1
|
Felton AM, Spitzer R, Raubenheimer D, Hedwall PO, Felton A, Nichols RV, O'Connell BL, Malmsten J, Löfmarck E, Wam HK. Increased intake of tree forage by moose is associated with intake of crops rich in nonstructural carbohydrates. Ecology 2024; 105:e4377. [PMID: 39046431 DOI: 10.1002/ecy.4377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/17/2024] [Indexed: 07/25/2024]
Abstract
Animals representing a wide range of taxonomic groups are known to select specific food combinations to achieve a nutritionally balanced diet. The nutrient balancing hypothesis suggests that, when given the opportunity, animals select foods to achieve a particular target nutrient balance, and that balancing occurs between meals and between days. For wild ruminants who inhabit landscapes dominated by human land use, nutritionally imbalanced diets can result from ingesting agricultural crops rich in starch and sugar (nonstructural carbohydrates [NCs]), which can be provided to them by people as supplementary feeds. Here, we test the nutrient balancing hypothesis by assessing potential effects that the ingestion of such crops by Alces alces (moose) may have on forage intake. We predicted that moose compensate for an imbalanced intake of excess NC by selecting tree forage with macro-nutritional content better suited for their rumen microbiome during wintertime. We applied DNA metabarcoding to identify plants in fecal and rumen content from the same moose during winter in Sweden. We found that the concentration of NC-rich crops in feces predicted the presence of Picea abies (Norway spruce) in rumen samples. The finding is consistent with the prediction that moose use tree forage as a nutritionally complementary resource to balance their intake of NC-rich foods, and that they ingested P. abies in particular (normally a forage rarely eaten by moose) because it was the most readily available tree. Our finding sheds new light on the foraging behavior of a model species in herbivore ecology, and on how habitat alterations by humans may change the behavior of wildlife.
Collapse
Affiliation(s)
- Annika M Felton
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Robert Spitzer
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Per-Ola Hedwall
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Adam Felton
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ruth V Nichols
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Brendan L O'Connell
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Jonas Malmsten
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Erik Löfmarck
- School of Humanities, Örebro University School of Business, Örebro, Sweden
| | - Hilde K Wam
- Division of Forestry and Forest Resources, NIBIO, Ås, Norway
| |
Collapse
|
2
|
Qi J, Wang X, Zhang T, Li C, Wang Z. Adult Feeding Experience Determines the Fecundity and Preference of the Henosepilachna vigintioctopunctata (F.) (Coleoptera: Coccinellidae). BIOLOGY 2024; 13:250. [PMID: 38666862 PMCID: PMC11048397 DOI: 10.3390/biology13040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
Both larvae and adults of the Henosepilachna vigintioctopunctata feed on leaves of potatoes, tomatoes, and eggplants. Given the variation in planting times of host plants in the Jianghan Plain, host switching between larvae and adults of H. vigintioctopunctata is inevitable to ensure continuous food availability. We evaluated the effect of consistent versus diverse larval and adult host plant feeding experience on growth performance, fecundity, longevity, and feeding preferences of H. vigintioctopunctata through match-mismatch experiments. Host plant quality significantly influences larval development and adult reproduction. Potatoes are identified as the optimal host plant for H. vigintioctopunctata, whereas eggplants significantly negatively affect the adult fecundity. Adult stage host feeding experience determines the fecundity of H. vigintioctopunctata, irrespective of the larval feeding experience. The fecundity of H. vigintioctopunctata adults on eggplant leaves remains significantly lower than that observed on potato leaves. Similarly, adult H. vigintioctopunctata demonstrate a preference for consuming potato leaves, irrespective of the larval feeding experience. Although host switching between larval and adult stages offers lesser benefits for the performance of herbivorous insects compared to a consistent diet with potato leaves, it maintains H. vigintioctopunctata population continuity amidst shortages of high-quality potato hosts.
Collapse
Affiliation(s)
| | | | | | | | - Zailing Wang
- Hubei Engineering Research Center for Pest Forewarning and Management, Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China; (J.Q.); (X.W.); (T.Z.); (C.L.)
| |
Collapse
|
3
|
Gallon ME, Muchoney ND, Smilanich AM. Viral Infection Induces Changes to the Metabolome, Immune Response and Development of a Generalist Insect Herbivore. J Chem Ecol 2024; 50:152-167. [PMID: 38353894 DOI: 10.1007/s10886-024-01472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 04/25/2024]
Abstract
Host plant consumption and pathogen infection commonly influence insect traits related to development and immunity, which are ultimately reflected in the behavior and physiology of the insect. Herein, we explored changes in the metabolome of a generalist insect herbivore, Vanessa cardui (Lepidoptera: Nymphalidae), in response to both dietary variation and pathogen infection in order to gain insight into tritrophic interactions for insect metabolism and immunity. Caterpillars were reared on two different host plants, Plantago lanceolata (Plantaginaceae) and Taraxacum officinale (Asteraceae) and subjected to a viral infection by Junonia coenia densovirus (JcDV), along with assays to determine the insect immune response and development. Richness and diversity of plant and caterpillar metabolites were evaluated using a liquid chromatography-mass spectrometry approach and showed that viral infection induced changes to the chemical content of V. cardui hemolymph and frass dependent upon host plant consumption. Overall, the immune response as measured by phenoloxidase (PO) enzymatic activity was higher in individuals feeding on P. lanceolata compared with those feeding on T. officinale. Additionally, infection with JcDV caused suppression of PO activity, which was not host plant dependent. We conclude that viral infection combined with host plant consumption creates a unique chemical environment, particularly within the insect hemolymph. Whether and how these metabolites contribute to defense against viral infection is an open question in chemical ecology.
Collapse
Affiliation(s)
- Marilia Elias Gallon
- Department of Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n°, Ribeirão Preto, SP, 14040-903, Brazil.
| | | | | |
Collapse
|
4
|
Lin K, Yue L, Yuan L, Kang K, Zhang Y, Pang R, Zhang W. Alanine metabolism mediates energy allocation of the brown planthopper to adapt to resistant rice. J Adv Res 2024:S2090-1232(24)00035-3. [PMID: 38246245 DOI: 10.1016/j.jare.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024] Open
Abstract
INTRODUCTION During the adaptation to host plant resistance, herbivorous insects faced the challenge of overcoming plant defenses while ensuring their own development and reproductive success. To achieve this, a strategic allocation of energy resources for detoxification and ecological fitness maintenance became essential. OBJECTIVE This study aimed to elucidate the intricate energy allocation mechanisms involved in herbivore adaptation that are currently poorly understood. METHODS The rice Oryza sativa and its monophagous pest, the brown planthopper (BPH), Nilaparvata lugens were used as a model system. An integrated analysis of metabolomes and transcriptomes from different BPH populations were conducted to identify the biomarkers. RNA interference of key genes and exogenous injection of key metabolites were performed to validate the function of biomarkers. RESULTS We found that alanine was one of the key biomarkers of BPH adaptation to resistant rice variety IR36. We also found that alanine flow determined the adaptation of BPH to IR36 rice. The alanine aminotransferase (ALT)-mediated alanine transfer to pyruvate was necessary and sufficient for the adaptation. This pathway may be conserved, at least to some extent, in BPH adaptation to multiple rice cultivars with different resistance genes. More importantly, ALT-mediated alanine metabolism is the foundation of downstream energy resource allocation for the adaptation. The adapted BPH population exhibited a significantly higher level of energy reserves in the fat body and ovary when fed with IR36 rice, compared to the unadapted population. This rendered the elevated detoxification in the adapted BPH and their ecological fitness recovery. CONCLUSION Overall, our findings demonstrated the crucial role of ALT-mediated alanine metabolism in energy allocation during the adaptation to resistant rice in BPH. This will provide novel knowledge regarding the co-evolutionary mechanisms between herbivores and their host plants.
Collapse
Affiliation(s)
- Kai Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Yue
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; School of Life Sciences, Hebei University, Baoding 071002, China
| | - Longyu Yuan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Kui Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yibing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Pang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
5
|
Sun S, Yang Z, Ren J, Liu T, Jing X. Fitness of Nutrition Regulation in a Caterpillar Pest Mythimna separata (Walker): Insights from the Geometric Framework. INSECTS 2023; 14:937. [PMID: 38132610 PMCID: PMC10743772 DOI: 10.3390/insects14120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
In nature, plants can contain variable nutrients depending upon the species, tissue, and developmental stage. Insect herbivores may regulate their nutrient intake behaviorally and physio- logically when encountering different foods. This study examined the nutritional regulation of the oriental armyworm, Mythimna separata, for the first time. In one experiment, we allowed the cater-pillars to choose between two nutritionally balanced but complementary diets. The caterpillars did not randomly consume the paired foods, but instead chose between the nutritionally balanced but complementary diets. This intake behavior was found to change with their developmental stages. Furthermore, the nutrient concentrations in food significantly impacted the insect's performance. In the other experiment, caterpillars were given one of eleven diets that reflected the different nutrient conditions in the field. The results showed that proteins were significantly associated with developmental time and fecundity. For example, by consuming protein-biased food, the caterpillars developed faster and produced more eggs. In contrast, carbohydrates were more strongly linked to lipid accumulation, and caterpillars accumulated more lipids when consuming the carbohydrate-biased food. Moreover, the caterpillars were also found to actively regulate their intake of proteins and carbohydrates based on food quality and to physiologically prepare for subsequent life stages. These findings enhance our understanding of how M. separata feeds and responds to different nutritional environments in the field, which could have implications for managing insect herbivores in agricultural settings.
