteriales, suggesting that gut bacteria composition was closely related to the insect's diet. We found that feeding and growth of S. litura were significantly reduced when individuals were treated with antibiotics, but could be both restored to a certain extent after reimporting gut bacteria, indicating that gut bacteria are important for feeding, digestion, and utilization of food in S. litura. Metagenomic sequencing of gut microbes revealed that the gut bacteria encode a large number of enzymes involved in digestion, detoxification, and nutrient supply, implying that the gut microbes may be essential for improving the efficiency of food utilization in S. litura.
Collapse
Affiliation(s)
- Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Bomiao Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Quanzhou Institute of Agricultural Sciences, Quanzhou, China
| | - Xinping Tao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Junhan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| |
Collapse
|
39
|
Hazzouri KM, Sudalaimuthuasari N, Kundu B, Nelson D, Al-Deeb MA, Le Mansour A, Spencer JJ, Desplan C, Amiri KMA. The genome of pest Rhynchophorus ferrugineus reveals gene families important at the plant-beetle interface. Commun Biol 2020; 3:323. [PMID: 32581279 PMCID: PMC7314810 DOI: 10.1038/s42003-020-1060-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022] Open
Abstract
The red palm weevil, Rhynchophorus ferrugineus, infests palm plantations, leading to large financial losses and soil erosion. Pest-host interactions are poorly understood in R. ferrugineus, but the analysis of genetic diversity and pest origins will help advance efforts to eradicate this pest. We sequenced the genome of R. ferrugineus using a combination of paired-end Illumina sequencing (150 bp), Oxford Nanopore long reads, 10X Genomics and synteny analysis to produce an assembly with a scaffold N50 of ~60 Mb. Structural variations showed duplication of detoxifying and insecticide resistance genes (e.g., glutathione S-transferase, P450, Rdl). Furthermore, the evolution of gene families identified those under positive selection including one glycosyl hydrolase (GH16) gene family, which appears to result from horizontal gene transfer. This genome will be a valuable resource to understand insect evolution and behavior and to allow the genetic modification of key genes that will help control this pest.
Collapse
Affiliation(s)
- Khaled Michel Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, PO Box 15551, Al Ain, UAE
| | | | - Biduth Kundu
- Department of Biology, United Arab Emirates University, PO Box 15551, Al Ain, UAE
| | - David Nelson
- Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Mohammad Ali Al-Deeb
- Department of Biology, United Arab Emirates University, PO Box 15551, Al Ain, UAE
| | - Alain Le Mansour
- Date Palm Tissue Culture, United Arab Emirates University, PO Box 15551, Al Ain, UAE
| | - Johnston J Spencer
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX, USA
| | - Claude Desplan
- Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
| | - Khaled M A Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, PO Box 15551, Al Ain, UAE.
- Department of Biology, United Arab Emirates University, PO Box 15551, Al Ain, UAE.
| |
Collapse
|
40
|
Bacterial Communities Associated with the Pine Wilt Disease Insect Vector Monochamus alternatus (Coleoptera: Cerambycidae) during the Larvae and Pupae Stages. INSECTS 2020; 11:insects11060376. [PMID: 32560536 PMCID: PMC7348839 DOI: 10.3390/insects11060376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023]
Abstract
Monochamus alternatus is an important insect pest in pine forests of southern China and the dispersing vector of the pine wood nematode, Bursaphelenchus xylophilus, which leads to pine wilt disease (PWD). Microbiome of M. alternatus may contribute to survival of larvae in the host pine trees. In order to investigate the intestinal bacterial structure of M. alternatus during the larvae and pupae stages in host trees, and infer the function of symbiotic bacteria, we used 16S rRNA gene Illumina sequencing to obtain and compare the bacterial community composition in the foregut, midgut, and hindgut of larvae, pupal intestines, larval galleries, and pupal chambers of M. alternatus. The diversity of the bacterial community in larval intestines and pupal intestines were similar, as well as was significantly greater in larval galleries and pupal chambers. Although there were differences in bacterial compositions in different samples, similar components were also found. Proteobacteria and Firmicutes were the two most dominant phyla in all samples, and genera Enterobacter, Raoultella, Serratia, Lactococcus, and Pseudomonas were dominant in both the intestinal samples and plant tissue samples. Enterobacter was the most abundant genus in larval intestines, and Serratia was dominant in pupal intestine. The functions of these dominant and specific bacteria were also predicted through metagenomic analyses. These bacteria may help M. alternatus degrade cellulose and pinene. The specific role of symbiotic bacteria in the infection cycle of PWD also warrants further study in the future.