Collapse
Affiliation(s)
- Shaolei Sun
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhen Yang
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
| | - Jinchan Ren
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
| | - Tongxian Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
| | - Xiangfeng Jing
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (S.S.); (Z.Y.); (J.R.); (T.L.)
| |
Collapse
|
6
|
Raubenheimer D, Hou R, Dong Y, Ren C, Cui Z. Towards an integrated understanding of dietary phenotypes. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220545. [PMID: 37839453 PMCID: PMC10577033 DOI: 10.1098/rstb.2022.0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/26/2023] [Indexed: 10/17/2023] Open
Abstract
Diet and nutrition comprise a complex, multi-faceted interface between animal biology and food environments. With accumulating information on the many facets of this association arises a need for systems-based approaches that integrate dietary components and their links with ecology, feeding, post-ingestive processes and the functional and ecological consequences of these interactions. We briefly show how a modelling approach, nutritional geometry, has used the experimental control afforded in laboratory studies to begin to unravel these links. Laboratory studies, however, have limited ability to establish whether and how the feeding and physiological mechanisms interface with realistic ecological environments. We next provide an overview of observational field studies of free-ranging primates that have examined this, producing largely correlative data suggesting that similar feeding mechanisms operate in the wild as in the laboratory. Significant challenges remain, however, in establishing causal links between feeding, resource variation and physiological processes in the wild. We end with a more detailed account of two studies of temperate primates that have capitalized on the discrete variation provided by seasonal environments to strengthen causal inference in field studies and link patterns of intake to dynamics of nutrient processing. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- David Raubenheimer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Rong Hou
- Shanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Yunlong Dong
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Cuiru Ren
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhenwei Cui
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
7
|
Yuan R, Hascup E, Hascup K, Bartke A. Relationships among Development, Growth, Body Size, Reproduction, Aging, and Longevity - Trade-Offs and Pace-Of-Life. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1692-1703. [PMID: 38105191 PMCID: PMC10792675 DOI: 10.1134/s0006297923110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023]
Abstract
Relationships of growth, metabolism, reproduction, and body size to the biological process of aging and longevity have been studied for decades and various unifying "theories of aging" have been proposed to account for the observed associations. In general, fast development, early sexual maturation leading to early reproductive effort, as well as production of many offspring, have been linked to shorter lifespans. The relationship of adult body size to longevity includes a remarkable contrast between the positive correlation in comparisons between different species and the negative correlation seen in comparisons of individuals within the same species. We now propose that longevity and presumably also the rate of aging are related to the "pace-of-life." A slow pace-of-life including slow growth, late sexual maturation, and a small number of offspring, predicts slow aging and long life. The fast pace of life (rapid growth, early sexual maturation, and major reproductive effort) is associated with faster aging and shorter life, presumably due to underlying trade-offs. The proposed relationships between the pace-of-life and longevity apply to both inter- and intra-species comparisons as well as to dietary, genetic, and pharmacological interventions that extend life and to evidence for early life programming of the trajectory of aging. Although available evidence suggests the causality of at least some of these associations, much further work will be needed to verify this interpretation and to identify mechanisms that are responsible.
Collapse
Affiliation(s)
- Rong Yuan
- Southern Illinois University School of Medicine, Department of Internal Medicine, Springfield, IL 19628, USA.
| | - Erin Hascup
- Southern Illinois University School of Medicine, Department of Medical, Microbial, Cellular Immunology and Biology, Springfield, IL 19628, USA.
| | - Kevin Hascup
- Southern Illinois University School of Medicine, Department of Medical, Microbial, Cellular Immunology and Biology, Springfield, IL 19628, USA.
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Southern Illinois University School of Medicine, Department of Internal Medicine, Springfield, IL 19628, USA.
| |
Collapse
|
8
|
Mondal S, Somani J, Roy S, Babu A, Pandey AK. Insect Microbial Symbionts: Ecology, Interactions, and Biological Significance. Microorganisms 2023; 11:2665. [PMID: 38004678 PMCID: PMC10672782 DOI: 10.3390/microorganisms11112665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 11/26/2023] Open
Abstract
The guts of insect pests are typical habitats for microbial colonization and the presence of bacterial species inside the gut confers several potential advantages to the insects. These gut bacteria are located symbiotically inside the digestive tracts of insects and help in food digestion, phytotoxin breakdown, and pesticide detoxification. Different shapes and chemical assets of insect gastrointestinal tracts have a significant impact on the structure and makeup of the microbial population. The number of microbial communities inside the gastrointestinal system differs owing to the varying shape and chemical composition of digestive tracts. Due to their short generation times and rapid evolutionary rates, insect gut bacteria can develop numerous metabolic pathways and can adapt to diverse ecological niches. In addition, despite hindering insecticide management programs, they still have several biotechnological uses, including industrial, clinical, and environmental uses. This review discusses the prevalent bacterial species associated with insect guts, their mode of symbiotic interaction, their role in insecticide resistance, and various other biological significance, along with knowledge gaps and future perspectives. The practical consequences of the gut microbiome and its interaction with the insect host may lead to encountering the mechanisms behind the evolution of pesticide resistance in insects.
Collapse
Affiliation(s)
- Sankhadeep Mondal
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Jigyasa Somani
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Somnath Roy
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Azariah Babu
- Deparment of Entomology, Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India; (S.M.)
| | - Abhay K. Pandey
- Deparment of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Centre, Nagrakata, Jalpaiguri 735225, West Bengal, India
| |
Collapse
|
9
|
Morimoto J. Nutrigonometry IV: Thales' theorem to measure the rules of dietary compromise in animals. Sci Rep 2023; 13:7466. [PMID: 37156830 PMCID: PMC10167223 DOI: 10.1038/s41598-023-34722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023] Open
Abstract
Diet specialists and generalists face a common challenge: they must regulate the intake and balance of nutrients to achieve a target diet for optimum nutrition. When optimum nutrition is unattainable, organisms must cope with dietary imbalances and trade-off surplus and deficits of nutrients that ensue. Animals achieve this through compensatory rules that dictate how to cope with nutrient imbalances, known as 'rules of compromise'. Understanding the patterns of the rules of compromise can provide invaluable insights into animal physiology and behaviour, and shed light into the evolution of diet specialisation. However, we lack an analytical method for quantitative comparisons of the rules of compromise within and between species. Here, I present a new analytical method that uses Thales' theorem as foundation, and that enables fast comparisons of the rules of compromise within and between species. I then apply the method on three landmark datasets to show how the method enables us to gain insights into how animals with different diet specialisation cope with nutrient imbalances. The method opens new avenues of research to understand how animals cope with nutrient imbalances in comparative nutrition.
Collapse
Affiliation(s)
- Juliano Morimoto
- Institute of Mathematics, University of Aberdeen, King's College, Aberdeen, AB24 3FX, Scotland.
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, Aberdeen, AB24 2TZ, Scotland.
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 82590-300, Brazil.
| |
Collapse
|
10
|
Gallon ME, Smilanich AM. Effects of Host Plants on Development and Immunity of a Generalist Insect Herbivore. J Chem Ecol 2023; 49:142-154. [PMID: 36763248 DOI: 10.1007/s10886-023-01410-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Secondary plant chemistry mediates a variety of communication signals among species, playing a fundamental role in the evolutionary diversification of communities and ecosystems. Herein, we explored diet-mediated host plant effects on development and immune response of a generalist insect herbivore. Vanessa cardui (Nymphalidae) caterpillars were reared on leaves of three host plants that vary in secondary metabolites, Plantago lanceolata (Plantaginaceae), Taraxacum officinale (Asteraceae) and Tithonia diversifolia (Asteraceae). Insect development was evaluated by larval and pupal viabilities, survivorship, and development rate. Immune response was measured as phenoloxidase (PO) activity. Additionally, chemical profiles of the host plants were obtained by liquid chromatograph-mass spectrometry (LC-MS) and the discriminant metabolites were determined using a metabolomic approach. Caterpillars reared on P. lanceolata exhibited the highest larval and pupal viabilities, as well as PO activity, and P. lanceolata leaves were chemically characterized by the presence of iridoid glycosides, phenylpropanoids and flavonoids. Taraxacum officinale leaves were characterized mainly by the presence of phenylpropanoids, flavones O-glycoside and germacranolide-type sesquiterpene lactones; caterpillars reared on this host plant fully developed to the adult stage, however they exhibited lower larval and pupal viabilities compared to individuals reared on P. lanceolata. Conversely, caterpillars reared on T. diversifolia leaves, which contain phenylpropanoids, flavones and diverse furanoheliangolide-type sesquiterpene lactones, were not able to complete larval development and exhibited the lowest PO activity. These findings suggested that V. cardui have adapted to tolerate potentially toxic metabolites occurring in P. lanceolata (iridoid glycosides), however caterpillars were not able to cope with potentially detrimental metabolites occurring in T. diversifolia (furanoheliangolides). Therefore, we suggest that furanoheliangolide-type sesquiterpene lactones were responsible for the poor development and immune response observed for caterpillars reared on T. diversifolia.
Collapse
Affiliation(s)
- Marilia Elias Gallon
- Department of Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA. .,Núcleo de Pesquisa em Produtos Naturais e Sintéticos, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n°, Ribeirão Preto, SP, 14040-903, Brazil.
| | | |
Collapse
|
11
|
Ma H, Zhang B, Li J, Qiao F, Ma Q, Wan X, Jiang Z, Li C. Development of Spodoptera exigua Population: Does the Nutritional Status Matter? INSECTS 2022; 14:13. [PMID: 36661942 PMCID: PMC9864313 DOI: 10.3390/insects14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Spodoptera exigua (Hübner) is a common agricultural pest that can harm hundreds of crops. Nutrition conditions can significantly affect the development of insects, especially carbohydrates (C) and proteins (P), which are the two most critical nutrients. To study the development of the S. exigua population under different carbohydrate and protein nutrition conditions, we constructed a life table of both sexes of an S. exigua population under three artificial diets: high nitrogen (P:C = 7:1), medium nitrogen, medium sugar (P:C = 1:1), and high sugar (P:C = 1:7). The results showed that the generation time of S. exigua was 26.38 ± 0.54 d under the medium nitrogen-medium sugar diet, which was the shortest among the three nutrition conditions. The intrinsic rate of increase (0.18 ± 0.01), finite rate of increase (1.20 ± 0.01), fecundity (605.42 ± 36.33 eggs/female), and predicted population at 100 days (8,840,000) were significantly higher under the medium nitrogen-medium sugar condition. There was no significant difference in the net reproductive rate among the three conditions. These results suggested that an appropriate protein:carbohydrate ratio is beneficial to the rapid development of S. exigua on farmland. These findings are important for scientifically predicting the population dynamics of S. exigua from the perspective of nutritional ecology, understanding its catastrophic mechanism, and constructing a prevention and control system.