Collapse
|
41
|
Reis F, Kirsch R, Pauchet Y, Bauer E, Bilz LC, Fukumori K, Fukatsu T, Kölsch G, Kaltenpoth M. Bacterial symbionts support larval sap feeding and adult folivory in (semi-)aquatic reed beetles. Nat Commun 2020; 11:2964. [PMID: 32528063 PMCID: PMC7289800 DOI: 10.1038/s41467-020-16687-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 11/25/2022] Open
Abstract
Symbiotic microbes can enable their host to access untapped nutritional resources but may also constrain niche space by promoting specialization. Here, we reconstruct functional changes in the evolutionary history of the symbiosis between a group of (semi-)aquatic herbivorous insects and mutualistic bacteria. Sequencing the symbiont genomes across 26 species of reed beetles (Chrysomelidae, Donaciinae) spanning four genera indicates that the genome-eroded mutualists provide life stage-specific benefits to larvae and adults, respectively. In the plant sap-feeding larvae, the symbionts are inferred to synthesize most of the essential amino acids as well as the B vitamin riboflavin. The adult reed beetles’ folivory is likely supported by symbiont-encoded pectinases that complement the host-encoded set of cellulases, as revealed by transcriptome sequencing. However, mapping the occurrence of the symbionts’ pectinase genes and the hosts’ food plant preferences onto the beetles’ phylogeny reveals multiple independent losses of pectinase genes in lineages that switched to feeding on pectin-poor plants, presumably constraining their hosts’ subsequent adaptive potential. Symbiotic microbes in insects can enable their hosts to access untapped nutritional resources. Here, the authors show that symbiotic bacteria in reed beetles can provide essential amino acids to sap-feeding larvae and help leaf-feeding adults to degrade pectin, respectively.
Collapse
Affiliation(s)
- Frank Reis
- Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.,Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Eugen Bauer
- Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Lisa Carolin Bilz
- Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Kayoko Fukumori
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
| | - Gregor Kölsch
- Molekulare Evolutionsbiologie, Institut für Zoologie, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.,Maasen 6, 24107, Kiel, Germany
| | - Martin Kaltenpoth
- Evolutionary Ecology, Institute for Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.
| |
Collapse
|
42
|
Salem H, Kirsch R, Pauchet Y, Berasategui A, Fukumori K, Moriyama M, Cripps M, Windsor D, Fukatsu T, Gerardo NM. Symbiont Digestive Range Reflects Host Plant Breadth in Herbivorous Beetles. Curr Biol 2020; 30:2875-2886.e4. [PMID: 32502409 DOI: 10.1016/j.cub.2020.05.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/05/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Numerous adaptations are gained in light of a symbiotic lifestyle. Here, we investigated the obligate partnership between tortoise leaf beetles (Chrysomelidae: Cassidinae) and their pectinolytic Stammera symbionts to detail how changes to the bacterium's streamlined metabolic range can shape the digestive physiology and ecological opportunity of its herbivorous host. Comparative genomics of 13 Stammera strains revealed high functional conservation, highlighted by the universal presence of polygalacturonase, a primary pectinase targeting nature's most abundant pectic class, homogalacturonan (HG). Despite this conservation, we unexpectedly discovered a disparate distribution for rhamnogalacturonan lyase, a secondary pectinase hydrolyzing the pectic heteropolymer, rhamnogalacturonan I (RG-I). Consistent with the annotation of rhamnogalacturonan lyase in Stammera, cassidines are able to depolymerize RG-I relative to beetles whose symbionts lack the gene. Given the omnipresence of HG and RG-I in foliage, Stammera that encode pectinases targeting both substrates allow their hosts to overcome a greater diversity of plant cell wall polysaccharides and maximize access to the nutritionally rich cytosol. Possibly facilitated by their symbionts' expanded digestive range, cassidines additionally endowed with rhamnogalacturonan lyase appear to utilize a broader diversity of angiosperms than those beetles whose symbionts solely supplement polygalacturonase. Our findings highlight how symbiont metabolic diversity, in concert with host adaptations, may serve as a potential source of evolutionary innovations for herbivorous lineages.
Collapse
Affiliation(s)
- Hassan Salem
- Department of Biology, Emory University, Atlanta, GA 30322, USA; National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA; Mutualisms Research Group, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany.
| | - Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | | - Kayoko Fukumori
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Minoru Moriyama
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Michael Cripps
- AgResearch, Lincoln Research Centre, Lincoln 7608, New Zealand
| | - Donald Windsor
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama
| | - Takema Fukatsu
- National Institute for Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | | |
Collapse
|
43
|
Majumder R, Sutcliffe B, Taylor PW, Chapman TA. Microbiome of the Queensland Fruit Fly through Metamorphosis. Microorganisms 2020; 8:microorganisms8060795. [PMID: 32466500 PMCID: PMC7356580 DOI: 10.3390/microorganisms8060795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Bactrocera tryoni (Froggatt) (Queensland fruit fly, or “Qfly”) is a highly polyphagous tephritid fruit fly and a serious economic pest in Australia. Qfly biology is intimately linked to the bacteria and fungi of its microbiome. While there are numerous studies of the microbiome in larvae and adults, the transition of the microbiome through the pupal stage remains unknown. To address this knowledge gap, we used high-throughput Next-Generation Sequencing (NGS) to examine microbial communities at each developmental stage in the Qfly life cycle, targeting the bacterial 16S rRNA and fungal ITS regions. We found that microbial communities were similar at the larval and pupal stage and were also similar between adult males and females, yet there were marked differences between the larval and adult stages. Specific bacterial and fungal taxa are present in the larvae and adults (fed hydrolyzed yeast with sugar) which is likely related to differences in nutritional biology of these life stages. We observed a significant abundance of the Acetobacteraceae at the family level, both in the larval and pupal stages. Conversely, Enterobacteriaceae was highly abundant (>80%) only in the adults. The majority of fungal taxa present in Qfly were yeasts or yeast-like fungi. In addition to elucidating changes in the microbiome through developmental stages, this study characterizes the Qfly microbiome present at the establishment of laboratory colonies as they enter the domestication process.
Collapse
Affiliation(s)
- Rajib Majumder
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2568, Australia
- Correspondence:
| | - Brodie Sutcliffe
- Department of Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2568, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
| | - Toni A. Chapman
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia; (P.W.T.); (T.A.C.)
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2568, Australia
| |
Collapse
|
44
|
Terra WR, Ferreira C. Evolutionary trends of digestion and absorption in the major insect orders. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 56:100931. [PMID: 32203883 DOI: 10.1016/j.asd.2020.100931] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The spatial organization of digestion, which corresponds to the steps by which the ingested food is hydrolyzed in the different regions of the gut, was described in insects from the major insect orders. The pattern of digestion and absorption in the midgut shows a strong phylogenetic influence, modulated by adaptation to particular feeding habits. Based on this, basic digestive patterns were recognized and were proposed to represent the major ancestors from which the different orders evolved. The putative ancestors chosen to represent different points in the evolution from basal Neoptera to more derived orders were: Neoptera, Polyneoptera, Hemiptera, Hymenoptera-Panorpoidea (Diptera-Lepidoptera), Lepidoptera, and Cyclorrhapha. The basic plan of Neoptera was supposed to be alike that of Polyneoptera, which was hypothesized from studies performed in grasshoppers, crickets and from stick insects. For Holometabola, the basic plan was initially proposed from studies carried out in beetles, bees, nematocerous flies, common flies and also from moths. This review updates the physiological data supporting the putative midgut basic patterns by discussing available data on insects pertaining to different taxa and details the evolutionary trends of midgut function among the major insect orders. Furthermore, by using recent genomic and transcriptome data, this review discusses the few insects for which the spatial organization of midgut absorption is known.