Collapse
Affiliation(s)
- Hancheng Ma
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiangjie Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengjiao Qiao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qihong Ma
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuanwu Wan
- Plant Protection Station of Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu 610000, China
| | - Zhufeng Jiang
- Huashixing Technology Co., Ltd., Qingdao 266109, China
| | - Changyou Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
12
|
Careddu G, Botti M, Cristofaro M, Sporta Caputi S, Calizza E, Rossi L, Costantini ML. The Feeding Behaviour of Gall Midge Larvae and Its Implications for Biocontrol of the Giant Reed: Insights from Stable Isotope Analysis. BIOLOGY 2022; 11:biology11121805. [PMID: 36552314 PMCID: PMC9775122 DOI: 10.3390/biology11121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The gall midge Lasioptera donacis, whose larval stage interferes with the reed's leaf development, is a potential candidate agent for the biological control of Arundo donax. Reed infestation is always associated with the presence of a saprophytic fungus, Arthrinium arundinis, which is believed to provide food for the larvae. Larvae also interact with a parasitic nematode, Tripius gyraloura, which can be considered its natural enemy. To deepen our knowledge of the plant-fungus-insect trophic interactions and to understand the effects of the nematode on midge larval feeding behaviour, we applied stable isotope analysis, one of the most effective methods for investigating animal feeding preferences in various contexts. The results showed that on average the fungus accounted for 65% of the diet of the midge larvae, which however consumed the reed and the fungus in variable proportions depending on reed quality (expressed as the C:N ratio). No differences in feeding behaviour were observed between parasitised and non-parasitised midge larvae, indicating that nematodes have no effect in this regard. Due to its trophic habits, L. donacis could be an effective control agent of A. donax and these results need to be considered when implementing biological control measures.
Collapse
Affiliation(s)
- Giulio Careddu
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, 00196 Rome, Italy
| | - Marcovalerio Botti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
- Biotechnology and Biological Control Agency (BBCA), 00123 Rome, Italy
| | | | - Simona Sporta Caputi
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, 00196 Rome, Italy
- Correspondence:
| | - Edoardo Calizza
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, 00196 Rome, Italy
| | - Loreto Rossi
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, 00196 Rome, Italy
| | - Maria Letizia Costantini
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, 00196 Rome, Italy
| |
Collapse
|
13
|
Noor-ul-Ane M, Jung C. Effect of non-essential amino acids (proline and glutamic acid) and sugar polyol (sorbitol) on brood of honey bees. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1009670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dietary nutrients provide fuel for the growth and development of insects as well as chemicals for their tissue construction. Apis mellifera L., an important pollinator, collects nectar and pollens from different plants to get their nutritional needs. Honey bees use protein for growth and development and carbohydrates as energy sources. Pollens predominantly contain proline and glutamic acid (non-essential amino acids). This is the first study to evaluate the role of proline, glutamic acid and sorbitol on bee broods. The composition of the diet can optimize the in vitro rearing process. Therefore, we elaborated on the possible impact of these amino acids and sugar alcohol on bee broods. This study aimed to achieve this objective by rearing honey bee larvae under different concentrations of proline, glutamic acid, and sorbitol (1, 4 and 8%), which were supplemented into the standard larval diet. The supplementation of proline helped the quick development of larvae and pupae of honey bees, whereas developmental time only decreased in pupae in the case of glutamic acid. The duration of the total bee brood development was the shortest (20.1 and 20.6 days) on Pro8 and Glu4, respectively. Proline only increased larvae survival (93.8%), whereas glutamic acid did not increase the survival of any brood stage. Pupal and adult weights were also increased with proline and glutamic acid-supplemented diets. Sorbitol did not change the developmental period of the honey bee brood but increased larval survival (93.7%) only at the lowest concentration (Sor1). The small concentration of sorbitol can be used to increase the survival of the honey bee brood. However, a higher concentration (Sor8) of sorbitol reduced the body weight of both pupae and adults. This study predicted that rearing bee brood could be one of the factors for the selectivity of pollen with higher proline and glutamic acid during the foraging of bees.
Collapse
|
14
|
Sun SL, Abudisilimu N, Yi H, Li S, Liu TX, Jing X. Understanding nutritive need in Harmonia axyridis larvae: Insights from nutritional geometry. INSECT SCIENCE 2022; 29:1433-1444. [PMID: 35061926 DOI: 10.1111/1744-7917.13009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is an important natural enemy in agricultural ecosystems. In spite of being a carnivore consuming protein-rich preys, the lady beetles often consume carbohydrate-rich food like nectar or honeydew. However, most studies on nutrition regulation of carnivores mainly focus on protein and lipid, two major macronutrients in preys. In this study, nutrition regulation of protein and carbohydrate has been investigated in the 4th instar larvae of H. axyridis using Geometric Framework. We provided the insects two pairs of foods, one a protein-biased one and the second carbohydrate-biased, to determine the intake target. We then confined them to nutritionally imbalanced foods to examine how they regulated food intake to achieve maximal performance. The larvae performed well on the 2 foods that containing the closest P : C ratios to the intake target, but, surprisingly, the lipid content was much lower than that in the choice experiment. The lady beetles seemed to maintain the optimal lipid content by consuming carbohydrate-rich food. Moreover, consuming the carbohydrate-rich food was less metabolically expensive than the protein-rich food. Therefore, switching behavior between plant and animal foods actually reflects their nutritive needs. These findings extended our understanding of predator forage behavior and its influence on food web in ecosystems, and shed light on the role of agri-environment schemes in meeting the nutritional need of predators in field.
Collapse
Affiliation(s)
- Shao-Lei Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Nibijiang Abudisilimu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Yi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Sali Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Friedrichs J, Schweiger R, Geisler S, Neumann JM, Sadzik SJM, Niehaus K, Müller C. Development of a polyphagous leaf beetle on different host plant species and its detoxification of glucosinolates. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.960850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Herbivores face a broad range of defences when feeding on plants. By mixing diets, polyphagous herbivores are assumed to benefit during their development by gaining a better nutritional balance and reducing the intake of toxic compounds from individual plant species. Nevertheless, they also show strategies to metabolically cope with plant defences. In this study, we investigated the development of the polyphagous tansy leaf beetle, Galeruca tanaceti (Coleoptera: Chrysomelidae), on mono diets consisting of one plant species [cabbage (Brassica rapa), Brassicaceae; lettuce (Lactuca sativa), or tansy (Tanacetum vulgare), Asteraceae] vs. two mixed diets, both containing tansy. Leaves of the three species were analysed for contents of water, carbon and nitrogen, the specific leaf area (SLA) and trichome density. Furthermore, we studied the insect metabolism of two glucosinolates, characteristic defences of Brassicaceae. Individuals reared on cabbage mono diet developed fastest and showed the highest survival, while the development was slowest for individuals kept on tansy mono diet. Cabbage had the lowest water content, while tansy had the highest water content, C/N ratio and trichome density and the lowest SLA. Lettuce showed the lowest C/N ratio, highest SLA and no trichomes. Analysis of insect samples with UHPLC-DAD-QTOF-MS/MS revealed that benzyl glucosinolate was metabolised to N-benzoylglycine, N-benzoylalanine and N-benzoylserine. MALDI-Orbitrap-MS imaging revealed the localisation of these metabolites in the larval hindgut region. 4-Hydroxybenzyl glucosinolate was metabolised to N-(4-hydroxybenzoyl)glycine. Our results highlight that G. tanaceti deals with toxic hydrolysis products of glucosinolates by conjugation with different amino acids, which may enable this species to develop well on cabbage. The high trichome density and/or specific plant chemistry may lower the accessibility and/or digestibility of tansy leaves, leading to a poorer beetle development on pure tansy diet or diet mixes containing tansy. Thus, diet mixing is not necessarily beneficial, if one of the plant species is strongly defended.
Collapse
|
16
|
Páez Jerez PG, Hill JG, Pereira EJG, Medina Pereyra P, Vera MT. The role of genetically engineered soybean and Amaranthus weeds on biological and reproductive parameters of Spodoptera cosmioides (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2022; 78:2502-2511. [PMID: 35343040 DOI: 10.1002/ps.6882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In soybean fields containing insecticide- and herbicide-resistant genetically engineered varieties, some weed species have increasingly become difficult to manage and may favor the population growth of secondary pests like Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae). To test this hypothesis, we measured life-history traits, population growth parameters and adult nutrient content of S. cosmioides reared on foliage from four Amaranthus species, from Cry1Ac Bt and non-Bt soybean varieties, and on meridic artificial diet. RESULTS Larvae reared on A. palmeri and A. spinosus had a shorter development time (5-7 days) than larvae raised on the soybean varieties and A. hybridus. Armyworm survival probability was zero on A. viridis and highest (80% and 71%) on soybeans and A. palmeri. The latter and the artificial diet produced the heaviest larvae and pupae, in contrast to the non-Bt soybean variety. Body nutrient content diverged mostly for adults reared on artificial diet compared with those raised on the soybean varieties. The intrinsic rate of population increase (overall fitness) was 27.88% higher for the armyworms on A. palmeri, Cry1Ac Bt soybean and artificial diet compared with those on non-Bt soybean, A. spinosus and A. hybridus. CONCLUSIONS Cry1Ac soybean fields infested by some Amaranthus weeds, especially A. palmeri, are conducive to the population growth of S. cosmioides. Integrated pest management programs may be needed to properly manage S. cosmioides in soybean fields, with surveillance for population peaks and judicious control measures when needed. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paula G Páez Jerez
- Facultad de Agronomía y Zootecnia, Cátedra de Terapéutica Vegetal (CTV), Universidad Nacional de Tucumán, Tucumán, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge G Hill
- Facultad de Agronomía y Zootecnia, Cátedra de Terapéutica Vegetal (CTV), Universidad Nacional de Tucumán, Tucumán, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eliseu J G Pereira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil
- Instituto Nacional de Ciência e Tecnologia em Interações Planta-Praga, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - M Teresa Vera
- Facultad de Agronomía y Zootecnia, Cátedra de Terapéutica Vegetal (CTV), Universidad Nacional de Tucumán, Tucumán, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Sieksmeyer T, He S, Esparza-Mora MA, Jiang S, Petrašiūnaitė V, Kuropka B, Banasiak R, Julseth MJ, Weise C, Johnston PR, Rodríguez-Rojas A, McMahon DP. Eating in a losing cause: limited benefit of modified macronutrient consumption following infection in the oriental cockroach Blatta orientalis. BMC Ecol Evol 2022; 22:67. [PMID: 35585501 PMCID: PMC9118584 DOI: 10.1186/s12862-022-02007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Host-pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. RESULTS We find that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches significantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited effect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on different diets, regardless of infection status. CONCLUSIONS We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide significant immune protection in B. orientalis, suggesting that the host's dietary shift might also result from random rather than directed behaviour. The lack of an apparent benefit of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted.