Collapse
Affiliation(s)
- Walter R Terra
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Clelia Ferreira
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil
| |
Collapse
|
45
|
Kirsch R, Vurmaz E, Schaefer C, Eberl F, Sporer T, Haeger W, Pauchet Y. Plants use identical inhibitors to protect their cell wall pectin against microbes and insects. Ecol Evol 2020; 10:3814-3824. [PMID: 32313638 PMCID: PMC7160172 DOI: 10.1002/ece3.6180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
As fundamentally different as phytopathogenic microbes and herbivorous insects are, they enjoy plant-based diets. Hence, they encounter similar challenges to acquire nutrients. Both microbes and beetles possess polygalacturonases (PGs) that hydrolyze the plant cell wall polysaccharide pectin. Countering these threats, plant proteins inhibit PGs of microbes, thereby lowering their infection rate. Whether PG-inhibiting proteins (PGIPs) play a role in defense against herbivorous beetles is unknown. To investigate the significance of PGIPs in insect-plant interactions, feeding assays with the leaf beetle Phaedon cochleariae on Arabidopsis thaliana pgip mutants were performed. Fitness was increased when larvae were fed on mutant plants compared to wild-type plants. Moreover, PG activity was higher, although PG genes were downregulated in larvae fed on PGIP-deficient plants, strongly suggesting that PGIPs impair PG activity. As low PG activity resulted in delayed larval growth, our data provide the first in vivo correlative evidence that PGIPs act as defense against insects.
Collapse
Affiliation(s)
- Roy Kirsch
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Esma Vurmaz
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Carolin Schaefer
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Franziska Eberl
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Theresa Sporer
- Research Group Sequestration and Detoxification in InsectsMax Planck Institute for Chemical EcologyJenaGermany
| | - Wiebke Haeger
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Yannick Pauchet
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| |
Collapse
|
46
|
Shelomi M, Wipfler B, Zhou X, Pauchet Y. Multifunctional cellulase enzymes are ancestral in Polyneoptera. INSECT MOLECULAR BIOLOGY 2020; 29:124-135. [PMID: 31449690 DOI: 10.1111/imb.12614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Many hemimetabolous insects produce their own cellulase enzymes from the glycoside hydrolase family 9, first observed in termites and cockroaches. Phasmatodea have multiple cellulases, some of which are multifunctional and can degrade xylan or xyloglucan. To discover when these abilities evolved, we identified cellulases from the Polyneoptera sampled by the 1000 Insect Transcriptome and Evolution (1KITE) project, including all cockroach and termite transcriptomes. We hoped to identify what role enzyme substrate specificities had in the evolution of dietary specification, such as leaf-feeding or wood-feeding. Putative cellulases were identified from the transcriptomes and analysed phylogenetically. All cellulases were amplified from an exemplar set of Polyneoptera species using rapid amplification of cDNA ends PCR and heterologously expressed in an insect cell line, then tested against different polysaccharides for their digestive abilities. We identified several multifunctional xyloglucanolytic enzymes across Polyneoptera, plus a large group of cellulase-like enzymes found in nearly all insect orders with no discernible digestive ability. Multifunctional xylanolytic cellulases remain unique to Phasmatodea. The presence or absence of multifunctional enzymes does not impact dietary specification, but rather having multiple, multifunctional cellulase genes is an ancestral state for Polyneoptera and possibly Insecta. The prevalence of multifunctional cellulases in other animals demands further investigation.