Collapse
Affiliation(s)
- Thorben Sieksmeyer
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.,Department of Biotechnology, German Institute of Food Technology (DIL e.V.), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany
| | - Shulin He
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - M Alejandra Esparza-Mora
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Shixiong Jiang
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Vesta Petrašiūnaitė
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ronald Banasiak
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Mara Jean Julseth
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, 14195, Berlin, Germany
| | - Alexandro Rodríguez-Rojas
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Internal Medicine, Vetmeduni Vienna, Veterinaerplätz 1, 1210, Vienna, Austria
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany. .,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.
| |
Collapse
|
18
|
Siddiqui JA, Khan MM, Bamisile BS, Hafeez M, Qasim M, Rasheed MT, Rasheed MA, Ahmad S, Shahid MI, Xu Y. Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Front Microbiol 2022; 13:870462. [PMID: 35591988 PMCID: PMC9111541 DOI: 10.3389/fmicb.2022.870462] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Insect pests cause significant agricultural and economic losses to crops worldwide due to their destructive activities. Pesticides are designed to be poisonous and are intentionally released into the environment to combat the menace caused by these noxious pests. To survive, these insects can resist toxic substances introduced by humans in the form of pesticides. According to recent findings, microbes that live in insect as symbionts have recently been found to protect their hosts against toxins. Symbioses that have been formed are between the pests and various microbes, a defensive mechanism against pathogens and pesticides. Insects' guts provide unique conditions for microbial colonization, and resident bacteria can deliver numerous benefits to their hosts. Insects vary significantly in their reliance on gut microbes for basic functions. Insect digestive tracts are very different in shape and chemical properties, which have a big impact on the structure and composition of the microbial community. Insect gut microbiota has been found to contribute to feeding, parasite and pathogen protection, immune response modulation, and pesticide breakdown. The current review will examine the roles of gut microbiota in pesticide detoxification and the mechanisms behind the development of resistance in insects to various pesticides. To better understand the detoxifying microbiota in agriculturally significant pest insects, we provided comprehensive information regarding the role of gut microbiota in the detoxification of pesticides.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | | | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Qasim
- Department of Agriculture and Forestry, Kohsar University Murree, Punjab, Pakistan
| | - Muhammad Tariq Rasheed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Atif Rasheed
- Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | | | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Wang P, Vassão DG, Raguschke B, Furlong MJ, Zalucki MP. Balancing nutrients in a toxic environment: the challenge of eating. INSECT SCIENCE 2022; 29:289-303. [PMID: 33890407 DOI: 10.1111/1744-7917.12923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/18/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Insect herbivores can regulate their food intake by mixing food sources with different nutrient content, but face the resulting challenge of ingesting various plant secondary metabolites. How insects deal with toxins in a complex nutrient environment is unclear. Here we investigated the influence of a classic plant secondary metabolite, allyl glucosinolate (sinigrin), and its hydrolyzed product allyl isothiocyanate (AITC), on the development of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) when fed on diets with different protein-to-carbohydrate (p : c) ratios. We also examined the effects of these toxins on larval biochemistry, by chemically analyzing the frass produced by insects feeding on the different diets. As expected, AITC had a greater negative effect than sinigrin on H. armigera life-history traits. However, AITC at low concentration appeared to have a positive effect on some traits. Both sinigrin and AITC-induced detoxification activity in the gut, and the reaction was related to diet protein concentration. High-protein diets can provide the required free amino acid, especially cysteine, needed for the detoxification process. The nutrient content of the diet influences how plant secondary metabolites are handled, and the use of artificial diets in experiments investigating the metabolic fate of plant secondary compounds needs to be carefully evaluated.
Collapse
Affiliation(s)
- Peng Wang
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel G Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bettina Raguschke
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
20
|
O’Brien CJ, Hong HC, Bryant EE, Connor KM. The observation of starch digestion in blue mussel Mytilus galloprovincialis exposed to microplastic particles under varied food conditions. PLoS One 2021; 16:e0253802. [PMID: 34228739 PMCID: PMC8259976 DOI: 10.1371/journal.pone.0253802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022] Open
Abstract
Microplastic continues to be an environmental concern, especially for filter feeding bivalves known to ingest these particles. It is important to understand the effects of microplastic particles on the physiological performance of these bivalves and many studies have investigated their impact on various physiological processes. This study investigated the effects of microplastic (10 μm) on digestive enzyme (amylase) activity of Mytilus galloprovincialis at 55,000 and 110,000 microplastic particles/L under laboratory conditions. Additionally, our study measured the expression of an isoform of Hsp70 in the gills to assess whether or not these particles may cause protein denaturation. Results revealed that this regime negatively affect the ability of M. galloprovincialis to digest starch under high food conditions but not low food conditions. Exposure to extreme levels of microplastic raised amylase activity. Furthermore, Hsp70 transcript abundance was not elevated in treatment mussels. These results show that mussels may be resilient to current microplastic pollution levels in nature.
Collapse
Affiliation(s)
- C. J. O’Brien
- Department of Biology, California Lutheran University, Thousand Oaks, California, United States of America
| | - Helen C. Hong
- Department of Biology, University of California, Irvine, California, United States of America
| | - Emily E. Bryant
- Department of Biology, University of California, Irvine, California, United States of America
| | - Kwasi M. Connor
- Department of Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
21
|
Fang JX, Du HC, Shi X, Zhang SF, Liu F, Zhang Z, Zu PJ, Kong XB. Monoterpenoid signals and their transcriptional responses to feeding and juvenile hormone regulation in bark beetle Ips hauseri. J Exp Biol 2021; 224:jeb.238030. [PMID: 33795419 DOI: 10.1242/jeb.238030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/24/2021] [Indexed: 11/20/2022]
Abstract
Hauser's engraver beetle, Ips hauseri, is a serious pest in spruce forest ecosystems in Central Asia. Its monoterpenoid signal production, transcriptome responses and potential regulatory mechanisms remain poorly understood. The quality and quantity of volatile metabolites in hindgut extracts of I. hauseri were found to differ between males and females and among three groups: beetles that were newly emerged, those with a topical application of juvenile hormone III (JHIII) and those that had been feeding for 24 h. Feeding males definitively dominated monoterpenoid signal production in I. hauseri, which uses (4S)-(-)-ipsenol and (S)-(-)-cis-verbenol to implement reproductive segregation from Ipstypographus and Ipsshangrila. Feeding stimulation induced higher expression of most genes related to the biosynthesis of (4S)-(-)-ipsenol than JHIII induction, and showed a male-specific mode in I. hauseri. JHIII stimulated males to produce large amounts of (-)-verbenone and also upregulated the expression of several CYP6 genes, to a greater extent in males than in females. The expression of genes involved in the metabolism of JHIII in females and males was also found to be upregulated. Our results indicate that a species-specific aggregation pheromone system for I. hauseri, consisting of (4S)-(-)-ipsenol and S-(-)-cis-verbenol, can be used to monitor population dynamics or mass trap killing. Our results also enable a better understanding of the bottom-up role of feeding behaviors in mediating population reproduction/aggregation and interspecific interactions.
Collapse
Affiliation(s)
- Jia Xing Fang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Hui Cong Du
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Xia Shi
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Su Fang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Fu Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Peng Juan Zu
- Department of Geography, University of Zurich, CH-8057 Zurich, Switzerland
| | - Xiang Bo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
22
|
Bouvenot T, Dewitte A, Bennaceur N, Pradel E, Pierre F, Bontemps-Gallo S, Sebbane F. Interplay between Yersinia pestis and its flea vector in lipoate metabolism. THE ISME JOURNAL 2021; 15:1136-1149. [PMID: 33479491 PMCID: PMC8182812 DOI: 10.1038/s41396-020-00839-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/22/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
To thrive, vector-borne pathogens must survive in the vector's gut. How these pathogens successfully exploit this environment in time and space has not been extensively characterized. Using Yersinia pestis (the plague bacillus) and its flea vector, we developed a bioluminescence-based approach and employed it to investigate the mechanisms of pathogenesis at an unprecedented level of detail. Remarkably, lipoylation of metabolic enzymes, via the biosynthesis and salvage of lipoate, increases the Y. pestis transmission rate by fleas. Interestingly, the salvage pathway's lipoate/octanoate ligase LplA enhances the first step in lipoate biosynthesis during foregut colonization but not during midgut colonization. Lastly, Y. pestis primarily uses lipoate provided by digestive proteolysis (presumably as lipoyl peptides) rather than free lipoate in blood, which is quickly depleted by the vector. Thus, spatial and temporal factors dictate the bacterium's lipoylation strategies during an infection, and replenishment of lipoate by digestive proteolysis in the vector might constitute an Achilles' heel that is exploited by pathogens.
Collapse
Affiliation(s)
- Typhanie Bouvenot
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Amélie Dewitte
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadia Bennaceur
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Elizabeth Pradel
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Pierre
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sébastien Bontemps-Gallo
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Florent Sebbane
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
23
|
Austel N, Böttcher C, Meiners T. Chemical defence in Brassicaceae against pollen beetles revealed by metabolomics and flower bud manipulation approaches. PLANT, CELL & ENVIRONMENT 2021; 44:519-534. [PMID: 33190271 DOI: 10.1111/pce.13949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/06/2020] [Accepted: 11/05/2020] [Indexed: 05/18/2023]
Abstract
Divergence of chemical plant defence mechanisms within the Brassicaceae can be utilized to identify means against specialized pest insects. Using a bioassay-driven approach, we (a) screened 24 different Brassica napus cultivars, B. napus resyntheses and related brassicaceous species for natural plant resistance against feeding adults of the pollen beetle (Brassicogethes aeneus), (b) tested for gender-specific feeding resistance, (c) analysed the flower bud metabolomes by a non-targeted approach and (d) tested single candidate compounds for their antifeedant activity. (a) In no-choice assays, beetles were allowed to feed on intact plants. Reduced feeding activity was mainly observed on Sinapis alba and Barbarea vulgaris but not on B. napus cultivars. (b) Males fed less and discriminated more in feeding than females. (c) Correlation of the metabolite abundances with the beetles' feeding activity revealed several glucosinolates, phenylpropanoids, flavonoids and saponins as potential antifeedants. (d) These were tested in dual-bud-choice assays developed for medium-throughput compound screening. Application of standard compounds on single oilseed rape flower buds revealed highly deterrent effects of glucobarbarin, oleanolic acid and hederagenin. These results help to understand chemical plant defence in the Brassicaceae and are of key importance for further breeding strategies for insect-resistant oilseed rape cultivars.