Collapse
Affiliation(s)
- M Shelomi
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - B Wipfler
- Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - X Zhou
- Department of Entomology, China Agricultural University, Beijing, China
| | - Y Pauchet
- Department of Entomology, Max-Planck Institute für chemische Ökologie, Jena, Germany
| |
Collapse
|
47
|
Eitle MW, Carolan JC, Griesser M, Forneck A. The salivary gland proteome of root-galling grape phylloxera (Daktulosphaira vitifoliae Fitch) feeding on Vitis spp. PLoS One 2019; 14:e0225881. [PMID: 31846459 PMCID: PMC6917271 DOI: 10.1371/journal.pone.0225881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/14/2019] [Indexed: 01/17/2023] Open
Abstract
The successful parasitisation of a plant by a phytophagous insect is dependent on the delivery of effector molecules into the host. Sedentary gall forming insects, such as grape phylloxera (Daktulosphaira vitifoliae Fitch, Phylloxeridae), secrete multiple effectors into host plant tissues that alter or modulate the cellular and molecular environment to the benefit of the insect. The identification and characterisation of effector proteins will provide insight into the host-phylloxera interaction specifically the gall-induction processes and potential mechanisms of plant resistance. Using proteomic mass spectrometry and in-silico secretory prediction, 420 putative effectors were determined from the salivary glands or the root-feeding D. vitifoliae larvae reared on Teleki 5C (V. berlandieri x V. riparia). Among them, 170 conserved effectors were shared between D. vitifoliae and fourteen phytophagous insect species. Quantitative RT-PCR analysis of five conserved effector candidates (protein disulfide-isomerase, peroxidoredoxin, peroxidase and a carboxypeptidase) revealed that their gene expression decreased, when larvae were starved for 24 h, supporting their assignment as effector molecules. The D. vitifoliae effectors identified here represent a functionally diverse group, comprising both conserved and unique proteins that provide new insight into the D. vitifoliae-Vitis spp. interaction and the potential mechanisms by which D. vitifoliae establishes the feeding site, suppresses plant defences and modulates nutrient uptake.
Collapse
Affiliation(s)
- Markus W. Eitle
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Institute of Viticulture and Pomology, Vienna, Austria
| | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Michaela Griesser
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Institute of Viticulture and Pomology, Vienna, Austria
| | - Astrid Forneck
- University of Natural Resources and Life Sciences, Department of Crop Sciences, Institute of Viticulture and Pomology, Vienna, Austria
| |
Collapse
|
48
|
McKenna DD, Shin S, Ahrens D, Balke M, Beza-Beza C, Clarke DJ, Donath A, Escalona HE, Friedrich F, Letsch H, Liu S, Maddison D, Mayer C, Misof B, Murin PJ, Niehuis O, Peters RS, Podsiadlowski L, Pohl H, Scully ED, Yan EV, Zhou X, Ślipiński A, Beutel RG. The evolution and genomic basis of beetle diversity. Proc Natl Acad Sci U S A 2019; 116:24729-24737. [PMID: 31740605 PMCID: PMC6900523 DOI: 10.1073/pnas.1909655116] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The order Coleoptera (beetles) is arguably the most speciose group of animals, but the evolutionary history of beetles, including the impacts of plant feeding (herbivory) on beetle diversification, remain poorly understood. We inferred the phylogeny of beetles using 4,818 genes for 146 species, estimated timing and rates of beetle diversification using 89 genes for 521 species representing all major lineages and traced the evolution of beetle genes enabling symbiont-independent digestion of lignocellulose using 154 genomes or transcriptomes. Phylogenomic analyses of these uniquely comprehensive datasets resolved previously controversial beetle relationships, dated the origin of Coleoptera to the Carboniferous, and supported the codiversification of beetles and angiosperms. Moreover, plant cell wall-degrading enzymes (PCWDEs) obtained from bacteria and fungi via horizontal gene transfers may have been key to the Mesozoic diversification of herbivorous beetles-remarkably, both major independent origins of specialized herbivory in beetles coincide with the first appearances of an arsenal of PCWDEs encoded in their genomes. Furthermore, corresponding (Jurassic) diversification rate increases suggest that these novel genes triggered adaptive radiations that resulted in nearly half of all living beetle species. We propose that PCWDEs enabled efficient digestion of plant tissues, including lignocellulose in cell walls, facilitating the evolution of uniquely specialized plant-feeding habits, such as leaf mining and stem and wood boring. Beetle diversity thus appears to have resulted from multiple factors, including low extinction rates over a long evolutionary history, codiversification with angiosperms, and adaptive radiations of specialized herbivorous beetles following convergent horizontal transfers of microbial genes encoding PCWDEs.