Collapse
Affiliation(s)
- Nadine Austel
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute, Berlin, Germany
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Christoph Böttcher
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute, Berlin, Germany
| | - Torsten Meiners
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute, Berlin, Germany
| |
Collapse
|
24
|
Le Gall M, Word ML, Beye A, Cease AJ. Physiological status is a stronger predictor of nutrient selection than ambient plant nutrient content for a wild herbivore. CURRENT RESEARCH IN INSECT SCIENCE 2020; 1:100004. [PMID: 36003608 PMCID: PMC9387501 DOI: 10.1016/j.cris.2020.100004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 06/15/2023]
Abstract
There is generally a close relationship between a consumer's food and its optimal nutrients. When there is a mismatch, it is hypothesized that mobile herbivores switch between food items to balance nutrients, however, there are limited data for field populations. In this study, we measured ambient plant nutrient content at two time points and contrasted our results with the nutrient ratio selected by wild female and male grasshoppers (Oedaleus senegalensis). Few plants were near O. senegalensis' optimal protein:carbohydrate ratio (P:C), nor were plants complementary. Grasshoppers collected earlier all regulated for a carbohydrate-biased ratio but females ate slightly more protein. We hypothesized that the long migration undertaken by this species may explain its carbohydrate needs. In contrast to most laboratory studies, grasshoppers collected later did not tightly regulate their P:C. These results suggest that field populations are not shifting their P:C to match seasonal plant nutrient shifts and that mobile herbivores rely on post-ingestive mechanisms in the face of environmental variation. Because this is among the first studies to examine the relationship between ambient nutrient landscape and physiological state our data are a key step in bridging knowledge acquired from lab studies to hypotheses regarding the role ecological factors play in foraging strategies.
Collapse
Affiliation(s)
- Marion Le Gall
- School of Sustainability, Arizona State University, Tempe, AZ, United States
| | - Mira L. Word
- School of Sustainability, Arizona State University, Tempe, AZ, United States
| | - Alioune Beye
- Direction de la Protection des Végétaux, Nganda, Senegal
| | - Arianne J. Cease
- School of Sustainability, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
25
|
Leonhardt SD, Lihoreau M, Spaethe J. Mechanisms of Nutritional Resource Exploitation by Insects. INSECTS 2020; 11:insects11090570. [PMID: 32854218 PMCID: PMC7564569 DOI: 10.3390/insects11090570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
Insects have evolved an extraordinary range of nutritional adaptations to exploit other animals, plants, bacteria, fungi and soils as resources in terrestrial and aquatic environments. This special issue provides some new insights into the mechanisms underlying these adaptations. Contributions comprise lab and field studies investigating the chemical, physiological, cognitive and behavioral mechanisms that enable resource exploitation and nutrient intake regulation in insects. The collection of papers highlights the need for more studies on the comparative sensory ecology, underlying nutritional quality assessment, cue perception and decision making to fully understand how insects adjust resource selection and exploitation in response to environmental heterogeneity and variability.
Collapse
Affiliation(s)
- Sara D. Leonhardt
- Plant-Insect-Interactions Group, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Correspondence:
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, 31062 Toulouse, France;
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Biozentrum, Am Hubland, 97074 Würzburg, Germany;
| |
Collapse
|
26
|
Krajacich BJ, Sullivan M, Faiman R, Veru L, Graber L, Lehmann T. Induction of long-lived potential aestivation states in laboratory An. gambiae mosquitoes. Parasit Vectors 2020; 13:412. [PMID: 32787948 PMCID: PMC7424682 DOI: 10.1186/s13071-020-04276-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background How anopheline mosquitoes persist through the long dry season in Africa remains a gap in our understanding of these malaria vectors. To span this period in locations such as the Sahelian zone of Mali, mosquitoes must either migrate to areas of permanent water, recolonize areas as they again become favorable, or survive in harsh conditions including high temperatures, low humidity, and an absence of surface water (required for breeding). Adult mosquitoes surviving through this season must dramatically extend their typical lifespan (averaging 2–3 weeks) to 7 months. Previous work has found evidence that the malaria mosquito An. coluzzii, survives over 200 days in the wild between rainy seasons in a presumed state of aestivation (hibernation), but this state has so far not been replicated in laboratory conditions. The inability to recapitulate aestivation in the lab hinders addressing key questions such as how this state is induced, how it affects malaria vector competence, and its impact on disease transmission. Methods In effort to induce aestivation, we held laboratory mosquitoes in climate-controlled incubators with a range of conditions that adjusted humidity (40–85% RH), temperature (18–27 °C), and light conditions (8–12 h of light) and evaluated their survivorship. These conditions were chosen to mimic the late rainy and dry seasons as well as relevant extremes these mosquitoes may experience during aestivation. Results We found that by priming mosquitoes in conditions simulating the late wet season in Mali, and maintaining mosquitoes in reduced light/temperature, mean mosquito survival increased from 18.34 ± 0.65 to 48.02 ± 2.87 days, median survival increased from 19 (95% CI 17–21) to 50 days (95% CI 40–58), and the maximum longevity increased from 38 to 109 days (P-adj < 0.001). While this increase falls short of the 200 + day survival seen in field mosquitoes, this extension is substantially higher than previously found through environmental or dietary modulation and is hard to reconcile with states other than aestivation. This finding will provide a platform for future characterization of this state, and allow for comparison to field collected samples. ![]()
Collapse
Affiliation(s)
- Benjamin J Krajacich
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| | - Margery Sullivan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Roy Faiman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Laura Veru
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Leland Graber
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
27
|
Zhu Y, Veen GF(C, Wang D, Wang L, Zhong Z, Ma Q, Li H, Li X, Pan D, Bakker ES. Herbivore phenology can predict response to changes in plant quality by livestock grazing. OIKOS 2020. [DOI: 10.1111/oik.07008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yu Zhu
- School of Environment, Northeast Normal Univ./Inst. of Grassland Science, and Key Laboratory of Vegetation Ecology, Ministry of Education Changchun CN‐130024 Jilin PR China
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| | - G. F. (Ciska) Veen
- Dept of Terrestrial Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| | - Deli Wang
- School of Environment, Northeast Normal Univ./Inst. of Grassland Science, and Key Laboratory of Vegetation Ecology, Ministry of Education Changchun CN‐130024 Jilin PR China
| | - Ling Wang
- School of Environment, Northeast Normal Univ./Inst. of Grassland Science, and Key Laboratory of Vegetation Ecology, Ministry of Education Changchun CN‐130024 Jilin PR China
| | - Zhiwei Zhong
- School of Environment, Northeast Normal Univ./Inst. of Grassland Science, and Key Laboratory of Vegetation Ecology, Ministry of Education Changchun CN‐130024 Jilin PR China
| | - Quanhui Ma
- School of Environment, Northeast Normal Univ./Inst. of Grassland Science, and Key Laboratory of Vegetation Ecology, Ministry of Education Changchun CN‐130024 Jilin PR China
- State Key Laboratory of Vegetation and Environmental Change, Inst. of Botany, Chinese Academy of Sciences Beijing PR China
| | - Heng Li
- School of Environment, Northeast Normal Univ./Inst. of Grassland Science, and Key Laboratory of Vegetation Ecology, Ministry of Education Changchun CN‐130024 Jilin PR China
| | - Xincheng Li
- School of Environment, Northeast Normal Univ./Inst. of Grassland Science, and Key Laboratory of Vegetation Ecology, Ministry of Education Changchun CN‐130024 Jilin PR China
| | - Duofeng Pan
- School of Environment, Northeast Normal Univ./Inst. of Grassland Science, and Key Laboratory of Vegetation Ecology, Ministry of Education Changchun CN‐130024 Jilin PR China
- Inst. of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences Harbin Heilongjiang PR China
| | - Elisabeth S. Bakker
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| |
Collapse
|
28
|
Le Gall M, Word ML, Thompson N, Manneh B, Beye A, Cease AJ. Linking land use and the nutritional ecology of herbivores: A case study with the Senegalese locust. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marion Le Gall
- School of Sustainability Arizona State University Tempe AZ USA
| | - Mira L. Word
- School of Sustainability Arizona State University Tempe AZ USA
| | - Natalia Thompson
- School of Liberal Arts and Sciences Arizona State University Tempe AZ USA
| | | | - Alioune Beye
- Direction de la Protection des Végétaux Nganda Senegal
| | - Arianne J. Cease
- School of Sustainability Arizona State University Tempe AZ USA
- School of Life Sciences Arizona State University Tempe AZ USA
| |
Collapse
|
29
|
Villada-Bedoya S, Córdoba-Aguilar A, Escobar F, Martínez-Morales I, González-Tokman D. Dung Beetle Body Condition: A Tool for Disturbance Evaluation in Contaminated Pastures. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2392-2404. [PMID: 31550063 DOI: 10.1002/etc.4548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The use of veterinary medical products and herbicides is a common practice in intensified livestock systems. These compounds affect nontarget organisms that perform important ecosystem functions, such as dung beetles. The assessment of body condition allows us to determine how individuals respond to changes in the environment. However, assessments of how contamination associated with cattle farming affects coprophagous insects such as dung beetles have not been conducted in natural systems. In the present study, we evaluated the effect of ivermectin (an antiparasitic drug) and herbicides on the body condition of 3 species of dung beetles collected in the field: Copris incertus, Euoniticellus intermedius, and Digitonthophagus gazella. We recorded 3 condition indicators (body size, lipid mass, and muscle mass) of beetles collected from 19 livestock ranches in northeastern Mexico. In general, the use of ivermectin had adverse effects on C. incertus and E. intermedius whereas the effects were positive for D. gazella. Conversely, the use of herbicides had adverse effects on D. gazella and positive effects on C. incertus. The different effects of ivermectin and herbicides found in males and females show that sex can be important in determining individual responses to environmental contamination. Importantly, we provide the first evidence under natural conditions that native and exotic species of dung beetles are highly sensitive to different types of livestock management, with veterinary medications and herbicides having the ability to alter body condition. Changes in dung beetle condition can reduce the ecosystem services that dung beetles provide in livestock systems. Environ Toxicol Chem 2019;38:2392-2404. © 2019 SETAC.
Collapse
Affiliation(s)
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Federico Escobar
- Red de Ecoetología, Instituto de Ecología, El Haya, Xalapa, Veracruz, México
| | | | - Daniel González-Tokman
- Red de Ecoetología, Instituto de Ecología, El Haya, Xalapa, Veracruz, México
- Consejo Nacional de Ciencia y Tecnología, Ciudad de, México, México
| |
Collapse
|
30
|
Akami M, Ren XM, Qi X, Mansour A, Gao B, Cao S, Niu CY. Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera: Tephritidae). BMC Microbiol 2019; 19:229. [PMID: 31640545 PMCID: PMC6805663 DOI: 10.1186/s12866-019-1607-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023] Open
Abstract
Background The gut bacteria of tephritid fruit flies play prominent roles in nutrition, reproduction, maintenance and ecological adaptations of the host. Here, we adopted an approach based on direct observation of symbiotic or axenic flies feeding on dishes seeded with drops of full diet (containing all amino acids) or full diet supplemented with bacteria at similar concentrations to explore the effects of intestinal bacteria on foraging decision and fitness of Bactrocera dorsalis. Results The results show that intestinal probiotics elicit beneficial foraging decision and enhance the female reproduction fitness and survival of B. dorsalis (symbiotic and axenic), yet preferences for probiotic diets were significantly higher in axenic flies to which they responded faster compared to full diet. Moreover, females fed diet supplemented with Pantoea dispersa and Enterobacter cloacae laid more eggs but had shorter lifespan while female fed Enterococcus faecalis and Klebsiella oxytoca enriched diets lived longer but had lower fecundity compared to the positive control. Conversely, flies fed sugar diet (negative control) were not able to produce eggs, but lived longer than those from the positive control. Conclusions These results suggest that intestinal bacteria can drive the foraging decision in a way which promotes the reproduction and survival of B. dorsalis. Our data highlight the potentials of gut bacterial isolates to control the foraging behavior of the fly and empower the sterile insect technique (SIT) program through the mass rearing.
Collapse
Affiliation(s)
- Mazarin Akami
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O Box 454, Ngaoundere, Cameroon
| | - Xue-Ming Ren
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuewei Qi
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Abdelaziz Mansour
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.,Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Bingli Gao
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Cao
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang-Ying Niu
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
31
|
Wang P, Furlong MJ, Walsh TK, Zalucki MP. Moving to Keep Fit: Feeding Behavior and Movement of Helicoverpa armigera (Lepidoptera: Noctuidae) on Artificial Diet With Different Protein: Carbohydrate Ratios. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5607537. [PMID: 31665784 PMCID: PMC6821168 DOI: 10.1093/jisesa/iez098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Indexed: 06/10/2023]
Abstract
Insect herbivores can modify their foraging behavior to obtain a balanced food intake, and they tend to move between food sources with different nutrient values. We investigated this movement in early instar larvae of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) using a putative optimal artificial diet (OP) and high protein (HP) and high carbohydrate (HC) artificial diets based on protein (p) and carbohydrate (c) ratios. Larvae were allowed to choose between the same kind of diet cubes (effectively no-choice), or diet cubes with different p: c ratios. In no-choice tests, we found that first instar larvae remained longest on OP diet and spent the least time on HC diet, while third instar larvae remained longest on HC diet and spent least time on OP diet. First instar larvae moved the most when provided with HC diet, while third instar larvae moved most when provided with OP diet. However, both stages moved the least when allowed to choose between diet cubes with different p: c ratios. The relative growth rate decreased when larvae increased their movement, but this influence was not evident when larvae fed on HC diet. Larvae that fed only on HC diet had the highest relative growth rate, followed by larvae with access to all diets simultaneously, indicating a behavior to mix nutrient intake. We relate these findings to behavior of this major pest species under field conditions.
Collapse
Affiliation(s)
- Peng Wang
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Thomas K Walsh
- CSIRO, Black Mountain Laboratories, Canberra, ACT, Australia
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
32
|
Kraus S, Gómez-Moracho T, Pasquaretta C, Latil G, Dussutour A, Lihoreau M. Bumblebees adjust protein and lipid collection rules to the presence of brood. Curr Zool 2019; 65:437-446. [PMID: 31413716 PMCID: PMC6688571 DOI: 10.1093/cz/zoz026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/06/2019] [Indexed: 12/02/2022] Open
Abstract
Animals have evolved foraging strategies to acquire blends of nutrients that maximize fitness traits. In social insects, nutrient regulation is complicated by the fact that few individuals, the foragers, must address the divergent nutritional needs of all colony members simultaneously, including other workers, the reproductives, and the brood. Here we used 3D nutritional geometry design to examine how bumblebee workers regulate their collection of 3 major macronutrients in the presence and absence of brood. We provided small colonies artificial nectars (liquid diets) and pollens (solid diets) varying in their compositions of proteins, lipids, and carbohydrates during 2 weeks. Colonies given a choice between nutritionally complementary diets self-selected foods to reach a target ratio of 71% proteins, 6% carbohydrates, and 23% lipids, irrespective of the presence of brood. When confined to a single nutritionally imbalanced solid diet, colonies without brood regulated lipid collection and over-collected protein relative to this target ratio, whereas colonies with brood regulated both lipid and protein collection. This brood effect on the regulation of nutrient collection by workers suggests that protein levels are critical for larval development. Our results highlight the importance of considering bee nutrition as a multidimensional phenomenon to better assess the effects of environmental impoverishment and malnutrition on population declines.
Collapse
Affiliation(s)
- Stéphane Kraus
- Research Center on Animal Cognition (CRCA), Center for Intergrative Biology (CBI); CNRS, University Paul Sabatier, Toulouse, France
| | | | | | | | | | | |
Collapse
|
33
|
Cappellozza S, Leonardi MG, Savoldelli S, Carminati D, Rizzolo A, Cortellino G, Terova G, Moretto E, Badaile A, Concheri G, Saviane A, Bruno D, Bonelli M, Caccia S, Casartelli M, Tettamanti G. A First Attempt to Produce Proteins from Insects by Means of a Circular Economy. Animals (Basel) 2019; 9:ani9050278. [PMID: 31137732 PMCID: PMC6562786 DOI: 10.3390/ani9050278] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Protein production for animal husbandry is a crucial ecological problem because of its impact on the environment, as it requires water, energy, and land. These resources are limited and not reusable. In this study, we obtained a continuously regenerating system in which by-products of a process constituted rough material for another one. Leftovers from fruit and vegetable markets were employed as rearing substrate for insects (Black Soldier Fly). Insect biomass was transformed into meal and oil for fish feeding and food/pharmaceutical industry, respectively. The residuals from insect rearing were then used as substrate to grow earthworms, which transformed this material into compost for plants. Therefore, we returned to the starting point of our economic and ecological closed loop, i.e., to soil improvers (nutrient material) for fruit and vegetable production. Moreover, earthworms can be conveniently employed as fishing bites. We also studied a series of physiological parameters of the living organisms involved in this system to verify their health conditions (insects), and growth performances (insects and fish). Microbiological analyses of insects, rearing substrate, and insect meal were conducted to assess their safety for fish and humans. Related technological processes, such as insects drying, grinding, and oil extraction, were also tested. Abstract The worldwide growing consumption of proteins to feed humans and animals has drawn a considerable amount of attention to insect rearing. Insects reared on organic wastes and used as feed for monogastric animals can reduce the environmental impact and increase the sustainability of meat/fish production. In this study, we designed an environmentally closed loop for food supply in which fruit and vegetable waste from markets became rearing substrate for Hermetia illucens (BSF— black soldier fly). A vegetable and fruit-based substrate was compared to a standard diet for Diptera in terms of larval growth, waste reduction index, and overall substrate degradation. Morphological analysis of insect organs was carried out to obtain indications about insect health. Processing steps such as drying and oil extraction from BSF were investigated. Nutritional and microbiological analyses confirmed the good quality of insects and meal. The meal was then used to produce fish feed and its suitability to this purpose was assessed using trout. Earthworms were grown on leftovers of BSF rearing in comparison to a standard substrate. Chemical analyses of vermicompost were performed. The present research demonstrates that insects can be used to reduce organic waste, increasing at the same time the sustainability of aquaculture and creating interesting by-products through the linked bio-system establishment.
Collapse
Affiliation(s)
- Silvia Cappellozza
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padua, Italy.
| | - Maria Giovanna Leonardi
- Dipartimento Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Sara Savoldelli
- Dipartimento Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Domenico Carminati
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy.
| | - Anna Rizzolo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), 20133 Milan, Italy.
| | - Giovanna Cortellino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), 20133 Milan, Italy.
| | - Genciana Terova
- Dipartimento di Biotecnologie e Scienze della Vita, Università dell'Insubria, 21100 Varese, Italy.
| | - Enzo Moretto
- Museo Vivente degli Insetti "Esapolis"- Butterfly Arc, 35143, Padua, Italy.
| | - Andrea Badaile
- Museo Vivente degli Insetti "Esapolis"- Butterfly Arc, 35143, Padua, Italy.
| | - Giuseppe Concheri
- Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente (DAFNAE), Università degli Studi di Padova, 35020, Legnaro (Pd), Italy.
| | - Alessio Saviane
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padua, Italy.
| | - Daniele Bruno
- Dipartimento di Biotecnologie e Scienze della Vita, Università dell'Insubria, 21100 Varese, Italy.
| | - Marco Bonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Silvia Caccia
- Dipartimento di Agraria, Università degli Studi di Napoli, Federico II, 80055 Naples, Italy.
| | - Morena Casartelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Gianluca Tettamanti
- Dipartimento di Biotecnologie e Scienze della Vita, Università dell'Insubria, 21100 Varese, Italy.
| |
Collapse
|
34
|
Salgado AL, Saastamoinen M. Developmental stage-dependent response and preference for host plant quality in an insect herbivore. Anim Behav 2019; 150:27-38. [PMID: 31024189 PMCID: PMC6467838 DOI: 10.1016/j.anbehav.2019.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/27/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022]
Abstract
Larval-derived nutritional reserves are essential in shaping insects' adult fitness. Early larval instars of many Lepidopteran species are often sessile, and the conditions experienced by these larvae are often highly dependent on the mother's oviposition choice. Later larval stages are more mobile and therefore can choose their food whenever alternatives are available. We tested how feeding on a drought-exposed host plant impacts life history in an insect herbivore, and whether the observed responses depended on developmental stage. We used drought to alter host plant quality of the ribwort plantain, Plantago lanceolata, and assessed whether host plant preference of postdiapause larvae and adult females increased their own or their offspring's performance, respectively, in the Glanville fritillary butterfly, Melitaea cinxia. Larval response to drought-exposed host plants varied with developmental stage: early larval stages (prediapause) had decreased survival and body mass on drought-exposed plants, while later larval stages (postdiapause) developed faster, weighed more and had a higher growth rate on the drought-exposed plants. Postdiapause larvae also showed a preference for drought-exposed host plants, i.e. those that increased their performance, but only when fed on well-watered host plants. Adult females, on the other hand, showed an oviposition preference for well-watered plants, hence matching the performance of their prediapause but not their postdiapause offspring. Our results highlight how variation in environmental conditions generates stage-specific responses in insects. Individuals fine-tune their own or their offspring's diet by behavioural adjustments when variation in host plant quality is available.