Collapse
Affiliation(s)
- Duane D McKenna
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152;
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152
| | - Seunggwan Shin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152
| | - Dirk Ahrens
- Center for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
| | - Michael Balke
- Bavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany
| | - Cristian Beza-Beza
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152
| | - Dave J Clarke
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152
- Center for Biodiversity Research, University of Memphis, Memphis, TN 38152
| | - Alexander Donath
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Hermes E Escalona
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
- Department of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany
| | - Frank Friedrich
- Institute of Zoology, University of Hamburg, D-20146 Hamburg, Germany
| | - Harald Letsch
- Department of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria
| | - Shanlin Liu
- China National GeneBank, BGI-Shenzhen, 518083 Guangdong, People's Republic of China
| | - David Maddison
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331
| | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Peyton J Murin
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany
| | - Ralph S Peters
- Center for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany
| | - Lars Podsiadlowski
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany
| | - Hans Pohl
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | - Erin D Scully
- Center for Grain and Animal Health, Stored Product Insect and Engineering Research Unit, Agricultural Research Service, US Department of Agriculture, Manhattan, KS 66502
| | - Evgeny V Yan
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
- Borissiak Paleontological Institute, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Xin Zhou
- Department of Entomology, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Adam Ślipiński
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Rolf G Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| |
Collapse
|
49
|
Horváthová T, Bauchinger U. Biofilm Improves Isopod Growth Independent of the Dietary Cellulose Content. Physiol Biochem Zool 2019; 92:531-543. [PMID: 31556843 DOI: 10.1086/705441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cellulose is an abundant source of carbon, accounting for more than 50% of foliage and 90% of woody tissues of plants. Despite the diversity of species that include living or dead plant tissue in their diets, the ability to digest cellulose through self-produced enzymatic machinery is considered rare in the animal kingdom. The majority of animals studied to date rely on the cellulolytic activity of symbiotic microorganisms in their digestive tract, with some evidence for a complementary action of endogenous cellulases. Terrestrial isopods have evolved a lifestyle including feeding on a lignocellulose diet. Whether isopods utilize both external and internal cellulases for digestion of a diet is still not understood. We experimentally manipulated the content of cellulose (30%, 60%, or 90%) and the amount of biofilm (small or large) in the offered food source and quantified growth and cellulolytic activity in the gut of the isopod Porcellio scaber. The presence of a visible biofilm significantly promoted isopod growth, regardless of the cellulose content in the diet. The activity of gut cellulases was not significantly affected by the amount of biofilm or the cellulose content. Our results do not support a significant contribution of either ingested or host enzymes to cellulose utilization in P. scaber. Cellulose might not represent a key nutrient for isopods and does not seem to affect the nutritional value of the diet-associated biofilm. We propose that it is the biofilm community that determines the quality of plant diet in terrestrial isopods and potentially also in other detrital plant feeders.
Collapse
|
50
|
Tsvetkov VO, Yarullina LG. Structural and Functional Characteristics of Hydrolytic Enzymes of Phytophagon Insects and Plant Protein Inhibitors (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819050156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|