Collapse
Affiliation(s)
- Ana L. Salgado
- Research Centre of Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | | |
Collapse
|
35
|
Ge J, Wei J, Tao Y, Kang L. Sexual cooperation relies on food controlled by females in agromyzid flies. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Akami M, Andongma AA, Zhengzhong C, Nan J, Khaeso K, Jurkevitch E, Niu CY, Yuval B. Intestinal bacteria modulate the foraging behavior of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). PLoS One 2019; 14:e0210109. [PMID: 30650116 PMCID: PMC6334898 DOI: 10.1371/journal.pone.0210109] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022] Open
Abstract
The gut microbiome of insects directly or indirectly affects the metabolism, immune status, sensory perception and feeding behavior of its host. Here, we examine the hypothesis that in the oriental fruit fly (Bactrocera dorsalis, Diptera: Tephritidae), the presence or absence of gut symbionts affects foraging behavior and nutrient ingestion. We offered protein-starved flies, symbiotic or aposymbiotic, a choice between diets containing all amino acids or only the non-essential ones. The different diets were presented in a foraging arena as drops that varied in their size and density, creating an imbalanced foraging environment. Suppressing the microbiome resulted in significant changes of the foraging behavior of both male and female flies. Aposymbiotic flies responded faster to the diets offered in experimental arenas, spent more time feeding, ingested more drops of food, and were constrained to feed on time-consuming patches (containing small drops of food), when these offered the full complement of amino acids. We discuss these results in the context of previous studies on the effect of the gut microbiome on host behavior, and suggest that these be extended to the life history dimension.
Collapse
Affiliation(s)
- Mazarin Akami
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - Awawing A. Andongma
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Chen Zhengzhong
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiang Nan
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Kanjana Khaeso
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Edouard Jurkevitch
- Department of Microbiology and Plant Diseases, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Chang-Ying Niu
- Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail: (BY); (CYN)
| | - Boaz Yuval
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail: (BY); (CYN)
| |
Collapse
|
37
|
Decker LE, Soule AJ, de Roode JC, Hunter MD. Phytochemical changes in milkweed induced by elevated CO
2
alter wing morphology but not toxin sequestration in monarch butterflies. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Leslie E. Decker
- Department of Biology Stanford University Stanford California
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan
| | - Abrianna J. Soule
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan
- Department of Biology University of Utah Salt Lake City Utah
| | | | - Mark D. Hunter
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan
| |
Collapse
|
38
|
Pasquaretta C, Gómez-Moracho T, Heeb P, Lihoreau M. Exploring Interactions between the Gut Microbiota and Social Behavior through Nutrition. Genes (Basel) 2018; 9:E534. [PMID: 30404178 PMCID: PMC6266758 DOI: 10.3390/genes9110534] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
Microbes influence a wide range of host social behaviors and vice versa. So far, however, the mechanisms underpinning these complex interactions remain poorly understood. In social animals, where individuals share microbes and interact around foods, the gut microbiota may have considerable consequences on host social interactions by acting upon the nutritional behavior of individual animals. Here we illustrate how conceptual advances in nutritional ecology can help the study of these processes and allow the formulation of new empirically testable predictions. First, we review key evidence showing that gut microbes influence the nutrition of individual animals, through modifications of their nutritional state and feeding decisions. Next, we describe how these microbial influences and their social consequences can be studied by modelling populations of hosts and their gut microbiota into a single conceptual framework derived from nutritional geometry. Our approach raises new perspectives for the study of holobiont nutrition and will facilitate theoretical and experimental research on the role of the gut microbiota in the mechanisms and evolution of social behavior.
Collapse
Affiliation(s)
- Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France.
| | - Tamara Gómez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France.
| | - Philipp Heeb
- Laboratoire Evolution et Diversité Biologique, UMR 5174 Centre National de la Recherche Scientifique, Université Paul Sabatier, ENSFEA, 31062 Toulouse, France.
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
39
|
Al Shareefi E, Cotter SC. The nutritional ecology of maturation in a carnivorous insect. Behav Ecol 2018. [DOI: 10.1093/beheco/ary142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Ekhlas Al Shareefi
- School of Biological Sciences, Queen’s University Belfast, MBC, Belfast, UK
| | - Sheena C Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, UK
| |
Collapse
|
40
|
Lihoreau M, Gómez-Moracho T, Pasquaretta C, Costa JT, Buhl C. Social nutrition: an emerging field in insect science. CURRENT OPINION IN INSECT SCIENCE 2018; 28:73-80. [PMID: 30551770 DOI: 10.1016/j.cois.2018.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 06/09/2023]
Abstract
Nutrition is thought to be a major driver of social evolution, yet empirical support for this hypothesis is scarce. Here we illustrate how conceptual advances in nutritional ecology illuminate some of the mechanisms by which nutrition mediates social interactions in insects. We focus on experiments and models of nutritional geometry and argue that they provide a powerful means for comparing nutritional phenomena across species exhibiting various social ecologies. This approach, initially developed to study the nutritional behaviour of individual insects, has been increasingly used to study insect groups and societies, leading to the emerging field of social nutrition. We discuss future directions for exploring how these nutritional mechanisms may influence major social transitions in insects and other animals.
Collapse
Affiliation(s)
- Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier, Toulouse, France.
| | - Tamara Gómez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier, Toulouse, France
| | - Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier, Toulouse, France
| | - James T Costa
- Highlands Biological Station, 265 N. Sixth Street, Highlands, NC 28741, USA; Department of Biology, Western Carolina University, Cullowhee, NC 28723, USA
| | - Camille Buhl
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Southern Australia 5005, Australia
| |
Collapse
|
41
|
Jensen K, Silverman J. Frequently mated males have higher protein preference in German cockroaches. Behav Ecol 2018. [DOI: 10.1093/beheco/ary104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kim Jensen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Bioscience, Aarhus University, Vejlsøvej, Silkeborg, Denmark
| | - Jules Silverman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
42
|
Prather CM, Laws AN, Cuellar JF, Reihart RW, Gawkins KM, Pennings SC. Seeking salt: herbivorous prairie insects can be co-limited by macronutrients and sodium. Ecol Lett 2018; 21:1467-1476. [PMID: 30039540 DOI: 10.1111/ele.13127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/08/2018] [Indexed: 11/28/2022]
Abstract
The canonical factors typically thought to determine herbivore community structure often explain only a small fraction of the variation in herbivore abundance and diversity. We tested how macronutrients and relatively understudied micronutrients interacted to influence the structure of insect herbivore (orthopteran) communities. We conducted a factorial fertilisation experiment manipulating macronutrients (N and P, added together) and micronutrients (Ca, Na and K) in large plots (30 × 30 m2 ) in a Texas coastal prairie. Although no single or combination of micronutrients affected herbivore communities in the absence of additional macronutrients, macronutrients and sodium added together increased herbivore abundance by 60%, richness by 15% and diversity by 20%. These results represent the first large-scale manipulation of single micronutrients and macronutrients in concert, and revealed an herbivore community co-limited by macronutrients and Na. Our work supports an emerging paradigm that Na may be important in limiting herbivore communities.
Collapse
Affiliation(s)
- Chelse M Prather
- Department of Biology, Radford University, Radford, VA, 46556, USA.,Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Angela N Laws
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.,The Xerces Society, Sacramento, CA, 95814, USA
| | - Juan F Cuellar
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Ryan W Reihart
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | | | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
43
|
Ludwig L, Barbour MA, Guevara J, Avilés L, González AL. Caught in the web: Spider web architecture affects prey specialization and spider-prey stoichiometric relationships. Ecol Evol 2018; 8:6449-6462. [PMID: 30038747 PMCID: PMC6053566 DOI: 10.1002/ece3.4028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 01/31/2018] [Accepted: 02/25/2018] [Indexed: 11/12/2022] Open
Abstract
Quantitative approaches to predator-prey interactions are central to understanding the structure of food webs and their dynamics. Different predatory strategies may influence the occurrence and strength of trophic interactions likely affecting the rates and magnitudes of energy and nutrient transfer between trophic levels and stoichiometry of predator-prey interactions. Here, we used spider-prey interactions as a model system to investigate whether different spider web architectures-orb, tangle, and sheet-tangle-affect the composition and diet breadth of spiders and whether these, in turn, influence stoichiometric relationships between spiders and their prey. Our results showed that web architecture partially affects the richness and composition of the prey captured by spiders. Tangle-web spiders were specialists, capturing a restricted subset of the prey community (primarily Diptera), whereas orb and sheet-tangle web spiders were generalists, capturing a broader range of prey types. We also observed elemental imbalances between spiders and their prey. In general, spiders had higher requirements for both nitrogen (N) and phosphorus (P) than those provided by their prey even after accounting for prey biomass. Larger P imbalances for tangle-web spiders than for orb and sheet-tangle web spiders suggest that trophic specialization may impose strong elemental constraints for these predators unless they display behavioral or physiological mechanisms to cope with nutrient limitation. Our findings suggest that integrating quantitative analysis of species interactions with elemental stoichiometry can help to better understand the occurrence of stoichiometric imbalances in predator-prey interactions.
Collapse
Affiliation(s)
- Lorraine Ludwig
- Department of ZoologyBiodiversity Research CentreUniversity of BritishColumbiaBCCanada
| | - Matthew A. Barbour
- Department of ZoologyBiodiversity Research CentreUniversity of BritishColumbiaBCCanada
- Universidad Regional Amazónica IKIAMTenaNapoEcuador
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichSwitzerland
| | - Jennifer Guevara
- Universidad Regional Amazónica IKIAMTenaNapoEcuador
- Department of BiologyCenter for Computational and Integrative BiologyRutgers UniversityCamdenNJUSA
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichSwitzerland
| | - Leticia Avilés
- Department of ZoologyBiodiversity Research CentreUniversity of BritishColumbiaBCCanada
| | - Angélica L. González
- Department of BiologyCenter for Computational and Integrative BiologyRutgers UniversityCamdenNJUSA
| |
Collapse
|
44
|
Raubenheimer D, Simpson SJ. Nutritional ecology and foraging theory. CURRENT OPINION IN INSECT SCIENCE 2018; 27:38-45. [PMID: 30025633 DOI: 10.1016/j.cois.2018.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Historically, two fields of research have developed theory around foraging and feeding that have influenced biology more broadly, optimal foraging theory and nutritional ecology. While these fields have developed largely in parallel, they are complementary with each offering particular strengths. Here we show how an approach developed in the study of insect nutrition, called nutritional geometry, has provided a framework for incorporating key aspects of optimal foraging theory into nutritional ecology. This synthesis provides a basis for integrating with foraging and feeding the many facets of biology that are linked to nutrition and is now influencing diverse areas of the biological and biomedical sciences.
Collapse
Affiliation(s)
- David Raubenheimer
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Woestmann L, Gibbs M, Hesketh H, Saastamoinen M. Viral exposure effects on life-history, flight-related traits, and wing melanisation in the Glanville fritillary butterfly. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:136-143. [PMID: 29627352 PMCID: PMC5971209 DOI: 10.1016/j.jinsphys.2018.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Infections represent a constant threat for organisms and can lead to substantial fitness losses. Understanding how individuals, especially from natural populations, respond towards infections is thus of great importance. Little is known about immunity in the Glanville fritillary butterfly (Melitaea cinxia). As the larvae live gregariously in family groups, vertical and horizontal transmission of infections could have tremendous effects on individuals and consequently impact population dynamics in nature. We used the Alphabaculovirus type strain Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and demonstrated that positive concentration-dependent baculovirus exposure leads to prolonged developmental time and decreased survival during larval and pupal development, with no sex specific differences. Viral exposure did not influence relative thorax mass or wing morphometric traits often related to flight ability, yet melanisation of the wings increased with viral exposure, potentially influencing disease resistance or flight capacity via thermal regulation. Further research is needed to explore effects under sub-optimal conditions, determine effects on fitness-related traits, and investigate a potential adaptive response of increased melanisation in the wings due to baculovirus exposure.
Collapse
Affiliation(s)
- Luisa Woestmann
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO Box 65, Viikinkaari 1, 00014 University of Helsinki, Finland.
| | - Melanie Gibbs
- NERC Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom.
| | - Helen Hesketh
- NERC Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom.
| | - Marjo Saastamoinen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO Box 65, Viikinkaari 1, 00014 University of Helsinki, Finland.
| |
Collapse
|
46
|
Lichtenstein JLL, Rice HK, Pruitt JN. Personality variation in two predator species does not impact prey species survival or plant damage in staged mesocosms. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Poissonnier LA, Lihoreau M, Gomez-Moracho T, Dussutour A, Buhl C. A theoretical exploration of dietary collective medication in social insects. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:78-87. [PMID: 28826630 DOI: 10.1016/j.jinsphys.2017.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Animals often alter their food choices following a pathogen infection in order to increase immune function and combat the infection. Whether social animals that collect food for their brood or nestmates adjust their nutrient intake to the infection states of their social partners is virtually unexplored. Here we develop an individual-based model of nutritional geometry to examine the impact of collective nutrient balancing on pathogen spread in a social insect colony. The model simulates a hypothetical social insect colony infected by a horizontally transmitted parasite. Simulation experiments suggest that collective nutrition, by which foragers adjust their nutrient intake to simultaneously address their own nutritional needs as well as those of their infected nestmates, is an efficient social immunity mechanism to limit contamination when immune responses are short. Impaired foraging in infected workers can favour colony resilience when pathogen transmission rate is low (by reducing contacts with the few infected foragers) or trigger colony collapse when transmission rate is fast (by depleting the entire pool of foragers). Our theoretical examination of dietary collective medication in social insects suggests a new possible mechanism by which colonies can defend themselves against pathogens and provides a conceptual framework for experimental investigations of the nutritional immunology of social animals.
Collapse
Affiliation(s)
- Laure-Anne Poissonnier
- School of Agriculture, Food and Wine, Waite campus, The University of Adelaide, SA 5005, Australia
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, France.
| | - Tamara Gomez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, France
| | - Audrey Dussutour
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, France
| | - Camille Buhl
- School of Agriculture, Food and Wine, Waite campus, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
48
|
Lihoreau M, Charleston MA, Senior AM, Clissold FJ, Raubenheimer D, Simpson SJ, Buhl J. Collective foraging in spatially complex nutritional environments. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0238. [PMID: 28673915 DOI: 10.1098/rstb.2016.0238] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 11/12/2022] Open
Abstract
Nutrition impinges on virtually all aspects of an animal's life, including social interactions. Recent advances in nutritional ecology show how social animals often trade-off individual nutrition and group cohesion when foraging in simplified experimental environments. Here, we explore how the spatial structure of the nutritional landscape influences these complex collective foraging dynamics in ecologically realistic environments. We introduce an individual-based model integrating key concepts of nutritional geometry, collective animal behaviour and spatial ecology to study the nutritional behaviour of animal groups in large heterogeneous environments containing foods with different abundance, patchiness and nutritional composition. Simulations show that the spatial distribution of foods constrains the ability of individuals to balance their nutrient intake, the lowest performance being attained in environments with small isolated patches of nutritionally complementary foods. Social interactions improve individual regulatory performances when food is scarce and clumpy, but not when it is abundant and scattered, suggesting that collective foraging is favoured in some environments only. These social effects are further amplified if foragers adopt flexible search strategies based on their individual nutritional state. Our model provides a conceptual and predictive framework for developing new empirically testable hypotheses in the emerging field of social nutrition.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), University Paul Sabatier, CNRS, UPS, 118 route de Narbonne, Toulouse 31200, France
| | - Michael A Charleston
- School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Alistair M Senior
- Charles Perkins Centre, University of Tasmania, Hobart, Tasmania 7005, Australia.,School of Mathematics and Statistics, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Fiona J Clissold
- Charles Perkins Centre, University of Tasmania, Hobart, Tasmania 7005, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - David Raubenheimer
- Charles Perkins Centre, University of Tasmania, Hobart, Tasmania 7005, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Tasmania, Hobart, Tasmania 7005, Australia.,School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Jerome Buhl
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Southern Australia 5005, Australia
| |
Collapse
|
49
|
Budischak SA, Hansen CB, Caudron Q, Garnier R, Kartzinel TR, Pelczer I, Cressler CE, van Leeuwen A, Graham AL. Feeding Immunity: Physiological and Behavioral Responses to Infection and Resource Limitation. Front Immunol 2018; 8:1914. [PMID: 29358937 PMCID: PMC5766659 DOI: 10.3389/fimmu.2017.01914] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 01/17/2023] Open
Abstract
Resources are a core currency of species interactions and ecology in general (e.g., think of food webs or competition). Within parasite-infected hosts, resources are divided among the competing demands of host immunity and growth as well as parasite reproduction and growth. Effects of resources on immune responses are increasingly understood at the cellular level (e.g., metabolic predictors of effector function), but there has been limited consideration of how these effects scale up to affect individual energetic regimes (e.g., allocation trade-offs), susceptibility to infection, and feeding behavior (e.g., responses to local resource quality and quantity). We experimentally rewilded laboratory mice (strain C57BL/6) in semi-natural enclosures to investigate the effects of dietary protein and gastrointestinal nematode (Trichuris muris) infection on individual-level immunity, activity, and behavior. The scale and realism of this field experiment, as well as the multiple physiological assays developed for laboratory mice, enabled us to detect costs, trade-offs, and potential compensatory mechanisms that mice employ to battle infection under different resource conditions. We found that mice on a low-protein diet spent more time feeding, which led to higher body fat stores (i.e., concentration of a satiety hormone, leptin) and altered metabolite profiles, but which did not fully compensate for the effects of poor nutrition on albumin or immune defenses. Specifically, immune defenses measured as interleukin 13 (IL13) (a primary cytokine coordinating defense against T. muris) and as T. muris-specific IgG1 titers were lower in mice on the low-protein diet. However, these reduced defenses did not result in higher worm counts in mice with poorer diets. The lab mice, living outside for the first time in thousands of generations, also consumed at least 26 wild plant species occurring in the enclosures, and DNA metabarcoding revealed that the consumption of different wild foods may be associated with differences in leptin concentrations. When individual foraging behavior was accounted for, worm infection significantly reduced rates of host weight gain. Housing laboratory mice in outdoor enclosures provided new insights into the resource costs of immune defense to helminth infection and how hosts modify their behavior to compensate for those costs.
Collapse
Affiliation(s)
- Sarah A. Budischak
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Christina B. Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Quentin Caudron
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Romain Garnier
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tyler R. Kartzinel
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - István Pelczer
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Clayton E. Cressler
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Anieke van Leeuwen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, and Utrecht University, Texel, Netherlands
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
50
|
Barboza PS, Van Someren LL, Gustine DD, Bret‐Harte MS. The nitrogen window for arctic herbivores: plant phenology and protein gain of migratory caribou (
Rangifer tarandus
). Ecosphere 2018. [DOI: 10.1002/ecs2.2073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Perry S. Barboza
- Department of Biology and Wildlife University of Alaska Fairbanks Fairbanks Alaska 99775 USA
- Institute of Arctic Biology University of Alaska Fairbanks Fairbanks Alaska 99775 USA
- Department of Wildlife and Fisheries Sciences Texas A&M University College Station Texas 77843 USA
| | - Lindsay L. Van Someren
- Department of Biology and Wildlife University of Alaska Fairbanks Fairbanks Alaska 99775 USA
| | - David D. Gustine
- U.S. Geological Survey Alaska Science Center 4210 University Drive Anchorage Alaska 99508 USA
| | - M. Syndonia Bret‐Harte
- Department of Biology and Wildlife University of Alaska Fairbanks Fairbanks Alaska 99775 USA
- Institute of Arctic Biology University of Alaska Fairbanks Fairbanks Alaska 99775 USA
| |
Collapse
|